Compare commits
16 Commits
version3.5
...
version3.5
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
5e647ff149 | ||
|
|
868faf00cc | ||
|
|
a0286c39b9 | ||
|
|
9cced321f1 | ||
|
|
3073935e24 | ||
|
|
ef6631b280 | ||
|
|
0801e4d881 | ||
|
|
ae08cfbcae | ||
|
|
1c0d5361ea | ||
|
|
278464bfb7 | ||
|
|
2a6996f5d0 | ||
|
|
84b11016c6 | ||
|
|
7e74d3d699 | ||
|
|
2cad8e2694 | ||
|
|
e765ec1223 | ||
|
|
471a369bb8 |
32
README.md
32
README.md
@@ -101,9 +101,11 @@ cd gpt_academic
|
||||
|
||||
2. 配置API_KEY
|
||||
|
||||
在`config.py`中,配置API KEY等设置,[点击查看特殊网络环境设置方法](https://github.com/binary-husky/gpt_academic/issues/1) 。
|
||||
在`config.py`中,配置API KEY等设置,[点击查看特殊网络环境设置方法](https://github.com/binary-husky/gpt_academic/issues/1) 。[Wiki页面](https://github.com/binary-husky/gpt_academic/wiki/%E9%A1%B9%E7%9B%AE%E9%85%8D%E7%BD%AE%E8%AF%B4%E6%98%8E)。
|
||||
|
||||
(P.S. 程序运行时会优先检查是否存在名为`config_private.py`的私密配置文件,并用其中的配置覆盖`config.py`的同名配置。因此,如果您能理解我们的配置读取逻辑,我们强烈建议您在`config.py`旁边创建一个名为`config_private.py`的新配置文件,并把`config.py`中的配置转移(复制)到`config_private.py`中(仅复制您修改过的配置条目即可)。`config_private.py`不受git管控,可以让您的隐私信息更加安全。P.S.项目同样支持通过`环境变量`配置大多数选项,环境变量的书写格式参考`docker-compose`文件。读取优先级: `环境变量` > `config_private.py` > `config.py`)
|
||||
「 程序会优先检查是否存在名为`config_private.py`的私密配置文件,并用其中的配置覆盖`config.py`的同名配置。如您能理解该读取逻辑,我们强烈建议您在`config.py`旁边创建一个名为`config_private.py`的新配置文件,并把`config.py`中的配置转移(复制)到`config_private.py`中(仅复制您修改过的配置条目即可)。 」
|
||||
|
||||
「 支持通过`环境变量`配置项目,环境变量的书写格式参考`docker-compose.yml`文件或者我们的[Wiki页面](https://github.com/binary-husky/gpt_academic/wiki/%E9%A1%B9%E7%9B%AE%E9%85%8D%E7%BD%AE%E8%AF%B4%E6%98%8E)。配置读取优先级: `环境变量` > `config_private.py` > `config.py`。 」
|
||||
|
||||
|
||||
3. 安装依赖
|
||||
@@ -111,7 +113,7 @@ cd gpt_academic
|
||||
# (选择I: 如熟悉python)(python版本3.9以上,越新越好),备注:使用官方pip源或者阿里pip源,临时换源方法:python -m pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
|
||||
python -m pip install -r requirements.txt
|
||||
|
||||
# (选择II: 如不熟悉python)使用anaconda,步骤也是类似的 (https://www.bilibili.com/video/BV1rc411W7Dr):
|
||||
# (选择II: 使用Anaconda)步骤也是类似的 (https://www.bilibili.com/video/BV1rc411W7Dr):
|
||||
conda create -n gptac_venv python=3.11 # 创建anaconda环境
|
||||
conda activate gptac_venv # 激活anaconda环境
|
||||
python -m pip install -r requirements.txt # 这个步骤和pip安装一样的步骤
|
||||
@@ -149,26 +151,25 @@ python main.py
|
||||
|
||||
### 安装方法II:使用Docker
|
||||
|
||||
0. 部署项目的全部能力(这个是包含cuda和latex的大型镜像。如果您网速慢、硬盘小或没有显卡,则不推荐使用这个,建议使用方案1)(需要熟悉[Nvidia Docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#installing-on-ubuntu-and-debian)运行时)
|
||||
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml)
|
||||
|
||||
1. 仅ChatGPT(推荐大多数人选择,等价于docker-compose方案1)
|
||||
``` sh
|
||||
# 修改docker-compose.yml,保留方案0并删除其他方案。修改docker-compose.yml中方案0的配置,参考其中注释即可
|
||||
docker-compose up
|
||||
```
|
||||
|
||||
1. 仅ChatGPT+文心一言+spark等在线模型(推荐大多数人选择)
|
||||
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml)
|
||||
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml)
|
||||
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml)
|
||||
|
||||
|
||||
``` sh
|
||||
git clone --depth=1 https://github.com/binary-husky/gpt_academic.git # 下载项目
|
||||
cd gpt_academic # 进入路径
|
||||
nano config.py # 用任意文本编辑器编辑config.py, 配置 “Proxy”, “API_KEY” 以及 “WEB_PORT” (例如50923) 等
|
||||
docker build -t gpt-academic . # 安装
|
||||
|
||||
#(最后一步-Linux操作系统)用`--net=host`更方便快捷
|
||||
docker run --rm -it --net=host gpt-academic
|
||||
#(最后一步-MacOS/Windows操作系统)只能用-p选项将容器上的端口(例如50923)暴露给主机上的端口
|
||||
docker run --rm -it -e WEB_PORT=50923 -p 50923:50923 gpt-academic
|
||||
# 修改docker-compose.yml,保留方案1并删除其他方案。修改docker-compose.yml中方案1的配置,参考其中注释即可
|
||||
docker-compose up
|
||||
```
|
||||
P.S. 如果需要依赖Latex的插件功能,请见Wiki。另外,您也可以直接使用docker-compose获取Latex功能(修改docker-compose.yml,保留方案4并删除其他方案)。
|
||||
|
||||
P.S. 如果需要依赖Latex的插件功能,请见Wiki。另外,您也可以直接使用方案4或者方案0获取Latex功能。
|
||||
|
||||
2. ChatGPT + ChatGLM2 + MOSS + LLAMA2 + 通义千问(需要熟悉[Nvidia Docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#installing-on-ubuntu-and-debian)运行时)
|
||||
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml)
|
||||
@@ -309,6 +310,7 @@ Tip:不指定文件直接点击 `载入对话历史存档` 可以查看历史h
|
||||
|
||||
### II:版本:
|
||||
- version 3.60(todo): 优化虚空终端,引入code interpreter和更多插件
|
||||
- version 3.53: 支持动态选择不同界面主题,提高稳定性&解决多用户冲突问题
|
||||
- version 3.50: 使用自然语言调用本项目的所有函数插件(虚空终端),支持插件分类,改进UI,设计新主题
|
||||
- version 3.49: 支持百度千帆平台和文心一言
|
||||
- version 3.48: 支持阿里达摩院通义千问,上海AI-Lab书生,讯飞星火
|
||||
|
||||
@@ -46,7 +46,7 @@ DEFAULT_WORKER_NUM = 3
|
||||
# 色彩主题, 可选 ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast"]
|
||||
# 更多主题, 请查阅Gradio主题商店: https://huggingface.co/spaces/gradio/theme-gallery 可选 ["Gstaff/Xkcd", "NoCrypt/Miku", ...]
|
||||
THEME = "Default"
|
||||
|
||||
AVAIL_THEMES = ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast", "Gstaff/Xkcd", "NoCrypt/Miku"]
|
||||
|
||||
# 对话窗的高度 (仅在LAYOUT="TOP-DOWN"时生效)
|
||||
CHATBOT_HEIGHT = 1115
|
||||
|
||||
@@ -1,6 +1,14 @@
|
||||
from functools import lru_cache
|
||||
from toolbox import gen_time_str
|
||||
from toolbox import promote_file_to_downloadzone
|
||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||
from colorful import *
|
||||
import requests
|
||||
import random
|
||||
from functools import lru_cache
|
||||
import copy
|
||||
import os
|
||||
import math
|
||||
|
||||
class GROBID_OFFLINE_EXCEPTION(Exception): pass
|
||||
|
||||
def get_avail_grobid_url():
|
||||
@@ -28,3 +36,133 @@ def parse_pdf(pdf_path, grobid_url):
|
||||
raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
|
||||
return article_dict
|
||||
|
||||
|
||||
def produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chatbot, fp, generated_conclusion_files):
|
||||
# -=-=-=-=-=-=-=-= 写出第1个文件:翻译前后混合 -=-=-=-=-=-=-=-=
|
||||
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + gpt_response_collection, file_basename=f"{gen_time_str()}translated_and_original.md", file_fullname=None)
|
||||
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(res_path)+'.md', chatbot=chatbot)
|
||||
generated_conclusion_files.append(res_path)
|
||||
|
||||
# -=-=-=-=-=-=-=-= 写出第2个文件:仅翻译后的文本 -=-=-=-=-=-=-=-=
|
||||
translated_res_array = []
|
||||
# 记录当前的大章节标题:
|
||||
last_section_name = ""
|
||||
for index, value in enumerate(gpt_response_collection):
|
||||
# 先挑选偶数序列号:
|
||||
if index % 2 != 0:
|
||||
# 先提取当前英文标题:
|
||||
cur_section_name = gpt_response_collection[index-1].split('\n')[0].split(" Part")[0]
|
||||
# 如果index是1的话,则直接使用first section name:
|
||||
if cur_section_name != last_section_name:
|
||||
cur_value = cur_section_name + '\n'
|
||||
last_section_name = copy.deepcopy(cur_section_name)
|
||||
else:
|
||||
cur_value = ""
|
||||
# 再做一个小修改:重新修改当前part的标题,默认用英文的
|
||||
cur_value += value
|
||||
translated_res_array.append(cur_value)
|
||||
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + translated_res_array,
|
||||
file_basename = f"{gen_time_str()}-translated_only.md",
|
||||
file_fullname = None,
|
||||
auto_caption = False)
|
||||
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(res_path)+'.md', chatbot=chatbot)
|
||||
generated_conclusion_files.append(res_path)
|
||||
return res_path
|
||||
|
||||
def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG):
|
||||
from crazy_functions.crazy_utils import construct_html
|
||||
from crazy_functions.crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||
|
||||
prompt = "以下是一篇学术论文的基本信息:\n"
|
||||
# title
|
||||
title = article_dict.get('title', '无法获取 title'); prompt += f'title:{title}\n\n'
|
||||
# authors
|
||||
authors = article_dict.get('authors', '无法获取 authors'); prompt += f'authors:{authors}\n\n'
|
||||
# abstract
|
||||
abstract = article_dict.get('abstract', '无法获取 abstract'); prompt += f'abstract:{abstract}\n\n'
|
||||
# command
|
||||
prompt += f"请将题目和摘要翻译为{DST_LANG}。"
|
||||
meta = [f'# Title:\n\n', title, f'# Abstract:\n\n', abstract ]
|
||||
|
||||
# 单线,获取文章meta信息
|
||||
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=prompt,
|
||||
inputs_show_user=prompt,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot, history=[],
|
||||
sys_prompt="You are an academic paper reader。",
|
||||
)
|
||||
|
||||
# 多线,翻译
|
||||
inputs_array = []
|
||||
inputs_show_user_array = []
|
||||
|
||||
# get_token_num
|
||||
from request_llm.bridge_all import model_info
|
||||
enc = model_info[llm_kwargs['llm_model']]['tokenizer']
|
||||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||||
|
||||
def break_down(txt):
|
||||
raw_token_num = get_token_num(txt)
|
||||
if raw_token_num <= TOKEN_LIMIT_PER_FRAGMENT:
|
||||
return [txt]
|
||||
else:
|
||||
# raw_token_num > TOKEN_LIMIT_PER_FRAGMENT
|
||||
# find a smooth token limit to achieve even seperation
|
||||
count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
|
||||
token_limit_smooth = raw_token_num // count + count
|
||||
return breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn=get_token_num, limit=token_limit_smooth)
|
||||
|
||||
for section in article_dict.get('sections'):
|
||||
if len(section['text']) == 0: continue
|
||||
section_frags = break_down(section['text'])
|
||||
for i, fragment in enumerate(section_frags):
|
||||
heading = section['heading']
|
||||
if len(section_frags) > 1: heading += f' Part-{i+1}'
|
||||
inputs_array.append(
|
||||
f"你需要翻译{heading}章节,内容如下: \n\n{fragment}"
|
||||
)
|
||||
inputs_show_user_array.append(
|
||||
f"# {heading}\n\n{fragment}"
|
||||
)
|
||||
|
||||
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
inputs_array=inputs_array,
|
||||
inputs_show_user_array=inputs_show_user_array,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
history_array=[meta for _ in inputs_array],
|
||||
sys_prompt_array=[
|
||||
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array],
|
||||
)
|
||||
# -=-=-=-=-=-=-=-= 写出Markdown文件 -=-=-=-=-=-=-=-=
|
||||
produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chatbot, fp, generated_conclusion_files)
|
||||
|
||||
# -=-=-=-=-=-=-=-= 写出HTML文件 -=-=-=-=-=-=-=-=
|
||||
ch = construct_html()
|
||||
orig = ""
|
||||
trans = ""
|
||||
gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
|
||||
for i,k in enumerate(gpt_response_collection_html):
|
||||
if i%2==0:
|
||||
gpt_response_collection_html[i] = inputs_show_user_array[i//2]
|
||||
else:
|
||||
# 先提取当前英文标题:
|
||||
cur_section_name = gpt_response_collection[i-1].split('\n')[0].split(" Part")[0]
|
||||
cur_value = cur_section_name + "\n" + gpt_response_collection_html[i]
|
||||
gpt_response_collection_html[i] = cur_value
|
||||
|
||||
final = ["", "", "一、论文概况", "", "Abstract", paper_meta_info, "二、论文翻译", ""]
|
||||
final.extend(gpt_response_collection_html)
|
||||
for i, k in enumerate(final):
|
||||
if i%2==0:
|
||||
orig = k
|
||||
if i%2==1:
|
||||
trans = k
|
||||
ch.add_row(a=orig, b=trans)
|
||||
create_report_file_name = f"{os.path.basename(fp)}.trans.html"
|
||||
html_file = ch.save_file(create_report_file_name)
|
||||
generated_conclusion_files.append(html_file)
|
||||
promote_file_to_downloadzone(html_file, rename_file=os.path.basename(html_file), chatbot=chatbot)
|
||||
|
||||
@@ -1,11 +1,12 @@
|
||||
from toolbox import CatchException, report_execption, gen_time_str
|
||||
from toolbox import CatchException, report_execption, get_log_folder, gen_time_str
|
||||
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
|
||||
from toolbox import write_history_to_file, get_log_folder
|
||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||
from .crazy_utils import read_and_clean_pdf_text
|
||||
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url
|
||||
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url, translate_pdf
|
||||
from colorful import *
|
||||
import copy
|
||||
import os
|
||||
import math
|
||||
import logging
|
||||
@@ -92,7 +93,7 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
||||
def 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||
import copy
|
||||
import tiktoken
|
||||
TOKEN_LIMIT_PER_FRAGMENT = 1280
|
||||
TOKEN_LIMIT_PER_FRAGMENT = 1024
|
||||
generated_conclusion_files = []
|
||||
generated_html_files = []
|
||||
DST_LANG = "中文"
|
||||
@@ -101,101 +102,12 @@ def 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwa
|
||||
for index, fp in enumerate(file_manifest):
|
||||
chatbot.append(["当前进度:", f"正在解析论文,请稍候。(第一次运行时,需要花费较长时间下载NOUGAT参数)"]); yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
fpp = yield from nougat_handle.NOUGAT_parse_pdf(fp, chatbot, history)
|
||||
|
||||
promote_file_to_downloadzone(fpp, rename_file=os.path.basename(fpp)+'.nougat.mmd', chatbot=chatbot)
|
||||
with open(fpp, 'r', encoding='utf8') as f:
|
||||
article_content = f.readlines()
|
||||
article_dict = markdown_to_dict(article_content)
|
||||
logging.info(article_dict)
|
||||
|
||||
prompt = "以下是一篇学术论文的基本信息:\n"
|
||||
# title
|
||||
title = article_dict.get('title', '无法获取 title'); prompt += f'title:{title}\n\n'
|
||||
# authors
|
||||
authors = article_dict.get('authors', '无法获取 authors'); prompt += f'authors:{authors}\n\n'
|
||||
# abstract
|
||||
abstract = article_dict.get('abstract', '无法获取 abstract'); prompt += f'abstract:{abstract}\n\n'
|
||||
# command
|
||||
prompt += f"请将题目和摘要翻译为{DST_LANG}。"
|
||||
meta = [f'# Title:\n\n', title, f'# Abstract:\n\n', abstract ]
|
||||
|
||||
# 单线,获取文章meta信息
|
||||
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=prompt,
|
||||
inputs_show_user=prompt,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot, history=[],
|
||||
sys_prompt="You are an academic paper reader。",
|
||||
)
|
||||
|
||||
# 多线,翻译
|
||||
inputs_array = []
|
||||
inputs_show_user_array = []
|
||||
|
||||
# get_token_num
|
||||
from request_llm.bridge_all import model_info
|
||||
enc = model_info[llm_kwargs['llm_model']]['tokenizer']
|
||||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||||
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
||||
|
||||
def break_down(txt):
|
||||
raw_token_num = get_token_num(txt)
|
||||
if raw_token_num <= TOKEN_LIMIT_PER_FRAGMENT:
|
||||
return [txt]
|
||||
else:
|
||||
# raw_token_num > TOKEN_LIMIT_PER_FRAGMENT
|
||||
# find a smooth token limit to achieve even seperation
|
||||
count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
|
||||
token_limit_smooth = raw_token_num // count + count
|
||||
return breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn=get_token_num, limit=token_limit_smooth)
|
||||
|
||||
for section in article_dict.get('sections'):
|
||||
if len(section['text']) == 0: continue
|
||||
section_frags = break_down(section['text'])
|
||||
for i, fragment in enumerate(section_frags):
|
||||
heading = section['heading']
|
||||
if len(section_frags) > 1: heading += f' Part-{i+1}'
|
||||
inputs_array.append(
|
||||
f"你需要翻译{heading}章节,内容如下: \n\n{fragment}"
|
||||
)
|
||||
inputs_show_user_array.append(
|
||||
f"# {heading}\n\n{fragment}"
|
||||
)
|
||||
|
||||
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
inputs_array=inputs_array,
|
||||
inputs_show_user_array=inputs_show_user_array,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
history_array=[meta for _ in inputs_array],
|
||||
sys_prompt_array=[
|
||||
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array],
|
||||
)
|
||||
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + gpt_response_collection, file_basename=None, file_fullname=None)
|
||||
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(fp)+'.md', chatbot=chatbot)
|
||||
generated_conclusion_files.append(res_path)
|
||||
|
||||
ch = construct_html()
|
||||
orig = ""
|
||||
trans = ""
|
||||
gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
|
||||
for i,k in enumerate(gpt_response_collection_html):
|
||||
if i%2==0:
|
||||
gpt_response_collection_html[i] = inputs_show_user_array[i//2]
|
||||
else:
|
||||
gpt_response_collection_html[i] = gpt_response_collection_html[i]
|
||||
|
||||
final = ["", "", "一、论文概况", "", "Abstract", paper_meta_info, "二、论文翻译", ""]
|
||||
final.extend(gpt_response_collection_html)
|
||||
for i, k in enumerate(final):
|
||||
if i%2==0:
|
||||
orig = k
|
||||
if i%2==1:
|
||||
trans = k
|
||||
ch.add_row(a=orig, b=trans)
|
||||
create_report_file_name = f"{os.path.basename(fp)}.trans.html"
|
||||
html_file = ch.save_file(create_report_file_name)
|
||||
generated_html_files.append(html_file)
|
||||
promote_file_to_downloadzone(html_file, rename_file=os.path.basename(html_file), chatbot=chatbot)
|
||||
yield from translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG)
|
||||
|
||||
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
@@ -1,12 +1,12 @@
|
||||
from toolbox import CatchException, report_execption, get_log_folder
|
||||
from toolbox import CatchException, report_execption, get_log_folder, gen_time_str
|
||||
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
|
||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||
from .crazy_utils import read_and_clean_pdf_text
|
||||
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url
|
||||
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url, translate_pdf
|
||||
from colorful import *
|
||||
import glob
|
||||
import copy
|
||||
import os
|
||||
import math
|
||||
|
||||
@@ -58,8 +58,8 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
||||
|
||||
|
||||
def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url):
|
||||
import copy
|
||||
TOKEN_LIMIT_PER_FRAGMENT = 1280
|
||||
import copy, json
|
||||
TOKEN_LIMIT_PER_FRAGMENT = 1024
|
||||
generated_conclusion_files = []
|
||||
generated_html_files = []
|
||||
DST_LANG = "中文"
|
||||
@@ -67,104 +67,23 @@ def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwa
|
||||
for index, fp in enumerate(file_manifest):
|
||||
chatbot.append(["当前进度:", f"正在连接GROBID服务,请稍候: {grobid_url}\n如果等待时间过长,请修改config中的GROBID_URL,可修改成本地GROBID服务。"]); yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
article_dict = parse_pdf(fp, grobid_url)
|
||||
grobid_json_res = os.path.join(get_log_folder(), gen_time_str() + "grobid.json")
|
||||
with open(grobid_json_res, 'w+', encoding='utf8') as f:
|
||||
f.write(json.dumps(article_dict, indent=4, ensure_ascii=False))
|
||||
promote_file_to_downloadzone(grobid_json_res, chatbot=chatbot)
|
||||
|
||||
if article_dict is None: raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
|
||||
prompt = "以下是一篇学术论文的基本信息:\n"
|
||||
# title
|
||||
title = article_dict.get('title', '无法获取 title'); prompt += f'title:{title}\n\n'
|
||||
# authors
|
||||
authors = article_dict.get('authors', '无法获取 authors'); prompt += f'authors:{authors}\n\n'
|
||||
# abstract
|
||||
abstract = article_dict.get('abstract', '无法获取 abstract'); prompt += f'abstract:{abstract}\n\n'
|
||||
# command
|
||||
prompt += f"请将题目和摘要翻译为{DST_LANG}。"
|
||||
meta = [f'# Title:\n\n', title, f'# Abstract:\n\n', abstract ]
|
||||
|
||||
# 单线,获取文章meta信息
|
||||
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=prompt,
|
||||
inputs_show_user=prompt,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot, history=[],
|
||||
sys_prompt="You are an academic paper reader。",
|
||||
)
|
||||
|
||||
# 多线,翻译
|
||||
inputs_array = []
|
||||
inputs_show_user_array = []
|
||||
|
||||
# get_token_num
|
||||
from request_llm.bridge_all import model_info
|
||||
enc = model_info[llm_kwargs['llm_model']]['tokenizer']
|
||||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||||
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
||||
|
||||
def break_down(txt):
|
||||
raw_token_num = get_token_num(txt)
|
||||
if raw_token_num <= TOKEN_LIMIT_PER_FRAGMENT:
|
||||
return [txt]
|
||||
else:
|
||||
# raw_token_num > TOKEN_LIMIT_PER_FRAGMENT
|
||||
# find a smooth token limit to achieve even seperation
|
||||
count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
|
||||
token_limit_smooth = raw_token_num // count + count
|
||||
return breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn=get_token_num, limit=token_limit_smooth)
|
||||
|
||||
for section in article_dict.get('sections'):
|
||||
if len(section['text']) == 0: continue
|
||||
section_frags = break_down(section['text'])
|
||||
for i, fragment in enumerate(section_frags):
|
||||
heading = section['heading']
|
||||
if len(section_frags) > 1: heading += f' Part-{i+1}'
|
||||
inputs_array.append(
|
||||
f"你需要翻译{heading}章节,内容如下: \n\n{fragment}"
|
||||
)
|
||||
inputs_show_user_array.append(
|
||||
f"# {heading}\n\n{fragment}"
|
||||
)
|
||||
|
||||
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
inputs_array=inputs_array,
|
||||
inputs_show_user_array=inputs_show_user_array,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
history_array=[meta for _ in inputs_array],
|
||||
sys_prompt_array=[
|
||||
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array],
|
||||
)
|
||||
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + gpt_response_collection, file_basename=None, file_fullname=None)
|
||||
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(fp)+'.md', chatbot=chatbot)
|
||||
generated_conclusion_files.append(res_path)
|
||||
|
||||
ch = construct_html()
|
||||
orig = ""
|
||||
trans = ""
|
||||
gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
|
||||
for i,k in enumerate(gpt_response_collection_html):
|
||||
if i%2==0:
|
||||
gpt_response_collection_html[i] = inputs_show_user_array[i//2]
|
||||
else:
|
||||
gpt_response_collection_html[i] = gpt_response_collection_html[i]
|
||||
|
||||
final = ["", "", "一、论文概况", "", "Abstract", paper_meta_info, "二、论文翻译", ""]
|
||||
final.extend(gpt_response_collection_html)
|
||||
for i, k in enumerate(final):
|
||||
if i%2==0:
|
||||
orig = k
|
||||
if i%2==1:
|
||||
trans = k
|
||||
ch.add_row(a=orig, b=trans)
|
||||
create_report_file_name = f"{os.path.basename(fp)}.trans.html"
|
||||
html_file = ch.save_file(create_report_file_name)
|
||||
generated_html_files.append(html_file)
|
||||
promote_file_to_downloadzone(html_file, rename_file=os.path.basename(html_file), chatbot=chatbot)
|
||||
|
||||
yield from translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG)
|
||||
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
|
||||
def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||
"""
|
||||
此函数已经弃用
|
||||
"""
|
||||
import copy
|
||||
TOKEN_LIMIT_PER_FRAGMENT = 1280
|
||||
TOKEN_LIMIT_PER_FRAGMENT = 1024
|
||||
generated_conclusion_files = []
|
||||
generated_html_files = []
|
||||
from crazy_functions.crazy_utils import construct_html
|
||||
|
||||
@@ -1,5 +1,54 @@
|
||||
#【请修改完参数后,删除此行】请在以下方案中选择一种,然后删除其他的方案,最后docker-compose up运行 | Please choose from one of these options below, delete other options as well as This Line
|
||||
|
||||
## ===================================================
|
||||
## 【方案零】 部署项目的全部能力(这个是包含cuda和latex的大型镜像。如果您网速慢、硬盘小或没有显卡,则不推荐使用这个)
|
||||
## ===================================================
|
||||
version: '3'
|
||||
services:
|
||||
gpt_academic_full_capability:
|
||||
image: ghcr.io/binary-husky/gpt_academic_with_all_capacity:master
|
||||
environment:
|
||||
# 请查阅 `config.py`或者 github wiki 以查看所有的配置信息
|
||||
API_KEY: ' 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 '
|
||||
# USE_PROXY: ' True '
|
||||
# proxies: ' { "http": "http://localhost:10881", "https": "http://localhost:10881", } '
|
||||
LLM_MODEL: ' gpt-3.5-turbo '
|
||||
AVAIL_LLM_MODELS: ' ["gpt-3.5-turbo", "gpt-4", "qianfan", "sparkv2", "spark", "chatglm"] '
|
||||
BAIDU_CLOUD_API_KEY : ' bTUtwEAveBrQipEowUvDwYWq '
|
||||
BAIDU_CLOUD_SECRET_KEY : ' jqXtLvXiVw6UNdjliATTS61rllG8Iuni '
|
||||
XFYUN_APPID: ' 53a8d816 '
|
||||
XFYUN_API_SECRET: ' MjMxNDQ4NDE4MzM0OSNlNjQ2NTlhMTkx '
|
||||
XFYUN_API_KEY: ' 95ccdec285364869d17b33e75ee96447 '
|
||||
ENABLE_AUDIO: ' False '
|
||||
DEFAULT_WORKER_NUM: ' 20 '
|
||||
WEB_PORT: ' 12345 '
|
||||
ADD_WAIFU: ' False '
|
||||
ALIYUN_APPKEY: ' RxPlZrM88DnAFkZK '
|
||||
THEME: ' Chuanhu-Small-and-Beautiful '
|
||||
ALIYUN_ACCESSKEY: ' LTAI5t6BrFUzxRXVGUWnekh1 '
|
||||
ALIYUN_SECRET: ' eHmI20SVWIwQZxCiTD2bGQVspP9i68 '
|
||||
# LOCAL_MODEL_DEVICE: ' cuda '
|
||||
|
||||
# 加载英伟达显卡运行时
|
||||
# runtime: nvidia
|
||||
# deploy:
|
||||
# resources:
|
||||
# reservations:
|
||||
# devices:
|
||||
# - driver: nvidia
|
||||
# count: 1
|
||||
# capabilities: [gpu]
|
||||
|
||||
# 与宿主的网络融合
|
||||
network_mode: "host"
|
||||
|
||||
# 不使用代理网络拉取最新代码
|
||||
command: >
|
||||
bash -c "python3 -u main.py"
|
||||
|
||||
|
||||
|
||||
|
||||
## ===================================================
|
||||
## 【方案一】 如果不需要运行本地模型(仅 chatgpt, azure, 星火, 千帆, claude 等在线大模型服务)
|
||||
## ===================================================
|
||||
|
||||
@@ -107,6 +107,12 @@ AZURE_API_KEY = "填入azure openai api的密钥"
|
||||
AZURE_API_VERSION = "2023-05-15" # 默认使用 2023-05-15 版本,无需修改
|
||||
AZURE_ENGINE = "填入部署名" # 见上述图片
|
||||
|
||||
|
||||
# 例如
|
||||
API_KEY = '6424e9d19e674092815cea1cb35e67a5'
|
||||
AZURE_ENDPOINT = 'https://rhtjjjjjj.openai.azure.com/'
|
||||
AZURE_ENGINE = 'qqwe'
|
||||
LLM_MODEL = "azure-gpt-3.5" # 可选 ↓↓↓
|
||||
```
|
||||
|
||||
|
||||
|
||||
37
main.py
37
main.py
@@ -8,12 +8,13 @@ def main():
|
||||
# 建议您复制一个config_private.py放自己的秘密, 如API和代理网址, 避免不小心传github被别人看到
|
||||
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION = get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION')
|
||||
CHATBOT_HEIGHT, LAYOUT, AVAIL_LLM_MODELS, AUTO_CLEAR_TXT = get_conf('CHATBOT_HEIGHT', 'LAYOUT', 'AVAIL_LLM_MODELS', 'AUTO_CLEAR_TXT')
|
||||
ENABLE_AUDIO, AUTO_CLEAR_TXT, PATH_LOGGING = get_conf('ENABLE_AUDIO', 'AUTO_CLEAR_TXT', 'PATH_LOGGING')
|
||||
ENABLE_AUDIO, AUTO_CLEAR_TXT, PATH_LOGGING, AVAIL_THEMES, THEME = get_conf('ENABLE_AUDIO', 'AUTO_CLEAR_TXT', 'PATH_LOGGING', 'AVAIL_THEMES', 'THEME')
|
||||
|
||||
# 如果WEB_PORT是-1, 则随机选取WEB端口
|
||||
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
|
||||
from check_proxy import get_current_version
|
||||
from themes.theme import adjust_theme, advanced_css, theme_declaration
|
||||
from themes.theme import adjust_theme, advanced_css, theme_declaration, load_dynamic_theme
|
||||
|
||||
initial_prompt = "Serve me as a writing and programming assistant."
|
||||
title_html = f"<h1 align=\"center\">GPT 学术优化 {get_current_version()}</h1>{theme_declaration}"
|
||||
description = "代码开源和更新[地址🚀](https://github.com/binary-husky/gpt_academic),"
|
||||
@@ -59,6 +60,7 @@ def main():
|
||||
cancel_handles = []
|
||||
with gr.Blocks(title="GPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as demo:
|
||||
gr.HTML(title_html)
|
||||
secret_css, secret_font = gr.Textbox(visible=False), gr.Textbox(visible=False)
|
||||
cookies = gr.State(load_chat_cookies())
|
||||
with gr_L1():
|
||||
with gr_L2(scale=2, elem_id="gpt-chat"):
|
||||
@@ -123,7 +125,8 @@ def main():
|
||||
max_length_sl = gr.Slider(minimum=256, maximum=8192, value=4096, step=1, interactive=True, label="Local LLM MaxLength",)
|
||||
checkboxes = gr.CheckboxGroup(["基础功能区", "函数插件区", "底部输入区", "输入清除键", "插件参数区"], value=["基础功能区", "函数插件区"], label="显示/隐藏功能区")
|
||||
md_dropdown = gr.Dropdown(AVAIL_LLM_MODELS, value=LLM_MODEL, label="更换LLM模型/请求源").style(container=False)
|
||||
dark_mode_btn = gr.Button("Toggle Dark Mode ☀", variant="secondary").style(size="sm")
|
||||
theme_dropdown = gr.Dropdown(AVAIL_THEMES, value=THEME, label="更换UI主题").style(container=False)
|
||||
dark_mode_btn = gr.Button("切换界面明暗 ☀", variant="secondary").style(size="sm")
|
||||
dark_mode_btn.click(None, None, None, _js="""() => {
|
||||
if (document.querySelectorAll('.dark').length) {
|
||||
document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark'));
|
||||
@@ -197,9 +200,37 @@ def main():
|
||||
ret.update({plugin_advanced_arg: gr.update(visible=False, label=f"插件[{k}]不需要高级参数。")})
|
||||
return ret
|
||||
dropdown.select(on_dropdown_changed, [dropdown], [switchy_bt, plugin_advanced_arg] )
|
||||
|
||||
def on_md_dropdown_changed(k):
|
||||
return {chatbot: gr.update(label="当前模型:"+k)}
|
||||
md_dropdown.select(on_md_dropdown_changed, [md_dropdown], [chatbot] )
|
||||
|
||||
def on_theme_dropdown_changed(theme, secret_css):
|
||||
adjust_theme, css_part1, _, adjust_dynamic_theme = load_dynamic_theme(theme)
|
||||
if adjust_dynamic_theme:
|
||||
css_part2 = adjust_dynamic_theme._get_theme_css()
|
||||
else:
|
||||
css_part2 = adjust_theme()._get_theme_css()
|
||||
return css_part2 + css_part1
|
||||
|
||||
theme_handle = theme_dropdown.select(on_theme_dropdown_changed, [theme_dropdown, secret_css], [secret_css])
|
||||
theme_handle.then(
|
||||
None,
|
||||
[secret_css],
|
||||
None,
|
||||
_js="""(css) => {
|
||||
var existingStyles = document.querySelectorAll("style[data-loaded-css]");
|
||||
for (var i = 0; i < existingStyles.length; i++) {
|
||||
var style = existingStyles[i];
|
||||
style.parentNode.removeChild(style);
|
||||
}
|
||||
var styleElement = document.createElement('style');
|
||||
styleElement.setAttribute('data-loaded-css', css);
|
||||
styleElement.innerHTML = css;
|
||||
document.head.appendChild(styleElement);
|
||||
}
|
||||
"""
|
||||
)
|
||||
# 随变按钮的回调函数注册
|
||||
def route(request: gr.Request, k, *args, **kwargs):
|
||||
if k in [r"打开插件列表", r"请先从插件列表中选择"]: return
|
||||
|
||||
@@ -52,6 +52,7 @@ API_URL_REDIRECT, AZURE_ENDPOINT, AZURE_ENGINE = get_conf("API_URL_REDIRECT", "A
|
||||
openai_endpoint = "https://api.openai.com/v1/chat/completions"
|
||||
api2d_endpoint = "https://openai.api2d.net/v1/chat/completions"
|
||||
newbing_endpoint = "wss://sydney.bing.com/sydney/ChatHub"
|
||||
if not AZURE_ENDPOINT.endswith('/'): AZURE_ENDPOINT += '/'
|
||||
azure_endpoint = AZURE_ENDPOINT + f'openai/deployments/{AZURE_ENGINE}/chat/completions?api-version=2023-05-15'
|
||||
# 兼容旧版的配置
|
||||
try:
|
||||
|
||||
@@ -19,3 +19,8 @@
|
||||
.wrap.svelte-xwlu1w {
|
||||
min-height: var(--size-32);
|
||||
}
|
||||
|
||||
/* status bar height */
|
||||
.min.svelte-1yrv54 {
|
||||
min-height: var(--size-12);
|
||||
}
|
||||
@@ -3,6 +3,15 @@ import logging
|
||||
from toolbox import get_conf, ProxyNetworkActivate
|
||||
CODE_HIGHLIGHT, ADD_WAIFU, LAYOUT = get_conf('CODE_HIGHLIGHT', 'ADD_WAIFU', 'LAYOUT')
|
||||
|
||||
def dynamic_set_theme(THEME):
|
||||
set_theme = gr.themes.ThemeClass()
|
||||
with ProxyNetworkActivate():
|
||||
logging.info('正在下载Gradio主题,请稍等。')
|
||||
if THEME.startswith('Huggingface-'): THEME = THEME.lstrip('Huggingface-')
|
||||
if THEME.startswith('huggingface-'): THEME = THEME.lstrip('huggingface-')
|
||||
set_theme = set_theme.from_hub(THEME.lower())
|
||||
return set_theme
|
||||
|
||||
def adjust_theme():
|
||||
|
||||
try:
|
||||
|
||||
@@ -2,17 +2,22 @@ import gradio as gr
|
||||
from toolbox import get_conf
|
||||
THEME, = get_conf('THEME')
|
||||
|
||||
if THEME == 'Chuanhu-Small-and-Beautiful':
|
||||
from .green import adjust_theme, advanced_css
|
||||
theme_declaration = "<h2 align=\"center\" class=\"small\">[Chuanhu-Small-and-Beautiful主题]</h2>"
|
||||
elif THEME == 'High-Contrast':
|
||||
from .contrast import adjust_theme, advanced_css
|
||||
theme_declaration = ""
|
||||
elif '/' in THEME:
|
||||
from .gradios import adjust_theme, advanced_css
|
||||
theme_declaration = ""
|
||||
else:
|
||||
from .default import adjust_theme, advanced_css
|
||||
theme_declaration = ""
|
||||
|
||||
def load_dynamic_theme(THEME):
|
||||
adjust_dynamic_theme = None
|
||||
if THEME == 'Chuanhu-Small-and-Beautiful':
|
||||
from .green import adjust_theme, advanced_css
|
||||
theme_declaration = "<h2 align=\"center\" class=\"small\">[Chuanhu-Small-and-Beautiful主题]</h2>"
|
||||
elif THEME == 'High-Contrast':
|
||||
from .contrast import adjust_theme, advanced_css
|
||||
theme_declaration = ""
|
||||
elif '/' in THEME:
|
||||
from .gradios import adjust_theme, advanced_css
|
||||
from .gradios import dynamic_set_theme
|
||||
adjust_dynamic_theme = dynamic_set_theme(THEME)
|
||||
theme_declaration = ""
|
||||
else:
|
||||
from .default import adjust_theme, advanced_css
|
||||
theme_declaration = ""
|
||||
return adjust_theme, advanced_css, theme_declaration, adjust_dynamic_theme
|
||||
|
||||
adjust_theme, advanced_css, theme_declaration, _ = load_dynamic_theme(THEME)
|
||||
@@ -216,7 +216,7 @@ def get_reduce_token_percent(text):
|
||||
return 0.5, '不详'
|
||||
|
||||
|
||||
def write_history_to_file(history, file_basename=None, file_fullname=None):
|
||||
def write_history_to_file(history, file_basename=None, file_fullname=None, auto_caption=True):
|
||||
"""
|
||||
将对话记录history以Markdown格式写入文件中。如果没有指定文件名,则使用当前时间生成文件名。
|
||||
"""
|
||||
@@ -235,7 +235,7 @@ def write_history_to_file(history, file_basename=None, file_fullname=None):
|
||||
if type(content) != str: content = str(content)
|
||||
except:
|
||||
continue
|
||||
if i % 2 == 0:
|
||||
if i % 2 == 0 and auto_caption:
|
||||
f.write('## ')
|
||||
try:
|
||||
f.write(content)
|
||||
|
||||
4
version
4
version
@@ -1,5 +1,5 @@
|
||||
{
|
||||
"version": 3.52,
|
||||
"version": 3.53,
|
||||
"show_feature": true,
|
||||
"new_feature": "提高稳定性&解决多用户冲突问题 <-> 支持插件分类和更多UI皮肤外观 <-> 支持用户使用自然语言调度各个插件(虚空终端) ! <-> 改进UI,设计新主题 <-> 支持借助GROBID实现PDF高精度翻译 <-> 接入百度千帆平台和文心一言 <-> 接入阿里通义千问、讯飞星火、上海AI-Lab书生 <-> 优化一键升级 <-> 提高arxiv翻译速度和成功率"
|
||||
"new_feature": "支持动态选择不同界面主题 <-> 提高稳定性&解决多用户冲突问题 <-> 支持插件分类和更多UI皮肤外观 <-> 支持用户使用自然语言调度各个插件(虚空终端) ! <-> 改进UI,设计新主题 <-> 支持借助GROBID实现PDF高精度翻译 <-> 接入百度千帆平台和文心一言 <-> 接入阿里通义千问、讯飞星火、上海AI-Lab书生 <-> 优化一键升级 <-> 提高arxiv翻译速度和成功率"
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user