Compare commits

..

70 Commits

Author SHA1 Message Date
qingxu fu
1c6c29e6dd 更新注释 2023-04-13 11:18:44 +08:00
qingxu fu
74f26a7d64 改善chatpdf的功能 2023-04-13 11:08:53 +08:00
fuqingxu
1c96ed39c3 启动ChatGPT+ChatGLM 2023-04-12 17:41:33 +08:00
fuqingxu
5b040d552e Merge branch 'master' of https://github.com/binary-husky/chatgpt_academic 2023-04-12 16:57:56 +08:00
fuqingxu
c563ac2274 UTF8 Ignore read file errors 2023-04-12 16:57:01 +08:00
binary-husky
d28af7611a Update README.md 2023-04-12 12:04:57 +08:00
binary-husky
9714d3ea2d Update README.md 2023-04-12 11:21:20 +08:00
binary-husky
65c51eb05b Update README.md 2023-04-12 02:46:04 +08:00
binary-husky
5d98d82526 Update README.md 2023-04-12 02:41:43 +08:00
binary-husky
9215199ae1 Update README.md 2023-04-12 02:27:55 +08:00
binary-husky
7ded328970 Update README.md 2023-04-12 02:27:10 +08:00
binary-husky
057b8cd943 Update README.md 2023-04-12 00:12:42 +08:00
binary-husky
2ab6acc6de Update README.md 2023-04-12 00:08:31 +08:00
Your Name
c917f6e6fe 移除故障代码说明 2023-04-11 21:19:31 +08:00
binary-husky
97d33e9413 默认关闭share
注意,由于国内 Gradio 的网络访问较为缓慢,启用 demo.queue().launch(share=True, inbrowser=True) 时所有网络会经过 Gradio 服务器转发,导致打字机体验大幅下降,现在默认启动方式已经改为 share=False,如有需要公网访问的需求,可以重新修改为 share=True 启动。
2023-04-11 21:13:21 +08:00
binary-husky
76940a3041 Merge pull request #413 from liyishuai/patch-1
Dockerfile: unbuffer stdout
2023-04-11 20:15:10 +08:00
binary-husky
de658b3104 Update README.md 2023-04-11 20:00:33 +08:00
qingxu fu
35a5c97eca Merge branch 'master' of https://github.com/binary-husky/chatgpt_academic into master 2023-04-11 19:59:09 +08:00
qingxu fu
7b44010a71 2.67 修复typo 2023-04-11 19:59:06 +08:00
qingxu fu
e467ab2d3f 2.67 修复typo 2023-04-11 19:58:37 +08:00
binary-husky
4681ba5e3c Update README.md 2023-04-11 19:34:03 +08:00
qingxu fu
7c494be291 Merge branch 'master' of https://github.com/binary-husky/chatgpt_academic into master 2023-04-11 19:32:02 +08:00
qingxu fu
4a96d165ca 修改功能说明 2023-04-11 19:31:57 +08:00
binary-husky
c151adf697 Update README.md 2023-04-11 19:00:20 +08:00
binary-husky
095d32df84 Update README.md 2023-04-11 18:58:16 +08:00
qingxu fu
3084c03e55 UP 2023-04-11 18:50:56 +08:00
qingxu fu
37ffbacd08 修复 2023-04-11 18:49:22 +08:00
qingxu fu
8f8b1e9d10 2.62 BUG 修复 2023-04-11 18:47:51 +08:00
qingxu fu
c84753beb9 renew all 2023-04-11 18:36:38 +08:00
qingxu fu
e356029248 UP 2023-04-11 18:23:59 +08:00
Your Name
db6137dd27 紧急bug修复 2023-04-11 18:16:33 +08:00
Your Name
e9b4e0c75a 紧急BUG修复 2023-04-11 18:15:26 +08:00
Your Name
df246195d3 紧急bug修复 2023-04-11 18:12:31 +08:00
qingxu fu
7395290aaa version 2.6 2023-04-11 17:55:30 +08:00
qingxu fu
87d7e320d3 print change 2023-04-11 17:52:40 +08:00
qingxu fu
8afcc522df Merge branch 'dev_grand' of https://github.com/binary-husky/chatgpt_academic into dev_grand 2023-04-11 17:42:59 +08:00
qingxu fu
38b0ce6805 修正解析源代码bug 2023-04-11 17:42:56 +08:00
qingxu fu
04b280be1b 更正bug 2023-04-11 17:40:50 +08:00
Yishuai Li
fe7b2d763b Dockerfile: two-stage copy 2023-04-11 17:25:30 +08:00
qingxu fu
90dcc8f1f2 界面重构 2023-04-11 15:31:46 +08:00
Yishuai Li
225c731589 Dockerfile: unbuffer stdout 2023-04-11 15:30:40 +08:00
qingxu fu
d9a92c9016 add arxiv dependency 2023-04-11 15:20:04 +08:00
qingxu fu
039405c3bb 修复chatbotwithcookies的对象传递问题 2023-04-11 15:17:00 +08:00
qingxu fu
f0dbf33d06 移除陈旧函数 2023-04-11 14:45:00 +08:00
qingxu fu
53df6d5647 Merge branch 'master' into dev_grand 2023-04-10 12:38:26 +08:00
binary-husky
78f93c6eae Merge pull request #395 from HougeLangley/master
Added python-docx
2023-04-10 10:05:01 +08:00
HougeLangley
bc8cda92ac Added python-docx
解决在使用批量导入 .docx 文件是提示需要 pip install --upgrade python-docx 的问题
2023-04-10 01:06:34 +08:00
binary-husky
caf1cba1a0 Merge pull request #388 from WangRongsheng/master
update en2ch prompt
2023-04-10 00:39:54 +08:00
qingxu fu
8e128300e0 翻译成地道的中文 2023-04-10 00:36:05 +08:00
qingxu fu
7c94300bba Merge branch 'master' of https://github.com/WangRongsheng/chatgpt_academic into WangRongsheng-master 2023-04-10 00:33:16 +08:00
binary-husky
b2b058fc27 Merge pull request #389 from Ljp66/master
Update toolbox.py
2023-04-10 00:31:24 +08:00
qingxu fu
4179495ac4 +Latex全文中英互译插件 2023-04-10 00:29:53 +08:00
qingxu fu
501093c201 强调中文 2023-04-10 00:21:20 +08:00
qingxu fu
931c941450 实验 2023-04-10 00:11:07 +08:00
qingxu fu
9a2a625910 UP 2023-04-10 00:05:46 +08:00
qingxu fu
c11e7f6e92 更新提示 2023-04-10 00:00:03 +08:00
qingxu fu
e56e625fca 自动更新程序+自动pip包安装 2023-04-09 23:56:24 +08:00
qingxu fu
93ebd4be96 修正prompt 2023-04-09 23:32:32 +08:00
qingxu fu
ebf1055ff4 Latex全文润色 2023-04-09 23:28:57 +08:00
qingxu fu
115c035ff8 增加临时输入api-key的功能 2023-04-09 21:23:21 +08:00
qingxu fu
6eb397ead2 UP 2023-04-09 20:50:33 +08:00
qingxu fu
f8bd5fcd27 增扩框架的参数IO 2023-04-09 20:42:23 +08:00
qingxu fu
4641d0551e st 2023-04-09 19:49:42 +08:00
qingxu fu
a9d6c933f4 declare depriction 2023-04-09 19:02:18 +08:00
qingxu fu
587271ec42 提升稳定性 2023-04-09 18:59:43 +08:00
MPU王荣胜
34a678141a Delete core_functional.py 2023-04-09 11:55:27 +08:00
gbwyljp
f9c4fb4b5d Update toolbox.py
remove duplicate "import importlib"
2023-04-09 11:55:00 +08:00
MPU王荣胜
9f505fb4ca update en2ch prompt 2023-04-09 11:45:34 +08:00
MPU王荣胜
40804913ca update en2ch prompt 2023-04-09 11:38:37 +08:00
binary-husky
bb3dd97cfe Update version 2023-04-08 22:51:37 +08:00
32 changed files with 1501 additions and 727 deletions

View File

@@ -5,9 +5,10 @@ RUN echo '[global]' > /etc/pip.conf && \
echo 'trusted-host = mirrors.aliyun.com' >> /etc/pip.conf
COPY . /gpt
WORKDIR /gpt
COPY requirements.txt .
RUN pip3 install -r requirements.txt
COPY . .
CMD ["python3", "main.py"]
CMD ["python3", "-u", "main.py"]

50
Dockerfile+ChatGLM Normal file
View File

@@ -0,0 +1,50 @@
# How to build | 如何构建: docker build -t gpt-academic --network=host -f Dockerfile+ChatGLM .
# How to run | 如何运行 (1) 直接运行: docker run --rm -it --net=host --gpus=all gpt-academic
# How to run | 如何运行 (2) 我想运行之前进容器做一些调整: docker run --rm -it --net=host --gpus=all gpt-academic bash
# 从NVIDIA源从而支持显卡运损检查宿主的nvidia-smi中的cuda版本必须>=11.3
FROM nvidia/cuda:11.3.1-runtime-ubuntu20.04
ARG useProxyNetwork=''
RUN apt-get update
RUN apt-get install -y curl proxychains curl
RUN apt-get install -y git python python3 python-dev python3-dev --fix-missing
# 配置代理网络构建Docker镜像时使用
# # comment out below if you do not need proxy network | 如果不需要翻墙 - 从此行向下删除
RUN $useProxyNetwork curl cip.cc
RUN sed -i '$ d' /etc/proxychains.conf
RUN sed -i '$ d' /etc/proxychains.conf
RUN echo "socks5 127.0.0.1 10880" >> /etc/proxychains.conf
ARG useProxyNetwork=proxychains
# # comment out above if you do not need proxy network | 如果不需要翻墙 - 从此行向上删除
# use python3 as the system default python
RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.8
# 下载分支
WORKDIR /gpt
RUN $useProxyNetwork git clone https://github.com/binary-husky/chatgpt_academic.git -b v3.0
WORKDIR /gpt/chatgpt_academic
RUN $useProxyNetwork python3 -m pip install -r requirements.txt
RUN $useProxyNetwork python3 -m pip install -r request_llm/requirements_chatglm.txt
RUN $useProxyNetwork python3 -m pip install torch --extra-index-url https://download.pytorch.org/whl/cu113
# 预热CHATGLM参数非必要 可选步骤)
RUN echo ' \n\
from transformers import AutoModel, AutoTokenizer \n\
chatglm_tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) \n\
chatglm_model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float() ' >> warm_up_chatglm.py
RUN python3 -u warm_up_chatglm.py
RUN $useProxyNetwork git pull
# 为chatgpt-academic配置代理和API-KEY (非必要 可选步骤)
RUN echo ' \n\
API_KEY = "sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" \n\
USE_PROXY = True \n\
LLM_MODEL = "chatglm" \n\
LOCAL_MODEL_DEVICE = "cuda" \n\
proxies = { "http": "socks5h://localhost:10880", "https": "socks5h://localhost:10880", } ' >> config_private.py
# 启动
CMD ["python3", "-u", "main.py"]

View File

@@ -1,4 +1,8 @@
> **Note**
>
> 紧急很抱歉2.60版本的一部分代码重构出错目前2.67及以上版本已经解决,请您及时更新。
>
# ChatGPT 学术优化
@@ -8,13 +12,13 @@ If you like this project, please give it a Star. If you've come up with more use
> **Note**
>
> 1.请注意只有红颜色标识的函数插件(按钮)才支持读取文件。目前对pdf/word格式文件的支持插件正在逐步完善中需要更多developer的帮助。
> 1.请注意只有**红颜色**标识的函数插件(按钮)才支持读取文件,部分插件位于插件区的**下拉菜单**中。另外我们以**最高优先级**欢迎和处理任何新插件的PR
>
> 2.本项目中每个文件的功能都在自译解[`self_analysis.md`](https://github.com/binary-husky/chatgpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A)详细说明。随着版本的迭代您也可以随时自行点击相关函数插件调用GPT重新生成项目的自我解析报告。常见问题汇总在[`wiki`](https://github.com/binary-husky/chatgpt_academic/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98)当中。
>
> 3.如果您不太习惯部分中文命名的函数、注释或者界面您可以随时点击相关函数插件调用ChatGPT一键生成纯英文的项目源代码。
>
> 4.项目使用OpenAI的gpt-3.5-turbo模型期待gpt-4早点放宽门槛😂
<div align="center">
@@ -26,9 +30,10 @@ If you like this project, please give it a Star. If you've come up with more use
[自定义快捷键](https://www.bilibili.com/video/BV14s4y1E7jN) | 支持自定义快捷键
[配置代理服务器](https://www.bilibili.com/video/BV1rc411W7Dr) | 支持配置代理服务器
模块化设计 | 支持自定义高阶的实验性功能与[函数插件],插件支持[热更新](https://github.com/binary-husky/chatgpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)
[自我程序剖析](https://www.bilibili.com/video/BV1cj411A7VW) | [函数插件] 一键读懂本项目的源代码
[自我程序剖析](https://www.bilibili.com/video/BV1cj411A7VW) | [函数插件] [一键读懂](https://github.com/binary-husky/chatgpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A)本项目的源代码
[程序剖析](https://www.bilibili.com/video/BV1cj411A7VW) | [函数插件] 一键可以剖析其他Python/C/C++/Java项目树
读论文 | [函数插件] 一键解读latex论文全文并生成摘要
Latex全文翻译、润色 | [函数插件] 一键翻译或润色latex论文
批量注释生成 | [函数插件] 一键批量生成函数注释
chat分析报告生成 | [函数插件] 运行后自动生成总结汇报
[arxiv小助手](https://www.bilibili.com/video/BV1LM4y1279X) | [函数插件] 输入arxiv文章url即可一键翻译摘要+下载PDF
@@ -40,6 +45,8 @@ chat分析报告生成 | [函数插件] 运行后自动生成总结汇报
支持GPT输出的markdown表格 | 可以输出支持GPT的markdown表格
启动暗色gradio[主题](https://github.com/binary-husky/chatgpt_academic/issues/173) | 在浏览器url后面添加```/?__dark-theme=true```可以切换dark主题
huggingface免科学上网[在线体验](https://huggingface.co/spaces/qingxu98/gpt-academic) | 登陆huggingface后复制[此空间](https://huggingface.co/spaces/qingxu98/gpt-academic)
[多LLM模型](https://www.bilibili.com/video/BV1EM411K7VH/)混合支持([v3.0分支](https://github.com/binary-husky/chatgpt_academic/tree/v3.0)测试中) | 同时被ChatGPT和[清华ChatGLM](https://github.com/THUDM/ChatGLM-6B)伺候的感觉一定会很不错吧?
兼容[TGUI](https://github.com/oobabooga/text-generation-webui)接入更多样的语言模型 | 接入opt-1.3b, galactica-1.3b等模型([v3.0分支](https://github.com/binary-husky/chatgpt_academic/tree/v3.0)测试中)
…… | ……
</div>
@@ -80,6 +87,14 @@ huggingface免科学上网[在线体验](https://huggingface.co/spaces/qingxu98/
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="700" >
</div>
- 多种大语言模型混合调用([v3.0分支](https://github.com/binary-husky/chatgpt_academic/tree/v3.0)测试中)
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231222778-34776885-a7f0-4f2c-b5f4-7cc2ef3ecb58.png" width="700" >
</div>
## 直接运行 (Windows, Linux or MacOS)
### 1. 下载项目
@@ -283,8 +298,7 @@ python check_proxy.py
# 借鉴项目1借鉴了ChuanhuChatGPT中读取OpenAI json的方法、记录历史问询记录的方法以及gradio queue的使用技巧
https://github.com/GaiZhenbiao/ChuanhuChatGPT
# 借鉴项目2借鉴了mdtex2html中公式处理的方法
https://github.com/polarwinkel/mdtex2html
# 借鉴项目2
https://github.com/THUDM/ChatGLM-6B
```

View File

@@ -61,18 +61,25 @@ def patch_and_restart(path):
import os
import sys
import time
from colorful import print亮黄, print亮绿, print亮红
# if not using config_private, move origin config.py as config_private.py
if not os.path.exists('config_private.py'):
print('由于您没有设置config_private.py私密配置现将您的现有配置移动至config_private.py以防止配置丢失',
print亮黄('由于您没有设置config_private.py私密配置现将您的现有配置移动至config_private.py以防止配置丢失',
'另外您可以随时在history子文件夹下找回旧版的程序。')
shutil.copyfile('config.py', 'config_private.py')
distutils.dir_util.copy_tree(path+'/chatgpt_academic-master', './')
print('更新完成您可以随时在history子文件夹下找回旧版的程序5s之后重启')
for i in reversed(range(5)):
time.sleep(1)
print(i)
import subprocess
print亮绿('代码已经更新即将更新pip包依赖……')
for i in reversed(range(5)): time.sleep(1); print(i)
try:
subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-r', 'requirements.txt'])
except:
print亮红('pip包依赖安装出现问题需要手动安装新增的依赖库 `python -m pip install -r requirements.txt`,然后在用常规的`python main.py`的方式启动。')
print亮绿('更新完成您可以随时在history子文件夹下找回旧版的程序5s之后重启')
print亮红('假如重启失败,您可能需要手动安装新增的依赖库 `python -m pip install -r requirements.txt`,然后在用常规的`python main.py`的方式启动。')
print(' ------------------------------ -----------------------------------')
os.execl(sys.executable, 'python', 'main.py')
for i in reversed(range(8)): time.sleep(1); print(i)
os.execl(sys.executable, sys.executable, *sys.argv)
def get_current_version():
@@ -106,11 +113,12 @@ def auto_update():
with open('./version', 'r', encoding='utf8') as f:
current_version = f.read()
current_version = json.loads(current_version)['version']
if (remote_version - current_version) >= 0.05:
print(
if (remote_version - current_version) >= 0.01:
from colorful import print亮黄
print亮黄(
f'\n新版本可用。新版本:{remote_version},当前版本:{current_version}{new_feature}')
print('1Github更新地址:\nhttps://github.com/binary-husky/chatgpt_academic\n')
user_instruction = input('2是否一键更新代码Y/y+回车=确认,输入其他/无输入+回车=不更新)?')
user_instruction = input('2是否一键更新代码Y+回车=确认,输入其他/无输入+回车=不更新)?')
if user_instruction in ['Y', 'y']:
path = backup_and_download(current_version, remote_version)
try:

91
colorful.py Normal file
View File

@@ -0,0 +1,91 @@
import platform
from sys import stdout
if platform.system()=="Linux":
pass
else:
from colorama import init
init()
# Do you like the elegance of Chinese characters?
def print红(*kw,**kargs):
print("\033[0;31m",*kw,"\033[0m",**kargs)
def print绿(*kw,**kargs):
print("\033[0;32m",*kw,"\033[0m",**kargs)
def print黄(*kw,**kargs):
print("\033[0;33m",*kw,"\033[0m",**kargs)
def print蓝(*kw,**kargs):
print("\033[0;34m",*kw,"\033[0m",**kargs)
def print紫(*kw,**kargs):
print("\033[0;35m",*kw,"\033[0m",**kargs)
def print靛(*kw,**kargs):
print("\033[0;36m",*kw,"\033[0m",**kargs)
def print亮红(*kw,**kargs):
print("\033[1;31m",*kw,"\033[0m",**kargs)
def print亮绿(*kw,**kargs):
print("\033[1;32m",*kw,"\033[0m",**kargs)
def print亮黄(*kw,**kargs):
print("\033[1;33m",*kw,"\033[0m",**kargs)
def print亮蓝(*kw,**kargs):
print("\033[1;34m",*kw,"\033[0m",**kargs)
def print亮紫(*kw,**kargs):
print("\033[1;35m",*kw,"\033[0m",**kargs)
def print亮靛(*kw,**kargs):
print("\033[1;36m",*kw,"\033[0m",**kargs)
def print亮红(*kw,**kargs):
print("\033[1;31m",*kw,"\033[0m",**kargs)
def print亮绿(*kw,**kargs):
print("\033[1;32m",*kw,"\033[0m",**kargs)
def print亮黄(*kw,**kargs):
print("\033[1;33m",*kw,"\033[0m",**kargs)
def print亮蓝(*kw,**kargs):
print("\033[1;34m",*kw,"\033[0m",**kargs)
def print亮紫(*kw,**kargs):
print("\033[1;35m",*kw,"\033[0m",**kargs)
def print亮靛(*kw,**kargs):
print("\033[1;36m",*kw,"\033[0m",**kargs)
print_red = print红
print_green = print绿
print_yellow = print黄
print_blue = print蓝
print_purple = print紫
print_indigo = print靛
print_bold_red = print亮红
print_bold_green = print亮绿
print_bold_yellow = print亮黄
print_bold_blue = print亮蓝
print_bold_purple = print亮紫
print_bold_indigo = print亮靛
if not stdout.isatty():
# redirection, avoid a fucked up log file
print红 = print
print绿 = print
print黄 = print
print蓝 = print
print紫 = print
print靛 = print
print亮红 = print
print亮绿 = print
print亮黄 = print
print亮蓝 = print
print亮紫 = print
print亮靛 = print
print_red = print
print_green = print
print_yellow = print
print_blue = print
print_purple = print
print_indigo = print
print_bold_red = print
print_bold_green = print
print_bold_yellow = print
print_bold_blue = print
print_bold_purple = print
print_bold_indigo = print

View File

@@ -31,7 +31,7 @@ CODE_HIGHLIGHT = True
LAYOUT = "LEFT-RIGHT" # "LEFT-RIGHT"(左右布局) # "TOP-DOWN"(上下布局)
# 发送请求到OpenAI后等待多久判定为超时
TIMEOUT_SECONDS = 25
TIMEOUT_SECONDS = 30
# 网页的端口, -1代表随机端口
WEB_PORT = -1

View File

@@ -56,7 +56,7 @@ def get_core_functions():
"Color": "secondary",
},
"英译中": {
"Prefix": r"翻译成中文:" + "\n\n",
"Prefix": r"翻译成地道的中文:" + "\n\n",
"Suffix": r"",
},
"找图片": {

View File

@@ -15,12 +15,10 @@ def get_crazy_functions():
from crazy_functions.解析项目源代码 import 解析一个Rect项目
from crazy_functions.高级功能函数模板 import 高阶功能模板函数
from crazy_functions.代码重写为全英文_多线程 import 全项目切换英文
from crazy_functions.Latex全文润色 import Latex英文润色
function_plugins = {
"请解析并解构此项目本身(源码自译解)": {
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(解析项目本身)
},
"解析整个Python项目": {
"Color": "stop", # 按钮颜色
"Function": HotReload(解析一个Python项目)
@@ -29,7 +27,7 @@ def get_crazy_functions():
"Color": "stop", # 按钮颜色
"Function": HotReload(解析一个C项目的头文件)
},
"解析整个C++项目(.cpp/.h": {
"解析整个C++项目(.cpp/.hpp/.c/.h": {
"Color": "stop", # 按钮颜色
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(解析一个C项目)
@@ -57,11 +55,15 @@ def get_crazy_functions():
"Color": "stop", # 按钮颜色
"Function": HotReload(批量生成函数注释)
},
"[多线程Demo] 解析此项目本身(源码自译解)": {
"Function": HotReload(解析项目本身)
},
"[多线程demo] 把本项目源代码切换成全英文": {
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(全项目切换英文)
},
"[函数插件模板demo] 历史上的今天": {
"[函数插件模板Demo] 历史上的今天": {
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
"Function": HotReload(高阶功能模板函数)
},
@@ -74,8 +76,10 @@ def get_crazy_functions():
from crazy_functions.总结word文档 import 总结word文档
from crazy_functions.批量翻译PDF文档_多线程 import 批量翻译PDF文档
from crazy_functions.谷歌检索小助手 import 谷歌检索小助手
from crazy_functions.理解PDF文档内容 import 理解PDF文档内容
from crazy_functions.理解PDF文档内容 import 理解PDF文档内容标准文件输入
from crazy_functions.Latex全文润色 import Latex中文润色
from crazy_functions.Latex全文翻译 import Latex中译英
from crazy_functions.Latex全文翻译 import Latex英译中
function_plugins.update({
"批量翻译PDF文档多线程": {
@@ -83,13 +87,13 @@ def get_crazy_functions():
"AsButton": True, # 加入下拉菜单中
"Function": HotReload(批量翻译PDF文档)
},
"[仅供开发调试] 批量总结PDF文档": {
"[测试功能] 批量总结PDF文档": {
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
"Function": HotReload(批量总结PDF文档)
},
"[仅供开发调试] 批量总结PDF文档pdfminer": {
"[测试功能] 批量总结PDF文档pdfminer": {
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(批量总结PDF文档pdfminer)
@@ -103,17 +107,38 @@ def get_crazy_functions():
"Color": "stop",
"Function": HotReload(总结word文档)
},
"理解PDF文档内容Tk文件选择接口仅本地": {
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(理解PDF文档内容)
},
"理解PDF文档内容通用接口读取文件输入区": {
"理解PDF文档内容 模仿ChatPDF": {
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(理解PDF文档内容标准文件输入)
},
"[测试功能] 英文Latex项目全文润色输入路径或上传压缩包": {
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(Latex英文润色)
},
"[测试功能] 中文Latex项目全文润色输入路径或上传压缩包": {
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(Latex中文润色)
},
"[测试功能] Latex项目全文中译英输入路径或上传压缩包": {
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(Latex中译英)
},
"[测试功能] Latex项目全文英译中输入路径或上传压缩包": {
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Function": HotReload(Latex英译中)
},
})
###################### 第三组插件 ###########################

View File

@@ -0,0 +1,176 @@
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
fast_debug = False
class PaperFileGroup():
def __init__(self):
self.file_paths = []
self.file_contents = []
self.sp_file_contents = []
self.sp_file_index = []
self.sp_file_tag = []
# count_token
import tiktoken
from toolbox import get_conf
enc = tiktoken.encoding_for_model(*get_conf('LLM_MODEL'))
def get_token_num(txt): return len(enc.encode(txt))
self.get_token_num = get_token_num
def run_file_split(self, max_token_limit=1900):
"""
将长文本分离开来
"""
for index, file_content in enumerate(self.file_contents):
if self.get_token_num(file_content) < max_token_limit:
self.sp_file_contents.append(file_content)
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index])
else:
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
segments = breakdown_txt_to_satisfy_token_limit_for_pdf(file_content, self.get_token_num, max_token_limit)
for j, segment in enumerate(segments):
self.sp_file_contents.append(segment)
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.tex")
print('Segmentation: done')
def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en'):
import time, os, re
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
# <-------- 读取Latex文件删除其中的所有注释 ---------->
pfg = PaperFileGroup()
for index, fp in enumerate(file_manifest):
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read()
# 定义注释的正则表达式
comment_pattern = r'%.*'
# 使用正则表达式查找注释,并替换为空字符串
clean_tex_content = re.sub(comment_pattern, '', file_content)
# 记录删除注释后的文本
pfg.file_paths.append(fp)
pfg.file_contents.append(clean_tex_content)
# <-------- 拆分过长的latex文件 ---------->
pfg.run_file_split(max_token_limit=1024)
n_split = len(pfg.sp_file_contents)
# <-------- 抽取摘要 ---------->
# if language == 'en':
# abs_extract_inputs = f"Please write an abstract for this paper"
# # 单线获取文章meta信息
# paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
# inputs=abs_extract_inputs,
# inputs_show_user=f"正在抽取摘要信息。",
# llm_kwargs=llm_kwargs,
# chatbot=chatbot, history=[],
# sys_prompt="Your job is to collect information from materials。",
# )
# <-------- 多线程润色开始 ---------->
if language == 'en':
inputs_array = ["Below is a section from an academic paper, polish this section to meet the academic standard, improve the grammar, clarity and overall readability, do not modify any latex command such as \section, \cite and equations:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
inputs_show_user_array = [f"Polish {f}" for f in pfg.sp_file_tag]
sys_prompt_array = ["You are a professional academic paper writer." for _ in range(n_split)]
elif language == 'zh':
inputs_array = [f"以下是一篇学术论文中的一段内容请将此部分润色以满足学术标准提高语法、清晰度和整体可读性不要修改任何LaTeX命令例如\section\cite和方程式" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
inputs_show_user_array = [f"润色 {f}" for f in pfg.sp_file_tag]
sys_prompt_array=["你是一位专业的中文学术论文作家。" for _ in range(n_split)]
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=inputs_array,
inputs_show_user_array=inputs_show_user_array,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history_array=[[""] for _ in range(n_split)],
sys_prompt_array=sys_prompt_array,
max_workers=10, # OpenAI所允许的最大并行过载
scroller_max_len = 80
)
# <-------- 整理结果,退出 ---------->
create_report_file_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + f"-chatgpt.polish.md"
res = write_results_to_file(gpt_response_collection, file_name=create_report_file_name)
history = gpt_response_collection
chatbot.append((f"{fp}完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@CatchException
def Latex英文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"对整个Latex项目进行润色。函数插件贡献者: Binary-Husky"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import tiktoken
except:
report_execption(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en')
@CatchException
def Latex中文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"对整个Latex项目进行润色。函数插件贡献者: Binary-Husky"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import tiktoken
except:
report_execption(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='zh')

View File

@@ -0,0 +1,176 @@
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
fast_debug = False
class PaperFileGroup():
def __init__(self):
self.file_paths = []
self.file_contents = []
self.sp_file_contents = []
self.sp_file_index = []
self.sp_file_tag = []
# count_token
import tiktoken
from toolbox import get_conf
enc = tiktoken.encoding_for_model(*get_conf('LLM_MODEL'))
def get_token_num(txt): return len(enc.encode(txt))
self.get_token_num = get_token_num
def run_file_split(self, max_token_limit=1900):
"""
将长文本分离开来
"""
for index, file_content in enumerate(self.file_contents):
if self.get_token_num(file_content) < max_token_limit:
self.sp_file_contents.append(file_content)
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index])
else:
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
segments = breakdown_txt_to_satisfy_token_limit_for_pdf(file_content, self.get_token_num, max_token_limit)
for j, segment in enumerate(segments):
self.sp_file_contents.append(segment)
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.tex")
print('Segmentation: done')
def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en'):
import time, os, re
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
# <-------- 读取Latex文件删除其中的所有注释 ---------->
pfg = PaperFileGroup()
for index, fp in enumerate(file_manifest):
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read()
# 定义注释的正则表达式
comment_pattern = r'%.*'
# 使用正则表达式查找注释,并替换为空字符串
clean_tex_content = re.sub(comment_pattern, '', file_content)
# 记录删除注释后的文本
pfg.file_paths.append(fp)
pfg.file_contents.append(clean_tex_content)
# <-------- 拆分过长的latex文件 ---------->
pfg.run_file_split(max_token_limit=1024)
n_split = len(pfg.sp_file_contents)
# <-------- 抽取摘要 ---------->
# if language == 'en':
# abs_extract_inputs = f"Please write an abstract for this paper"
# # 单线获取文章meta信息
# paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
# inputs=abs_extract_inputs,
# inputs_show_user=f"正在抽取摘要信息。",
# llm_kwargs=llm_kwargs,
# chatbot=chatbot, history=[],
# sys_prompt="Your job is to collect information from materials。",
# )
# <-------- 多线程润色开始 ---------->
if language == 'en->zh':
inputs_array = ["Below is a section from an English academic paper, translate it into Chinese, do not modify any latex command such as \section, \cite and equations:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
elif language == 'zh->en':
inputs_array = [f"Below is a section from a Chinese academic paper, translate it into English, do not modify any latex command such as \section, \cite and equations:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
inputs_show_user_array = [f"润色 {f}" for f in pfg.sp_file_tag]
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=inputs_array,
inputs_show_user_array=inputs_show_user_array,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history_array=[[""] for _ in range(n_split)],
sys_prompt_array=sys_prompt_array,
max_workers=10, # OpenAI所允许的最大并行过载
scroller_max_len = 80
)
# <-------- 整理结果,退出 ---------->
create_report_file_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + f"-chatgpt.polish.md"
res = write_results_to_file(gpt_response_collection, file_name=create_report_file_name)
history = gpt_response_collection
chatbot.append((f"{fp}完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@CatchException
def Latex英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"对整个Latex项目进行翻译。函数插件贡献者: Binary-Husky"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import tiktoken
except:
report_execption(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en->zh')
@CatchException
def Latex中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"对整个Latex项目进行翻译。函数插件贡献者: Binary-Husky"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import tiktoken
except:
report_execption(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='zh->en')

View File

@@ -1,19 +1,115 @@
import traceback
from toolbox import update_ui
def request_gpt_model_in_new_thread_with_ui_alive(inputs, inputs_show_user, top_p, temperature, chatbot, history, sys_prompt, refresh_interval=0.2):
def input_clipping(inputs, history, max_token_limit):
import tiktoken
import numpy as np
from toolbox import get_conf
enc = tiktoken.encoding_for_model(*get_conf('LLM_MODEL'))
def get_token_num(txt): return len(enc.encode(txt))
mode = 'input-and-history'
# 当 输入部分的token占比 小于 全文的一半时,只裁剪历史
input_token_num = get_token_num(inputs)
if input_token_num < max_token_limit//2:
mode = 'only-history'
max_token_limit = max_token_limit - input_token_num
everything = [inputs] if mode == 'input-and-history' else ['']
everything.extend(history)
n_token = get_token_num('\n'.join(everything))
everything_token = [get_token_num(e) for e in everything]
delta = max(everything_token) // 16 # 截断时的颗粒度
while n_token > max_token_limit:
where = np.argmax(everything_token)
encoded = enc.encode(everything[where])
clipped_encoded = encoded[:len(encoded)-delta]
everything[where] = enc.decode(clipped_encoded)[:-1] # -1 to remove the may-be illegal char
everything_token[where] = get_token_num(everything[where])
n_token = get_token_num('\n'.join(everything))
if mode == 'input-and-history':
inputs = everything[0]
else:
pass
history = everything[1:]
return inputs, history
def request_gpt_model_in_new_thread_with_ui_alive(
inputs, inputs_show_user, llm_kwargs,
chatbot, history, sys_prompt, refresh_interval=0.2,
handle_token_exceed=True,
retry_times_at_unknown_error=2,
):
"""
Request GPT model请求GPT模型同时维持用户界面活跃。
输入参数 Args 以_array结尾的输入变量都是列表列表长度为子任务的数量执行时会把列表拆解放到每个子线程中分别执行:
inputs (string): List of inputs (输入)
inputs_show_user (string): List of inputs to show user展现在报告中的输入借助此参数在汇总报告中隐藏啰嗦的真实输入增强报告的可读性
top_p (float): Top p value for sampling from model distribution GPT参数浮点数
temperature (float): Temperature value for sampling from model distributionGPT参数浮点数
chatbot: chatbot inputs and outputs (用户界面对话窗口句柄,用于数据流可视化)
history (list): List of chat history (历史,对话历史列表)
sys_prompt (string): List of system prompts 系统输入列表用于输入给GPT的前提提示比如你是翻译官怎样怎样
refresh_interval (float, optional): Refresh interval for UI (default: 0.2) 刷新时间间隔频率建议低于1不可高于3仅仅服务于视觉效果
handle_token_exceed是否自动处理token溢出的情况如果选择自动处理则会在溢出时暴力截断默认开启
retry_times_at_unknown_error失败时的重试次数
输出 Returns:
future: 输出GPT返回的结果
"""
import time
from concurrent.futures import ThreadPoolExecutor
from request_llm.bridge_chatgpt import predict_no_ui_long_connection
# 用户反馈
chatbot.append([inputs_show_user, ""])
msg = '正常'
yield chatbot, [], msg
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
executor = ThreadPoolExecutor(max_workers=16)
mutable = ["", time.time()]
future = executor.submit(lambda:
predict_no_ui_long_connection(
inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable)
)
def _req_gpt(inputs, history, sys_prompt):
retry_op = retry_times_at_unknown_error
exceeded_cnt = 0
while True:
try:
# 【第一种情况】:顺利完成
result = predict_no_ui_long_connection(
inputs=inputs, llm_kwargs=llm_kwargs,
history=history, sys_prompt=sys_prompt, observe_window=mutable)
return result
except ConnectionAbortedError as token_exceeded_error:
# 【第二种情况】Token溢出
if handle_token_exceed:
exceeded_cnt += 1
# 【选择处理】 尝试计算比例,尽可能多地保留文本
from toolbox import get_reduce_token_percent
p_ratio, n_exceed = get_reduce_token_percent(str(token_exceeded_error))
MAX_TOKEN = 4096
EXCEED_ALLO = 512 + 512 * exceeded_cnt
inputs, history = input_clipping(inputs, history, max_token_limit=MAX_TOKEN-EXCEED_ALLO)
mutable[0] += f'[Local Message] 警告文本过长将进行截断Token溢出数{n_exceed}\n\n'
continue # 返回重试
else:
# 【选择放弃】
tb_str = '```\n' + traceback.format_exc() + '```'
mutable[0] += f"[Local Message] 警告,在执行过程中遭遇问题, Traceback\n\n{tb_str}\n\n"
return mutable[0] # 放弃
except:
# 【第三种情况】:其他错误:重试几次
tb_str = '```\n' + traceback.format_exc() + '```'
mutable[0] += f"[Local Message] 警告,在执行过程中遭遇问题, Traceback\n\n{tb_str}\n\n"
if retry_op > 0:
retry_op -= 1
mutable[0] += f"[Local Message] 重试中 {retry_times_at_unknown_error-retry_op}/{retry_times_at_unknown_error}\n\n"
time.sleep(5)
continue # 返回重试
else:
time.sleep(5)
return mutable[0] # 放弃
future = executor.submit(_req_gpt, inputs, history, sys_prompt)
while True:
# yield一次以刷新前端页面
time.sleep(refresh_interval)
@@ -22,13 +118,49 @@ def request_gpt_model_in_new_thread_with_ui_alive(inputs, inputs_show_user, top_
if future.done():
break
chatbot[-1] = [chatbot[-1][0], mutable[0]]
msg = "正常"
yield chatbot, [], msg
return future.result()
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
final_result = future.result()
chatbot[-1] = [chatbot[-1][0], final_result]
yield from update_ui(chatbot=chatbot, history=[]) # 如果最后成功了,则删除报错信息
return final_result
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inputs_array, inputs_show_user_array, top_p, temperature, chatbot, history_array, sys_prompt_array, refresh_interval=0.2, max_workers=10, scroller_max_len=30):
import time
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array, inputs_show_user_array, llm_kwargs,
chatbot, history_array, sys_prompt_array,
refresh_interval=0.2, max_workers=10, scroller_max_len=30,
handle_token_exceed=True, show_user_at_complete=False,
retry_times_at_unknown_error=2,
):
"""
Request GPT model using multiple threads with UI and high efficiency
请求GPT模型的[多线程]版。
具备以下功能:
实时在UI上反馈远程数据流
使用线程池可调节线程池的大小避免openai的流量限制错误
处理中途中止的情况
网络等出问题时会把traceback和已经接收的数据转入输出
输入参数 Args 以_array结尾的输入变量都是列表列表长度为子任务的数量执行时会把列表拆解放到每个子线程中分别执行:
inputs_array (list): List of inputs (每个子任务的输入)
inputs_show_user_array (list): List of inputs to show user每个子任务展现在报告中的输入借助此参数在汇总报告中隐藏啰嗦的真实输入增强报告的可读性
llm_kwargs: llm_kwargs参数
chatbot: chatbot (用户界面对话窗口句柄,用于数据流可视化)
history_array (list): List of chat history (历史对话输入,双层列表,第一层列表是子任务分解,第二层列表是对话历史)
sys_prompt_array (list): List of system prompts 系统输入列表用于输入给GPT的前提提示比如你是翻译官怎样怎样
refresh_interval (float, optional): Refresh interval for UI (default: 0.2) 刷新时间间隔频率建议低于1不可高于3仅仅服务于视觉效果
max_workers (int, optional): Maximum number of threads (default: 10) 最大线程数如果子任务非常多需要用此选项防止高频地请求openai导致错误
scroller_max_len (int, optional): Maximum length for scroller (default: 30)(数据流的显示最后收到的多少个字符,仅仅服务于视觉效果)
handle_token_exceed (bool, optional): (是否在输入过长时,自动缩减文本)
handle_token_exceed是否自动处理token溢出的情况如果选择自动处理则会在溢出时暴力截断默认开启
show_user_at_complete (bool, optional): (在结束时,把完整输入-输出结果显示在聊天框)
retry_times_at_unknown_error子任务失败时的重试次数
输出 Returns:
list: List of GPT model responses 每个子任务的输出汇总如果某个子任务出错response中会携带traceback报错信息方便调试和定位问题。
"""
import time, random
from concurrent.futures import ThreadPoolExecutor
from request_llm.bridge_chatgpt import predict_no_ui_long_connection
assert len(inputs_array) == len(history_array)
@@ -38,22 +170,63 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inp
# 用户反馈
chatbot.append(["请开始多线程操作。", ""])
msg = '正常'
yield chatbot, [], msg
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
# 异步原子
mutable = [["", time.time()] for _ in range(n_frag)]
mutable = [["", time.time(), "等待中"] for _ in range(n_frag)]
def _req_gpt(index, inputs, history, sys_prompt):
try:
gpt_say = predict_no_ui_long_connection(
inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable[index]
)
except:
# 收拾残局
tb_str = '```\n' + traceback.format_exc() + '```'
gpt_say = f"[Local Message] 线程{index}在执行过程中遭遇问题, Traceback\n\n{tb_str}\n\n"
if len(mutable[index][0]) > 0:
gpt_say += "此线程失败前收到的回答:" + mutable[index][0]
return gpt_say
gpt_say = ""
retry_op = retry_times_at_unknown_error
exceeded_cnt = 0
mutable[index][2] = "执行中"
while True:
try:
# 【第一种情况】:顺利完成
# time.sleep(10); raise RuntimeError("测试")
gpt_say = predict_no_ui_long_connection(
inputs=inputs, llm_kwargs=llm_kwargs, history=history,
sys_prompt=sys_prompt, observe_window=mutable[index], console_slience=True
)
mutable[index][2] = "已成功"
return gpt_say
except ConnectionAbortedError as token_exceeded_error:
# 【第二种情况】Token溢出
if handle_token_exceed:
exceeded_cnt += 1
# 【选择处理】 尝试计算比例,尽可能多地保留文本
from toolbox import get_reduce_token_percent
p_ratio, n_exceed = get_reduce_token_percent(str(token_exceeded_error))
MAX_TOKEN = 4096
EXCEED_ALLO = 512 + 512 * exceeded_cnt
inputs, history = input_clipping(inputs, history, max_token_limit=MAX_TOKEN-EXCEED_ALLO)
gpt_say += f'[Local Message] 警告文本过长将进行截断Token溢出数{n_exceed}\n\n'
mutable[index][2] = f"截断重试"
continue # 返回重试
else:
# 【选择放弃】
tb_str = '```\n' + traceback.format_exc() + '```'
gpt_say += f"[Local Message] 警告,线程{index}在执行过程中遭遇问题, Traceback\n\n{tb_str}\n\n"
if len(mutable[index][0]) > 0: gpt_say += "此线程失败前收到的回答:\n\n" + mutable[index][0]
mutable[index][2] = "输入过长已放弃"
return gpt_say # 放弃
except:
# 【第三种情况】:其他错误
tb_str = '```\n' + traceback.format_exc() + '```'
gpt_say += f"[Local Message] 警告,线程{index}在执行过程中遭遇问题, Traceback\n\n{tb_str}\n\n"
if len(mutable[index][0]) > 0: gpt_say += "此线程失败前收到的回答:\n\n" + mutable[index][0]
if retry_op > 0:
retry_op -= 1
wait = random.randint(5, 20)
for i in range(wait):# 也许等待十几秒后,情况会好转
mutable[index][2] = f"等待重试 {wait-i}"; time.sleep(1)
mutable[index][2] = f"重试中 {retry_times_at_unknown_error-retry_op}/{retry_times_at_unknown_error}"
continue # 返回重试
else:
mutable[index][2] = "已失败"
wait = 5
time.sleep(5)
return gpt_say # 放弃
# 异步任务开始
futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip(
range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)]
@@ -68,6 +241,7 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inp
break
# 更好的UI视觉效果
observe_win = []
# print([mutable[thread_index][2] for thread_index, _ in enumerate(worker_done)])
# 每个线程都要“喂狗”(看门狗)
for thread_index, _ in enumerate(worker_done):
mutable[thread_index][1] = time.time()
@@ -77,20 +251,49 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inp
replace('\n', '').replace('```', '...').replace(
' ', '.').replace('<br/>', '.....').replace('$', '.')+"`... ]"
observe_win.append(print_something_really_funny)
stat_str = ''.join([f'执行中: {obs}\n\n' if not done else '已完成\n\n' for done, obs in zip(
worker_done, observe_win)])
chatbot[-1] = [chatbot[-1][0],
f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt % 10+1))]
stat_str = ''.join([f'`{mutable[thread_index][2]}`: {obs}\n\n'
if not done else f'`{mutable[thread_index][2]}`\n\n'
for thread_index, done, obs in zip(range(len(worker_done)), worker_done, observe_win)])
chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt % 10+1))]
msg = "正常"
yield chatbot, [], msg
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
# 异步任务结束
gpt_response_collection = []
for inputs_show_user, f in zip(inputs_show_user_array, futures):
gpt_res = f.result()
gpt_response_collection.extend([inputs_show_user, gpt_res])
if show_user_at_complete:
for inputs_show_user, f in zip(inputs_show_user_array, futures):
gpt_res = f.result()
chatbot.append([inputs_show_user, gpt_res])
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
time.sleep(1)
return gpt_response_collection
def WithRetry(f):
"""
装饰器函数,用于自动重试。
"""
def decorated(retry, res_when_fail, *args, **kwargs):
assert retry >= 0
while True:
try:
res = yield from f(*args, **kwargs)
return res
except:
retry -= 1
if retry<0:
print("达到最大重试次数")
break
else:
print("重试中……")
continue
return res_when_fail
return decorated
def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
def cut(txt_tocut, must_break_at_empty_line): # 递归
if get_token_fn(txt_tocut) <= limit:
@@ -157,3 +360,171 @@ def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
# 这个中文的句号是故意的,作为一个标识而存在
res = cut(txt.replace('.', '\n'), must_break_at_empty_line=False)
return [r.replace('\n', '.') for r in res]
def read_and_clean_pdf_text(fp):
"""
这个函数用于分割pdf用了很多trick逻辑较乱效果奇好
**输入参数说明**
- `fp`需要读取和清理文本的pdf文件路径
**输出参数说明**
- `meta_txt`:清理后的文本内容字符串
- `page_one_meta`:第一页清理后的文本内容列表
**函数功能**
读取pdf文件并清理其中的文本内容清理规则包括
- 提取所有块元的文本信息,并合并为一个字符串
- 去除短块字符数小于100并替换为回车符
- 清理多余的空行
- 合并小写字母开头的段落块并替换为空格
- 清除重复的换行
- 将每个换行符替换为两个换行符,使每个段落之间有两个换行符分隔
"""
import fitz, copy
import re
import numpy as np
from colorful import print亮黄, print亮绿
fc = 0
fs = 1
fb = 2
REMOVE_FOOT_NOTE = True
REMOVE_FOOT_FFSIZE_PERCENT = 0.95
def primary_ffsize(l):
fsize_statiscs = {}
for wtf in l['spans']:
if wtf['size'] not in fsize_statiscs: fsize_statiscs[wtf['size']] = 0
fsize_statiscs[wtf['size']] += len(wtf['text'])
return max(fsize_statiscs, key=fsize_statiscs.get)
def ffsize_same(a,b):
return abs((a-b)/max(a,b)) < 0.02
# file_content = ""
with fitz.open(fp) as doc:
meta_txt = []
meta_font = []
meta_line = []
meta_span = []
for index, page in enumerate(doc):
# file_content += page.get_text()
text_areas = page.get_text("dict") # 获取页面上的文本信息
for t in text_areas['blocks']:
if 'lines' in t:
pf = 998
for l in t['lines']:
txt_line = "".join([wtf['text'] for wtf in l['spans']])
pf = primary_ffsize(l)
meta_line.append([txt_line, pf, l['bbox'], l])
for wtf in l['spans']: # for l in t['lines']:
meta_span.append([wtf['text'], wtf['size'], len(wtf['text'])])
# meta_line.append(["NEW_BLOCK", pf])
# 块元提取 for each word segment with in line for each line cross-line words for each block
meta_txt.extend([" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
'- ', '') for t in text_areas['blocks'] if 'lines' in t])
meta_font.extend([np.mean([np.mean([wtf['size'] for wtf in l['spans']])
for l in t['lines']]) for t in text_areas['blocks'] if 'lines' in t])
if index == 0:
page_one_meta = [" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
'- ', '') for t in text_areas['blocks'] if 'lines' in t]
# 获取正文主字体
fsize_statiscs = {}
for span in meta_span:
if span[1] not in fsize_statiscs: fsize_statiscs[span[1]] = 0
fsize_statiscs[span[1]] += span[2]
main_fsize = max(fsize_statiscs, key=fsize_statiscs.get)
if REMOVE_FOOT_NOTE:
give_up_fize_threshold = main_fsize * REMOVE_FOOT_FFSIZE_PERCENT
# 切分和重新整合
mega_sec = []
sec = []
for index, line in enumerate(meta_line):
if index == 0:
sec.append(line[fc])
continue
if REMOVE_FOOT_NOTE:
if meta_line[index][fs] <= give_up_fize_threshold:
continue
if ffsize_same(meta_line[index][fs], meta_line[index-1][fs]):
# 尝试识别段落
if meta_line[index][fc].endswith('.') and\
(meta_line[index-1][fc] != 'NEW_BLOCK') and \
(meta_line[index][fb][2] - meta_line[index][fb][0]) < (meta_line[index-1][fb][2] - meta_line[index-1][fb][0]) * 0.7:
sec[-1] += line[fc]
sec[-1] += "\n\n"
else:
sec[-1] += " "
sec[-1] += line[fc]
else:
if (index+1 < len(meta_line)) and \
meta_line[index][fs] > main_fsize:
# 单行 + 字体大
mega_sec.append(copy.deepcopy(sec))
sec = []
sec.append("# " + line[fc])
else:
# 尝试识别section
if meta_line[index-1][fs] > meta_line[index][fs]:
sec.append("\n" + line[fc])
else:
sec.append(line[fc])
mega_sec.append(copy.deepcopy(sec))
finals = []
for ms in mega_sec:
final = " ".join(ms)
final = final.replace('- ', ' ')
finals.append(final)
meta_txt = finals
def 把字符太少的块清除为回车(meta_txt):
for index, block_txt in enumerate(meta_txt):
if len(block_txt) < 100:
meta_txt[index] = '\n'
return meta_txt
meta_txt = 把字符太少的块清除为回车(meta_txt)
def 清理多余的空行(meta_txt):
for index in reversed(range(1, len(meta_txt))):
if meta_txt[index] == '\n' and meta_txt[index-1] == '\n':
meta_txt.pop(index)
return meta_txt
meta_txt = 清理多余的空行(meta_txt)
def 合并小写开头的段落块(meta_txt):
def starts_with_lowercase_word(s):
pattern = r"^[a-z]+"
match = re.match(pattern, s)
if match:
return True
else:
return False
for _ in range(100):
for index, block_txt in enumerate(meta_txt):
if starts_with_lowercase_word(block_txt):
if meta_txt[index-1] != '\n':
meta_txt[index-1] += ' '
else:
meta_txt[index-1] = ''
meta_txt[index-1] += meta_txt[index]
meta_txt[index] = '\n'
return meta_txt
meta_txt = 合并小写开头的段落块(meta_txt)
meta_txt = 清理多余的空行(meta_txt)
meta_txt = '\n'.join(meta_txt)
# 清除重复的换行
for _ in range(5):
meta_txt = meta_txt.replace('\n\n', '\n')
# 换行 -> 双换行
meta_txt = meta_txt.replace('\n', '\n\n')
for f in finals:
print亮黄(f)
print亮绿('***************************')
return meta_txt, page_one_meta

View File

@@ -1,7 +1,7 @@
from request_llm.bridge_chatgpt import predict_no_ui
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down, get_conf
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file, get_conf
import re, requests, unicodedata, os
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
def download_arxiv_(url_pdf):
if 'arxiv.org' not in url_pdf:
if ('.' in url_pdf) and ('/' not in url_pdf):
@@ -132,7 +132,7 @@ def get_name(_url_):
@CatchException
def 下载arxiv论文并翻译摘要(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 下载arxiv论文并翻译摘要(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
CRAZY_FUNCTION_INFO = "下载arxiv论文并翻译摘要函数插件作者[binary-husky]。正在提取摘要并下载PDF文档……"
import glob
@@ -140,7 +140,7 @@ def 下载arxiv论文并翻译摘要(txt, top_p, temperature, chatbot, history,
# 基本信息:功能、贡献者
chatbot.append(["函数插件功能?", CRAZY_FUNCTION_INFO])
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
@@ -149,7 +149,7 @@ def 下载arxiv论文并翻译摘要(txt, top_p, temperature, chatbot, history,
report_execption(chatbot, history,
a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pdfminer beautifulsoup4```。")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 清空历史,以免输入溢出
@@ -162,25 +162,33 @@ def 下载arxiv论文并翻译摘要(txt, top_p, temperature, chatbot, history,
report_execption(chatbot, history,
a = f"解析项目: {txt}",
b = f"下载pdf文件未成功")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 翻译摘要等
i_say = f"请你阅读以下学术论文相关的材料,提取摘要,翻译为中文。材料如下:{str(info)}"
i_say_show_user = f'请你阅读以下学术论文相关的材料,提取摘要,翻译为中文。论文:{pdf_path}'
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[]) # 带超时倒计时
# 单线获取文章meta信息
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say,
inputs_show_user=i_say_show_user,
llm_kwargs=llm_kwargs,
chatbot=chatbot, history=[],
sys_prompt="Your job is to collect information from materials and translate to Chinese。",
)
chatbot[-1] = (i_say_show_user, gpt_say)
history.append(i_say_show_user); history.append(gpt_say)
yield chatbot, history, msg
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
# 写入文件
import shutil
# 重置文件的创建时间
shutil.copyfile(pdf_path, f'./gpt_log/{os.path.basename(pdf_path)}'); os.remove(pdf_path)
res = write_results_to_file(history)
chatbot.append(("完成了吗?", res + "\n\nPDF文件也已经下载"))
yield chatbot, history, msg
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面

View File

@@ -1,5 +1,6 @@
import threading
from request_llm.bridge_chatgpt import predict_no_ui_long_connection
from toolbox import update_ui
from toolbox import CatchException, write_results_to_file, report_execption
from .crazy_utils import breakdown_txt_to_satisfy_token_limit
@@ -22,22 +23,22 @@ def break_txt_into_half_at_some_linebreak(txt):
@CatchException
def 全项目切换英文(txt, top_p, temperature, chatbot, history, sys_prompt, WEB_PORT):
def 全项目切换英文(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys_prompt, web_port):
# 第1步清空历史以免输入溢出
history = []
# 第2步尝试导入依赖如果缺少依赖则给出安装建议
try:
import openai, transformers
import tiktoken
except:
report_execption(chatbot, history,
a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade openai transformers```。")
yield chatbot, history, '正常'
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 第3步集合文件
import time, glob, os, shutil, re, openai
import time, glob, os, shutil, re
os.makedirs('gpt_log/generated_english_version', exist_ok=True)
os.makedirs('gpt_log/generated_english_version/crazy_functions', exist_ok=True)
file_manifest = [f for f in glob.glob('./*.py') if ('test_project' not in f) and ('gpt_log' not in f)] + \
@@ -48,21 +49,20 @@ def 全项目切换英文(txt, top_p, temperature, chatbot, history, sys_prompt,
# 第4步随便显示点什么防止卡顿的感觉
for index, fp in enumerate(file_manifest):
# if 'test_project' in fp: continue
with open(fp, 'r', encoding='utf-8') as f:
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read()
i_say_show_user =f'[{index}/{len(file_manifest)}] 接下来请将以下代码中包含的所有中文转化为英文,只输出转化后的英文代码,请用代码块输出代码: {os.path.abspath(fp)}'
i_say_show_user_buffer.append(i_say_show_user)
chatbot.append((i_say_show_user, "[Local Message] 等待多线程操作,中间过程不予显示."))
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 第5步Token限制下的截断与处理
MAX_TOKEN = 3000
from transformers import GPT2TokenizerFast
print('加载tokenizer中')
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
get_token_fn = lambda txt: len(tokenizer(txt)["input_ids"])
print('加载tokenizer结束')
import tiktoken
from toolbox import get_conf
enc = tiktoken.encoding_for_model(*get_conf('LLM_MODEL'))
def get_token_fn(txt): return len(enc.encode(txt))
# 第6步任务函数
@@ -72,7 +72,7 @@ def 全项目切换英文(txt, top_p, temperature, chatbot, history, sys_prompt,
if index > 10:
time.sleep(60)
print('Openai 限制免费用户每分钟20次请求降低请求频率中。')
with open(fp, 'r', encoding='utf-8') as f:
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read()
i_say_template = lambda fp, file_content: f'接下来请将以下代码中包含的所有中文转化为英文,只输出代码,文件名是{fp},文件代码是 ```{file_content}```'
try:
@@ -82,7 +82,7 @@ def 全项目切换英文(txt, top_p, temperature, chatbot, history, sys_prompt,
for file_content_partial in file_content_breakdown:
i_say = i_say_template(fp, file_content_partial)
# # ** gpt request **
gpt_say_partial = predict_no_ui_long_connection(inputs=i_say, top_p=top_p, temperature=temperature, history=[], sys_prompt=sys_prompt, observe_window=observe_window[index])
gpt_say_partial = predict_no_ui_long_connection(inputs=i_say, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=observe_window[index])
gpt_say_partial = extract_code_block_carefully(gpt_say_partial)
gpt_say += gpt_say_partial
mutable_return[index] = gpt_say
@@ -97,7 +97,7 @@ def 全项目切换英文(txt, top_p, temperature, chatbot, history, sys_prompt,
h.daemon = True
h.start()
chatbot.append(('开始了吗?', f'多线程操作已经开始'))
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 第8步循环轮询各个线程是否执行完毕
cnt = 0
@@ -113,7 +113,7 @@ def 全项目切换英文(txt, top_p, temperature, chatbot, history, sys_prompt,
stat = [f'执行中: {obs}\n\n' if alive else '已完成\n\n' for alive, obs in zip(th_alive, observe_win)]
stat_str = ''.join(stat)
chatbot[-1] = (chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt%10+1)))
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 第9步把结果写入文件
for index, h in enumerate(handles):
@@ -130,10 +130,10 @@ def 全项目切换英文(txt, top_p, temperature, chatbot, history, sys_prompt,
shutil.copyfile(file_manifest[index], where_to_relocate)
chatbot.append((i_say_show_user, f'[Local Message] 已完成{os.path.abspath(fp)}的转化,\n\n存入{os.path.abspath(where_to_relocate)}'))
history.append(i_say_show_user); history.append(gpt_say)
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
time.sleep(1)
# 第10步备份一个文件
res = write_results_to_file(history)
chatbot.append(("生成一份任务执行报告", res))
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

View File

@@ -1,9 +1,10 @@
from request_llm.bridge_chatgpt import predict_no_ui
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
fast_debug = False
def 解析docx(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt):
def 解析docx(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
import time, os
# pip install python-docx 用于docx格式跨平台
# pip install pywin32 用于doc格式仅支持Win平台
@@ -35,58 +36,69 @@ def 解析docx(file_manifest, project_folder, top_p, temperature, chatbot, histo
f'文章内容是 ```{file_content}```'
i_say_show_user = prefix + f'[{index+1}/{len(file_manifest)}] 假设你是论文审稿专家,请对下面的文章片段做概述: {os.path.abspath(fp)}'
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature,
history=[]) # 带超时倒计时
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say,
inputs_show_user=i_say_show_user,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history=[],
sys_prompt="总结文章。"
) # 带超时倒计时
chatbot[-1] = (i_say_show_user, gpt_say)
history.append(i_say_show_user);
history.append(i_say_show_user)
history.append(gpt_say)
yield chatbot, history, msg
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
if not fast_debug: time.sleep(2)
"""
# 可按需启用
i_say = f'根据你上述的分析,对全文进行概括,用学术性语言写一段中文摘要,然后再写一篇英文的。'
chatbot.append((i_say, "[Local Message] waiting gpt response."))
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
i_say = f'我想让你做一个论文写作导师。您的任务是使用人工智能工具(例如自然语言处理)提供有关如何改进其上述文章的反馈。' \
f'您还应该利用您在有效写作技巧方面的修辞知识和经验来建议作者可以更好地以书面形式表达他们的想法和想法的方法。' \
f'根据你之前的分析,提出建议'
chatbot.append((i_say, "[Local Message] waiting gpt response."))
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
"""
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, temperature,
history=history) # 带超时倒计时
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say,
inputs_show_user=i_say,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history=history,
sys_prompt="总结文章。"
) # 带超时倒计时
chatbot[-1] = (i_say, gpt_say)
history.append(i_say)
history.append(gpt_say)
yield chatbot, history, msg
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
res = write_results_to_file(history)
chatbot.append(("完成了吗?", res))
yield chatbot, history, msg
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
@CatchException
def 总结word文档(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 总结word文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
import glob, os
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"批量总结Word文档。函数插件贡献者: JasonGuo1"])
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
@@ -95,7 +107,7 @@ def 总结word文档(txt, top_p, temperature, chatbot, history, systemPromptTxt,
report_execption(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade python-docx pywin32```。")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 清空历史,以免输入溢出
@@ -107,7 +119,7 @@ def 总结word文档(txt, top_p, temperature, chatbot, history, systemPromptTxt,
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 搜索需要处理的文件清单
@@ -120,8 +132,8 @@ def 总结word文档(txt, top_p, temperature, chatbot, history, systemPromptTxt,
# 如果没找到任何文件
if len(file_manifest) == 0:
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.docx或doc文件: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 开始正式执行任务
yield from 解析docx(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析docx(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)

View File

@@ -1,8 +1,9 @@
from request_llm.bridge_chatgpt import predict_no_ui
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
import re
import unicodedata
fast_debug = False
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
def is_paragraph_break(match):
"""
@@ -57,7 +58,7 @@ def clean_text(raw_text):
return final_text.strip()
def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt):
def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
import time, glob, os, fitz
print('begin analysis on:', file_manifest)
for index, fp in enumerate(file_manifest):
@@ -72,49 +73,60 @@ def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, histor
i_say = prefix + f'请对下面的文章片段用中文做一个概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{file_content}```'
i_say_show_user = prefix + f'[{index}/{len(file_manifest)}] 请对下面的文章片段做一个概述: {os.path.abspath(fp)}'
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
print('[1] yield chatbot, history')
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[]) # 带超时倒计时
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say,
inputs_show_user=i_say_show_user,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history=[],
sys_prompt="总结文章。"
) # 带超时倒计时
print('[2] end gpt req')
chatbot[-1] = (i_say_show_user, gpt_say)
history.append(i_say_show_user); history.append(gpt_say)
print('[3] yield chatbot, history')
yield chatbot, history, msg
print('[4] next')
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
if not fast_debug: time.sleep(2)
all_file = ', '.join([os.path.relpath(fp, project_folder) for index, fp in enumerate(file_manifest)])
i_say = f'根据以上你自己的分析,对全文进行概括,用学术性语言写一段中文摘要,然后再写一段英文摘要(包括{all_file})。'
chatbot.append((i_say, "[Local Message] waiting gpt response."))
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, temperature, history=history) # 带超时倒计时
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say,
inputs_show_user=i_say,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history=history,
sys_prompt="总结文章。"
) # 带超时倒计时
chatbot[-1] = (i_say, gpt_say)
history.append(i_say); history.append(gpt_say)
yield chatbot, history, msg
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
res = write_results_to_file(history)
chatbot.append(("完成了吗?", res))
yield chatbot, history, msg
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
@CatchException
def 批量总结PDF文档(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 批量总结PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
import glob, os
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"批量总结PDF文档。函数插件贡献者: ValeriaWongEralien"])
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
@@ -123,7 +135,7 @@ def 批量总结PDF文档(txt, top_p, temperature, chatbot, history, systemPromp
report_execption(chatbot, history,
a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 清空历史,以免输入溢出
@@ -135,7 +147,7 @@ def 批量总结PDF文档(txt, top_p, temperature, chatbot, history, systemPromp
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 搜索需要处理的文件清单
@@ -147,8 +159,8 @@ def 批量总结PDF文档(txt, top_p, temperature, chatbot, history, systemPromp
# 如果没找到任何文件
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex或.pdf文件: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 开始正式执行任务
yield from 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)

View File

@@ -1,5 +1,6 @@
from request_llm.bridge_chatgpt import predict_no_ui
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
fast_debug = False
@@ -61,13 +62,13 @@ def readPdf(pdfPath):
return outTextList
def 解析Paper(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt):
def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
import time, glob, os
from bs4 import BeautifulSoup
print('begin analysis on:', file_manifest)
for index, fp in enumerate(file_manifest):
if ".tex" in fp:
with open(fp, 'r', encoding='utf-8') as f:
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read()
if ".pdf" in fp.lower():
file_content = readPdf(fp)
@@ -77,43 +78,51 @@ def 解析Paper(file_manifest, project_folder, top_p, temperature, chatbot, hist
i_say = prefix + f'请对下面的文章片段用中文做一个概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{file_content}```'
i_say_show_user = prefix + f'[{index}/{len(file_manifest)}] 请对下面的文章片段做一个概述: {os.path.abspath(fp)}'
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
print('[1] yield chatbot, history')
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[]) # 带超时倒计时
print('[2] end gpt req')
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say,
inputs_show_user=i_say_show_user,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history=[],
sys_prompt="总结文章。"
) # 带超时倒计时
chatbot[-1] = (i_say_show_user, gpt_say)
history.append(i_say_show_user); history.append(gpt_say)
print('[3] yield chatbot, history')
yield chatbot, history, msg
print('[4] next')
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
if not fast_debug: time.sleep(2)
all_file = ', '.join([os.path.relpath(fp, project_folder) for index, fp in enumerate(file_manifest)])
i_say = f'根据以上你自己的分析,对全文进行概括,用学术性语言写一段中文摘要,然后再写一段英文摘要(包括{all_file})。'
chatbot.append((i_say, "[Local Message] waiting gpt response."))
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, temperature, history=history) # 带超时倒计时
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say,
inputs_show_user=i_say,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history=history,
sys_prompt="总结文章。"
) # 带超时倒计时
chatbot[-1] = (i_say, gpt_say)
history.append(i_say); history.append(gpt_say)
yield chatbot, history, msg
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
res = write_results_to_file(history)
chatbot.append(("完成了吗?", res))
yield chatbot, history, msg
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
@CatchException
def 批量总结PDF文档pdfminer(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 批量总结PDF文档pdfminer(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
@@ -121,7 +130,7 @@ def 批量总结PDF文档pdfminer(txt, top_p, temperature, chatbot, history, sys
chatbot.append([
"函数插件功能?",
"批量总结PDF文档此版本使用pdfminer插件带token约简功能。函数插件贡献者: Euclid-Jie。"])
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
@@ -130,14 +139,14 @@ def 批量总结PDF文档pdfminer(txt, top_p, temperature, chatbot, history, sys
report_execption(chatbot, history,
a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pdfminer beautifulsoup4```。")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.pdf', recursive=True)] # + \
@@ -145,7 +154,7 @@ def 批量总结PDF文档pdfminer(txt, top_p, temperature, chatbot, history, sys
# [f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex或pdf文件: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析Paper(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)

View File

@@ -1,102 +1,20 @@
from toolbox import CatchException, report_execption, write_results_to_file
from toolbox import update_ui
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
def read_and_clean_pdf_text(fp):
"""
**输入参数说明**
- `fp`需要读取和清理文本的pdf文件路径
**输出参数说明**
- `meta_txt`:清理后的文本内容字符串
- `page_one_meta`:第一页清理后的文本内容列表
**函数功能**
读取pdf文件并清理其中的文本内容清理规则包括
- 提取所有块元的文本信息,并合并为一个字符串
- 去除短块字符数小于100并替换为回车符
- 清理多余的空行
- 合并小写字母开头的段落块并替换为空格
- 清除重复的换行
- 将每个换行符替换为两个换行符,使每个段落之间有两个换行符分隔
"""
import fitz
import re
import numpy as np
# file_content = ""
with fitz.open(fp) as doc:
meta_txt = []
meta_font = []
for index, page in enumerate(doc):
# file_content += page.get_text()
text_areas = page.get_text("dict") # 获取页面上的文本信息
# 块元提取 for each word segment with in line for each line cross-line words for each block
meta_txt.extend([" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
'- ', '') for t in text_areas['blocks'] if 'lines' in t])
meta_font.extend([np.mean([np.mean([wtf['size'] for wtf in l['spans']])
for l in t['lines']]) for t in text_areas['blocks'] if 'lines' in t])
if index == 0:
page_one_meta = [" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
'- ', '') for t in text_areas['blocks'] if 'lines' in t]
def 把字符太少的块清除为回车(meta_txt):
for index, block_txt in enumerate(meta_txt):
if len(block_txt) < 100:
meta_txt[index] = '\n'
return meta_txt
meta_txt = 把字符太少的块清除为回车(meta_txt)
def 清理多余的空行(meta_txt):
for index in reversed(range(1, len(meta_txt))):
if meta_txt[index] == '\n' and meta_txt[index-1] == '\n':
meta_txt.pop(index)
return meta_txt
meta_txt = 清理多余的空行(meta_txt)
def 合并小写开头的段落块(meta_txt):
def starts_with_lowercase_word(s):
pattern = r"^[a-z]+"
match = re.match(pattern, s)
if match:
return True
else:
return False
for _ in range(100):
for index, block_txt in enumerate(meta_txt):
if starts_with_lowercase_word(block_txt):
if meta_txt[index-1] != '\n':
meta_txt[index-1] += ' '
else:
meta_txt[index-1] = ''
meta_txt[index-1] += meta_txt[index]
meta_txt[index] = '\n'
return meta_txt
meta_txt = 合并小写开头的段落块(meta_txt)
meta_txt = 清理多余的空行(meta_txt)
meta_txt = '\n'.join(meta_txt)
# 清除重复的换行
for _ in range(5):
meta_txt = meta_txt.replace('\n\n', '\n')
# 换行 -> 双换行
meta_txt = meta_txt.replace('\n', '\n\n')
return meta_txt, page_one_meta
from .crazy_utils import read_and_clean_pdf_text
from colorful import *
@CatchException
def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt, WEB_PORT):
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys_prompt, web_port):
import glob
import os
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"批量总结PDF文档。函数插件贡献者: Binary-Husky(二进制哈士奇)"])
yield chatbot, history, '正常'
"批量总结PDF文档。函数插件贡献者: Binary-Husky"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
@@ -106,7 +24,7 @@ def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt,
report_execption(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf tiktoken```。")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 清空历史,以免输入溢出
@@ -120,7 +38,7 @@ def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt,
txt = '空空如也的输入栏'
report_execption(chatbot, history,
a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 搜索需要处理的文件清单
@@ -131,63 +49,73 @@ def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt,
if len(file_manifest) == 0:
report_execption(chatbot, history,
a=f"解析项目: {txt}", b=f"找不到任何.tex或.pdf文件: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 开始正式执行任务
yield from 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt)
yield from 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, sys_prompt)
def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt):
def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, sys_prompt):
import os
import tiktoken
TOKEN_LIMIT_PER_FRAGMENT = 1600
generated_conclusion_files = []
for index, fp in enumerate(file_manifest):
# 读取PDF文件
file_content, page_one = read_and_clean_pdf_text(fp)
# 递归地切割PDF文件
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
enc = tiktoken.get_encoding("gpt2")
from toolbox import get_conf
enc = tiktoken.encoding_for_model(*get_conf('LLM_MODEL'))
def get_token_num(txt): return len(enc.encode(txt))
# 分解文本
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
# 为了更好的效果我们剥离Introduction之后的部分
paper_meta = page_one_fragments[0].split('introduction')[0].split(
'Introduction')[0].split('INTRODUCTION')[0]
# 为了更好的效果我们剥离Introduction之后的部分如果有
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
# 单线获取文章meta信息
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=f"以下是一篇学术论文的基础信息请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出最后用中文翻译摘要部分。请提取{paper_meta}",
inputs_show_user=f"请从{fp}中提取出“标题”、“收录会议或期刊”等基本信息。",
top_p=top_p, temperature=temperature,
llm_kwargs=llm_kwargs,
chatbot=chatbot, history=[],
sys_prompt="Your job is to collect information from materials。",
)
# 多线,翻译
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=[
f"以下是你需要翻译的文章段落\n{frag}" for frag in paper_fragments],
inputs_show_user_array=[f"" for _ in paper_fragments],
top_p=top_p, temperature=temperature,
f"以下是你需要翻译的论文片段\n{frag}" for frag in paper_fragments],
inputs_show_user_array=[f"\n---\n 原文: \n\n {frag.replace('#', '')} \n---\n 翻译:\n " for frag in paper_fragments],
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history_array=[[paper_meta] for _ in paper_fragments],
sys_prompt_array=[
"请你作为一个学术翻译,把整个段落翻译成中文,要求语言简洁,禁止重复输出原文。" for _ in paper_fragments],
"请你作为一个学术翻译,负责把学术论文的片段准确翻译成中文。" for _ in paper_fragments],
max_workers=16 # OpenAI所允许的最大并行过载
)
final = ["", paper_meta_info + '\n\n---\n\n---\n\n---\n\n']
# 整理报告的格式
for i,k in enumerate(gpt_response_collection):
if i%2==0:
gpt_response_collection[i] = f"\n\n---\n\n ## 原文[{i//2}/{len(gpt_response_collection)//2}] \n\n {paper_fragments[i//2].replace('#', '')} \n\n---\n\n ## 翻译[{i//2}/{len(gpt_response_collection)//2}]\n "
else:
gpt_response_collection[i] = gpt_response_collection[i]
final = ["一、论文概况\n\n---\n\n", paper_meta_info.replace('# ', '### ') + '\n\n---\n\n', "二、论文翻译", ""]
final.extend(gpt_response_collection)
create_report_file_name = f"{os.path.basename(fp)}.trans.md"
res = write_results_to_file(final, file_name=create_report_file_name)
generated_conclusion_files.append(
f'./gpt_log/{create_report_file_name}')
# 更新UI
generated_conclusion_files.append(f'./gpt_log/{create_report_file_name}')
chatbot.append((f"{fp}完成了吗?", res))
msg = "完成"
yield chatbot, history, msg
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 准备文件的下载
import shutil
@@ -200,4 +128,4 @@ def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, histor
if os.path.exists(pdf_path):
os.remove(pdf_path)
chatbot.append(("给出输出文件清单", str(generated_conclusion_files)))
yield chatbot, history, msg
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

View File

@@ -1,124 +1,78 @@
from request_llm.bridge_chatgpt import predict_no_ui
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
import re
import unicodedata
from toolbox import update_ui
from toolbox import CatchException, report_execption
from .crazy_utils import read_and_clean_pdf_text
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
fast_debug = False
def is_paragraph_break(match):
"""
根据给定的匹配结果来判断换行符是否表示段落分隔。
如果换行符前为句子结束标志(句号,感叹号,问号),且下一个字符为大写字母,则换行符更有可能表示段落分隔。
也可以根据之前的内容长度来判断段落是否已经足够长。
"""
prev_char, next_char = match.groups()
# 句子结束标志
sentence_endings = ".!?"
# 设定一个最小段落长度阈值
min_paragraph_length = 140
if prev_char in sentence_endings and next_char.isupper() and len(match.string[:match.start(1)]) > min_paragraph_length:
return "\n\n"
else:
return " "
def normalize_text(text):
"""
通过把连字ligatures等文本特殊符号转换为其基本形式来对文本进行归一化处理。
例如,将连字 "fi" 转换为 "f""i"
"""
# 对文本进行归一化处理,分解连字
normalized_text = unicodedata.normalize("NFKD", text)
# 替换其他特殊字符
cleaned_text = re.sub(r'[^\x00-\x7F]+', '', normalized_text)
return cleaned_text
def clean_text(raw_text):
"""
对从 PDF 提取出的原始文本进行清洗和格式化处理。
1. 对原始文本进行归一化处理。
2. 替换跨行的连词,例如 “Espe-\ncially” 转换为 “Especially”。
3. 根据 heuristic 规则判断换行符是否是段落分隔,并相应地进行替换。
"""
# 对文本进行归一化处理
normalized_text = normalize_text(raw_text)
# 替换跨行的连词
text = re.sub(r'(\w+-\n\w+)', lambda m: m.group(1).replace('-\n', ''), normalized_text)
# 根据前后相邻字符的特点,找到原文本中的换行符
newlines = re.compile(r'(\S)\n(\S)')
# 根据 heuristic 规则,用空格或段落分隔符替换原换行符
final_text = re.sub(newlines, lambda m: m.group(1) + is_paragraph_break(m) + m.group(2), text)
return final_text.strip()
def 解析PDF(file_name, top_p, temperature, chatbot, history, systemPromptTxt):
import time, glob, os, fitz
def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
import tiktoken
print('begin analysis on:', file_name)
file_content, page_one = read_and_clean_pdf_text(file_name)
with fitz.open(file_name) as doc:
file_content = ""
for page in doc:
file_content += page.get_text()
file_content = clean_text(file_content)
# print(file_content)
split_number = 10000
split_group = (len(file_content)//split_number)+1
for i in range(0,split_group):
if i==0:
prefix = "接下来请你仔细分析下面的论文,学习里面的内容(专业术语、公式、数学概念).并且注意:由于论文内容较多,将分批次发送,每次发送完之后,你只需要回答“接受完成”"
i_say = prefix + f'文件名是{file_name},文章内容第{i+1}部分是 ```{file_content[i*split_number:(i+1)*split_number]}```'
i_say_show_user = f'文件名是:\n{file_name},\n由于论文内容过长,将分批请求(共{len(file_content)}字符,将分为{split_group}批,每批{split_number}字符)。\n当前发送{i+1}/{split_group}部分'
elif i==split_group-1:
i_say = f'你只需要回答“所有论文接受完成,请进行下一步”。文章内容第{i+1}/{split_group}部分是 ```{file_content[i*split_number:]}```'
i_say_show_user = f'当前发送{i+1}/{split_group}部分'
else:
i_say = f'你只需要回答“接受完成”。文章内容第{i+1}/{split_group}部分是 ```{file_content[i*split_number:(i+1)*split_number]}```'
i_say_show_user = f'当前发送{i+1}/{split_group}部分'
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[]) # 带超时倒计时
while "完成" not in gpt_say:
i_say = f'你只需要回答“接受完成”。文章内容第{i+1}/{split_group}部分是 ```{file_content[i*split_number:(i+1)*split_number]}```'
i_say_show_user = f'出现error重新发送{i+1}/{split_group}部分'
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[]) # 带超时倒计时
time.sleep(1)
chatbot[-1] = (i_say_show_user, gpt_say)
history.append(i_say_show_user); history.append(gpt_say)
yield chatbot, history, '正常'
time.sleep(2)
############################## <第零步从摘要中提取高价值信息放到history中> ##################################
# 递归地切割PDF文件每一块尽量是完整的一个section比如introductionexperiment等必要时再进行切割
# 的长度必须小于 2500 个 Token
TOKEN_LIMIT_PER_FRAGMENT = 2500
i_say = f'接下来请你扮演一名专业的学术教授利用你的所有知识并且结合这篇文章回答我的问题。请牢记1.直到我说“退出”你才能结束任务2.所有问题需要紧密围绕文章内容;3.如果有公式请使用tex渲染)'
chatbot.append((i_say, "[Local Message] waiting gpt response."))
yield chatbot, history, '正常'
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
from toolbox import get_conf
enc = tiktoken.encoding_for_model(*get_conf('LLM_MODEL'))
def get_token_num(txt): return len(enc.encode(txt))
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
# 为了更好的效果我们剥离Introduction之后的部分如果有
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
############################## <第一步从摘要中提取高价值信息放到history中> ##################################
final_results = []
final_results.append(paper_meta)
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, temperature, history=history) # 带超时倒计时
chatbot[-1] = (i_say, gpt_say)
history.append(i_say); history.append(gpt_say)
yield chatbot, history, '正常'
############################## <第二步,迭代地历遍整个文章,提取精炼信息> ##################################
i_say_show_user = f'首先你在英文语境下通读整篇论文。'; gpt_say = "[Local Message] 收到。" # 用户提示
chatbot.append([i_say_show_user, gpt_say]); yield from update_ui(chatbot=chatbot, history=[]) # 更新UI
iteration_results = []
last_iteration_result = paper_meta # 初始值是摘要
MAX_WORD_TOTAL = 4096
n_fragment = len(paper_fragments)
if n_fragment >= 20: print('文章极长,不能达到预期效果')
for i in range(n_fragment):
NUM_OF_WORD = MAX_WORD_TOTAL // n_fragment
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i]}"
i_say_show_user = f"[{i+1}/{n_fragment}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i][:200]}"
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, # i_say=真正给chatgpt的提问 i_say_show_user=给用户看的提问
llm_kwargs, chatbot,
history=["The main idea of the previous section is?", last_iteration_result], # 迭代上一次的结果
sys_prompt="Extract the main idea of this section." # 提示
)
iteration_results.append(gpt_say)
last_iteration_result = gpt_say
############################## <第三步整理history> ##################################
final_results.extend(iteration_results)
final_results.append(f'接下来,你是一名专业的学术教授,利用以上信息,使用中文回答我的问题。')
# 接下来两句话只显示在界面上,不起实际作用
i_say_show_user = f'接下来,你是一名专业的学术教授,利用以上信息,使用中文回答我的问题。'; gpt_say = "[Local Message] 收到。"
chatbot.append([i_say_show_user, gpt_say])
############################## <第四步设置一个token上限防止回答时Token溢出> ##################################
from .crazy_utils import input_clipping
_, final_results = input_clipping("", final_results, max_token_limit=3200)
yield from update_ui(chatbot=chatbot, history=final_results) # 注意这里的历史记录被替代了
@CatchException
def 理解PDF文档内容(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 理解PDF文档内容标准文件输入(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
import glob, os
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"理解PDF论文内容并且将结合上下文内容进行学术解答。函数插件贡献者: Hanzoe"])
yield chatbot, history, '正常'
import tkinter as tk
from tkinter import filedialog
root = tk.Tk()
root.withdraw()
txt = filedialog.askopenfilename()
"理解PDF论文内容并且将结合上下文内容进行学术解答。函数插件贡献者: Hanzoe, binary-husky"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
@@ -127,35 +81,7 @@ def 理解PDF文档内容(txt, top_p, temperature, chatbot, history, systemPromp
report_execption(chatbot, history,
a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。")
yield chatbot, history, '正常'
return
# 清空历史,以免输入溢出
history = []
# 开始正式执行任务
yield from 解析PDF(txt, top_p, temperature, chatbot, history, systemPromptTxt)
@CatchException
def 理解PDF文档内容标准文件输入(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
import glob, os
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"理解PDF论文内容并且将结合上下文内容进行学术解答。函数插件贡献者: Hanzoe。"])
yield chatbot, history, '正常'
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import fitz
except:
report_execption(chatbot, history,
a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 清空历史,以免输入溢出
@@ -169,7 +95,7 @@ def 理解PDF文档内容标准文件输入(txt, top_p, temperature, chatbot, hi
txt = '空空如也的输入栏'
report_execption(chatbot, history,
a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 搜索需要处理的文件清单
@@ -178,8 +104,8 @@ def 理解PDF文档内容标准文件输入(txt, top_p, temperature, chatbot, hi
if len(file_manifest) == 0:
report_execption(chatbot, history,
a=f"解析项目: {txt}", b=f"找不到任何.tex或.pdf文件: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
txt = file_manifest[0]
# 开始正式执行任务
yield from 解析PDF(txt, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)

View File

@@ -1,43 +1,40 @@
from request_llm.bridge_chatgpt import predict_no_ui
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
fast_debug = False
def 生成函数注释(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt):
import time, glob, os
def 生成函数注释(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
import time, os
print('begin analysis on:', file_manifest)
for index, fp in enumerate(file_manifest):
with open(fp, 'r', encoding='utf-8') as f:
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read()
i_say = f'请对下面的程序文件做一个概述并对文件中的所有函数生成注释使用markdown表格输出结果文件名是{os.path.relpath(fp, project_folder)},文件内容是 ```{file_content}```'
i_say_show_user = f'[{index}/{len(file_manifest)}] 请对下面的程序文件做一个概述,并对文件中的所有函数生成注释: {os.path.abspath(fp)}'
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
print('[1] yield chatbot, history')
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[]) # 带超时倒计时
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
i_say, i_say_show_user, llm_kwargs, chatbot, history=[], sys_prompt=system_prompt) # 带超时倒计时
print('[2] end gpt req')
chatbot[-1] = (i_say_show_user, gpt_say)
history.append(i_say_show_user); history.append(gpt_say)
print('[3] yield chatbot, history')
yield chatbot, history, msg
print('[4] next')
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
if not fast_debug: time.sleep(2)
if not fast_debug:
res = write_results_to_file(history)
chatbot.append(("完成了吗?", res))
yield chatbot, history, msg
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
@CatchException
def 批量生成函数注释(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 批量生成函数注释(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@@ -45,13 +42,13 @@ def 批量生成函数注释(txt, top_p, temperature, chatbot, history, systemPr
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.py', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.cpp', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 生成函数注释(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 生成函数注释(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)

View File

@@ -1,96 +1,115 @@
from request_llm.bridge_chatgpt import predict_no_ui
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
fast_debug = False
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
def 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt):
import time, glob, os
print('begin analysis on:', file_manifest)
def 解析源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
import os, copy
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
msg = '正常'
inputs_array = []
inputs_show_user_array = []
history_array = []
sys_prompt_array = []
report_part_1 = []
############################## <第一步,逐个文件分析,多线程> ##################################
for index, fp in enumerate(file_manifest):
with open(fp, 'r', encoding='utf-8') as f:
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read()
prefix = "接下来请你逐文件分析下面的工程" if index==0 else ""
i_say = prefix + f'请对下面的程序文件做一个概述文件名是{os.path.relpath(fp, project_folder)},文件代码是 ```{file_content}```'
i_say_show_user = prefix + f'[{index}/{len(file_manifest)}] 请对下面的程序文件做一个概述: {os.path.abspath(fp)}'
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
yield chatbot, history, '正常'
# 装载请求内容
inputs_array.append(i_say)
inputs_show_user_array.append(i_say_show_user)
history_array.append([])
sys_prompt_array.append("你是一个程序架构分析师,正在分析一个源代码项目。你的回答必须简单明了。")
if not fast_debug:
msg = '正常'
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array = inputs_array,
inputs_show_user_array = inputs_show_user_array,
history_array = history_array,
sys_prompt_array = sys_prompt_array,
llm_kwargs = llm_kwargs,
chatbot = chatbot,
show_user_at_complete = True
)
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[]) # 带超时倒计时
report_part_1 = copy.deepcopy(gpt_response_collection)
history_to_return = report_part_1
res = write_results_to_file(report_part_1)
chatbot.append(("完成?", "逐个文件分析已完成。" + res + "\n\n正在开始汇总。"))
yield from update_ui(chatbot=chatbot, history=history_to_return) # 刷新界面
chatbot[-1] = (i_say_show_user, gpt_say)
history.append(i_say_show_user); history.append(gpt_say)
yield chatbot, history, msg
if not fast_debug: time.sleep(2)
all_file = ', '.join([os.path.relpath(fp, project_folder) for index, fp in enumerate(file_manifest)])
i_say = f'根据以上你自己的分析对程序的整体功能和构架做出概括。然后用一张markdown表格整理每个文件的功能包括{all_file})。'
chatbot.append((i_say, "[Local Message] waiting gpt response."))
yield chatbot, history, '正常'
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, temperature, history=history) # 带超时倒计时
############################## <存储中间数据进行调试> ##################################
chatbot[-1] = (i_say, gpt_say)
history.append(i_say); history.append(gpt_say)
yield chatbot, history, msg
res = write_results_to_file(history)
chatbot.append(("完成了吗?", res))
yield chatbot, history, msg
# def objdump(obj):
# import pickle
# with open('objdump.tmp', 'wb+') as f:
# pickle.dump(obj, f)
# return
# def objload():
# import pickle, os
# if not os.path.exists('objdump.tmp'):
# return
# with open('objdump.tmp', 'rb') as f:
# return pickle.load(f)
# objdump([report_part_1, gpt_response_collection, history_to_return, file_manifest, project_folder, fp, llm_kwargs, chatbot])
############################## <第二步,综合,单线程,分组+迭代处理> ##################################
batchsize = 16 # 10个文件为一组
report_part_2 = []
previous_iteration_files = []
last_iteration_result = ""
while True:
if len(file_manifest) == 0: break
this_iteration_file_manifest = file_manifest[:batchsize]
this_iteration_gpt_response_collection = gpt_response_collection[:batchsize*2]
file_rel_path = [os.path.relpath(fp, project_folder) for index, fp in enumerate(this_iteration_file_manifest)]
# 把“请对下面的程序文件做一个概述” 替换成 精简的 "文件名:{all_file[index]}"
for index, content in enumerate(this_iteration_gpt_response_collection):
if index%2==0: this_iteration_gpt_response_collection[index] = f"{file_rel_path[index//2]}" # 只保留文件名节省token
previous_iteration_files.extend([os.path.relpath(fp, project_folder) for index, fp in enumerate(this_iteration_file_manifest)])
previous_iteration_files_string = ', '.join(previous_iteration_files)
current_iteration_focus = ', '.join([os.path.relpath(fp, project_folder) for index, fp in enumerate(this_iteration_file_manifest)])
i_say = f'根据以上分析对程序的整体功能和构架重新做出概括。然后用一张markdown表格整理每个文件的功能包括{previous_iteration_files_string})。'
inputs_show_user = f'根据以上分析,对程序的整体功能和构架重新做出概括,由于输入长度限制,可能需要分组处理,本组文件为 {current_iteration_focus} + 已经汇总的文件组。'
this_iteration_history = copy.deepcopy(this_iteration_gpt_response_collection)
this_iteration_history.append(last_iteration_result)
result = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say, inputs_show_user=inputs_show_user, llm_kwargs=llm_kwargs, chatbot=chatbot,
history=this_iteration_history, # 迭代之前的分析
sys_prompt="你是一个程序架构分析师,正在分析一个项目的源代码。")
report_part_2.extend([i_say, result])
last_iteration_result = result
file_manifest = file_manifest[batchsize:]
gpt_response_collection = gpt_response_collection[batchsize*2:]
############################## <END> ##################################
history_to_return.extend(report_part_2)
res = write_results_to_file(history_to_return)
chatbot.append(("完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history_to_return) # 刷新界面
@CatchException
def 解析项目本身(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 解析项目本身(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import time, glob, os
import glob
file_manifest = [f for f in glob.glob('./*.py') if ('test_project' not in f) and ('gpt_log' not in f)] + \
[f for f in glob.glob('./crazy_functions/*.py') if ('test_project' not in f) and ('gpt_log' not in f)]
for index, fp in enumerate(file_manifest):
# if 'test_project' in fp: continue
with open(fp, 'r', encoding='utf-8') as f:
file_content = f.read()
prefix = "接下来请你分析自己的程序构成,别紧张," if index==0 else ""
i_say = prefix + f'请对下面的程序文件做一个概述文件名是{fp},文件代码是 ```{file_content}```'
i_say_show_user = prefix + f'[{index}/{len(file_manifest)}] 请对下面的程序文件做一个概述: {os.path.abspath(fp)}'
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
yield chatbot, history, '正常'
if not fast_debug:
# ** gpt request **
# gpt_say = predict_no_ui(inputs=i_say, top_p=top_p, temperature=temperature)
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[], long_connection=True) # 带超时倒计时
chatbot[-1] = (i_say_show_user, gpt_say)
history.append(i_say_show_user); history.append(gpt_say)
yield chatbot, history, '正常'
time.sleep(2)
i_say = f'根据以上你自己的分析对程序的整体功能和构架做出概括。然后用一张markdown表格整理每个文件的功能包括{file_manifest})。'
chatbot.append((i_say, "[Local Message] waiting gpt response."))
yield chatbot, history, '正常'
if not fast_debug:
# ** gpt request **
# gpt_say = predict_no_ui(inputs=i_say, top_p=top_p, temperature=temperature, history=history)
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, temperature, history=history, long_connection=True) # 带超时倒计时
chatbot[-1] = (i_say, gpt_say)
history.append(i_say); history.append(gpt_say)
yield chatbot, history, '正常'
res = write_results_to_file(history)
chatbot.append(("完成了吗?", res))
yield chatbot, history, '正常'
[f for f in glob.glob('./crazy_functions/*.py') if ('test_project' not in f) and ('gpt_log' not in f)]+ \
[f for f in glob.glob('./request_llm/*.py') if ('test_project' not in f) and ('gpt_log' not in f)]
project_folder = './'
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何python文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个Python项目(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 解析一个Python项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@@ -98,18 +117,18 @@ def 解析一个Python项目(txt, top_p, temperature, chatbot, history, systemPr
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.py', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何python文件: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个C项目的头文件(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 解析一个C项目的头文件(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@@ -117,19 +136,19 @@ def 解析一个C项目的头文件(txt, top_p, temperature, chatbot, history, s
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.h', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.hpp', recursive=True)] #+ \
# [f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.h头文件: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个C项目(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 解析一个C项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@@ -137,7 +156,7 @@ def 解析一个C项目(txt, top_p, temperature, chatbot, history, systemPromptT
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.h', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.cpp', recursive=True)] + \
@@ -145,13 +164,13 @@ def 解析一个C项目(txt, top_p, temperature, chatbot, history, systemPromptT
[f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.h头文件: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个Java项目(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 解析一个Java项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@@ -159,7 +178,7 @@ def 解析一个Java项目(txt, top_p, temperature, chatbot, history, systemProm
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.java', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.jar', recursive=True)] + \
@@ -167,13 +186,13 @@ def 解析一个Java项目(txt, top_p, temperature, chatbot, history, systemProm
[f for f in glob.glob(f'{project_folder}/**/*.sh', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何java文件: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个Rect项目(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 解析一个Rect项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@@ -181,7 +200,7 @@ def 解析一个Rect项目(txt, top_p, temperature, chatbot, history, systemProm
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.ts', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.tsx', recursive=True)] + \
@@ -190,13 +209,13 @@ def 解析一个Rect项目(txt, top_p, temperature, chatbot, history, systemProm
[f for f in glob.glob(f'{project_folder}/**/*.jsx', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何Rect文件: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个Golang项目(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 解析一个Golang项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@@ -204,11 +223,11 @@ def 解析一个Golang项目(txt, top_p, temperature, chatbot, history, systemPr
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.go', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何golang文件: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)

View File

@@ -1,56 +1,53 @@
from request_llm.bridge_chatgpt import predict_no_ui
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
fast_debug = False
def 解析Paper(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt):
def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
import time, glob, os
print('begin analysis on:', file_manifest)
for index, fp in enumerate(file_manifest):
with open(fp, 'r', encoding='utf-8') as f:
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read()
prefix = "接下来请你逐文件分析下面的论文文件,概括其内容" if index==0 else ""
i_say = prefix + f'请对下面的文章片段用中文做一个概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{file_content}```'
i_say_show_user = prefix + f'[{index}/{len(file_manifest)}] 请对下面的文章片段做一个概述: {os.path.abspath(fp)}'
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
print('[1] yield chatbot, history')
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[]) # 带超时倒计时
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, llm_kwargs, chatbot, history=[], sys_prompt=system_prompt) # 带超时倒计时
print('[2] end gpt req')
chatbot[-1] = (i_say_show_user, gpt_say)
history.append(i_say_show_user); history.append(gpt_say)
print('[3] yield chatbot, history')
yield chatbot, history, msg
print('[4] next')
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
if not fast_debug: time.sleep(2)
all_file = ', '.join([os.path.relpath(fp, project_folder) for index, fp in enumerate(file_manifest)])
i_say = f'根据以上你自己的分析,对全文进行概括,用学术性语言写一段中文摘要,然后再写一段英文摘要(包括{all_file})。'
chatbot.append((i_say, "[Local Message] waiting gpt response."))
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, temperature, history=history) # 带超时倒计时
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say, llm_kwargs, chatbot, history=history, sys_prompt=system_prompt) # 带超时倒计时
chatbot[-1] = (i_say, gpt_say)
history.append(i_say); history.append(gpt_say)
yield chatbot, history, msg
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
res = write_results_to_file(history)
chatbot.append(("完成了吗?", res))
yield chatbot, history, msg
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
@CatchException
def 读文章写摘要(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 读文章写摘要(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
@@ -58,13 +55,13 @@ def 读文章写摘要(txt, top_p, temperature, chatbot, history, systemPromptTx
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)] # + \
# [f for f in glob.glob(f'{project_folder}/**/*.cpp', recursive=True)] + \
# [f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析Paper(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt)
yield from 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)

View File

@@ -1,5 +1,6 @@
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from toolbox import CatchException, report_execption, write_results_to_file
from toolbox import update_ui
def get_meta_information(url, chatbot, history):
import requests
@@ -55,17 +56,16 @@ def get_meta_information(url, chatbot, history):
})
chatbot[-1] = [chatbot[-1][0], title + f'\n\n是否在arxiv中不在arxiv中无法获取完整摘要:{is_paper_in_arxiv}\n\n' + abstract]
msg = "正常"
yield chatbot, [], msg
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
return profile
@CatchException
def 谷歌检索小助手(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 谷歌检索小助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"分析用户提供的谷歌学术google scholar搜索页面中出现的所有文章: binary-husky插件初始化中..."])
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
@@ -75,7 +75,7 @@ def 谷歌检索小助手(txt, top_p, temperature, chatbot, history, systemPromp
report_execption(chatbot, history,
a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade beautifulsoup4 arxiv```。")
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 清空历史,以免输入溢出
@@ -91,7 +91,7 @@ def 谷歌检索小助手(txt, top_p, temperature, chatbot, history, systemPromp
inputs_show_user = f"请分析此页面中出现的所有文章:{txt}"
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say, inputs_show_user=inputs_show_user,
top_p=top_p, temperature=temperature, chatbot=chatbot, history=[],
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
sys_prompt="你是一个学术翻译请从数据中提取信息。你必须使用Markdown格式。你必须逐个文献进行处理。"
)
@@ -100,7 +100,7 @@ def 谷歌检索小助手(txt, top_p, temperature, chatbot, history, systemPromp
chatbot.append(["状态?", "已经全部完成"])
msg = '正常'
yield chatbot, history, msg
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
res = write_results_to_file(history)
chatbot.append(("完成了吗?", res));
yield chatbot, history, msg
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面

View File

@@ -1,20 +1,29 @@
from toolbox import CatchException
from toolbox import CatchException, update_ui
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
import datetime
@CatchException
def 高阶功能模板函数(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
def 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数如温度和top_p等一般原样传递下去就行
plugin_kwargs 插件模型的参数如温度和top_p等一般原样传递下去就行
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
"""
history = [] # 清空历史,以免输入溢出
chatbot.append(("这是什么功能?", "[Local Message] 请注意,您正在调用一个[函数插件]的模板该函数面向希望实现更多有趣功能的开发者它可以作为创建新功能函数的模板该函数只有20行代码。此外我们也提供可同步处理大量文件的多线程Demo供您参考。您若希望分享新的功能模组请不吝PR"))
yield chatbot, history, '正常' # 由于请求gpt需要一段时间我们先及时地做一次状态显示
chatbot.append(("这是什么功能?", "[Local Message] 请注意,您正在调用一个[函数插件]的模板该函数面向希望实现更多有趣功能的开发者它可以作为创建新功能函数的模板该函数只有20行代码。此外我们也提供可同步处理大量文件的多线程Demo供您参考。您若希望分享新的功能模组请不吝PR"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间我们先及时地做一次界面更新
for i in range(5):
currentMonth = (datetime.date.today() + datetime.timedelta(days=i)).month
currentDay = (datetime.date.today() + datetime.timedelta(days=i)).day
i_say = f'历史中哪些事件发生在{currentMonth}{currentDay}列举两条并发送相关图片。发送图片时请使用Markdown将Unsplash API中的PUT_YOUR_QUERY_HERE替换成描述该事件的一个最重要的单词。'
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say, inputs_show_user=i_say,
top_p=top_p, temperature=temperature, chatbot=chatbot, history=[],
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
sys_prompt="当你想发送一张照片时请使用Markdown, 并且不要有反斜线, 不要用代码块。使用 Unsplash API (https://source.unsplash.com/1280x720/? < PUT_YOUR_QUERY_HERE >)。"
)
chatbot[-1] = (i_say, gpt_say)
history.append(i_say);history.append(gpt_say)
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新

15
main.py
View File

@@ -4,8 +4,8 @@ from request_llm.bridge_chatgpt import predict
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, DummyWith
# 建议您复制一个config_private.py放自己的秘密, 如API和代理网址, 避免不小心传github被别人看到
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT = \
get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT')
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, API_KEY = \
get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'API_KEY')
# 如果WEB_PORT是-1, 则随机选取WEB端口
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
@@ -52,6 +52,7 @@ if LAYOUT == "TOP-DOWN":
cancel_handles = []
with gr.Blocks(title="ChatGPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as demo:
gr.HTML(title_html)
cookies = gr.State({'api_key': API_KEY, 'llm_model': LLM_MODEL})
with gr_L1():
with gr_L2(scale=2):
chatbot = gr.Chatbot()
@@ -117,16 +118,16 @@ with gr.Blocks(title="ChatGPT 学术优化", theme=set_theme, analytics_enabled=
return ret
checkboxes.select(fn_area_visibility, [checkboxes], [area_basic_fn, area_crazy_fn, area_input_primary, area_input_secondary, txt, txt2] )
# 整理反复出现的控件句柄组合
input_combo = [txt, txt2, top_p, temperature, chatbot, history, system_prompt]
output_combo = [chatbot, history, status]
input_combo = [cookies, txt, txt2, top_p, temperature, chatbot, history, system_prompt]
output_combo = [cookies, chatbot, history, status]
predict_args = dict(fn=ArgsGeneralWrapper(predict), inputs=input_combo, outputs=output_combo)
# 提交按钮、重置按钮
cancel_handles.append(txt.submit(**predict_args))
cancel_handles.append(txt2.submit(**predict_args))
cancel_handles.append(submitBtn.click(**predict_args))
cancel_handles.append(submitBtn2.click(**predict_args))
resetBtn.click(lambda: ([], [], "已重置"), None, output_combo)
resetBtn2.click(lambda: ([], [], "已重置"), None, output_combo)
resetBtn.click(lambda: ([], [], "已重置"), None, [chatbot, history, status])
resetBtn2.click(lambda: ([], [], "已重置"), None, [chatbot, history, status])
# 基础功能区的回调函数注册
for k in functional:
click_handle = functional[k]["Button"].click(fn=ArgsGeneralWrapper(predict), inputs=[*input_combo, gr.State(True), gr.State(k)], outputs=output_combo)
@@ -170,4 +171,4 @@ def auto_opentab_delay():
threading.Thread(target=auto_update, name="self-upgrade", daemon=True).start()
auto_opentab_delay()
demo.queue(concurrency_count=CONCURRENT_COUNT).launch(server_name="0.0.0.0", share=True, server_port=PORT, auth=AUTHENTICATION)
demo.queue(concurrency_count=CONCURRENT_COUNT).launch(server_name="0.0.0.0", server_port=PORT, auth=AUTHENTICATION)

BIN
objdump.tmp Normal file

Binary file not shown.

View File

@@ -21,7 +21,7 @@ import importlib
# config_private.py放自己的秘密如API和代理网址
# 读取时首先看是否存在私密的config_private配置文件不受git管控如果有则覆盖原config文件
from toolbox import get_conf
from toolbox import get_conf, update_ui
proxies, API_URL, API_KEY, TIMEOUT_SECONDS, MAX_RETRY, LLM_MODEL = \
get_conf('proxies', 'API_URL', 'API_KEY', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'LLM_MODEL')
@@ -39,47 +39,15 @@ def get_full_error(chunk, stream_response):
break
return chunk
def predict_no_ui(inputs, top_p, temperature, history=[], sys_prompt=""):
"""
发送至chatGPT等待回复一次性完成不显示中间过程。
predict函数的简化版。
用于payload比较大的情况或者用于实现多线、带嵌套的复杂功能。
inputs 是本次问询的输入
top_p, temperature是chatGPT的内部调优参数
history 是之前的对话列表
注意无论是inputs还是history内容太长了都会触发token数量溢出的错误然后raise ConnectionAbortedError
"""
headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt=sys_prompt, stream=False)
retry = 0
while True:
try:
# make a POST request to the API endpoint, stream=False
response = requests.post(API_URL, headers=headers, proxies=proxies,
json=payload, stream=False, timeout=TIMEOUT_SECONDS*2); break
except requests.exceptions.ReadTimeout as e:
retry += 1
traceback.print_exc()
if retry > MAX_RETRY: raise TimeoutError
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
try:
result = json.loads(response.text)["choices"][0]["message"]["content"]
return result
except Exception as e:
if "choices" not in response.text: print(response.text)
raise ConnectionAbortedError("Json解析不合常规可能是文本过长" + response.text)
def predict_no_ui_long_connection(inputs, top_p, temperature, history=[], sys_prompt="", observe_window=None):
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
"""
发送至chatGPT等待回复一次性完成不显示中间过程。但内部用stream的方法避免中途网线被掐。
inputs
是本次问询的输入
sys_prompt:
系统静默prompt
top_p, temperature
llm_kwargs
chatGPT的内部调优参数
history
是之前的对话列表
@@ -87,7 +55,7 @@ def predict_no_ui_long_connection(inputs, top_p, temperature, history=[], sys_pr
用于负责跨越线程传递已经输出的部分大部分时候仅仅为了fancy的视觉效果留空即可。observe_window[0]观测窗。observe_window[1]:看门狗
"""
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt=sys_prompt, stream=True)
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
retry = 0
while True:
try:
@@ -121,7 +89,7 @@ def predict_no_ui_long_connection(inputs, top_p, temperature, history=[], sys_pr
if "role" in delta: continue
if "content" in delta:
result += delta["content"]
print(delta["content"], end='')
if not console_slience: print(delta["content"], end='')
if observe_window is not None:
# 观测窗,把已经获取的数据显示出去
if len(observe_window) >= 1: observe_window[0] += delta["content"]
@@ -135,8 +103,7 @@ def predict_no_ui_long_connection(inputs, top_p, temperature, history=[], sys_pr
return result
def predict(inputs, top_p, temperature, chatbot=[], history=[], system_prompt='',
stream = True, additional_fn=None):
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
发送至chatGPT流式获取输出。
用于基础的对话功能。
@@ -146,6 +113,16 @@ def predict(inputs, top_p, temperature, chatbot=[], history=[], system_prompt=''
chatbot 为WebUI中显示的对话列表修改它然后yeild出去可以直接修改对话界面内容
additional_fn代表点击的哪个按钮按钮见functional.py
"""
if inputs.startswith('sk-') and len(inputs) == 51:
chatbot._cookies['api_key'] = inputs
chatbot.append(("输入已识别为openai的api_key", "api_key已导入"))
yield from update_ui(chatbot=chatbot, history=history, msg="api_key已导入") # 刷新界面
return
elif len(chatbot._cookies['api_key']) != 51:
chatbot.append((inputs, "缺少api_key。\n\n1. 临时解决方案直接在输入区键入api_key然后回车提交。\n\n2. 长效解决方案在config.py中配置。"))
yield from update_ui(chatbot=chatbot, history=history, msg="api_key已导入") # 刷新界面
return
if additional_fn is not None:
import core_functional
importlib.reload(core_functional) # 热更新prompt
@@ -157,9 +134,9 @@ def predict(inputs, top_p, temperature, chatbot=[], history=[], system_prompt=''
raw_input = inputs
logging.info(f'[raw_input] {raw_input}')
chatbot.append((inputs, ""))
yield chatbot, history, "等待响应"
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt, stream)
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
history.append(inputs); history.append(" ")
retry = 0
@@ -172,7 +149,7 @@ def predict(inputs, top_p, temperature, chatbot=[], history=[], system_prompt=''
retry += 1
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
yield chatbot, history, "请求超时"+retry_msg
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
if retry > MAX_RETRY: raise TimeoutError
gpt_replying_buffer = ""
@@ -200,11 +177,11 @@ def predict(inputs, top_p, temperature, chatbot=[], history=[], system_prompt=''
gpt_replying_buffer = gpt_replying_buffer + json.loads(chunk.decode()[6:])['choices'][0]["delta"]["content"]
history[-1] = gpt_replying_buffer
chatbot[-1] = (history[-2], history[-1])
yield chatbot, history, status_text
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
except Exception as e:
traceback.print_exc()
yield chatbot, history, "Json解析不合常规"
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
chunk = get_full_error(chunk, stream_response)
error_msg = chunk.decode()
if "reduce the length" in error_msg:
@@ -218,16 +195,19 @@ def predict(inputs, top_p, temperature, chatbot=[], history=[], system_prompt=''
from toolbox import regular_txt_to_markdown
tb_str = '```\n' + traceback.format_exc() + '```'
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk.decode()[4:])}")
yield chatbot, history, "Json异常" + error_msg
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
return
def generate_payload(inputs, top_p, temperature, history, system_prompt, stream):
def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
"""
整合所有信息选择LLM模型生成http请求为发送请求做准备
"""
if len(llm_kwargs['api_key']) != 51:
raise AssertionError("你提供了错误的API_KEY。\n\n1. 临时解决方案直接在输入区键入api_key然后回车提交。\n\n2. 长效解决方案在config.py中配置。")
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {API_KEY}"
"Authorization": f"Bearer {llm_kwargs['api_key']}"
}
conversation_cnt = len(history) // 2
@@ -255,17 +235,19 @@ def generate_payload(inputs, top_p, temperature, history, system_prompt, stream)
messages.append(what_i_ask_now)
payload = {
"model": LLM_MODEL,
"model": llm_kwargs['llm_model'],
"messages": messages,
"temperature": temperature, # 1.0,
"top_p": top_p, # 1.0,
"temperature": llm_kwargs['temperature'], # 1.0,
"top_p": llm_kwargs['top_p'], # 1.0,
"n": 1,
"stream": stream,
"presence_penalty": 0,
"frequency_penalty": 0,
}
print(f" {LLM_MODEL} : {conversation_cnt} : {inputs}")
try:
print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]} ..........")
except:
print('输入中可能存在乱码。')
return headers,payload

View File

@@ -12,7 +12,7 @@ import logging
import time
import threading
import importlib
from toolbox import get_conf
from toolbox import get_conf, update_ui
LLM_MODEL, = get_conf('LLM_MODEL')
# "TGUI:galactica-1.3b@localhost:7860"
@@ -90,7 +90,7 @@ async def run(context, max_token=512):
def predict_tgui(inputs, top_p, temperature, chatbot=[], history=[], system_prompt='', stream = True, additional_fn=None):
def predict_tgui(inputs, top_p, temperature, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
发送至chatGPT流式获取输出。
用于基础的对话功能。
@@ -111,7 +111,7 @@ def predict_tgui(inputs, top_p, temperature, chatbot=[], history=[], system_prom
logging.info(f'[raw_input] {raw_input}')
history.extend([inputs, ""])
chatbot.append([inputs, ""])
yield chatbot, history, "等待响应"
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
prompt = inputs
tgui_say = ""
@@ -138,7 +138,7 @@ def predict_tgui(inputs, top_p, temperature, chatbot=[], history=[], system_prom
tgui_say = mutable[0]
history[-1] = tgui_say
chatbot[-1] = (history[-2], history[-1])
yield chatbot, history, "status_text"
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
logging.info(f'[response] {tgui_say}')

View File

@@ -4,10 +4,13 @@ transformers
python-markdown-math
beautifulsoup4
latex2mathml
python-docx
mdtex2html
colorama
tiktoken
Markdown
pygments
pymupdf
openai
numpy
numpy
arxiv

View File

@@ -1,80 +0,0 @@
# This program is written by: https://github.com/polarwinkel/mdtex2html
from latex2mathml.converter import convert as tex2mathml
import re
incomplete = '<font style="color:orange;" class="tooltip">&#9888;<span class="tooltiptext">formula incomplete</span></font>'
convError = '<font style="color:red" class="tooltip">&#9888;<span class="tooltiptext">LaTeX-convert-error</span></font>'
def convert(mdtex, extensions=[], splitParagraphs=True):
''' converts recursively the Markdown-LaTeX-mixture to HTML with MathML '''
found = False
# handle all paragraphs separately (prevents aftereffects)
if splitParagraphs:
parts = re.split("\n\n", mdtex)
result = ''
for part in parts:
result += convert(part, extensions, splitParagraphs=False)
return result
# find first $$-formula:
parts = re.split('\${2}', mdtex, 2)
if len(parts)>1:
found = True
result = convert(parts[0], extensions, splitParagraphs=False)+'\n'
try:
result += '<div class="blockformula">'+tex2mathml(parts[1])+'</div>\n'
except:
result += '<div class="blockformula">'+convError+'</div>'
if len(parts)==3:
result += convert(parts[2], extensions, splitParagraphs=False)
else:
result += '<div class="blockformula">'+incomplete+'</div>'
# else find first $-formulas:
else:
parts = re.split('\${1}', mdtex, 2)
if len(parts)>1 and not found:
found = True
try:
mathml = tex2mathml(parts[1])
except:
mathml = convError
if parts[0].endswith('\n\n') or parts[0]=='': # make sure textblock starts before formula!
parts[0]=parts[0]+'&#x200b;'
if len(parts)==3:
result = convert(parts[0]+mathml+parts[2], extensions, splitParagraphs=False)
else:
result = convert(parts[0]+mathml+incomplete, extensions, splitParagraphs=False)
# else find first \[..\]-equation:
else:
parts = re.split(r'\\\[', mdtex, 1)
if len(parts)>1 and not found:
found = True
result = convert(parts[0], extensions, splitParagraphs=False)+'\n'
parts = re.split(r'\\\]', parts[1], 1)
try:
result += '<div class="blockformula">'+tex2mathml(parts[0])+'</div>\n'
except:
result += '<div class="blockformula">'+convError+'</div>'
if len(parts)==2:
result += convert(parts[1], extensions, splitParagraphs=False)
else:
result += '<div class="blockformula">'+incomplete+'</div>'
# else find first \(..\)-equation:
else:
parts = re.split(r'\\\(', mdtex, 1)
if len(parts)>1 and not found:
found = True
subp = re.split(r'\\\)', parts[1], 1)
try:
mathml = tex2mathml(subp[0])
except:
mathml = convError
if parts[0].endswith('\n\n') or parts[0]=='': # make sure textblock starts before formula!
parts[0]=parts[0]+'&#x200b;'
if len(subp)==2:
result = convert(parts[0]+mathml+subp[1], extensions, splitParagraphs=False)
else:
result = convert(parts[0]+mathml+incomplete, extensions, splitParagraphs=False)
if not found:
result = mdtex
return result

View File

@@ -154,10 +154,12 @@ advanced_css = """
padding: 1em;
margin: 1em 2em 1em 0.5em;
}
"""
if CODE_HIGHLIGHT:
advanced_css += """
.hll { background-color: #ffffcc }
.c { color: #3D7B7B; font-style: italic } /* Comment */
.err { border: 1px solid #FF0000 } /* Error */

View File

@@ -3,26 +3,65 @@ import mdtex2html
import threading
import importlib
import traceback
import importlib
import inspect
import re
from latex2mathml.converter import convert as tex2mathml
from functools import wraps, lru_cache
############################### 插件输入输出接驳区 #######################################
class ChatBotWithCookies(list):
def __init__(self, cookie):
self._cookies = cookie
def write_list(self, list):
for t in list:
self.append(t)
def get_list(self):
return [t for t in self]
def get_cookies(self):
return self._cookies
def ArgsGeneralWrapper(f):
"""
装饰器函数,用于重组输入参数,改变输入参数的顺序与结构。
"""
def decorated(txt, txt2, *args, **kwargs):
def decorated(cookies, txt, txt2, top_p, temperature, chatbot, history, system_prompt, *args):
txt_passon = txt
if txt == "" and txt2 != "":
txt_passon = txt2
yield from f(txt_passon, *args, **kwargs)
if txt == "" and txt2 != "": txt_passon = txt2
# 引入一个有cookie的chatbot
cookies.update({
'top_p':top_p,
'temperature':temperature,
})
llm_kwargs = {
'api_key': cookies['api_key'],
'llm_model': cookies['llm_model'],
'top_p':top_p,
'temperature':temperature,
}
plugin_kwargs = {
# 目前还没有
}
chatbot_with_cookie = ChatBotWithCookies(cookies)
chatbot_with_cookie.write_list(chatbot)
yield from f(txt_passon, llm_kwargs, plugin_kwargs, chatbot_with_cookie, history, system_prompt, *args)
return decorated
def update_ui(chatbot, history, msg='正常', **kwargs): # 刷新界面
"""
刷新用户界面
"""
assert isinstance(chatbot, ChatBotWithCookies), "在传递chatbot的过程中不要将其丢弃。必要时可用clear将其清空然后用for+append循环重新赋值。"
yield chatbot.get_cookies(), chatbot, history, msg
############################### ################## #######################################
##########################################################################################
def get_reduce_token_percent(text):
"""
* 此函数未来将被弃用
"""
try:
# text = "maximum context length is 4097 tokens. However, your messages resulted in 4870 tokens"
pattern = r"(\d+)\s+tokens\b"
@@ -36,9 +75,10 @@ def get_reduce_token_percent(text):
except:
return 0.5, '不详'
def predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[], sys_prompt='', long_connection=True):
def predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, llm_kwargs, history=[], sys_prompt='', long_connection=True):
"""
* 此函数未来将被弃用(替代函数 request_gpt_model_in_new_thread_with_ui_alive 文件 chatgpt_academic/crazy_functions/crazy_utils
调用简单的predict_no_ui接口但是依然保留了些许界面心跳功能当对话太长时会自动采用二分法截断
i_say: 当前输入
i_say_show_user: 显示到对话界面上的当前输入,例如,输入整个文件时,你绝对不想把文件的内容都糊到对话界面上
@@ -46,10 +86,10 @@ def predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temp
top_p, temperature: gpt参数
history: gpt参数 对话历史
sys_prompt: gpt参数 sys_prompt
long_connection: 是否采用更稳定的连接方式(推荐)
long_connection: 是否采用更稳定的连接方式(推荐)(已弃用)
"""
import time
from request_llm.bridge_chatgpt import predict_no_ui, predict_no_ui_long_connection
from request_llm.bridge_chatgpt import predict_no_ui_long_connection
from toolbox import get_conf
TIMEOUT_SECONDS, MAX_RETRY = get_conf('TIMEOUT_SECONDS', 'MAX_RETRY')
# 多线程的时候需要一个mutable结构在不同线程之间传递信息
@@ -60,13 +100,9 @@ def predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temp
def mt(i_say, history):
while True:
try:
if long_connection:
mutable[0] = predict_no_ui_long_connection(
inputs=i_say, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt)
else:
mutable[0] = predict_no_ui(
inputs=i_say, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt)
break
mutable[0] = predict_no_ui_long_connection(
inputs=i_say, llm_kwargs=llm_kwargs, history=history, sys_prompt=sys_prompt)
except ConnectionAbortedError as token_exceeded_error:
# 尝试计算比例,尽可能多地保留文本
p_ratio, n_exceed = get_reduce_token_percent(
@@ -92,7 +128,7 @@ def predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temp
cnt += 1
chatbot[-1] = (i_say_show_user,
f"[Local Message] {mutable[1]}waiting gpt response {cnt}/{TIMEOUT_SECONDS*2*(MAX_RETRY+1)}"+''.join(['.']*(cnt % 4)))
yield chatbot, history, '正常'
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
time.sleep(1)
# 把gpt的输出从mutable中取出来
gpt_say = mutable[0]
@@ -156,7 +192,7 @@ def CatchException(f):
chatbot = [["插件调度异常", "异常原因"]]
chatbot[-1] = (chatbot[-1][0],
f"[Local Message] 实验性函数调用出错: \n\n{tb_str} \n\n当前代理可用性: \n\n{check_proxy(proxies)}")
yield chatbot, history, f'异常 {e}'
yield from update_ui(chatbot=chatbot, history=history, msg=f'异常 {e}') # 刷新界面
return decorated
@@ -303,11 +339,9 @@ def format_io(self, y):
return []
i_ask, gpt_reply = y[-1]
i_ask = text_divide_paragraph(i_ask) # 输入部分太自由,预处理一波
gpt_reply = close_up_code_segment_during_stream(
gpt_reply) # 当代码输出半截的时候,试着补上后个```
gpt_reply = close_up_code_segment_during_stream(gpt_reply) # 当代码输出半截的时候,试着补上后个```
y[-1] = (
None if i_ask is None else markdown.markdown(
i_ask, extensions=['fenced_code', 'tables']),
None if i_ask is None else markdown.markdown(i_ask, extensions=['fenced_code', 'tables']),
None if gpt_reply is None else markdown_convertion(gpt_reply)
)
return y
@@ -434,27 +468,30 @@ def on_report_generated(files, chatbot):
chatbot.append(['汇总报告如何远程获取?', '汇总报告已经添加到右侧“文件上传区”(可能处于折叠状态),请查收。'])
return report_files, chatbot
def is_openai_api_key(key):
# 正确的 API_KEY 是 "sk-" + 48 位大小写字母数字的组合
API_MATCH = re.match(r"sk-[a-zA-Z0-9]{48}$", key)
return API_MATCH
@lru_cache(maxsize=128)
def read_single_conf_with_lru_cache(arg):
from colorful import print亮红, print亮绿
try:
r = getattr(importlib.import_module('config_private'), arg)
except:
r = getattr(importlib.import_module('config'), arg)
# 在读取API_KEY时检查一下是不是忘了改config
if arg == 'API_KEY':
# 正确的 API_KEY 是 "sk-" + 48 位大小写字母数字的组合
API_MATCH = re.match(r"sk-[a-zA-Z0-9]{48}$", r)
if API_MATCH:
print(f"[API_KEY] 您的 API_KEY 是: {r[:15]}*** API_KEY 导入成功")
if is_openai_api_key(r):
print亮绿(f"[API_KEY] 您的 API_KEY 是: {r[:15]}*** API_KEY 导入成功")
else:
assert False, "正确的 API_KEY 是 'sk-' + '48 位大小写字母数字' 的组合请在config文件中修改API密钥, 添加海外代理之后再运行。" + \
"如果您刚更新过代码请确保旧版config_private文件中没有遗留任何新增键值"
print亮红( "[API_KEY] 正确的 API_KEY 是 'sk-' + '48 位大小写字母数字' 的组合请在config文件中修改API密钥, 添加海外代理之后再运行。" + \
"如果您刚更新过代码请确保旧版config_private文件中没有遗留任何新增键值")
if arg == 'proxies':
if r is None:
print('[PROXY] 网络代理状态未配置。无代理状态下很可能无法访问。建议检查USE_PROXY选项是否修改。')
print亮红('[PROXY] 网络代理状态未配置。无代理状态下很可能无法访问。建议检查USE_PROXY选项是否修改。')
else:
print('[PROXY] 网络代理状态:已配置。配置信息如下:', r)
print亮绿('[PROXY] 网络代理状态:已配置。配置信息如下:', r)
assert isinstance(r, dict), 'proxies格式错误请注意proxies选项的格式不要遗漏括号。'
return r

View File

@@ -1,5 +1,5 @@
{
"version": 2.5,
"version": 2.68,
"show_feature": true,
"new_feature": "新增一键更新程序<->高亮代码<->高亮公式<->新增垂直布局选项"
"new_feature": "改善理解pdfchatpdf功能 <-> 如果一键更新失败可前往github手动更新"
}