Compare commits
78 Commits
mini-core
...
155e7e0deb
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
155e7e0deb | ||
|
|
add29eba08 | ||
|
|
163e59c0f3 | ||
|
|
07ece29c7c | ||
|
|
991a903fa9 | ||
|
|
cf7c81170c | ||
|
|
6dda2061dd | ||
|
|
e9de41b7e8 | ||
|
|
b34c79a94b | ||
|
|
8a0d96afd3 | ||
|
|
37f9b94dee | ||
|
|
95284d859b | ||
|
|
a552592b5a | ||
|
|
e305f1b4a8 | ||
| a88497c3ab | |||
|
|
0f1d2e0e48 | ||
|
|
936e2f5206 | ||
|
|
7f4b87a633 | ||
|
|
2ddd1bb634 | ||
|
|
c68285aeac | ||
|
|
caaebe4296 | ||
|
|
39d50c1c95 | ||
|
|
25dc7bf912 | ||
|
|
0458590a77 | ||
|
|
44fe78fff5 | ||
|
|
5ddd657ebc | ||
|
|
9b0b2cf260 | ||
|
|
9f39a6571a | ||
|
|
d07e736214 | ||
|
|
a1f7ae5b55 | ||
|
|
1213ef19e5 | ||
|
|
aaafe2a797 | ||
|
|
2716606f0c | ||
|
|
286f7303be | ||
|
|
7eeab9e376 | ||
|
|
4ca331fb28 | ||
|
|
9487829930 | ||
|
|
a73074b89e | ||
|
|
fd93622840 | ||
|
|
09a82a572d | ||
|
|
c53ddf65aa | ||
|
|
ac64a77c2d | ||
|
|
dae8a0affc | ||
|
|
97a81e9388 | ||
|
|
1dd1d0ed6c | ||
|
|
060af0d2e6 | ||
|
|
a848f714b6 | ||
|
|
924f8e30c7 | ||
|
|
f40347665b | ||
|
|
734c40bbde | ||
|
|
4ec87fbb54 | ||
|
|
17b5c22e61 | ||
|
|
c6cd04a407 | ||
|
|
f60a12f8b4 | ||
|
|
8413fb15ba | ||
|
|
72b2ce9b62 | ||
|
|
f43ef909e2 | ||
|
|
9651ad488f | ||
|
|
81da7bb1a5 | ||
|
|
4127162ee7 | ||
|
|
98e5cb7b77 | ||
|
|
c88d8047dd | ||
|
|
e4bebea28d | ||
|
|
294df6c2d5 | ||
|
|
239894544e | ||
|
|
ed5fc84d4e | ||
|
|
e3f84069ee | ||
|
|
7bf094b6b6 | ||
|
|
57d7dc33d3 | ||
|
|
94ccd77480 | ||
|
|
48e53cba05 | ||
|
|
e9a7f9439f | ||
|
|
a88b119bf0 | ||
|
|
eee8115434 | ||
|
|
4f6a272113 | ||
|
|
cf3dd5ddb6 | ||
|
|
f6f10b7230 | ||
|
|
bd7b219e8f |
56
.github/workflows/conda-pack-windows.yml
vendored
Normal file
56
.github/workflows/conda-pack-windows.yml
vendored
Normal file
@@ -0,0 +1,56 @@
|
||||
name: Create Conda Environment Package
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: windows-latest
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Setup Miniconda
|
||||
uses: conda-incubator/setup-miniconda@v3
|
||||
with:
|
||||
auto-activate-base: true
|
||||
activate-environment: ""
|
||||
|
||||
- name: Create new Conda environment
|
||||
shell: bash -l {0}
|
||||
run: |
|
||||
conda create -n gpt python=3.11 -y
|
||||
conda activate gpt
|
||||
|
||||
- name: Install requirements
|
||||
shell: bash -l {0}
|
||||
run: |
|
||||
conda activate gpt
|
||||
pip install -r requirements.txt
|
||||
|
||||
- name: Install conda-pack
|
||||
shell: bash -l {0}
|
||||
run: |
|
||||
conda activate gpt
|
||||
conda install conda-pack -y
|
||||
|
||||
- name: Pack conda environment
|
||||
shell: bash -l {0}
|
||||
run: |
|
||||
conda activate gpt
|
||||
conda pack -n gpt -o gpt.tar.gz
|
||||
|
||||
- name: Create workspace zip
|
||||
shell: pwsh
|
||||
run: |
|
||||
mkdir workspace
|
||||
Get-ChildItem -Exclude "workspace" | Copy-Item -Destination workspace -Recurse
|
||||
Remove-Item -Path workspace/.git* -Recurse -Force -ErrorAction SilentlyContinue
|
||||
Copy-Item gpt.tar.gz workspace/ -Force
|
||||
|
||||
- name: Upload packed files
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: gpt-academic-package
|
||||
path: workspace
|
||||
7
.github/workflows/stale.yml
vendored
7
.github/workflows/stale.yml
vendored
@@ -7,7 +7,7 @@
|
||||
name: 'Close stale issues and PRs'
|
||||
on:
|
||||
schedule:
|
||||
- cron: '*/5 * * * *'
|
||||
- cron: '*/30 * * * *'
|
||||
|
||||
jobs:
|
||||
stale:
|
||||
@@ -19,7 +19,6 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/stale@v8
|
||||
with:
|
||||
stale-issue-message: 'This issue is stale because it has been open 100 days with no activity. Remove stale label or comment or this will be closed in 1 days.'
|
||||
stale-issue-message: 'This issue is stale because it has been open 100 days with no activity. Remove stale label or comment or this will be closed in 7 days.'
|
||||
days-before-stale: 100
|
||||
days-before-close: 1
|
||||
debug-only: true
|
||||
days-before-close: 7
|
||||
|
||||
@@ -15,6 +15,7 @@ RUN echo '[global]' > /etc/pip.conf && \
|
||||
# 语音输出功能(以下两行,第一行更换阿里源,第二行安装ffmpeg,都可以删除)
|
||||
RUN UBUNTU_VERSION=$(awk -F= '/^VERSION_CODENAME=/{print $2}' /etc/os-release); echo "deb https://mirrors.aliyun.com/debian/ $UBUNTU_VERSION main non-free contrib" > /etc/apt/sources.list; apt-get update
|
||||
RUN apt-get install ffmpeg -y
|
||||
RUN apt-get clean
|
||||
|
||||
|
||||
# 进入工作路径(必要)
|
||||
@@ -33,6 +34,7 @@ RUN pip3 install -r requirements.txt
|
||||
|
||||
# 非必要步骤,用于预热模块(可以删除)
|
||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||
RUN python3 -m pip cache purge
|
||||
|
||||
|
||||
# 启动(必要)
|
||||
|
||||
49
README.md
49
README.md
@@ -1,6 +1,11 @@
|
||||
> [!IMPORTANT]
|
||||
> 2024.10.10: 突发停电,紧急恢复了提供[whl包](https://drive.google.com/file/d/19U_hsLoMrjOlQSzYS3pzWX9fTzyusArP/view?usp=sharing)的文件服务器
|
||||
> 2024.10.8: 版本3.90加入对llama-index的初步支持,版本3.80加入插件二级菜单功能(详见wiki)
|
||||
> `master主分支`最新动态(2025.2.4): 增加deepseek-r1支持
|
||||
> `frontier开发分支`最新动态(2024.12.9): 更新对话时间线功能,优化xelatex论文翻译
|
||||
> `wiki文档`最新动态(2024.12.5): 更新ollama接入指南
|
||||
>
|
||||
> 2025.2.2: 三分钟快速接入最强qwen2.5-max[视频](https://www.bilibili.com/video/BV1LeFuerEG4)
|
||||
> 2025.2.1: 支持自定义字体
|
||||
> 2024.10.10: 突发停电,紧急恢复了提供[whl包](https://drive.google.com/drive/folders/14kR-3V-lIbvGxri4AHc8TpiA1fqsw7SK?usp=sharing)的文件服务器
|
||||
> 2024.5.1: 加入Doc2x翻译PDF论文的功能,[查看详情](https://github.com/binary-husky/gpt_academic/wiki/Doc2x)
|
||||
> 2024.3.11: 全力支持Qwen、GLM、DeepseekCoder等中文大语言模型! SoVits语音克隆模块,[查看详情](https://www.bilibili.com/video/BV1Rp421S7tF/)
|
||||
> 2024.1.17: 安装依赖时,请选择`requirements.txt`中**指定的版本**。 安装命令:`pip install -r requirements.txt`。本项目完全开源免费,您可通过订阅[在线服务](https://github.com/binary-husky/gpt_academic/wiki/online)的方式鼓励本项目的发展。
|
||||
@@ -124,20 +129,20 @@ Latex论文一键校对 | [插件] 仿Grammarly对Latex文章进行语法、拼
|
||||
|
||||
```mermaid
|
||||
flowchart TD
|
||||
A{"安装方法"} --> W1("I. 🔑直接运行 (Windows, Linux or MacOS)")
|
||||
W1 --> W11["1. Python pip包管理依赖"]
|
||||
W1 --> W12["2. Anaconda包管理依赖(推荐⭐)"]
|
||||
A{"安装方法"} --> W1("I 🔑直接运行 (Windows, Linux or MacOS)")
|
||||
W1 --> W11["1 Python pip包管理依赖"]
|
||||
W1 --> W12["2 Anaconda包管理依赖(推荐⭐)"]
|
||||
|
||||
A --> W2["II. 🐳使用Docker (Windows, Linux or MacOS)"]
|
||||
A --> W2["II 🐳使用Docker (Windows, Linux or MacOS)"]
|
||||
|
||||
W2 --> k1["1. 部署项目全部能力的大镜像(推荐⭐)"]
|
||||
W2 --> k2["2. 仅在线模型(GPT, GLM4等)镜像"]
|
||||
W2 --> k3["3. 在线模型 + Latex的大镜像"]
|
||||
W2 --> k1["1 部署项目全部能力的大镜像(推荐⭐)"]
|
||||
W2 --> k2["2 仅在线模型(GPT, GLM4等)镜像"]
|
||||
W2 --> k3["3 在线模型 + Latex的大镜像"]
|
||||
|
||||
A --> W4["IV. 🚀其他部署方法"]
|
||||
W4 --> C1["1. Windows/MacOS 一键安装运行脚本(推荐⭐)"]
|
||||
W4 --> C2["2. Huggingface, Sealos远程部署"]
|
||||
W4 --> C4["3. ... 其他 ..."]
|
||||
A --> W4["IV 🚀其他部署方法"]
|
||||
W4 --> C1["1 Windows/MacOS 一键安装运行脚本(推荐⭐)"]
|
||||
W4 --> C2["2 Huggingface, Sealos远程部署"]
|
||||
W4 --> C4["3 其他 ..."]
|
||||
```
|
||||
|
||||
### 安装方法I:直接运行 (Windows, Linux or MacOS)
|
||||
@@ -170,26 +175,32 @@ flowchart TD
|
||||
```
|
||||
|
||||
|
||||
<details><summary>如果需要支持清华ChatGLM2/复旦MOSS/RWKV作为后端,请点击展开此处</summary>
|
||||
<details><summary>如果需要支持清华ChatGLM系列/复旦MOSS/RWKV作为后端,请点击展开此处</summary>
|
||||
<p>
|
||||
|
||||
【可选步骤】如果需要支持清华ChatGLM3/复旦MOSS作为后端,需要额外安装更多依赖(前提条件:熟悉Python + 用过Pytorch + 电脑配置够强):
|
||||
【可选步骤】如果需要支持清华ChatGLM系列/复旦MOSS作为后端,需要额外安装更多依赖(前提条件:熟悉Python + 用过Pytorch + 电脑配置够强):
|
||||
|
||||
```sh
|
||||
# 【可选步骤I】支持清华ChatGLM3。清华ChatGLM备注:如果遇到"Call ChatGLM fail 不能正常加载ChatGLM的参数" 错误,参考如下: 1:以上默认安装的为torch+cpu版,使用cuda需要卸载torch重新安装torch+cuda; 2:如因本机配置不够无法加载模型,可以修改request_llm/bridge_chatglm.py中的模型精度, 将 AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) 都修改为 AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
|
||||
python -m pip install -r request_llms/requirements_chatglm.txt
|
||||
|
||||
# 【可选步骤II】支持复旦MOSS
|
||||
# 【可选步骤II】支持清华ChatGLM4 注意:此模型至少需要24G显存
|
||||
python -m pip install -r request_llms/requirements_chatglm4.txt
|
||||
# 可使用modelscope下载ChatGLM4模型
|
||||
# pip install modelscope
|
||||
# modelscope download --model ZhipuAI/glm-4-9b-chat --local_dir ./THUDM/glm-4-9b-chat
|
||||
|
||||
# 【可选步骤III】支持复旦MOSS
|
||||
python -m pip install -r request_llms/requirements_moss.txt
|
||||
git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llms/moss # 注意执行此行代码时,必须处于项目根路径
|
||||
|
||||
# 【可选步骤III】支持RWKV Runner
|
||||
# 【可选步骤IV】支持RWKV Runner
|
||||
参考wiki:https://github.com/binary-husky/gpt_academic/wiki/%E9%80%82%E9%85%8DRWKV-Runner
|
||||
|
||||
# 【可选步骤IV】确保config.py配置文件的AVAIL_LLM_MODELS包含了期望的模型,目前支持的全部模型如下(jittorllms系列目前仅支持docker方案):
|
||||
# 【可选步骤V】确保config.py配置文件的AVAIL_LLM_MODELS包含了期望的模型,目前支持的全部模型如下(jittorllms系列目前仅支持docker方案):
|
||||
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
|
||||
|
||||
# 【可选步骤V】支持本地模型INT8,INT4量化(这里所指的模型本身不是量化版本,目前deepseek-coder支持,后面测试后会加入更多模型量化选择)
|
||||
# 【可选步骤VI】支持本地模型INT8,INT4量化(这里所指的模型本身不是量化版本,目前deepseek-coder支持,后面测试后会加入更多模型量化选择)
|
||||
pip install bitsandbyte
|
||||
# windows用户安装bitsandbytes需要使用下面bitsandbytes-windows-webui
|
||||
python -m pip install bitsandbytes --prefer-binary --extra-index-url=https://jllllll.github.io/bitsandbytes-windows-webui
|
||||
|
||||
71
config.py
71
config.py
@@ -7,11 +7,16 @@
|
||||
Configuration reading priority: environment variable > config_private.py > config.py
|
||||
"""
|
||||
|
||||
# [step 1]>> API_KEY = "sk-123456789xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx123456789"。极少数情况下,还需要填写组织(格式如org-123456789abcdefghijklmno的),请向下翻,找 API_ORG 设置项
|
||||
API_KEY = "此处填API密钥" # 可同时填写多个API-KEY,用英文逗号分割,例如API_KEY = "sk-openaikey1,sk-openaikey2,fkxxxx-api2dkey3,azure-apikey4"
|
||||
# [step 1-1]>> ( 接入GPT等模型 ) API_KEY = "sk-123456789xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx123456789"。极少数情况下,还需要填写组织(格式如org-123456789abcdefghijklmno的),请向下翻,找 API_ORG 设置项
|
||||
API_KEY = "在此处填写APIKEY" # 可同时填写多个API-KEY,用英文逗号分割,例如API_KEY = "sk-openaikey1,sk-openaikey2,fkxxxx-api2dkey3,azure-apikey4"
|
||||
|
||||
# [step 1-2]>> ( 接入通义 qwen-max ) 接入通义千问在线大模型,api-key获取地址 https://dashscope.console.aliyun.com/
|
||||
DASHSCOPE_API_KEY = "" # 阿里灵积云API_KEY
|
||||
|
||||
# [step 2]>> 改为True应用代理,如果直接在海外服务器部署,此处不修改;如果使用本地或无地域限制的大模型时,此处也不需要修改
|
||||
# [step 1-3]>> ( 接入 deepseek-reasoner, 即 deepseek-r1 ) 深度求索(DeepSeek) API KEY,默认请求地址为"https://api.deepseek.com/v1/chat/completions"
|
||||
DEEPSEEK_API_KEY = ""
|
||||
|
||||
# [step 2]>> 改为True应用代理。如果使用本地或无地域限制的大模型时,此处不修改;如果直接在海外服务器部署,此处不修改
|
||||
USE_PROXY = False
|
||||
if USE_PROXY:
|
||||
"""
|
||||
@@ -32,11 +37,13 @@ else:
|
||||
|
||||
# [step 3]>> 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
|
||||
LLM_MODEL = "gpt-3.5-turbo-16k" # 可选 ↓↓↓
|
||||
AVAIL_LLM_MODELS = ["gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-preview",
|
||||
AVAIL_LLM_MODELS = ["qwen-max", "o1-mini", "o1-mini-2024-09-12", "o1", "o1-2024-12-17", "o1-preview", "o1-preview-2024-09-12",
|
||||
"gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-preview",
|
||||
"gpt-4o", "gpt-4o-mini", "gpt-4-turbo", "gpt-4-turbo-2024-04-09",
|
||||
"gpt-3.5-turbo-1106", "gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
|
||||
"gpt-4", "gpt-4-32k", "azure-gpt-4", "glm-4", "glm-4v", "glm-3-turbo",
|
||||
"gemini-1.5-pro", "chatglm3"
|
||||
"gemini-1.5-pro", "chatglm3", "chatglm4",
|
||||
"deepseek-chat", "deepseek-coder", "deepseek-reasoner"
|
||||
]
|
||||
|
||||
EMBEDDING_MODEL = "text-embedding-3-small"
|
||||
@@ -47,7 +54,7 @@ EMBEDDING_MODEL = "text-embedding-3-small"
|
||||
# "glm-4-0520", "glm-4-air", "glm-4-airx", "glm-4-flash",
|
||||
# "qianfan", "deepseekcoder",
|
||||
# "spark", "sparkv2", "sparkv3", "sparkv3.5", "sparkv4",
|
||||
# "qwen-turbo", "qwen-plus", "qwen-max", "qwen-local",
|
||||
# "qwen-turbo", "qwen-plus", "qwen-local",
|
||||
# "moonshot-v1-128k", "moonshot-v1-32k", "moonshot-v1-8k",
|
||||
# "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-turbo-0125", "gpt-4o-2024-05-13"
|
||||
# "claude-3-haiku-20240307","claude-3-sonnet-20240229","claude-3-opus-20240229", "claude-2.1", "claude-instant-1.2",
|
||||
@@ -55,6 +62,7 @@ EMBEDDING_MODEL = "text-embedding-3-small"
|
||||
# "deepseek-chat" ,"deepseek-coder",
|
||||
# "gemini-1.5-flash",
|
||||
# "yi-34b-chat-0205","yi-34b-chat-200k","yi-large","yi-medium","yi-spark","yi-large-turbo","yi-large-preview",
|
||||
# "grok-beta",
|
||||
# ]
|
||||
# --- --- --- ---
|
||||
# 此外,您还可以在接入one-api/vllm/ollama/Openroute时,
|
||||
@@ -73,7 +81,7 @@ API_URL_REDIRECT = {}
|
||||
|
||||
# 多线程函数插件中,默认允许多少路线程同时访问OpenAI。Free trial users的限制是每分钟3次,Pay-as-you-go users的限制是每分钟3500次
|
||||
# 一言以蔽之:免费(5刀)用户填3,OpenAI绑了信用卡的用户可以填 16 或者更高。提高限制请查询:https://platform.openai.com/docs/guides/rate-limits/overview
|
||||
DEFAULT_WORKER_NUM = 3
|
||||
DEFAULT_WORKER_NUM = 8
|
||||
|
||||
|
||||
# 色彩主题, 可选 ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast"]
|
||||
@@ -81,6 +89,31 @@ DEFAULT_WORKER_NUM = 3
|
||||
THEME = "Default"
|
||||
AVAIL_THEMES = ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast", "Gstaff/Xkcd", "NoCrypt/Miku"]
|
||||
|
||||
FONT = "Theme-Default-Font"
|
||||
AVAIL_FONTS = [
|
||||
"默认值(Theme-Default-Font)",
|
||||
"宋体(SimSun)",
|
||||
"黑体(SimHei)",
|
||||
"楷体(KaiTi)",
|
||||
"仿宋(FangSong)",
|
||||
"华文细黑(STHeiti Light)",
|
||||
"华文楷体(STKaiti)",
|
||||
"华文仿宋(STFangsong)",
|
||||
"华文宋体(STSong)",
|
||||
"华文中宋(STZhongsong)",
|
||||
"华文新魏(STXinwei)",
|
||||
"华文隶书(STLiti)",
|
||||
# 备注:以下字体需要网络支持,您可以自定义任意您喜欢的字体,如下所示,需要满足的格式为 "字体昵称(字体英文真名@字体css下载链接)"
|
||||
"思源宋体(Source Han Serif CN VF@https://chinese-fonts-cdn.deno.dev/packages/syst/dist/SourceHanSerifCN/result.css)",
|
||||
"月星楷(Moon Stars Kai HW@https://chinese-fonts-cdn.deno.dev/packages/moon-stars-kai/dist/MoonStarsKaiHW-Regular/result.css)",
|
||||
"珠圆体(MaokenZhuyuanTi@https://chinese-fonts-cdn.deno.dev/packages/mkzyt/dist/猫啃珠圆体/result.css)",
|
||||
"平方萌萌哒(PING FANG MENG MNEG DA@https://chinese-fonts-cdn.deno.dev/packages/pfmmd/dist/平方萌萌哒/result.css)",
|
||||
"Helvetica",
|
||||
"ui-sans-serif",
|
||||
"sans-serif",
|
||||
"system-ui"
|
||||
]
|
||||
|
||||
|
||||
# 默认的系统提示词(system prompt)
|
||||
INIT_SYS_PROMPT = "Serve me as a writing and programming assistant."
|
||||
@@ -132,16 +165,15 @@ MULTI_QUERY_LLM_MODELS = "gpt-3.5-turbo&chatglm3"
|
||||
QWEN_LOCAL_MODEL_SELECTION = "Qwen/Qwen-1_8B-Chat-Int8"
|
||||
|
||||
|
||||
# 接入通义千问在线大模型 https://dashscope.console.aliyun.com/
|
||||
DASHSCOPE_API_KEY = "" # 阿里灵积云API_KEY
|
||||
|
||||
|
||||
# 百度千帆(LLM_MODEL="qianfan")
|
||||
BAIDU_CLOUD_API_KEY = ''
|
||||
BAIDU_CLOUD_SECRET_KEY = ''
|
||||
BAIDU_CLOUD_QIANFAN_MODEL = 'ERNIE-Bot' # 可选 "ERNIE-Bot-4"(文心大模型4.0), "ERNIE-Bot"(文心一言), "ERNIE-Bot-turbo", "BLOOMZ-7B", "Llama-2-70B-Chat", "Llama-2-13B-Chat", "Llama-2-7B-Chat", "ERNIE-Speed-128K", "ERNIE-Speed-8K", "ERNIE-Lite-8K"
|
||||
|
||||
|
||||
# 如果使用ChatGLM3或ChatGLM4本地模型,请把 LLM_MODEL="chatglm3" 或LLM_MODEL="chatglm4",并在此处指定模型路径
|
||||
CHATGLM_LOCAL_MODEL_PATH = "THUDM/glm-4-9b-chat" # 例如"/home/hmp/ChatGLM3-6B/"
|
||||
|
||||
# 如果使用ChatGLM2微调模型,请把 LLM_MODEL="chatglmft",并在此处指定模型路径
|
||||
CHATGLM_PTUNING_CHECKPOINT = "" # 例如"/home/hmp/ChatGLM2-6B/ptuning/output/6b-pt-128-1e-2/checkpoint-100"
|
||||
|
||||
@@ -235,13 +267,11 @@ MOONSHOT_API_KEY = ""
|
||||
YIMODEL_API_KEY = ""
|
||||
|
||||
|
||||
# 深度求索(DeepSeek) API KEY,默认请求地址为"https://api.deepseek.com/v1/chat/completions"
|
||||
DEEPSEEK_API_KEY = ""
|
||||
|
||||
|
||||
# 紫东太初大模型 https://ai-maas.wair.ac.cn
|
||||
TAICHU_API_KEY = ""
|
||||
|
||||
# Grok API KEY
|
||||
GROK_API_KEY = ""
|
||||
|
||||
# Mathpix 拥有执行PDF的OCR功能,但是需要注册账号
|
||||
MATHPIX_APPID = ""
|
||||
@@ -273,8 +303,8 @@ GROBID_URLS = [
|
||||
]
|
||||
|
||||
|
||||
# Searxng互联网检索服务
|
||||
SEARXNG_URL = "https://cloud-1.agent-matrix.com/"
|
||||
# Searxng互联网检索服务(这是一个huggingface空间,请前往huggingface复制该空间,然后把自己新的空间地址填在这里)
|
||||
SEARXNG_URLS = [ f"https://kaletianlre-beardvs{i}dd.hf.space/" for i in range(1,5) ]
|
||||
|
||||
|
||||
# 是否允许通过自然语言描述修改本页的配置,该功能具有一定的危险性,默认关闭
|
||||
@@ -298,7 +328,7 @@ ARXIV_CACHE_DIR = "gpt_log/arxiv_cache"
|
||||
|
||||
|
||||
# 除了连接OpenAI之外,还有哪些场合允许使用代理,请尽量不要修改
|
||||
WHEN_TO_USE_PROXY = ["Download_LLM", "Download_Gradio_Theme", "Connect_Grobid",
|
||||
WHEN_TO_USE_PROXY = ["Connect_OpenAI", "Download_LLM", "Download_Gradio_Theme", "Connect_Grobid",
|
||||
"Warmup_Modules", "Nougat_Download", "AutoGen", "Connect_OpenAI_Embedding"]
|
||||
|
||||
|
||||
@@ -311,7 +341,7 @@ NUM_CUSTOM_BASIC_BTN = 4
|
||||
|
||||
|
||||
# 媒体智能体的服务地址(这是一个huggingface空间,请前往huggingface复制该空间,然后把自己新的空间地址填在这里)
|
||||
DAAS_SERVER_URL = "https://hamercity-bbdown.hf.space/stream"
|
||||
DAAS_SERVER_URLS = [ f"https://niuziniu-biligpt{i}.hf.space/stream" for i in range(1,5) ]
|
||||
|
||||
|
||||
|
||||
@@ -373,6 +403,7 @@ DAAS_SERVER_URL = "https://hamercity-bbdown.hf.space/stream"
|
||||
|
||||
本地大模型示意图
|
||||
│
|
||||
├── "chatglm4"
|
||||
├── "chatglm3"
|
||||
├── "chatglm"
|
||||
├── "chatglm_onnx"
|
||||
@@ -403,7 +434,7 @@ DAAS_SERVER_URL = "https://hamercity-bbdown.hf.space/stream"
|
||||
插件在线服务配置依赖关系示意图
|
||||
│
|
||||
├── 互联网检索
|
||||
│ └── SEARXNG_URL
|
||||
│ └── SEARXNG_URLS
|
||||
│
|
||||
├── 语音功能
|
||||
│ ├── ENABLE_AUDIO
|
||||
|
||||
444
config_private.py
Normal file
444
config_private.py
Normal file
@@ -0,0 +1,444 @@
|
||||
"""
|
||||
以下所有配置也都支持利用环境变量覆写,环境变量配置格式见docker-compose.yml。
|
||||
读取优先级:环境变量 > config_private.py > config.py
|
||||
--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
|
||||
All the following configurations also support using environment variables to override,
|
||||
and the environment variable configuration format can be seen in docker-compose.yml.
|
||||
Configuration reading priority: environment variable > config_private.py > config.py
|
||||
"""
|
||||
|
||||
# [step 1-1]>> ( 接入GPT等模型 ) API_KEY = "sk-123456789xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx123456789"。极少数情况下,还需要填写组织(格式如org-123456789abcdefghijklmno的),请向下翻,找 API_ORG 设置项
|
||||
API_KEY = "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" # 可同时填写多个API-KEY,用英文逗号分割,例如API_KEY = "sk-openaikey1,sk-openaikey2,fkxxxx-api2dkey1,fkxxxx-api2dkey2"
|
||||
|
||||
# [step 1-2]>> ( 接入通义 qwen-max ) 接入通义千问在线大模型,api-key获取地址 https://dashscope.console.aliyun.com/
|
||||
DASHSCOPE_API_KEY = "" # 阿里灵积云API_KEY
|
||||
|
||||
# [step 1-3]>> ( 接入 deepseek-reasoner, 即 deepseek-r1 ) 深度求索(DeepSeek) API KEY,默认请求地址为"https://api.deepseek.com/v1/chat/completions"
|
||||
DEEPSEEK_API_KEY = "sk-d99b8cc6b7414cc88a5d950a3ff7585e"
|
||||
|
||||
# [step 2]>> 改为True应用代理。如果使用本地或无地域限制的大模型时,此处不修改;如果直接在海外服务器部署,此处不修改
|
||||
USE_PROXY = True
|
||||
if USE_PROXY:
|
||||
proxies = {
|
||||
"http":"socks5h://192.168.8.9:1070", # 再例如 "http": "http://127.0.0.1:7890",
|
||||
"https":"socks5h://192.168.8.9:1070", # 再例如 "https": "http://127.0.0.1:7890",
|
||||
}
|
||||
else:
|
||||
proxies = None
|
||||
DEFAULT_WORKER_NUM = 256
|
||||
|
||||
# [step 3]>> 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
|
||||
LLM_MODEL = "gpt-4-32k" # 可选 ↓↓↓
|
||||
AVAIL_LLM_MODELS = ["deepseek-chat", "deepseek-coder", "deepseek-reasoner",
|
||||
"gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-preview",
|
||||
"gpt-4o", "gpt-4o-mini", "gpt-4-turbo", "gpt-4-turbo-2024-04-09",
|
||||
"gpt-3.5-turbo-1106", "gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
|
||||
"gpt-4", "gpt-4-32k", "azure-gpt-4", "glm-4", "glm-4v", "glm-3-turbo",
|
||||
"gemini-1.5-pro", "chatglm3", "chatglm4",
|
||||
]
|
||||
|
||||
EMBEDDING_MODEL = "text-embedding-3-small"
|
||||
|
||||
# --- --- --- ---
|
||||
# P.S. 其他可用的模型还包括
|
||||
# AVAIL_LLM_MODELS = [
|
||||
# "glm-4-0520", "glm-4-air", "glm-4-airx", "glm-4-flash",
|
||||
# "qianfan", "deepseekcoder",
|
||||
# "spark", "sparkv2", "sparkv3", "sparkv3.5", "sparkv4",
|
||||
# "qwen-turbo", "qwen-plus", "qwen-local",
|
||||
# "moonshot-v1-128k", "moonshot-v1-32k", "moonshot-v1-8k",
|
||||
# "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-turbo-0125", "gpt-4o-2024-05-13"
|
||||
# "claude-3-haiku-20240307","claude-3-sonnet-20240229","claude-3-opus-20240229", "claude-2.1", "claude-instant-1.2",
|
||||
# "moss", "llama2", "chatglm_onnx", "internlm", "jittorllms_pangualpha", "jittorllms_llama",
|
||||
# "deepseek-chat" ,"deepseek-coder",
|
||||
# "gemini-1.5-flash",
|
||||
# "yi-34b-chat-0205","yi-34b-chat-200k","yi-large","yi-medium","yi-spark","yi-large-turbo","yi-large-preview",
|
||||
# "grok-beta",
|
||||
# ]
|
||||
# --- --- --- ---
|
||||
# 此外,您还可以在接入one-api/vllm/ollama/Openroute时,
|
||||
# 使用"one-api-*","vllm-*","ollama-*","openrouter-*"前缀直接使用非标准方式接入的模型,例如
|
||||
# AVAIL_LLM_MODELS = ["one-api-claude-3-sonnet-20240229(max_token=100000)", "ollama-phi3(max_token=4096)","openrouter-openai/gpt-4o-mini","openrouter-openai/chatgpt-4o-latest"]
|
||||
# --- --- --- ---
|
||||
|
||||
|
||||
# --------------- 以下配置可以优化体验 ---------------
|
||||
|
||||
# 重新URL重新定向,实现更换API_URL的作用(高危设置! 常规情况下不要修改! 通过修改此设置,您将把您的API-KEY和对话隐私完全暴露给您设定的中间人!)
|
||||
# 格式: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "在这里填写重定向的api.openai.com的URL"}
|
||||
# 举例: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "https://reverse-proxy-url/v1/chat/completions", "http://localhost:11434/api/chat": "在这里填写您ollama的URL"}
|
||||
API_URL_REDIRECT = {}
|
||||
|
||||
|
||||
# 多线程函数插件中,默认允许多少路线程同时访问OpenAI。Free trial users的限制是每分钟3次,Pay-as-you-go users的限制是每分钟3500次
|
||||
# 一言以蔽之:免费(5刀)用户填3,OpenAI绑了信用卡的用户可以填 16 或者更高。提高限制请查询:https://platform.openai.com/docs/guides/rate-limits/overview
|
||||
DEFAULT_WORKER_NUM = 64
|
||||
|
||||
|
||||
# 色彩主题, 可选 ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast"]
|
||||
# 更多主题, 请查阅Gradio主题商店: https://huggingface.co/spaces/gradio/theme-gallery 可选 ["Gstaff/Xkcd", "NoCrypt/Miku", ...]
|
||||
THEME = "Default"
|
||||
AVAIL_THEMES = ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast", "Gstaff/Xkcd", "NoCrypt/Miku"]
|
||||
|
||||
FONT = "Theme-Default-Font"
|
||||
AVAIL_FONTS = [
|
||||
"默认值(Theme-Default-Font)",
|
||||
"宋体(SimSun)",
|
||||
"黑体(SimHei)",
|
||||
"楷体(KaiTi)",
|
||||
"仿宋(FangSong)",
|
||||
"华文细黑(STHeiti Light)",
|
||||
"华文楷体(STKaiti)",
|
||||
"华文仿宋(STFangsong)",
|
||||
"华文宋体(STSong)",
|
||||
"华文中宋(STZhongsong)",
|
||||
"华文新魏(STXinwei)",
|
||||
"华文隶书(STLiti)",
|
||||
"思源宋体(Source Han Serif CN VF@https://chinese-fonts-cdn.deno.dev/packages/syst/dist/SourceHanSerifCN/result.css)",
|
||||
"月星楷(Moon Stars Kai HW@https://chinese-fonts-cdn.deno.dev/packages/moon-stars-kai/dist/MoonStarsKaiHW-Regular/result.css)",
|
||||
"珠圆体(MaokenZhuyuanTi@https://chinese-fonts-cdn.deno.dev/packages/mkzyt/dist/猫啃珠圆体/result.css)",
|
||||
"平方萌萌哒(PING FANG MENG MNEG DA@https://chinese-fonts-cdn.deno.dev/packages/pfmmd/dist/平方萌萌哒/result.css)",
|
||||
"Helvetica",
|
||||
"ui-sans-serif",
|
||||
"sans-serif",
|
||||
"system-ui"
|
||||
]
|
||||
|
||||
|
||||
# 默认的系统提示词(system prompt)
|
||||
INIT_SYS_PROMPT = "Serve me as a writing and programming assistant."
|
||||
|
||||
|
||||
# 对话窗的高度 (仅在LAYOUT="TOP-DOWN"时生效)
|
||||
CHATBOT_HEIGHT = 1115
|
||||
|
||||
|
||||
# 代码高亮
|
||||
CODE_HIGHLIGHT = True
|
||||
|
||||
|
||||
# 窗口布局
|
||||
LAYOUT = "LEFT-RIGHT" # "LEFT-RIGHT"(左右布局) # "TOP-DOWN"(上下布局)
|
||||
|
||||
|
||||
# 暗色模式 / 亮色模式
|
||||
DARK_MODE = True
|
||||
|
||||
|
||||
# 发送请求到OpenAI后,等待多久判定为超时
|
||||
TIMEOUT_SECONDS = 60
|
||||
|
||||
|
||||
# 网页的端口, -1代表随机端口
|
||||
WEB_PORT = 19998
|
||||
|
||||
# 是否自动打开浏览器页面
|
||||
AUTO_OPEN_BROWSER = True
|
||||
|
||||
|
||||
# 如果OpenAI不响应(网络卡顿、代理失败、KEY失效),重试的次数限制
|
||||
MAX_RETRY = 5
|
||||
|
||||
|
||||
# 插件分类默认选项
|
||||
DEFAULT_FN_GROUPS = ['对话', '编程', '学术', '智能体']
|
||||
|
||||
|
||||
# 定义界面上“询问多个GPT模型”插件应该使用哪些模型,请从AVAIL_LLM_MODELS中选择,并在不同模型之间用`&`间隔,例如"gpt-3.5-turbo&chatglm3&azure-gpt-4"
|
||||
MULTI_QUERY_LLM_MODELS = "gpt-3.5-turbo&chatglm3"
|
||||
|
||||
|
||||
# 选择本地模型变体(只有当AVAIL_LLM_MODELS包含了对应本地模型时,才会起作用)
|
||||
# 如果你选择Qwen系列的模型,那么请在下面的QWEN_MODEL_SELECTION中指定具体的模型
|
||||
# 也可以是具体的模型路径
|
||||
QWEN_LOCAL_MODEL_SELECTION = "Qwen/Qwen-1_8B-Chat-Int8"
|
||||
|
||||
|
||||
# 百度千帆(LLM_MODEL="qianfan")
|
||||
BAIDU_CLOUD_API_KEY = ''
|
||||
BAIDU_CLOUD_SECRET_KEY = ''
|
||||
BAIDU_CLOUD_QIANFAN_MODEL = 'ERNIE-Bot' # 可选 "ERNIE-Bot-4"(文心大模型4.0), "ERNIE-Bot"(文心一言), "ERNIE-Bot-turbo", "BLOOMZ-7B", "Llama-2-70B-Chat", "Llama-2-13B-Chat", "Llama-2-7B-Chat", "ERNIE-Speed-128K", "ERNIE-Speed-8K", "ERNIE-Lite-8K"
|
||||
|
||||
|
||||
# 如果使用ChatGLM3或ChatGLM4本地模型,请把 LLM_MODEL="chatglm3" 或LLM_MODEL="chatglm4",并在此处指定模型路径
|
||||
CHATGLM_LOCAL_MODEL_PATH = "THUDM/glm-4-9b-chat" # 例如"/home/hmp/ChatGLM3-6B/"
|
||||
|
||||
# 如果使用ChatGLM2微调模型,请把 LLM_MODEL="chatglmft",并在此处指定模型路径
|
||||
CHATGLM_PTUNING_CHECKPOINT = "" # 例如"/home/hmp/ChatGLM2-6B/ptuning/output/6b-pt-128-1e-2/checkpoint-100"
|
||||
|
||||
|
||||
# 本地LLM模型如ChatGLM的执行方式 CPU/GPU
|
||||
LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
|
||||
LOCAL_MODEL_QUANT = "FP16" # 默认 "FP16" "INT4" 启用量化INT4版本 "INT8" 启用量化INT8版本
|
||||
|
||||
|
||||
# 设置gradio的并行线程数(不需要修改)
|
||||
CONCURRENT_COUNT = 100
|
||||
|
||||
|
||||
# 是否在提交时自动清空输入框
|
||||
AUTO_CLEAR_TXT = False
|
||||
|
||||
|
||||
# 加一个live2d装饰
|
||||
ADD_WAIFU = False
|
||||
|
||||
|
||||
# 设置用户名和密码(不需要修改)(相关功能不稳定,与gradio版本和网络都相关,如果本地使用不建议加这个)
|
||||
# [("username", "password"), ("username2", "password2"), ...]
|
||||
AUTHENTICATION = [("van", "L807878712"),("林", "L807878712"),("源", "L807878712"),("欣", "L807878712"),("z", "czh123456789")]
|
||||
|
||||
|
||||
# 如果需要在二级路径下运行(常规情况下,不要修改!!)
|
||||
# (举例 CUSTOM_PATH = "/gpt_academic",可以让软件运行在 http://ip:port/gpt_academic/ 下。)
|
||||
CUSTOM_PATH = "/"
|
||||
|
||||
|
||||
# HTTPS 秘钥和证书(不需要修改)
|
||||
SSL_KEYFILE = ""
|
||||
SSL_CERTFILE = ""
|
||||
|
||||
|
||||
# 极少数情况下,openai的官方KEY需要伴随组织编码(格式如org-xxxxxxxxxxxxxxxxxxxxxxxx)使用
|
||||
API_ORG = ""
|
||||
|
||||
|
||||
# 如果需要使用Slack Claude,使用教程详情见 request_llms/README.md
|
||||
SLACK_CLAUDE_BOT_ID = ''
|
||||
SLACK_CLAUDE_USER_TOKEN = ''
|
||||
|
||||
|
||||
# 如果需要使用AZURE(方法一:单个azure模型部署)详情请见额外文档 docs\use_azure.md
|
||||
AZURE_ENDPOINT = "https://你亲手写的api名称.openai.azure.com/"
|
||||
AZURE_API_KEY = "填入azure openai api的密钥" # 建议直接在API_KEY处填写,该选项即将被弃用
|
||||
AZURE_ENGINE = "填入你亲手写的部署名" # 读 docs\use_azure.md
|
||||
|
||||
|
||||
# 如果需要使用AZURE(方法二:多个azure模型部署+动态切换)详情请见额外文档 docs\use_azure.md
|
||||
AZURE_CFG_ARRAY = {}
|
||||
|
||||
|
||||
# 阿里云实时语音识别 配置难度较高
|
||||
# 参考 https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md
|
||||
ENABLE_AUDIO = False
|
||||
ALIYUN_TOKEN="" # 例如 f37f30e0f9934c34a992f6f64f7eba4f
|
||||
ALIYUN_APPKEY="" # 例如 RoPlZrM88DnAFkZK
|
||||
ALIYUN_ACCESSKEY="" # (无需填写)
|
||||
ALIYUN_SECRET="" # (无需填写)
|
||||
|
||||
|
||||
# GPT-SOVITS 文本转语音服务的运行地址(将语言模型的生成文本朗读出来)
|
||||
TTS_TYPE = "DISABLE" # EDGE_TTS / LOCAL_SOVITS_API / DISABLE
|
||||
GPT_SOVITS_URL = ""
|
||||
EDGE_TTS_VOICE = "zh-CN-XiaoxiaoNeural"
|
||||
|
||||
|
||||
# 接入讯飞星火大模型 https://console.xfyun.cn/services/iat
|
||||
XFYUN_APPID = "00000000"
|
||||
XFYUN_API_SECRET = "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"
|
||||
XFYUN_API_KEY = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
|
||||
|
||||
|
||||
# 接入智谱大模型
|
||||
ZHIPUAI_API_KEY = ""
|
||||
ZHIPUAI_MODEL = "" # 此选项已废弃,不再需要填写
|
||||
|
||||
|
||||
# Claude API KEY
|
||||
ANTHROPIC_API_KEY = ""
|
||||
|
||||
|
||||
# 月之暗面 API KEY
|
||||
MOONSHOT_API_KEY = ""
|
||||
|
||||
|
||||
# 零一万物(Yi Model) API KEY
|
||||
YIMODEL_API_KEY = ""
|
||||
|
||||
|
||||
# 紫东太初大模型 https://ai-maas.wair.ac.cn
|
||||
TAICHU_API_KEY = ""
|
||||
|
||||
# Grok API KEY
|
||||
GROK_API_KEY = ""
|
||||
|
||||
# Mathpix 拥有执行PDF的OCR功能,但是需要注册账号
|
||||
MATHPIX_APPID = ""
|
||||
MATHPIX_APPKEY = ""
|
||||
|
||||
|
||||
# DOC2X的PDF解析服务,注册账号并获取API KEY: https://doc2x.noedgeai.com/login
|
||||
DOC2X_API_KEY = ""
|
||||
|
||||
|
||||
# 自定义API KEY格式
|
||||
CUSTOM_API_KEY_PATTERN = ""
|
||||
|
||||
|
||||
# Google Gemini API-Key
|
||||
GEMINI_API_KEY = ''
|
||||
|
||||
|
||||
# HUGGINGFACE的TOKEN,下载LLAMA时起作用 https://huggingface.co/docs/hub/security-tokens
|
||||
HUGGINGFACE_ACCESS_TOKEN = "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"
|
||||
|
||||
|
||||
# GROBID服务器地址(填写多个可以均衡负载),用于高质量地读取PDF文档
|
||||
# 获取方法:复制以下空间https://huggingface.co/spaces/qingxu98/grobid,设为public,然后GROBID_URL = "https://(你的hf用户名如qingxu98)-(你的填写的空间名如grobid).hf.space"
|
||||
GROBID_URLS = [
|
||||
"https://qingxu98-grobid.hf.space","https://qingxu98-grobid2.hf.space","https://qingxu98-grobid3.hf.space",
|
||||
"https://qingxu98-grobid4.hf.space","https://qingxu98-grobid5.hf.space", "https://qingxu98-grobid6.hf.space",
|
||||
"https://qingxu98-grobid7.hf.space", "https://qingxu98-grobid8.hf.space",
|
||||
]
|
||||
|
||||
|
||||
# Searxng互联网检索服务(这是一个huggingface空间,请前往huggingface复制该空间,然后把自己新的空间地址填在这里)
|
||||
SEARXNG_URLS = [ f"https://kaletianlre-beardvs{i}dd.hf.space/" for i in range(1,5) ]
|
||||
|
||||
|
||||
# 是否允许通过自然语言描述修改本页的配置,该功能具有一定的危险性,默认关闭
|
||||
ALLOW_RESET_CONFIG = False
|
||||
|
||||
|
||||
# 在使用AutoGen插件时,是否使用Docker容器运行代码
|
||||
AUTOGEN_USE_DOCKER = False
|
||||
|
||||
|
||||
# 临时的上传文件夹位置,请尽量不要修改
|
||||
PATH_PRIVATE_UPLOAD = "private_upload"
|
||||
|
||||
|
||||
# 日志文件夹的位置,请尽量不要修改
|
||||
PATH_LOGGING = "gpt_log"
|
||||
|
||||
|
||||
# 存储翻译好的arxiv论文的路径,请尽量不要修改
|
||||
ARXIV_CACHE_DIR = "gpt_log/arxiv_cache"
|
||||
|
||||
|
||||
# 除了连接OpenAI之外,还有哪些场合允许使用代理,请尽量不要修改
|
||||
WHEN_TO_USE_PROXY = ["Connect_OpenAI", "Download_LLM", "Download_Gradio_Theme", "Connect_Grobid",
|
||||
"Warmup_Modules", "Nougat_Download", "AutoGen", "Connect_OpenAI_Embedding"]
|
||||
|
||||
|
||||
# 启用插件热加载
|
||||
PLUGIN_HOT_RELOAD = False
|
||||
|
||||
|
||||
# 自定义按钮的最大数量限制
|
||||
NUM_CUSTOM_BASIC_BTN = 4
|
||||
|
||||
|
||||
# 媒体智能体的服务地址(这是一个huggingface空间,请前往huggingface复制该空间,然后把自己新的空间地址填在这里)
|
||||
DAAS_SERVER_URLS = [ f"https://niuziniu-biligpt{i}.hf.space/stream" for i in range(1,5) ]
|
||||
|
||||
|
||||
|
||||
"""
|
||||
--------------- 配置关联关系说明 ---------------
|
||||
|
||||
在线大模型配置关联关系示意图
|
||||
│
|
||||
├── "gpt-3.5-turbo" 等openai模型
|
||||
│ ├── API_KEY
|
||||
│ ├── CUSTOM_API_KEY_PATTERN(不常用)
|
||||
│ ├── API_ORG(不常用)
|
||||
│ └── API_URL_REDIRECT(不常用)
|
||||
│
|
||||
├── "azure-gpt-3.5" 等azure模型(单个azure模型,不需要动态切换)
|
||||
│ ├── API_KEY
|
||||
│ ├── AZURE_ENDPOINT
|
||||
│ ├── AZURE_API_KEY
|
||||
│ ├── AZURE_ENGINE
|
||||
│ └── API_URL_REDIRECT
|
||||
│
|
||||
├── "azure-gpt-3.5" 等azure模型(多个azure模型,需要动态切换,高优先级)
|
||||
│ └── AZURE_CFG_ARRAY
|
||||
│
|
||||
├── "spark" 星火认知大模型 spark & sparkv2
|
||||
│ ├── XFYUN_APPID
|
||||
│ ├── XFYUN_API_SECRET
|
||||
│ └── XFYUN_API_KEY
|
||||
│
|
||||
├── "claude-3-opus-20240229" 等claude模型
|
||||
│ └── ANTHROPIC_API_KEY
|
||||
│
|
||||
├── "stack-claude"
|
||||
│ ├── SLACK_CLAUDE_BOT_ID
|
||||
│ └── SLACK_CLAUDE_USER_TOKEN
|
||||
│
|
||||
├── "qianfan" 百度千帆大模型库
|
||||
│ ├── BAIDU_CLOUD_QIANFAN_MODEL
|
||||
│ ├── BAIDU_CLOUD_API_KEY
|
||||
│ └── BAIDU_CLOUD_SECRET_KEY
|
||||
│
|
||||
├── "glm-4", "glm-3-turbo", "zhipuai" 智谱AI大模型
|
||||
│ └── ZHIPUAI_API_KEY
|
||||
│
|
||||
├── "yi-34b-chat-0205", "yi-34b-chat-200k" 等零一万物(Yi Model)大模型
|
||||
│ └── YIMODEL_API_KEY
|
||||
│
|
||||
├── "qwen-turbo" 等通义千问大模型
|
||||
│ └── DASHSCOPE_API_KEY
|
||||
│
|
||||
├── "Gemini"
|
||||
│ └── GEMINI_API_KEY
|
||||
│
|
||||
└── "one-api-...(max_token=...)" 用一种更方便的方式接入one-api多模型管理界面
|
||||
├── AVAIL_LLM_MODELS
|
||||
├── API_KEY
|
||||
└── API_URL_REDIRECT
|
||||
|
||||
|
||||
本地大模型示意图
|
||||
│
|
||||
├── "chatglm4"
|
||||
├── "chatglm3"
|
||||
├── "chatglm"
|
||||
├── "chatglm_onnx"
|
||||
├── "chatglmft"
|
||||
├── "internlm"
|
||||
├── "moss"
|
||||
├── "jittorllms_pangualpha"
|
||||
├── "jittorllms_llama"
|
||||
├── "deepseekcoder"
|
||||
├── "qwen-local"
|
||||
├── RWKV的支持见Wiki
|
||||
└── "llama2"
|
||||
|
||||
|
||||
用户图形界面布局依赖关系示意图
|
||||
│
|
||||
├── CHATBOT_HEIGHT 对话窗的高度
|
||||
├── CODE_HIGHLIGHT 代码高亮
|
||||
├── LAYOUT 窗口布局
|
||||
├── DARK_MODE 暗色模式 / 亮色模式
|
||||
├── DEFAULT_FN_GROUPS 插件分类默认选项
|
||||
├── THEME 色彩主题
|
||||
├── AUTO_CLEAR_TXT 是否在提交时自动清空输入框
|
||||
├── ADD_WAIFU 加一个live2d装饰
|
||||
└── ALLOW_RESET_CONFIG 是否允许通过自然语言描述修改本页的配置,该功能具有一定的危险性
|
||||
|
||||
|
||||
插件在线服务配置依赖关系示意图
|
||||
│
|
||||
├── 互联网检索
|
||||
│ └── SEARXNG_URLS
|
||||
│
|
||||
├── 语音功能
|
||||
│ ├── ENABLE_AUDIO
|
||||
│ ├── ALIYUN_TOKEN
|
||||
│ ├── ALIYUN_APPKEY
|
||||
│ ├── ALIYUN_ACCESSKEY
|
||||
│ └── ALIYUN_SECRET
|
||||
│
|
||||
└── PDF文档精准解析
|
||||
├── GROBID_URLS
|
||||
├── MATHPIX_APPID
|
||||
└── MATHPIX_APPKEY
|
||||
|
||||
|
||||
"""
|
||||
|
||||
|
||||
|
||||
@@ -7,7 +7,7 @@ from bs4 import BeautifulSoup
|
||||
from functools import lru_cache
|
||||
from itertools import zip_longest
|
||||
from check_proxy import check_proxy
|
||||
from toolbox import CatchException, update_ui, get_conf
|
||||
from toolbox import CatchException, update_ui, get_conf, update_ui_lastest_msg
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
|
||||
from request_llms.bridge_all import model_info
|
||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||
@@ -115,7 +115,8 @@ def get_auth_ip():
|
||||
|
||||
def searxng_request(query, proxies, categories='general', searxng_url=None, engines=None):
|
||||
if searxng_url is None:
|
||||
url = get_conf("SEARXNG_URL")
|
||||
urls = get_conf("SEARXNG_URLS")
|
||||
url = random.choice(urls)
|
||||
else:
|
||||
url = searxng_url
|
||||
|
||||
@@ -192,6 +193,38 @@ def scrape_text(url, proxies) -> str:
|
||||
text = "\n".join(chunk for chunk in chunks if chunk)
|
||||
return text
|
||||
|
||||
def internet_search_with_analysis_prompt(prompt, analysis_prompt, llm_kwargs, chatbot):
|
||||
from toolbox import get_conf
|
||||
proxies = get_conf('proxies')
|
||||
categories = 'general'
|
||||
searxng_url = None # 使用默认的searxng_url
|
||||
engines = None # 使用默认的搜索引擎
|
||||
yield from update_ui_lastest_msg(lastmsg=f"检索中: {prompt} ...", chatbot=chatbot, history=[], delay=1)
|
||||
urls = searxng_request(prompt, proxies, categories, searxng_url, engines=engines)
|
||||
yield from update_ui_lastest_msg(lastmsg=f"依次访问搜索到的网站 ...", chatbot=chatbot, history=[], delay=1)
|
||||
if len(urls) == 0:
|
||||
return None
|
||||
max_search_result = 5 # 最多收纳多少个网页的结果
|
||||
history = []
|
||||
for index, url in enumerate(urls[:max_search_result]):
|
||||
yield from update_ui_lastest_msg(lastmsg=f"依次访问搜索到的网站: {url['link']} ...", chatbot=chatbot, history=[], delay=1)
|
||||
res = scrape_text(url['link'], proxies)
|
||||
prefix = f"第{index}份搜索结果 [源自{url['source'][0]}搜索] ({url['title'][:25]}):"
|
||||
history.extend([prefix, res])
|
||||
i_say = f"从以上搜索结果中抽取信息,然后回答问题:{prompt} {analysis_prompt}"
|
||||
i_say, history = input_clipping( # 裁剪输入,从最长的条目开始裁剪,防止爆token
|
||||
inputs=i_say,
|
||||
history=history,
|
||||
max_token_limit=8192
|
||||
)
|
||||
gpt_say = predict_no_ui_long_connection(
|
||||
inputs=i_say,
|
||||
llm_kwargs=llm_kwargs,
|
||||
history=history,
|
||||
sys_prompt="请从搜索结果中抽取信息,对最相关的两个搜索结果进行总结,然后回答问题。",
|
||||
console_slience=False,
|
||||
)
|
||||
return gpt_say
|
||||
|
||||
@CatchException
|
||||
def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
|
||||
import random
|
||||
from toolbox import get_conf
|
||||
from crazy_functions.Internet_GPT import 连接网络回答问题
|
||||
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
|
||||
@@ -20,6 +20,9 @@ class NetworkGPT_Wrap(GptAcademicPluginTemplate):
|
||||
第三个参数,名称`allow_cache`,参数`type`声明这是一个下拉菜单,下拉菜单上方显示`title`+`description`,下拉菜单的选项为`options`,`default_value`为下拉菜单默认值;
|
||||
|
||||
"""
|
||||
urls = get_conf("SEARXNG_URLS")
|
||||
url = random.choice(urls)
|
||||
|
||||
gui_definition = {
|
||||
"main_input":
|
||||
ArgProperty(title="输入问题", description="待通过互联网检索的问题,会自动读取输入框内容", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
|
||||
@@ -30,7 +33,7 @@ class NetworkGPT_Wrap(GptAcademicPluginTemplate):
|
||||
"optimizer":
|
||||
ArgProperty(title="搜索优化", options=["关闭", "开启", "开启(增强)"], default_value="关闭", description="是否使用搜索增强。注意这可能会消耗较多token", type="dropdown").model_dump_json(),
|
||||
"searxng_url":
|
||||
ArgProperty(title="Searxng服务地址", description="输入Searxng的地址", default_value=get_conf("SEARXNG_URL"), type="string").model_dump_json(), # 主输入,自动从输入框同步
|
||||
ArgProperty(title="Searxng服务地址", description="输入Searxng的地址", default_value=url, type="string").model_dump_json(), # 主输入,自动从输入框同步
|
||||
|
||||
}
|
||||
return gui_definition
|
||||
|
||||
@@ -47,7 +47,7 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
||||
yield from 解析PDF_基于DOC2X(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, DOC2X_API_KEY, user_request)
|
||||
return
|
||||
except:
|
||||
chatbot.append([None, f"DOC2X服务不可用,现在将执行效果稍差的旧版代码。{trimmed_format_exc_markdown()}"])
|
||||
chatbot.append([None, f"DOC2X服务不可用,请检查报错详细。{trimmed_format_exc_markdown()}"])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
if method == "GROBID":
|
||||
|
||||
@@ -26,6 +26,7 @@ class VideoResource(BaseModel):
|
||||
title: str = Field(description="title of the video")
|
||||
author: str = Field(description="author/uploader of the video")
|
||||
bvid: str = Field(description="unique ID of the video")
|
||||
another_failsafe_bvid: str = Field(description="provide another bvid, the other one is not working")
|
||||
|
||||
|
||||
def get_video_resource(search_keyword):
|
||||
@@ -53,6 +54,10 @@ def download_video(bvid, user_name, chatbot, history):
|
||||
chatbot.append((None, "下载音频, 请稍等...")); yield from update_ui(chatbot=chatbot, history=history)
|
||||
downloaded_files = yield from download_video(bvid, only_audio=True, user_name=user_name, chatbot=chatbot, history=history)
|
||||
|
||||
if len(downloaded_files) == 0:
|
||||
# failed to download audio
|
||||
return []
|
||||
|
||||
# preview
|
||||
preview_list = [promote_file_to_downloadzone(fp) for fp in downloaded_files]
|
||||
file_links = generate_file_link(preview_list)
|
||||
@@ -78,31 +83,70 @@ def download_video(bvid, user_name, chatbot, history):
|
||||
# return
|
||||
return downloaded_files + downloaded_files_part2
|
||||
|
||||
|
||||
class Strategy(BaseModel):
|
||||
thought: str = Field(description="analysis of the user's wish, for example, can you recall the name of the resource?")
|
||||
which_methods: str = Field(description="Which method to use to find the necessary information? choose from 'method_1' and 'method_2'.")
|
||||
method_1_search_keywords: str = Field(description="Generate keywords to search the internet if you choose method 1, otherwise empty.")
|
||||
method_2_generate_keywords: str = Field(description="Generate keywords for video download engine if you choose method 2, otherwise empty.")
|
||||
|
||||
|
||||
@CatchException
|
||||
def 多媒体任务(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
user_wish: str = txt
|
||||
# query demos:
|
||||
# - "我想找一首歌,里面有句歌词是“turn your face towards the sun”"
|
||||
# - "一首歌,第一句是红豆生南国"
|
||||
# - "一首音乐,中国航天任务专用的那首"
|
||||
# - "戴森球计划在熔岩星球的音乐"
|
||||
# - "hanser的百变什么精"
|
||||
# - "打大圣残躯时的bgm"
|
||||
# - "渊下宫战斗音乐"
|
||||
|
||||
# 搜索
|
||||
chatbot.append((txt, "检索中, 请稍等..."))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
# 结构化生成
|
||||
rf_req = dedent(f"""
|
||||
The user wish to get the following resource:
|
||||
{user_wish}
|
||||
Generate reseach keywords (less than 5 keywords) accordingly.
|
||||
""")
|
||||
if "跳过联网搜索" not in user_wish:
|
||||
# 结构化生成
|
||||
internet_search_keyword = user_wish
|
||||
|
||||
yield from update_ui_lastest_msg(lastmsg=f"发起互联网检索: {internet_search_keyword} ...", chatbot=chatbot, history=[], delay=1)
|
||||
from crazy_functions.Internet_GPT import internet_search_with_analysis_prompt
|
||||
result = yield from internet_search_with_analysis_prompt(
|
||||
prompt=internet_search_keyword,
|
||||
analysis_prompt="请根据搜索结果分析,获取用户需要找的资源的名称、作者、出处等信息。",
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot
|
||||
)
|
||||
|
||||
yield from update_ui_lastest_msg(lastmsg=f"互联网检索结论: {result} \n\n 正在生成进一步检索方案 ...", chatbot=chatbot, history=[], delay=1)
|
||||
rf_req = dedent(f"""
|
||||
The user wish to get the following resource:
|
||||
{user_wish}
|
||||
Meanwhile, you can access another expert's opinion on the user's wish:
|
||||
{result}
|
||||
Generate search keywords (less than 5 keywords) for video download engine accordingly.
|
||||
""")
|
||||
else:
|
||||
user_wish = user_wish.replace("跳过联网搜索", "").strip()
|
||||
rf_req = dedent(f"""
|
||||
The user wish to get the following resource:
|
||||
{user_wish}
|
||||
Generate reseach keywords (less than 5 keywords) accordingly.
|
||||
""")
|
||||
gpt_json_io = GptJsonIO(Query)
|
||||
inputs = rf_req + gpt_json_io.format_instructions
|
||||
run_gpt_fn = lambda inputs, sys_prompt: predict_no_ui_long_connection(inputs=inputs, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=[])
|
||||
analyze_res = run_gpt_fn(inputs, "")
|
||||
logger.info(analyze_res)
|
||||
query: Query = gpt_json_io.generate_output_auto_repair(analyze_res, run_gpt_fn)
|
||||
video_engine_keywords = query.search_keyword
|
||||
# 关键词展示
|
||||
chatbot.append((None, f"检索关键词已确认: {query.search_keyword}。筛选中, 请稍等..."))
|
||||
chatbot.append((None, f"检索关键词已确认: {video_engine_keywords}。筛选中, 请稍等..."))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 获取候选资源
|
||||
candadate_dictionary: dict = get_video_resource(query.search_keyword)
|
||||
candadate_dictionary: dict = get_video_resource(video_engine_keywords)
|
||||
candadate_dictionary_as_str = json.dumps(candadate_dictionary, ensure_ascii=False, indent=4)
|
||||
|
||||
# 展示候选资源
|
||||
@@ -123,6 +167,7 @@ def 多媒体任务(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
||||
2. The time duration of the video should be less than 10 minutes.
|
||||
3. You should analyze the search results first, before giving your answer.
|
||||
4. Use Chinese if possible.
|
||||
5. Beside the primary video selection, give a backup video resource `bvid`.
|
||||
""")
|
||||
gpt_json_io = GptJsonIO(VideoResource)
|
||||
inputs = rf_req_2 + gpt_json_io.format_instructions
|
||||
@@ -144,4 +189,16 @@ def 多媒体任务(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
||||
|
||||
if video_resource and video_resource.bvid:
|
||||
logger.info(video_resource)
|
||||
yield from download_video(video_resource.bvid, chatbot.get_user(), chatbot, history)
|
||||
downloaded = yield from download_video(video_resource.bvid, chatbot.get_user(), chatbot, history)
|
||||
if not downloaded:
|
||||
chatbot.append((None, f"下载失败, 尝试备选 ..."))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
downloaded = yield from download_video(video_resource.another_failsafe_bvid, chatbot.get_user(), chatbot, history)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@CatchException
|
||||
def debug(bvid, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
yield from download_video(bvid, chatbot.get_user(), chatbot, history)
|
||||
@@ -300,7 +300,8 @@ def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin
|
||||
write_html(pfg.sp_file_contents, pfg.sp_file_result, chatbot=chatbot, project_folder=project_folder)
|
||||
|
||||
# <-------- 写出文件 ---------->
|
||||
msg = f"当前大语言模型: {llm_kwargs['llm_model']},当前语言模型温度设定: {llm_kwargs['temperature']}。"
|
||||
model_name = llm_kwargs['llm_model'].replace('_', '\\_') # 替换LLM模型名称中的下划线为转义字符
|
||||
msg = f"当前大语言模型: {model_name},当前语言模型温度设定: {llm_kwargs['temperature']}。"
|
||||
final_tex = lps.merge_result(pfg.file_result, mode, msg)
|
||||
objdump((lps, pfg.file_result, mode, msg), file=pj(project_folder,'merge_result.pkl'))
|
||||
|
||||
@@ -351,6 +352,41 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
||||
chatbot.append([f"正在编译PDF文档", f'编译已经开始。当前工作路径为{work_folder},如果程序停顿5分钟以上,请直接去该路径下取回翻译结果,或者重启之后再度尝试 ...']); yield from update_ui(chatbot=chatbot, history=history)
|
||||
chatbot.append([f"正在编译PDF文档", '...']); yield from update_ui(chatbot=chatbot, history=history); time.sleep(1); chatbot[-1] = list(chatbot[-1]) # 刷新界面
|
||||
yield from update_ui_lastest_msg('编译已经开始...', chatbot, history) # 刷新Gradio前端界面
|
||||
# 检查是否需要使用xelatex
|
||||
def check_if_need_xelatex(tex_path):
|
||||
try:
|
||||
with open(tex_path, 'r', encoding='utf-8', errors='replace') as f:
|
||||
content = f.read(5000)
|
||||
# 检查是否有使用xelatex的宏包
|
||||
need_xelatex = any(
|
||||
pkg in content
|
||||
for pkg in ['fontspec', 'xeCJK', 'xetex', 'unicode-math', 'xltxtra', 'xunicode']
|
||||
)
|
||||
if need_xelatex:
|
||||
logger.info(f"检测到宏包需要xelatex编译, 切换至xelatex编译")
|
||||
else:
|
||||
logger.info(f"未检测到宏包需要xelatex编译, 使用pdflatex编译")
|
||||
return need_xelatex
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
# 根据编译器类型返回编译命令
|
||||
def get_compile_command(compiler, filename):
|
||||
compile_command = f'{compiler} -interaction=batchmode -file-line-error {filename}.tex'
|
||||
logger.info('Latex 编译指令: ' + compile_command)
|
||||
return compile_command
|
||||
|
||||
# 确定使用的编译器
|
||||
compiler = 'pdflatex'
|
||||
if check_if_need_xelatex(pj(work_folder_modified, f'{main_file_modified}.tex')):
|
||||
logger.info("检测到宏包需要xelatex编译,切换至xelatex编译")
|
||||
# Check if xelatex is installed
|
||||
try:
|
||||
import subprocess
|
||||
subprocess.run(['xelatex', '--version'], capture_output=True, check=True)
|
||||
compiler = 'xelatex'
|
||||
except (subprocess.CalledProcessError, FileNotFoundError):
|
||||
raise RuntimeError("检测到需要使用xelatex编译,但系统中未安装xelatex。请先安装texlive或其他提供xelatex的LaTeX发行版。")
|
||||
|
||||
while True:
|
||||
import os
|
||||
@@ -361,10 +397,10 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
||||
|
||||
# https://stackoverflow.com/questions/738755/dont-make-me-manually-abort-a-latex-compile-when-theres-an-error
|
||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译原始PDF ...', chatbot, history) # 刷新Gradio前端界面
|
||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex', work_folder_original)
|
||||
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_original), work_folder_original)
|
||||
|
||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译转化后的PDF ...', chatbot, history) # 刷新Gradio前端界面
|
||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex', work_folder_modified)
|
||||
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_modified), work_folder_modified)
|
||||
|
||||
if ok and os.path.exists(pj(work_folder_modified, f'{main_file_modified}.pdf')):
|
||||
# 只有第二步成功,才能继续下面的步骤
|
||||
@@ -375,10 +411,10 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
||||
ok = compile_latex_with_timeout(f'bibtex {main_file_modified}.aux', work_folder_modified)
|
||||
|
||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译文献交叉引用 ...', chatbot, history) # 刷新Gradio前端界面
|
||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex', work_folder_original)
|
||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex', work_folder_modified)
|
||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex', work_folder_original)
|
||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex', work_folder_modified)
|
||||
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_original), work_folder_original)
|
||||
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_modified), work_folder_modified)
|
||||
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_original), work_folder_original)
|
||||
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_modified), work_folder_modified)
|
||||
|
||||
if mode!='translate_zh':
|
||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 使用latexdiff生成论文转化前后对比 ...', chatbot, history) # 刷新Gradio前端界面
|
||||
@@ -386,10 +422,10 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
||||
ok = compile_latex_with_timeout(f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex', os.getcwd())
|
||||
|
||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 正在编译对比PDF ...', chatbot, history) # 刷新Gradio前端界面
|
||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
|
||||
ok = compile_latex_with_timeout(get_compile_command(compiler, 'merge_diff'), work_folder)
|
||||
ok = compile_latex_with_timeout(f'bibtex merge_diff.aux', work_folder)
|
||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
|
||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
|
||||
ok = compile_latex_with_timeout(get_compile_command(compiler, 'merge_diff'), work_folder)
|
||||
ok = compile_latex_with_timeout(get_compile_command(compiler, 'merge_diff'), work_folder)
|
||||
|
||||
# <---------- 检查结果 ----------->
|
||||
results_ = ""
|
||||
|
||||
@@ -1,13 +1,15 @@
|
||||
from toolbox import update_ui, get_conf, promote_file_to_downloadzone, update_ui_lastest_msg, generate_file_link
|
||||
from shared_utils.docker_as_service_api import stream_daas
|
||||
from shared_utils.docker_as_service_api import DockerServiceApiComModel
|
||||
import random
|
||||
|
||||
def download_video(video_id, only_audio, user_name, chatbot, history):
|
||||
from toolbox import get_log_folder
|
||||
chatbot.append([None, "Processing..."])
|
||||
yield from update_ui(chatbot, history)
|
||||
client_command = f'{video_id} --audio-only' if only_audio else video_id
|
||||
server_url = get_conf('DAAS_SERVER_URL')
|
||||
server_urls = get_conf('DAAS_SERVER_URLS')
|
||||
server_url = random.choice(server_urls)
|
||||
docker_service_api_com_model = DockerServiceApiComModel(client_command=client_command)
|
||||
save_file_dir = get_log_folder(user_name, plugin_name='media_downloader')
|
||||
for output_manifest in stream_daas(docker_service_api_com_model, server_url, save_file_dir):
|
||||
@@ -31,7 +33,9 @@ def download_video(video_id, only_audio, user_name, chatbot, history):
|
||||
def search_videos(keywords):
|
||||
from toolbox import get_log_folder
|
||||
client_command = keywords
|
||||
server_url = get_conf('DAAS_SERVER_URL').replace('stream', 'search')
|
||||
server_urls = get_conf('DAAS_SERVER_URLS')
|
||||
server_url = random.choice(server_urls)
|
||||
server_url = server_url.replace('stream', 'search')
|
||||
docker_service_api_com_model = DockerServiceApiComModel(client_command=client_command)
|
||||
save_file_dir = get_log_folder("default_user", plugin_name='media_downloader')
|
||||
for output_manifest in stream_daas(docker_service_api_com_model, server_url, save_file_dir):
|
||||
|
||||
@@ -6,75 +6,128 @@ from crazy_functions.crazy_utils import get_files_from_everything
|
||||
from shared_utils.colorful import *
|
||||
from loguru import logger
|
||||
import os
|
||||
import requests
|
||||
import time
|
||||
|
||||
def refresh_key(doc2x_api_key):
|
||||
import requests, json
|
||||
url = "https://api.doc2x.noedgeai.com/api/token/refresh"
|
||||
res = requests.post(
|
||||
url,
|
||||
headers={"Authorization": "Bearer " + doc2x_api_key}
|
||||
)
|
||||
res_json = []
|
||||
if res.status_code == 200:
|
||||
decoded = res.content.decode("utf-8")
|
||||
res_json = json.loads(decoded)
|
||||
doc2x_api_key = res_json['data']['token']
|
||||
else:
|
||||
raise RuntimeError(format("[ERROR] status code: %d, body: %s" % (res.status_code, res.text)))
|
||||
return doc2x_api_key
|
||||
|
||||
def retry_request(max_retries=3, delay=3):
|
||||
"""
|
||||
Decorator for retrying HTTP requests
|
||||
Args:
|
||||
max_retries: Maximum number of retry attempts
|
||||
delay: Delay between retries in seconds
|
||||
"""
|
||||
|
||||
def decorator(func):
|
||||
def wrapper(*args, **kwargs):
|
||||
for attempt in range(max_retries):
|
||||
try:
|
||||
return func(*args, **kwargs)
|
||||
except Exception as e:
|
||||
if attempt < max_retries - 1:
|
||||
logger.error(
|
||||
f"Request failed, retrying... ({attempt + 1}/{max_retries}) Error: {e}"
|
||||
)
|
||||
time.sleep(delay)
|
||||
continue
|
||||
raise e
|
||||
return None
|
||||
|
||||
return wrapper
|
||||
|
||||
return decorator
|
||||
|
||||
|
||||
@retry_request()
|
||||
def make_request(method, url, **kwargs):
|
||||
"""
|
||||
Make HTTP request with retry mechanism
|
||||
"""
|
||||
return requests.request(method, url, **kwargs)
|
||||
|
||||
|
||||
def doc2x_api_response_status(response, uid=""):
|
||||
"""
|
||||
Check the status of Doc2x API response
|
||||
Args:
|
||||
response_data: Response object from Doc2x API
|
||||
"""
|
||||
response_json = response.json()
|
||||
response_data = response_json.get("data", {})
|
||||
code = response_json.get("code", "Unknown")
|
||||
meg = response_data.get("message", response_json)
|
||||
trace_id = response.headers.get("trace-id", "Failed to get trace-id")
|
||||
if response.status_code != 200:
|
||||
raise RuntimeError(
|
||||
f"Doc2x return an error:\nTrace ID: {trace_id} {uid}\n{response.status_code} - {response_json}"
|
||||
)
|
||||
if code in ["parse_page_limit_exceeded", "parse_concurrency_limit"]:
|
||||
raise RuntimeError(
|
||||
f"Reached the limit of Doc2x:\nTrace ID: {trace_id} {uid}\n{code} - {meg}"
|
||||
)
|
||||
if code not in ["ok", "success"]:
|
||||
raise RuntimeError(
|
||||
f"Doc2x return an error:\nTrace ID: {trace_id} {uid}\n{code} - {meg}"
|
||||
)
|
||||
return response_data
|
||||
|
||||
|
||||
def 解析PDF_DOC2X_转Latex(pdf_file_path):
|
||||
zip_file_path, unzipped_folder = 解析PDF_DOC2X(pdf_file_path, format='tex')
|
||||
zip_file_path, unzipped_folder = 解析PDF_DOC2X(pdf_file_path, format="tex")
|
||||
return unzipped_folder
|
||||
|
||||
|
||||
def 解析PDF_DOC2X(pdf_file_path, format='tex'):
|
||||
def 解析PDF_DOC2X(pdf_file_path, format="tex"):
|
||||
"""
|
||||
format: 'tex', 'md', 'docx'
|
||||
format: 'tex', 'md', 'docx'
|
||||
"""
|
||||
import requests, json, os
|
||||
DOC2X_API_KEY = get_conf('DOC2X_API_KEY')
|
||||
|
||||
DOC2X_API_KEY = get_conf("DOC2X_API_KEY")
|
||||
latex_dir = get_log_folder(plugin_name="pdf_ocr_latex")
|
||||
markdown_dir = get_log_folder(plugin_name="pdf_ocr")
|
||||
doc2x_api_key = DOC2X_API_KEY
|
||||
|
||||
# < ------ 第1步:预上传获取URL,然后上传文件 ------ >
|
||||
logger.info("Doc2x 上传文件:预上传获取URL")
|
||||
res = make_request(
|
||||
"POST",
|
||||
"https://v2.doc2x.noedgeai.com/api/v2/parse/preupload",
|
||||
headers={"Authorization": "Bearer " + doc2x_api_key},
|
||||
timeout=15,
|
||||
)
|
||||
res_data = doc2x_api_response_status(res)
|
||||
upload_url = res_data["url"]
|
||||
uuid = res_data["uid"]
|
||||
|
||||
# < ------ 第1步:上传 ------ >
|
||||
logger.info("Doc2x 第1步:上传")
|
||||
with open(pdf_file_path, 'rb') as file:
|
||||
res = requests.post(
|
||||
"https://v2.doc2x.noedgeai.com/api/v2/parse/pdf",
|
||||
headers={"Authorization": "Bearer " + doc2x_api_key},
|
||||
data=file
|
||||
)
|
||||
# res_json = []
|
||||
if res.status_code == 200:
|
||||
res_json = res.json()
|
||||
else:
|
||||
raise RuntimeError(f"Doc2x return an error: {res.json()}")
|
||||
uuid = res_json['data']['uid']
|
||||
logger.info("Doc2x 上传文件:上传文件")
|
||||
with open(pdf_file_path, "rb") as file:
|
||||
res = make_request("PUT", upload_url, data=file, timeout=60)
|
||||
res.raise_for_status()
|
||||
|
||||
# < ------ 第2步:轮询等待 ------ >
|
||||
logger.info("Doc2x 第2步:轮询等待")
|
||||
params = {'uid': uuid}
|
||||
while True:
|
||||
res = requests.get(
|
||||
'https://v2.doc2x.noedgeai.com/api/v2/parse/status',
|
||||
logger.info("Doc2x 处理文件中:轮询等待")
|
||||
params = {"uid": uuid}
|
||||
max_attempts = 60
|
||||
attempt = 0
|
||||
while attempt < max_attempts:
|
||||
res = make_request(
|
||||
"GET",
|
||||
"https://v2.doc2x.noedgeai.com/api/v2/parse/status",
|
||||
headers={"Authorization": "Bearer " + doc2x_api_key},
|
||||
params=params
|
||||
params=params,
|
||||
timeout=15,
|
||||
)
|
||||
res_json = res.json()
|
||||
if res_json['data']['status'] == "success":
|
||||
res_data = doc2x_api_response_status(res)
|
||||
if res_data["status"] == "success":
|
||||
break
|
||||
elif res_json['data']['status'] == "processing":
|
||||
time.sleep(3)
|
||||
logger.info(f"Doc2x is processing at {res_json['data']['progress']}%")
|
||||
elif res_json['data']['status'] == "failed":
|
||||
raise RuntimeError(f"Doc2x return an error: {res_json}")
|
||||
|
||||
elif res_data["status"] == "processing":
|
||||
time.sleep(5)
|
||||
logger.info(f"Doc2x is processing at {res_data['progress']}%")
|
||||
attempt += 1
|
||||
else:
|
||||
raise RuntimeError(f"Doc2x return an error: {res_data}")
|
||||
if attempt >= max_attempts:
|
||||
raise RuntimeError("Doc2x processing timeout after maximum attempts")
|
||||
|
||||
# < ------ 第3步:提交转化 ------ >
|
||||
logger.info("Doc2x 第3步:提交转化")
|
||||
@@ -84,42 +137,44 @@ def 解析PDF_DOC2X(pdf_file_path, format='tex'):
|
||||
"formula_mode": "dollar",
|
||||
"filename": "output"
|
||||
}
|
||||
res = requests.post(
|
||||
'https://v2.doc2x.noedgeai.com/api/v2/convert/parse',
|
||||
res = make_request(
|
||||
"POST",
|
||||
"https://v2.doc2x.noedgeai.com/api/v2/convert/parse",
|
||||
headers={"Authorization": "Bearer " + doc2x_api_key},
|
||||
json=data
|
||||
json=data,
|
||||
timeout=15,
|
||||
)
|
||||
if res.status_code == 200:
|
||||
res_json = res.json()
|
||||
else:
|
||||
raise RuntimeError(f"Doc2x return an error: {res.json()}")
|
||||
|
||||
doc2x_api_response_status(res, uid=f"uid: {uuid}")
|
||||
|
||||
# < ------ 第4步:等待结果 ------ >
|
||||
logger.info("Doc2x 第4步:等待结果")
|
||||
params = {'uid': uuid}
|
||||
while True:
|
||||
res = requests.get(
|
||||
'https://v2.doc2x.noedgeai.com/api/v2/convert/parse/result',
|
||||
params = {"uid": uuid}
|
||||
max_attempts = 36
|
||||
attempt = 0
|
||||
while attempt < max_attempts:
|
||||
res = make_request(
|
||||
"GET",
|
||||
"https://v2.doc2x.noedgeai.com/api/v2/convert/parse/result",
|
||||
headers={"Authorization": "Bearer " + doc2x_api_key},
|
||||
params=params
|
||||
params=params,
|
||||
timeout=15,
|
||||
)
|
||||
res_json = res.json()
|
||||
if res_json['data']['status'] == "success":
|
||||
res_data = doc2x_api_response_status(res, uid=f"uid: {uuid}")
|
||||
if res_data["status"] == "success":
|
||||
break
|
||||
elif res_json['data']['status'] == "processing":
|
||||
elif res_data["status"] == "processing":
|
||||
time.sleep(3)
|
||||
logger.info(f"Doc2x still processing")
|
||||
elif res_json['data']['status'] == "failed":
|
||||
raise RuntimeError(f"Doc2x return an error: {res_json}")
|
||||
|
||||
logger.info("Doc2x still processing to convert file")
|
||||
attempt += 1
|
||||
if attempt >= max_attempts:
|
||||
raise RuntimeError("Doc2x conversion timeout after maximum attempts")
|
||||
|
||||
# < ------ 第5步:最后的处理 ------ >
|
||||
logger.info("Doc2x 第5步:最后的处理")
|
||||
logger.info("Doc2x 第5步:下载转换后的文件")
|
||||
|
||||
if format=='tex':
|
||||
if format == "tex":
|
||||
target_path = latex_dir
|
||||
if format=='md':
|
||||
if format == "md":
|
||||
target_path = markdown_dir
|
||||
os.makedirs(target_path, exist_ok=True)
|
||||
|
||||
@@ -127,17 +182,18 @@ def 解析PDF_DOC2X(pdf_file_path, format='tex'):
|
||||
# < ------ 下载 ------ >
|
||||
for attempt in range(max_attempt):
|
||||
try:
|
||||
result_url = res_json['data']['url']
|
||||
res = requests.get(result_url)
|
||||
zip_path = os.path.join(target_path, gen_time_str() + '.zip')
|
||||
result_url = res_data["url"]
|
||||
res = make_request("GET", result_url, timeout=60)
|
||||
zip_path = os.path.join(target_path, gen_time_str() + ".zip")
|
||||
unzip_path = os.path.join(target_path, gen_time_str())
|
||||
if res.status_code == 200:
|
||||
with open(zip_path, "wb") as f: f.write(res.content)
|
||||
with open(zip_path, "wb") as f:
|
||||
f.write(res.content)
|
||||
else:
|
||||
raise RuntimeError(f"Doc2x return an error: {res.json()}")
|
||||
except Exception as e:
|
||||
if attempt < max_attempt - 1:
|
||||
logger.error(f"Failed to download latex file, retrying... {e}")
|
||||
logger.error(f"Failed to download uid = {uuid} file, retrying... {e}")
|
||||
time.sleep(3)
|
||||
continue
|
||||
else:
|
||||
@@ -145,22 +201,31 @@ def 解析PDF_DOC2X(pdf_file_path, format='tex'):
|
||||
|
||||
# < ------ 解压 ------ >
|
||||
import zipfile
|
||||
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
||||
with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
||||
zip_ref.extractall(unzip_path)
|
||||
return zip_path, unzip_path
|
||||
|
||||
|
||||
def 解析PDF_DOC2X_单文件(fp, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, DOC2X_API_KEY, user_request):
|
||||
|
||||
def 解析PDF_DOC2X_单文件(
|
||||
fp,
|
||||
project_folder,
|
||||
llm_kwargs,
|
||||
plugin_kwargs,
|
||||
chatbot,
|
||||
history,
|
||||
system_prompt,
|
||||
DOC2X_API_KEY,
|
||||
user_request,
|
||||
):
|
||||
def pdf2markdown(filepath):
|
||||
chatbot.append((None, f"Doc2x 解析中"))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
md_zip_path, unzipped_folder = 解析PDF_DOC2X(filepath, format='md')
|
||||
md_zip_path, unzipped_folder = 解析PDF_DOC2X(filepath, format="md")
|
||||
|
||||
promote_file_to_downloadzone(md_zip_path, chatbot=chatbot)
|
||||
chatbot.append((None, f"完成解析 {md_zip_path} ..."))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return md_zip_path
|
||||
|
||||
def deliver_to_markdown_plugin(md_zip_path, user_request):
|
||||
@@ -174,77 +239,97 @@ def 解析PDF_DOC2X_单文件(fp, project_folder, llm_kwargs, plugin_kwargs, cha
|
||||
os.makedirs(target_path_base, exist_ok=True)
|
||||
shutil.copyfile(md_zip_path, this_file_path)
|
||||
ex_folder = this_file_path + ".extract"
|
||||
extract_archive(
|
||||
file_path=this_file_path, dest_dir=ex_folder
|
||||
)
|
||||
extract_archive(file_path=this_file_path, dest_dir=ex_folder)
|
||||
|
||||
# edit markdown files
|
||||
success, file_manifest, project_folder = get_files_from_everything(ex_folder, type='.md')
|
||||
success, file_manifest, project_folder = get_files_from_everything(
|
||||
ex_folder, type=".md"
|
||||
)
|
||||
for generated_fp in file_manifest:
|
||||
# 修正一些公式问题
|
||||
with open(generated_fp, 'r', encoding='utf8') as f:
|
||||
with open(generated_fp, "r", encoding="utf8") as f:
|
||||
content = f.read()
|
||||
# 将公式中的\[ \]替换成$$
|
||||
content = content.replace(r'\[', r'$$').replace(r'\]', r'$$')
|
||||
content = content.replace(r"\[", r"$$").replace(r"\]", r"$$")
|
||||
# 将公式中的\( \)替换成$
|
||||
content = content.replace(r'\(', r'$').replace(r'\)', r'$')
|
||||
content = content.replace('```markdown', '\n').replace('```', '\n')
|
||||
with open(generated_fp, 'w', encoding='utf8') as f:
|
||||
content = content.replace(r"\(", r"$").replace(r"\)", r"$")
|
||||
content = content.replace("```markdown", "\n").replace("```", "\n")
|
||||
with open(generated_fp, "w", encoding="utf8") as f:
|
||||
f.write(content)
|
||||
promote_file_to_downloadzone(generated_fp, chatbot=chatbot)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 生成在线预览html
|
||||
file_name = '在线预览翻译(原文)' + gen_time_str() + '.html'
|
||||
file_name = "在线预览翻译(原文)" + gen_time_str() + ".html"
|
||||
preview_fp = os.path.join(ex_folder, file_name)
|
||||
from shared_utils.advanced_markdown_format import markdown_convertion_for_file
|
||||
from shared_utils.advanced_markdown_format import (
|
||||
markdown_convertion_for_file,
|
||||
)
|
||||
|
||||
with open(generated_fp, "r", encoding="utf-8") as f:
|
||||
md = f.read()
|
||||
# # Markdown中使用不标准的表格,需要在表格前加上一个emoji,以便公式渲染
|
||||
# md = re.sub(r'^<table>', r'.<table>', md, flags=re.MULTILINE)
|
||||
html = markdown_convertion_for_file(md)
|
||||
with open(preview_fp, "w", encoding="utf-8") as f: f.write(html)
|
||||
with open(preview_fp, "w", encoding="utf-8") as f:
|
||||
f.write(html)
|
||||
chatbot.append([None, f"生成在线预览:{generate_file_link([preview_fp])}"])
|
||||
promote_file_to_downloadzone(preview_fp, chatbot=chatbot)
|
||||
|
||||
|
||||
|
||||
chatbot.append((None, f"调用Markdown插件 {ex_folder} ..."))
|
||||
plugin_kwargs['markdown_expected_output_dir'] = ex_folder
|
||||
plugin_kwargs["markdown_expected_output_dir"] = ex_folder
|
||||
|
||||
translated_f_name = 'translated_markdown.md'
|
||||
generated_fp = plugin_kwargs['markdown_expected_output_path'] = os.path.join(ex_folder, translated_f_name)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
yield from Markdown英译中(ex_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||
translated_f_name = "translated_markdown.md"
|
||||
generated_fp = plugin_kwargs["markdown_expected_output_path"] = os.path.join(
|
||||
ex_folder, translated_f_name
|
||||
)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
yield from Markdown英译中(
|
||||
ex_folder,
|
||||
llm_kwargs,
|
||||
plugin_kwargs,
|
||||
chatbot,
|
||||
history,
|
||||
system_prompt,
|
||||
user_request,
|
||||
)
|
||||
if os.path.exists(generated_fp):
|
||||
# 修正一些公式问题
|
||||
with open(generated_fp, 'r', encoding='utf8') as f: content = f.read()
|
||||
content = content.replace('```markdown', '\n').replace('```', '\n')
|
||||
with open(generated_fp, "r", encoding="utf8") as f:
|
||||
content = f.read()
|
||||
content = content.replace("```markdown", "\n").replace("```", "\n")
|
||||
# Markdown中使用不标准的表格,需要在表格前加上一个emoji,以便公式渲染
|
||||
# content = re.sub(r'^<table>', r'.<table>', content, flags=re.MULTILINE)
|
||||
with open(generated_fp, 'w', encoding='utf8') as f: f.write(content)
|
||||
with open(generated_fp, "w", encoding="utf8") as f:
|
||||
f.write(content)
|
||||
# 生成在线预览html
|
||||
file_name = '在线预览翻译' + gen_time_str() + '.html'
|
||||
file_name = "在线预览翻译" + gen_time_str() + ".html"
|
||||
preview_fp = os.path.join(ex_folder, file_name)
|
||||
from shared_utils.advanced_markdown_format import markdown_convertion_for_file
|
||||
from shared_utils.advanced_markdown_format import (
|
||||
markdown_convertion_for_file,
|
||||
)
|
||||
|
||||
with open(generated_fp, "r", encoding="utf-8") as f:
|
||||
md = f.read()
|
||||
html = markdown_convertion_for_file(md)
|
||||
with open(preview_fp, "w", encoding="utf-8") as f: f.write(html)
|
||||
with open(preview_fp, "w", encoding="utf-8") as f:
|
||||
f.write(html)
|
||||
promote_file_to_downloadzone(preview_fp, chatbot=chatbot)
|
||||
# 生成包含图片的压缩包
|
||||
dest_folder = get_log_folder(chatbot.get_user())
|
||||
zip_name = '翻译后的带图文档.zip'
|
||||
zip_folder(source_folder=ex_folder, dest_folder=dest_folder, zip_name=zip_name)
|
||||
zip_name = "翻译后的带图文档.zip"
|
||||
zip_folder(
|
||||
source_folder=ex_folder, dest_folder=dest_folder, zip_name=zip_name
|
||||
)
|
||||
zip_fp = os.path.join(dest_folder, zip_name)
|
||||
promote_file_to_downloadzone(zip_fp, chatbot=chatbot)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
md_zip_path = yield from pdf2markdown(fp)
|
||||
yield from deliver_to_markdown_plugin(md_zip_path, user_request)
|
||||
|
||||
|
||||
def 解析PDF_基于DOC2X(file_manifest, *args):
|
||||
for index, fp in enumerate(file_manifest):
|
||||
yield from 解析PDF_DOC2X_单文件(fp, *args)
|
||||
return
|
||||
|
||||
|
||||
|
||||
@@ -5,6 +5,10 @@ FROM fuqingxu/11.3.1-runtime-ubuntu20.04-with-texlive:latest
|
||||
|
||||
# edge-tts需要的依赖,某些pip包所需的依赖
|
||||
RUN apt update && apt install ffmpeg build-essential -y
|
||||
RUN apt-get install -y fontconfig
|
||||
RUN ln -s /usr/local/texlive/2023/texmf-dist/fonts/truetype /usr/share/fonts/truetype/texlive
|
||||
RUN fc-cache -fv
|
||||
RUN apt-get clean
|
||||
|
||||
# use python3 as the system default python
|
||||
WORKDIR /gpt
|
||||
@@ -30,7 +34,7 @@ RUN python3 -m pip install -r request_llms/requirements_qwen.txt
|
||||
RUN python3 -m pip install -r request_llms/requirements_chatglm.txt
|
||||
RUN python3 -m pip install -r request_llms/requirements_newbing.txt
|
||||
RUN python3 -m pip install nougat-ocr
|
||||
|
||||
RUN python3 -m pip cache purge
|
||||
|
||||
# 预热Tiktoken模块
|
||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||
|
||||
@@ -7,6 +7,7 @@ RUN apt-get install -y git python python3 python-dev python3-dev --fix-missing
|
||||
|
||||
# edge-tts需要的依赖,某些pip包所需的依赖
|
||||
RUN apt update && apt install ffmpeg build-essential -y
|
||||
RUN apt-get clean
|
||||
|
||||
# use python3 as the system default python
|
||||
RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.8
|
||||
@@ -22,6 +23,7 @@ RUN python3 -m pip install -r request_llms/requirements_moss.txt
|
||||
RUN python3 -m pip install -r request_llms/requirements_qwen.txt
|
||||
RUN python3 -m pip install -r request_llms/requirements_chatglm.txt
|
||||
RUN python3 -m pip install -r request_llms/requirements_newbing.txt
|
||||
RUN python3 -m pip cache purge
|
||||
|
||||
|
||||
# 预热Tiktoken模块
|
||||
|
||||
@@ -18,5 +18,7 @@ RUN apt update && apt install ffmpeg -y
|
||||
# 可选步骤,用于预热模块
|
||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||
|
||||
RUN python3 -m pip cache purge && apt-get clean
|
||||
|
||||
# 启动
|
||||
CMD ["python3", "-u", "main.py"]
|
||||
|
||||
@@ -30,5 +30,7 @@ COPY --chown=gptuser:gptuser . .
|
||||
# 可选步骤,用于预热模块
|
||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||
|
||||
RUN python3 -m pip cache purge
|
||||
|
||||
# 启动
|
||||
CMD ["python3", "-u", "main.py"]
|
||||
|
||||
@@ -24,6 +24,8 @@ RUN apt update && apt install ffmpeg -y
|
||||
|
||||
# 可选步骤,用于预热模块
|
||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||
RUN python3 -m pip cache purge && apt-get clean
|
||||
|
||||
|
||||
# 启动
|
||||
CMD ["python3", "-u", "main.py"]
|
||||
|
||||
26
docs/WindowsRun.bat
Normal file
26
docs/WindowsRun.bat
Normal file
@@ -0,0 +1,26 @@
|
||||
@echo off
|
||||
setlocal
|
||||
|
||||
:: 设置环境变量
|
||||
set ENV_NAME=gpt
|
||||
set ENV_PATH=%~dp0%ENV_NAME%
|
||||
set SCRIPT_PATH=%~dp0main.py
|
||||
|
||||
:: 判断环境是否已解压
|
||||
if not exist "%ENV_PATH%" (
|
||||
echo Extracting environment...
|
||||
mkdir "%ENV_PATH%"
|
||||
tar -xzf gpt.tar.gz -C "%ENV_PATH%"
|
||||
|
||||
:: 运行conda环境激活脚本
|
||||
call "%ENV_PATH%\Scripts\activate.bat"
|
||||
) else (
|
||||
:: 如果环境已存在,直接激活
|
||||
call "%ENV_PATH%\Scripts\activate.bat"
|
||||
)
|
||||
echo Start to run program:
|
||||
:: 运行Python脚本
|
||||
python "%SCRIPT_PATH%"
|
||||
|
||||
endlocal
|
||||
pause
|
||||
36
main.py
36
main.py
@@ -1,10 +1,7 @@
|
||||
import os, json; os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
|
||||
import os; os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
|
||||
|
||||
help_menu_description = \
|
||||
"""Github源代码开源和更新[地址🚀](https://github.com/binary-husky/gpt_academic),
|
||||
感谢热情的[开发者们❤️](https://github.com/binary-husky/gpt_academic/graphs/contributors).
|
||||
</br></br>常见问题请查阅[项目Wiki](https://github.com/binary-husky/gpt_academic/wiki),
|
||||
如遇到Bug请前往[Bug反馈](https://github.com/binary-husky/gpt_academic/issues).
|
||||
"""
|
||||
</br></br>普通对话使用说明: 1. 输入问题; 2. 点击提交
|
||||
</br></br>基础功能区使用说明: 1. 输入文本; 2. 点击任意基础功能区按钮
|
||||
</br></br>函数插件区使用说明: 1. 输入路径/问题, 或者上传文件; 2. 点击任意函数插件区按钮
|
||||
@@ -34,7 +31,7 @@ def encode_plugin_info(k, plugin)->str:
|
||||
|
||||
def main():
|
||||
import gradio as gr
|
||||
if gr.__version__ not in ['3.32.9', '3.32.10', '3.32.11']:
|
||||
if gr.__version__ not in ['3.32.12']:
|
||||
raise ModuleNotFoundError("使用项目内置Gradio获取最优体验! 请运行 `pip install -r requirements.txt` 指令安装内置Gradio及其他依赖, 详情信息见requirements.txt.")
|
||||
|
||||
# 一些基础工具
|
||||
@@ -49,7 +46,7 @@ def main():
|
||||
# 读取配置
|
||||
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION = get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION')
|
||||
CHATBOT_HEIGHT, LAYOUT, AVAIL_LLM_MODELS, AUTO_CLEAR_TXT = get_conf('CHATBOT_HEIGHT', 'LAYOUT', 'AVAIL_LLM_MODELS', 'AUTO_CLEAR_TXT')
|
||||
ENABLE_AUDIO, AUTO_CLEAR_TXT, PATH_LOGGING, AVAIL_THEMES, THEME, ADD_WAIFU = get_conf('ENABLE_AUDIO', 'AUTO_CLEAR_TXT', 'PATH_LOGGING', 'AVAIL_THEMES', 'THEME', 'ADD_WAIFU')
|
||||
ENABLE_AUDIO, AUTO_CLEAR_TXT, AVAIL_FONTS, AVAIL_THEMES, THEME, ADD_WAIFU = get_conf('ENABLE_AUDIO', 'AUTO_CLEAR_TXT', 'AVAIL_FONTS', 'AVAIL_THEMES', 'THEME', 'ADD_WAIFU')
|
||||
NUM_CUSTOM_BASIC_BTN, SSL_KEYFILE, SSL_CERTFILE = get_conf('NUM_CUSTOM_BASIC_BTN', 'SSL_KEYFILE', 'SSL_CERTFILE')
|
||||
DARK_MODE, INIT_SYS_PROMPT, ADD_WAIFU, TTS_TYPE = get_conf('DARK_MODE', 'INIT_SYS_PROMPT', 'ADD_WAIFU', 'TTS_TYPE')
|
||||
if LLM_MODEL not in AVAIL_LLM_MODELS: AVAIL_LLM_MODELS += [LLM_MODEL]
|
||||
@@ -57,8 +54,8 @@ def main():
|
||||
# 如果WEB_PORT是-1, 则随机选取WEB端口
|
||||
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
|
||||
from check_proxy import get_current_version
|
||||
from themes.theme import adjust_theme, advanced_css, theme_declaration, js_code_clear, js_code_reset, js_code_show_or_hide, js_code_show_or_hide_group2
|
||||
from themes.theme import js_code_for_toggle_darkmode, js_code_for_persistent_cookie_init
|
||||
from themes.theme import adjust_theme, advanced_css, theme_declaration, js_code_clear, js_code_show_or_hide
|
||||
from themes.theme import js_code_for_toggle_darkmode
|
||||
from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, assign_user_uuid
|
||||
title_html = f"<h1 align=\"center\">GPT 学术优化 {get_current_version()}</h1>{theme_declaration}"
|
||||
|
||||
@@ -106,7 +103,7 @@ def main():
|
||||
with gr_L2(scale=2, elem_id="gpt-chat"):
|
||||
chatbot = gr.Chatbot(label=f"当前模型:{LLM_MODEL}", elem_id="gpt-chatbot")
|
||||
if LAYOUT == "TOP-DOWN": chatbot.style(height=CHATBOT_HEIGHT)
|
||||
history, history_cache, history_cache_update = make_history_cache() # 定义 后端state(history)、前端(history_cache)、后端setter(history_cache_update)三兄弟
|
||||
history, _, _ = make_history_cache() # 定义 后端state(history)、前端(history_cache)、后端setter(history_cache_update)三兄弟
|
||||
with gr_L2(scale=1, elem_id="gpt-panel"):
|
||||
with gr.Accordion("输入区", open=True, elem_id="input-panel") as area_input_primary:
|
||||
with gr.Row():
|
||||
@@ -174,16 +171,20 @@ def main():
|
||||
with gr.Accordion("点击展开“文件下载区”。", open=False) as area_file_up:
|
||||
file_upload = gr.Files(label="任何文件, 推荐上传压缩文件(zip, tar)", file_count="multiple", elem_id="elem_upload")
|
||||
|
||||
|
||||
# 左上角工具栏定义
|
||||
from themes.gui_toolbar import define_gui_toolbar
|
||||
checkboxes, checkboxes_2, max_length_sl, theme_dropdown, system_prompt, file_upload_2, md_dropdown, top_p, temperature = \
|
||||
define_gui_toolbar(AVAIL_LLM_MODELS, LLM_MODEL, INIT_SYS_PROMPT, THEME, AVAIL_THEMES, ADD_WAIFU, help_menu_description, js_code_for_toggle_darkmode)
|
||||
define_gui_toolbar(AVAIL_LLM_MODELS, LLM_MODEL, INIT_SYS_PROMPT, THEME, AVAIL_THEMES, AVAIL_FONTS, ADD_WAIFU, help_menu_description, js_code_for_toggle_darkmode)
|
||||
|
||||
# 浮动菜单定义
|
||||
from themes.gui_floating_menu import define_gui_floating_menu
|
||||
area_input_secondary, txt2, area_customize, _, resetBtn2, clearBtn2, stopBtn2 = \
|
||||
define_gui_floating_menu(customize_btns, functional, predefined_btns, cookies, web_cookie_cache)
|
||||
|
||||
# 浮动时间线定义
|
||||
gr.Spark()
|
||||
|
||||
# 插件二级菜单的实现
|
||||
from themes.gui_advanced_plugin_class import define_gui_advanced_plugin_class
|
||||
new_plugin_callback, route_switchy_bt_with_arg, usr_confirmed_arg = \
|
||||
@@ -206,14 +207,14 @@ def main():
|
||||
ret.update({area_customize: gr.update(visible=("自定义菜单" in a))})
|
||||
return ret
|
||||
checkboxes_2.select(fn_area_visibility_2, [checkboxes_2], [area_customize] )
|
||||
checkboxes_2.select(None, [checkboxes_2], None, _js=js_code_show_or_hide_group2)
|
||||
checkboxes_2.select(None, [checkboxes_2], None, _js="""apply_checkbox_change_for_group2""")
|
||||
|
||||
# 整理反复出现的控件句柄组合
|
||||
input_combo = [cookies, max_length_sl, md_dropdown, txt, txt2, top_p, temperature, chatbot, history, system_prompt, plugin_advanced_arg]
|
||||
input_combo_order = ["cookies", "max_length_sl", "md_dropdown", "txt", "txt2", "top_p", "temperature", "chatbot", "history", "system_prompt", "plugin_advanced_arg"]
|
||||
output_combo = [cookies, chatbot, history, status]
|
||||
predict_args = dict(fn=ArgsGeneralWrapper(predict), inputs=[*input_combo, gr.State(True)], outputs=output_combo)
|
||||
|
||||
|
||||
# 提交按钮、重置按钮
|
||||
multiplex_submit_btn.click(
|
||||
None, [multiplex_sel], None, _js="""(multiplex_sel)=>multiplex_function_begin(multiplex_sel)""")
|
||||
@@ -222,11 +223,8 @@ def main():
|
||||
multiplex_sel.select(
|
||||
None, [multiplex_sel], None, _js=f"""(multiplex_sel)=>run_multiplex_shift(multiplex_sel)""")
|
||||
cancel_handles.append(submit_btn.click(**predict_args))
|
||||
resetBtn.click(None, None, [chatbot, history, status], _js=js_code_reset) # 先在前端快速清除chatbot&status
|
||||
resetBtn2.click(None, None, [chatbot, history, status], _js=js_code_reset) # 先在前端快速清除chatbot&status
|
||||
reset_server_side_args = (lambda history: ([], [], "已重置", json.dumps(history)), [history], [chatbot, history, status, history_cache])
|
||||
resetBtn.click(*reset_server_side_args) # 再在后端清除history,把history转存history_cache备用
|
||||
resetBtn2.click(*reset_server_side_args) # 再在后端清除history,把history转存history_cache备用
|
||||
resetBtn.click(None, None, [chatbot, history, status], _js= """clear_conversation""") # 先在前端快速清除chatbot&status
|
||||
resetBtn2.click(None, None, [chatbot, history, status], _js="""clear_conversation""") # 先在前端快速清除chatbot&status
|
||||
clearBtn.click(None, None, [txt, txt2], _js=js_code_clear)
|
||||
clearBtn2.click(None, None, [txt, txt2], _js=js_code_clear)
|
||||
if AUTO_CLEAR_TXT:
|
||||
@@ -326,7 +324,7 @@ def main():
|
||||
from shared_utils.cookie_manager import load_web_cookie_cache__fn_builder
|
||||
load_web_cookie_cache = load_web_cookie_cache__fn_builder(customize_btns, cookies, predefined_btns)
|
||||
app_block.load(load_web_cookie_cache, inputs = [web_cookie_cache, cookies],
|
||||
outputs = [web_cookie_cache, cookies, *customize_btns.values(), *predefined_btns.values()], _js=js_code_for_persistent_cookie_init)
|
||||
outputs = [web_cookie_cache, cookies, *customize_btns.values(), *predefined_btns.values()], _js="""persistent_cookie_init""")
|
||||
app_block.load(None, inputs=[], outputs=None, _js=f"""()=>GptAcademicJavaScriptInit("{DARK_MODE}","{INIT_SYS_PROMPT}","{ADD_WAIFU}","{LAYOUT}","{TTS_TYPE}")""") # 配置暗色主题或亮色主题
|
||||
app_block.load(None, inputs=[], outputs=None, _js="""()=>{REP}""".replace("REP", register_advanced_plugin_init_arr))
|
||||
|
||||
|
||||
@@ -26,6 +26,9 @@ from .bridge_chatglm import predict as chatglm_ui
|
||||
from .bridge_chatglm3 import predict_no_ui_long_connection as chatglm3_noui
|
||||
from .bridge_chatglm3 import predict as chatglm3_ui
|
||||
|
||||
from .bridge_chatglm4 import predict_no_ui_long_connection as chatglm4_noui
|
||||
from .bridge_chatglm4 import predict as chatglm4_ui
|
||||
|
||||
from .bridge_qianfan import predict_no_ui_long_connection as qianfan_noui
|
||||
from .bridge_qianfan import predict as qianfan_ui
|
||||
|
||||
@@ -76,6 +79,7 @@ cohere_endpoint = "https://api.cohere.ai/v1/chat"
|
||||
ollama_endpoint = "http://localhost:11434/api/chat"
|
||||
yimodel_endpoint = "https://api.lingyiwanwu.com/v1/chat/completions"
|
||||
deepseekapi_endpoint = "https://api.deepseek.com/v1/chat/completions"
|
||||
grok_model_endpoint = "https://api.x.ai/v1/chat/completions"
|
||||
|
||||
if not AZURE_ENDPOINT.endswith('/'): AZURE_ENDPOINT += '/'
|
||||
azure_endpoint = AZURE_ENDPOINT + f'openai/deployments/{AZURE_ENGINE}/chat/completions?api-version=2023-05-15'
|
||||
@@ -97,6 +101,7 @@ if cohere_endpoint in API_URL_REDIRECT: cohere_endpoint = API_URL_REDIRECT[coher
|
||||
if ollama_endpoint in API_URL_REDIRECT: ollama_endpoint = API_URL_REDIRECT[ollama_endpoint]
|
||||
if yimodel_endpoint in API_URL_REDIRECT: yimodel_endpoint = API_URL_REDIRECT[yimodel_endpoint]
|
||||
if deepseekapi_endpoint in API_URL_REDIRECT: deepseekapi_endpoint = API_URL_REDIRECT[deepseekapi_endpoint]
|
||||
if grok_model_endpoint in API_URL_REDIRECT: grok_model_endpoint = API_URL_REDIRECT[grok_model_endpoint]
|
||||
|
||||
# 获取tokenizer
|
||||
tokenizer_gpt35 = LazyloadTiktoken("gpt-3.5-turbo")
|
||||
@@ -268,7 +273,9 @@ model_info = {
|
||||
"token_cnt": get_token_num_gpt4,
|
||||
"openai_disable_system_prompt": True,
|
||||
"openai_disable_stream": True,
|
||||
"openai_force_temperature_one": True,
|
||||
},
|
||||
|
||||
"o1-mini": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
@@ -278,6 +285,31 @@ model_info = {
|
||||
"token_cnt": get_token_num_gpt4,
|
||||
"openai_disable_system_prompt": True,
|
||||
"openai_disable_stream": True,
|
||||
"openai_force_temperature_one": True,
|
||||
},
|
||||
|
||||
"o1-2024-12-17": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"endpoint": openai_endpoint,
|
||||
"max_token": 200000,
|
||||
"tokenizer": tokenizer_gpt4,
|
||||
"token_cnt": get_token_num_gpt4,
|
||||
"openai_disable_system_prompt": True,
|
||||
"openai_disable_stream": True,
|
||||
"openai_force_temperature_one": True,
|
||||
},
|
||||
|
||||
"o1": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"endpoint": openai_endpoint,
|
||||
"max_token": 200000,
|
||||
"tokenizer": tokenizer_gpt4,
|
||||
"token_cnt": get_token_num_gpt4,
|
||||
"openai_disable_system_prompt": True,
|
||||
"openai_disable_stream": True,
|
||||
"openai_force_temperature_one": True,
|
||||
},
|
||||
|
||||
"gpt-4-turbo": {
|
||||
@@ -414,6 +446,7 @@ model_info = {
|
||||
"token_cnt": get_token_num_gpt4,
|
||||
},
|
||||
|
||||
# ChatGLM本地模型
|
||||
# 将 chatglm 直接对齐到 chatglm2
|
||||
"chatglm": {
|
||||
"fn_with_ui": chatglm_ui,
|
||||
@@ -439,6 +472,14 @@ model_info = {
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
"chatglm4": {
|
||||
"fn_with_ui": chatglm4_ui,
|
||||
"fn_without_ui": chatglm4_noui,
|
||||
"endpoint": None,
|
||||
"max_token": 8192,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
"qianfan": {
|
||||
"fn_with_ui": qianfan_ui,
|
||||
"fn_without_ui": qianfan_noui,
|
||||
@@ -771,7 +812,8 @@ if "qwen-local" in AVAIL_LLM_MODELS:
|
||||
except:
|
||||
logger.error(trimmed_format_exc())
|
||||
# -=-=-=-=-=-=- 通义-在线模型 -=-=-=-=-=-=-
|
||||
if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-max" in AVAIL_LLM_MODELS: # zhipuai
|
||||
qwen_models = ["qwen-max-latest", "qwen-max-2025-01-25","qwen-max","qwen-turbo","qwen-plus"]
|
||||
if any(item in qwen_models for item in AVAIL_LLM_MODELS):
|
||||
try:
|
||||
from .bridge_qwen import predict_no_ui_long_connection as qwen_noui
|
||||
from .bridge_qwen import predict as qwen_ui
|
||||
@@ -781,7 +823,7 @@ if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-
|
||||
"fn_without_ui": qwen_noui,
|
||||
"can_multi_thread": True,
|
||||
"endpoint": None,
|
||||
"max_token": 6144,
|
||||
"max_token": 100000,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
@@ -790,7 +832,7 @@ if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-
|
||||
"fn_without_ui": qwen_noui,
|
||||
"can_multi_thread": True,
|
||||
"endpoint": None,
|
||||
"max_token": 30720,
|
||||
"max_token": 129024,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
@@ -799,7 +841,25 @@ if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-
|
||||
"fn_without_ui": qwen_noui,
|
||||
"can_multi_thread": True,
|
||||
"endpoint": None,
|
||||
"max_token": 28672,
|
||||
"max_token": 30720,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
"qwen-max-latest": {
|
||||
"fn_with_ui": qwen_ui,
|
||||
"fn_without_ui": qwen_noui,
|
||||
"can_multi_thread": True,
|
||||
"endpoint": None,
|
||||
"max_token": 30720,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
"qwen-max-2025-01-25": {
|
||||
"fn_with_ui": qwen_ui,
|
||||
"fn_without_ui": qwen_noui,
|
||||
"can_multi_thread": True,
|
||||
"endpoint": None,
|
||||
"max_token": 30720,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
}
|
||||
@@ -886,6 +946,31 @@ if any(item in yi_models for item in AVAIL_LLM_MODELS):
|
||||
})
|
||||
except:
|
||||
logger.error(trimmed_format_exc())
|
||||
|
||||
|
||||
# -=-=-=-=-=-=- Grok model from x.ai -=-=-=-=-=-=-
|
||||
grok_models = ["grok-beta"]
|
||||
if any(item in grok_models for item in AVAIL_LLM_MODELS):
|
||||
try:
|
||||
grok_beta_128k_noui, grok_beta_128k_ui = get_predict_function(
|
||||
api_key_conf_name="GROK_API_KEY", max_output_token=8192, disable_proxy=False
|
||||
)
|
||||
|
||||
model_info.update({
|
||||
"grok-beta": {
|
||||
"fn_with_ui": grok_beta_128k_ui,
|
||||
"fn_without_ui": grok_beta_128k_noui,
|
||||
"can_multi_thread": True,
|
||||
"endpoint": grok_model_endpoint,
|
||||
"max_token": 128000,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
|
||||
})
|
||||
except:
|
||||
logger.error(trimmed_format_exc())
|
||||
|
||||
# -=-=-=-=-=-=- 讯飞星火认知大模型 -=-=-=-=-=-=-
|
||||
if "spark" in AVAIL_LLM_MODELS:
|
||||
try:
|
||||
@@ -987,7 +1072,7 @@ if "zhipuai" in AVAIL_LLM_MODELS: # zhipuai 是glm-4的别名,向后兼容
|
||||
})
|
||||
except:
|
||||
logger.error(trimmed_format_exc())
|
||||
# -=-=-=-=-=-=- 幻方-深度求索大模型 -=-=-=-=-=-=-
|
||||
# -=-=-=-=-=-=- 幻方-深度求索本地大模型 -=-=-=-=-=-=-
|
||||
if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
|
||||
try:
|
||||
from .bridge_deepseekcoder import predict_no_ui_long_connection as deepseekcoder_noui
|
||||
@@ -1005,18 +1090,18 @@ if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
|
||||
except:
|
||||
logger.error(trimmed_format_exc())
|
||||
# -=-=-=-=-=-=- 幻方-深度求索大模型在线API -=-=-=-=-=-=-
|
||||
if "deepseek-chat" in AVAIL_LLM_MODELS or "deepseek-coder" in AVAIL_LLM_MODELS:
|
||||
if "deepseek-chat" in AVAIL_LLM_MODELS or "deepseek-coder" in AVAIL_LLM_MODELS or "deepseek-reasoner" in AVAIL_LLM_MODELS:
|
||||
try:
|
||||
deepseekapi_noui, deepseekapi_ui = get_predict_function(
|
||||
api_key_conf_name="DEEPSEEK_API_KEY", max_output_token=4096, disable_proxy=False
|
||||
)
|
||||
)
|
||||
model_info.update({
|
||||
"deepseek-chat":{
|
||||
"fn_with_ui": deepseekapi_ui,
|
||||
"fn_without_ui": deepseekapi_noui,
|
||||
"endpoint": deepseekapi_endpoint,
|
||||
"can_multi_thread": True,
|
||||
"max_token": 32000,
|
||||
"max_token": 64000,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
@@ -1029,6 +1114,16 @@ if "deepseek-chat" in AVAIL_LLM_MODELS or "deepseek-coder" in AVAIL_LLM_MODELS:
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
"deepseek-reasoner":{
|
||||
"fn_with_ui": deepseekapi_ui,
|
||||
"fn_without_ui": deepseekapi_noui,
|
||||
"endpoint": deepseekapi_endpoint,
|
||||
"can_multi_thread": True,
|
||||
"max_token": 64000,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
"enable_reasoning": True
|
||||
},
|
||||
})
|
||||
except:
|
||||
logger.error(trimmed_format_exc())
|
||||
@@ -1296,6 +1391,11 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot,
|
||||
|
||||
inputs = apply_gpt_academic_string_mask(inputs, mode="show_llm")
|
||||
|
||||
if llm_kwargs['llm_model'] not in model_info:
|
||||
from toolbox import update_ui
|
||||
chatbot.append([inputs, f"很抱歉,模型 '{llm_kwargs['llm_model']}' 暂不支持<br/>(1) 检查config中的AVAIL_LLM_MODELS选项<br/>(2) 检查request_llms/bridge_all.py中的模型路由"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
method = model_info[llm_kwargs['llm_model']]["fn_with_ui"] # 如果这里报错,检查config中的AVAIL_LLM_MODELS选项
|
||||
|
||||
if additional_fn: # 根据基础功能区 ModelOverride 参数调整模型类型
|
||||
|
||||
@@ -23,39 +23,33 @@ class GetGLM3Handle(LocalLLMHandle):
|
||||
import os
|
||||
import platform
|
||||
|
||||
LOCAL_MODEL_QUANT, device = get_conf("LOCAL_MODEL_QUANT", "LOCAL_MODEL_DEVICE")
|
||||
_model_name_ = "THUDM/chatglm3-6b"
|
||||
# if LOCAL_MODEL_QUANT == "INT4": # INT4
|
||||
# _model_name_ = "THUDM/chatglm3-6b-int4"
|
||||
# elif LOCAL_MODEL_QUANT == "INT8": # INT8
|
||||
# _model_name_ = "THUDM/chatglm3-6b-int8"
|
||||
# else:
|
||||
# _model_name_ = "THUDM/chatglm3-6b" # FP16
|
||||
LOCAL_MODEL_PATH, LOCAL_MODEL_QUANT, device = get_conf("CHATGLM_LOCAL_MODEL_PATH", "LOCAL_MODEL_QUANT", "LOCAL_MODEL_DEVICE")
|
||||
model_path = LOCAL_MODEL_PATH
|
||||
with ProxyNetworkActivate("Download_LLM"):
|
||||
chatglm_tokenizer = AutoTokenizer.from_pretrained(
|
||||
_model_name_, trust_remote_code=True
|
||||
model_path, trust_remote_code=True
|
||||
)
|
||||
if device == "cpu":
|
||||
chatglm_model = AutoModel.from_pretrained(
|
||||
_model_name_,
|
||||
model_path,
|
||||
trust_remote_code=True,
|
||||
device="cpu",
|
||||
).float()
|
||||
elif LOCAL_MODEL_QUANT == "INT4": # INT4
|
||||
chatglm_model = AutoModel.from_pretrained(
|
||||
pretrained_model_name_or_path=_model_name_,
|
||||
pretrained_model_name_or_path=model_path,
|
||||
trust_remote_code=True,
|
||||
quantization_config=BitsAndBytesConfig(load_in_4bit=True),
|
||||
)
|
||||
elif LOCAL_MODEL_QUANT == "INT8": # INT8
|
||||
chatglm_model = AutoModel.from_pretrained(
|
||||
pretrained_model_name_or_path=_model_name_,
|
||||
pretrained_model_name_or_path=model_path,
|
||||
trust_remote_code=True,
|
||||
quantization_config=BitsAndBytesConfig(load_in_8bit=True),
|
||||
)
|
||||
else:
|
||||
chatglm_model = AutoModel.from_pretrained(
|
||||
pretrained_model_name_or_path=_model_name_,
|
||||
pretrained_model_name_or_path=model_path,
|
||||
trust_remote_code=True,
|
||||
device="cuda",
|
||||
)
|
||||
|
||||
81
request_llms/bridge_chatglm4.py
Normal file
81
request_llms/bridge_chatglm4.py
Normal file
@@ -0,0 +1,81 @@
|
||||
model_name = "ChatGLM4"
|
||||
cmd_to_install = """
|
||||
`pip install -r request_llms/requirements_chatglm4.txt`
|
||||
`pip install modelscope`
|
||||
`modelscope download --model ZhipuAI/glm-4-9b-chat --local_dir ./THUDM/glm-4-9b-chat`
|
||||
"""
|
||||
|
||||
|
||||
from toolbox import get_conf, ProxyNetworkActivate
|
||||
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
|
||||
|
||||
|
||||
# ------------------------------------------------------------------------------------------------------------------------
|
||||
# 🔌💻 Local Model
|
||||
# ------------------------------------------------------------------------------------------------------------------------
|
||||
class GetGLM4Handle(LocalLLMHandle):
|
||||
|
||||
def load_model_info(self):
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
self.model_name = model_name
|
||||
self.cmd_to_install = cmd_to_install
|
||||
|
||||
def load_model_and_tokenizer(self):
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
import torch
|
||||
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer
|
||||
import os
|
||||
|
||||
LOCAL_MODEL_PATH, device = get_conf("CHATGLM_LOCAL_MODEL_PATH", "LOCAL_MODEL_DEVICE")
|
||||
model_path = LOCAL_MODEL_PATH
|
||||
chatglm_tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
chatglm_model = AutoModelForCausalLM.from_pretrained(
|
||||
model_path,
|
||||
torch_dtype=torch.bfloat16,
|
||||
low_cpu_mem_usage=True,
|
||||
trust_remote_code=True,
|
||||
device=device
|
||||
).eval().to(device)
|
||||
self._model = chatglm_model
|
||||
self._tokenizer = chatglm_tokenizer
|
||||
return self._model, self._tokenizer
|
||||
|
||||
|
||||
def llm_stream_generator(self, **kwargs):
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
def adaptor(kwargs):
|
||||
query = kwargs["query"]
|
||||
max_length = kwargs["max_length"]
|
||||
top_p = kwargs["top_p"]
|
||||
temperature = kwargs["temperature"]
|
||||
history = kwargs["history"]
|
||||
return query, max_length, top_p, temperature, history
|
||||
|
||||
query, max_length, top_p, temperature, history = adaptor(kwargs)
|
||||
inputs = self._tokenizer.apply_chat_template([{"role": "user", "content": query}],
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
return_tensors="pt",
|
||||
return_dict=True
|
||||
).to(self._model.device)
|
||||
gen_kwargs = {"max_length": max_length, "do_sample": True, "top_k": top_p}
|
||||
|
||||
outputs = self._model.generate(**inputs, **gen_kwargs)
|
||||
outputs = outputs[:, inputs['input_ids'].shape[1]:]
|
||||
response = self._tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||
yield response
|
||||
|
||||
def try_to_import_special_deps(self, **kwargs):
|
||||
# import something that will raise error if the user does not install requirement_*.txt
|
||||
# 🏃♂️🏃♂️🏃♂️ 主进程执行
|
||||
import importlib
|
||||
|
||||
# importlib.import_module('modelscope')
|
||||
|
||||
|
||||
# ------------------------------------------------------------------------------------------------------------------------
|
||||
# 🔌💻 GPT-Academic Interface
|
||||
# ------------------------------------------------------------------------------------------------------------------------
|
||||
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(
|
||||
GetGLM4Handle, model_name, history_format="chatglm3"
|
||||
)
|
||||
@@ -23,8 +23,13 @@ from loguru import logger
|
||||
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history
|
||||
from toolbox import trimmed_format_exc, is_the_upload_folder, read_one_api_model_name, log_chat
|
||||
from toolbox import ChatBotWithCookies, have_any_recent_upload_image_files, encode_image
|
||||
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
|
||||
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')
|
||||
proxies, WHEN_TO_USE_PROXY, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
|
||||
get_conf('proxies', 'WHEN_TO_USE_PROXY', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')
|
||||
|
||||
if "Connect_OpenAI" not in WHEN_TO_USE_PROXY:
|
||||
if proxies is not None:
|
||||
logger.error("虽然您配置了代理设置,但不会在连接OpenAI的过程中起作用,请检查WHEN_TO_USE_PROXY配置。")
|
||||
proxies = None
|
||||
|
||||
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
||||
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
|
||||
@@ -180,14 +185,20 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
|
||||
raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。")
|
||||
else:
|
||||
raise RuntimeError("OpenAI拒绝了请求:" + error_msg)
|
||||
if ('data: [DONE]' in chunk_decoded): break # api2d 正常完成
|
||||
if ('data: [DONE]' in chunk_decoded): break # api2d & one-api 正常完成
|
||||
# 提前读取一些信息 (用于判断异常)
|
||||
if has_choices and not choice_valid:
|
||||
# 一些垃圾第三方接口的出现这样的错误
|
||||
continue
|
||||
json_data = chunkjson['choices'][0]
|
||||
delta = json_data["delta"]
|
||||
if len(delta) == 0: break
|
||||
|
||||
if len(delta) == 0:
|
||||
is_termination_certain = False
|
||||
if (has_choices) and (chunkjson['choices'][0].get('finish_reason', 'null') == 'stop'): is_termination_certain = True
|
||||
if is_termination_certain: break
|
||||
else: continue # 对于不符合规范的狗屎接口,这里需要继续
|
||||
|
||||
if (not has_content) and has_role: continue
|
||||
if (not has_content) and (not has_role): continue # raise RuntimeError("发现不标准的第三方接口:"+delta)
|
||||
if has_content: # has_role = True/False
|
||||
@@ -285,6 +296,8 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
||||
history.extend([inputs, ""])
|
||||
|
||||
retry = 0
|
||||
previous_ui_reflesh_time = 0
|
||||
ui_reflesh_min_interval = 0.0
|
||||
while True:
|
||||
try:
|
||||
# make a POST request to the API endpoint, stream=True
|
||||
@@ -297,13 +310,13 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
|
||||
if retry > MAX_RETRY: raise TimeoutError
|
||||
|
||||
|
||||
if not stream:
|
||||
# 该分支仅适用于不支持stream的o1模型,其他情形一律不适用
|
||||
yield from handle_o1_model_special(response, inputs, llm_kwargs, chatbot, history)
|
||||
return
|
||||
|
||||
if stream:
|
||||
reach_termination = False # 处理一些 new-api 的奇葩异常
|
||||
gpt_replying_buffer = ""
|
||||
is_head_of_the_stream = True
|
||||
stream_response = response.iter_lines()
|
||||
@@ -316,11 +329,14 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
||||
error_msg = chunk_decoded
|
||||
# 首先排除一个one-api没有done数据包的第三方Bug情形
|
||||
if len(gpt_replying_buffer.strip()) > 0 and len(error_msg) == 0:
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="检测到有缺陷的非OpenAI官方接口,建议选择更稳定的接口。")
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="检测到有缺陷的接口,建议选择更稳定的接口。")
|
||||
if not reach_termination:
|
||||
reach_termination = True
|
||||
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
||||
break
|
||||
# 其他情况,直接返回报错
|
||||
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="非OpenAI官方接口返回了错误:" + chunk.decode()) # 刷新界面
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="接口返回了错误:" + chunk.decode()) # 刷新界面
|
||||
return
|
||||
|
||||
# 提前读取一些信息 (用于判断异常)
|
||||
@@ -330,6 +346,8 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
||||
# 数据流的第一帧不携带content
|
||||
is_head_of_the_stream = False; continue
|
||||
|
||||
if "error" in chunk_decoded: logger.error(f"接口返回了未知错误: {chunk_decoded}")
|
||||
|
||||
if chunk:
|
||||
try:
|
||||
if has_choices and not choice_valid:
|
||||
@@ -338,14 +356,25 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
||||
if ('data: [DONE]' not in chunk_decoded) and len(chunk_decoded) > 0 and (chunkjson is None):
|
||||
# 传递进来一些奇怪的东西
|
||||
raise ValueError(f'无法读取以下数据,请检查配置。\n\n{chunk_decoded}')
|
||||
# 前者是API2D的结束条件,后者是OPENAI的结束条件
|
||||
if ('data: [DONE]' in chunk_decoded) or (len(chunkjson['choices'][0]["delta"]) == 0):
|
||||
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
||||
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
||||
break
|
||||
# 前者是API2D & One-API的结束条件,后者是OPENAI的结束条件
|
||||
one_api_terminate = ('data: [DONE]' in chunk_decoded)
|
||||
openai_terminate = (has_choices) and (len(chunkjson['choices'][0]["delta"]) == 0)
|
||||
if one_api_terminate or openai_terminate:
|
||||
is_termination_certain = False
|
||||
if one_api_terminate: is_termination_certain = True # 抓取符合规范的结束条件
|
||||
elif (has_choices) and (chunkjson['choices'][0].get('finish_reason', 'null') == 'stop'): is_termination_certain = True # 抓取符合规范的结束条件
|
||||
if is_termination_certain:
|
||||
reach_termination = True
|
||||
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
||||
break # 对于符合规范的接口,这里可以break
|
||||
else:
|
||||
continue # 对于不符合规范的狗屎接口,这里需要继续
|
||||
# 到这里,我们已经可以假定必须包含choice了
|
||||
try:
|
||||
status_text = f"finish_reason: {chunkjson['choices'][0].get('finish_reason', 'null')}"
|
||||
except:
|
||||
logger.error(f"一些垃圾第三方接口出现这样的错误,兼容一下吧: {chunk_decoded}")
|
||||
# 处理数据流的主体
|
||||
status_text = f"finish_reason: {chunkjson['choices'][0].get('finish_reason', 'null')}"
|
||||
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
|
||||
if has_content:
|
||||
# 正常情况
|
||||
gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]
|
||||
@@ -354,21 +383,26 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
||||
continue
|
||||
else:
|
||||
# 至此已经超出了正常接口应该进入的范围,一些垃圾第三方接口会出现这样的错误
|
||||
if chunkjson['choices'][0]["delta"]["content"] is None: continue # 一些垃圾第三方接口出现这样的错误,兼容一下吧
|
||||
if chunkjson['choices'][0]["delta"].get("content", None) is None:
|
||||
logger.error(f"一些垃圾第三方接口出现这样的错误,兼容一下吧: {chunk_decoded}")
|
||||
continue
|
||||
gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]
|
||||
|
||||
history[-1] = gpt_replying_buffer
|
||||
chatbot[-1] = (history[-2], history[-1])
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
|
||||
if time.time() - previous_ui_reflesh_time > ui_reflesh_min_interval:
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
|
||||
previous_ui_reflesh_time = time.time()
|
||||
except Exception as e:
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
|
||||
chunk = get_full_error(chunk, stream_response)
|
||||
chunk_decoded = chunk.decode()
|
||||
error_msg = chunk_decoded
|
||||
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析异常" + error_msg) # 刷新界面
|
||||
logger.error(error_msg)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析异常" + error_msg) # 刷新界面
|
||||
return
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="完成") # 刷新界面
|
||||
return # return from stream-branch
|
||||
|
||||
def handle_o1_model_special(response, inputs, llm_kwargs, chatbot, history):
|
||||
@@ -536,6 +570,8 @@ def generate_payload(inputs:str, llm_kwargs:dict, history:list, system_prompt:st
|
||||
"n": 1,
|
||||
"stream": stream,
|
||||
}
|
||||
|
||||
openai_force_temperature_one = model_info[llm_kwargs['llm_model']].get('openai_force_temperature_one', False)
|
||||
if openai_force_temperature_one:
|
||||
payload.pop('temperature')
|
||||
return headers,payload
|
||||
|
||||
|
||||
@@ -6,7 +6,6 @@ from toolbox import get_conf
|
||||
from request_llms.local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
|
||||
from threading import Thread
|
||||
from loguru import logger
|
||||
import torch
|
||||
import os
|
||||
|
||||
def download_huggingface_model(model_name, max_retry, local_dir):
|
||||
@@ -29,6 +28,7 @@ class GetCoderLMHandle(LocalLLMHandle):
|
||||
self.cmd_to_install = cmd_to_install
|
||||
|
||||
def load_model_and_tokenizer(self):
|
||||
import torch
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
with ProxyNetworkActivate('Download_LLM'):
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
||||
|
||||
@@ -75,7 +75,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
# make a POST request to the API endpoint, stream=False
|
||||
from .bridge_all import model_info
|
||||
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
||||
response = requests.post(endpoint, headers=headers, proxies=None,
|
||||
json=payload, stream=True, timeout=TIMEOUT_SECONDS); break
|
||||
except requests.exceptions.ReadTimeout as e:
|
||||
retry += 1
|
||||
@@ -152,10 +152,12 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
history.append(inputs); history.append("")
|
||||
|
||||
retry = 0
|
||||
if proxies is not None:
|
||||
logger.error("Ollama不会使用代理服务器, 忽略了proxies的设置。")
|
||||
while True:
|
||||
try:
|
||||
# make a POST request to the API endpoint, stream=True
|
||||
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
||||
response = requests.post(endpoint, headers=headers, proxies=None,
|
||||
json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
|
||||
except:
|
||||
retry += 1
|
||||
|
||||
@@ -170,7 +170,7 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
|
||||
except requests.exceptions.ConnectionError:
|
||||
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
|
||||
if len(chunk_decoded)==0: continue
|
||||
if len(chunk_decoded)==0 or chunk_decoded.startswith(':'): continue
|
||||
if not chunk_decoded.startswith('data:'):
|
||||
error_msg = get_full_error(chunk, stream_response).decode()
|
||||
if "reduce the length" in error_msg:
|
||||
@@ -181,9 +181,6 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
|
||||
raise RuntimeError("OpenAI拒绝了请求:" + error_msg)
|
||||
if ('data: [DONE]' in chunk_decoded): break # api2d 正常完成
|
||||
# 提前读取一些信息 (用于判断异常)
|
||||
if (has_choices and not choice_valid) or ('OPENROUTER PROCESSING' in chunk_decoded):
|
||||
# 一些垃圾第三方接口的出现这样的错误,openrouter的特殊处理
|
||||
continue
|
||||
json_data = chunkjson['choices'][0]
|
||||
delta = json_data["delta"]
|
||||
if len(delta) == 0: break
|
||||
@@ -328,8 +325,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
||||
|
||||
if chunk:
|
||||
try:
|
||||
if (has_choices and not choice_valid) or ('OPENROUTER PROCESSING' in chunk_decoded):
|
||||
# 一些垃圾第三方接口的出现这样的错误, 或者OPENROUTER的特殊处理,因为OPENROUTER的数据流未连接到模型时会出现OPENROUTER PROCESSING
|
||||
if (has_choices and not choice_valid) or chunk_decoded.startswith(':'):
|
||||
continue
|
||||
if ('data: [DONE]' not in chunk_decoded) and len(chunk_decoded) > 0 and (chunkjson is None):
|
||||
# 传递进来一些奇怪的东西
|
||||
@@ -516,7 +512,7 @@ def generate_payload(inputs:str, llm_kwargs:dict, history:list, system_prompt:st
|
||||
model, _ = read_one_api_model_name(model)
|
||||
if llm_kwargs['llm_model'].startswith('openrouter-'):
|
||||
model = llm_kwargs['llm_model'][len('openrouter-'):]
|
||||
model= read_one_api_model_name(model)
|
||||
model, _= read_one_api_model_name(model)
|
||||
if model == "gpt-3.5-random": # 随机选择, 绕过openai访问频率限制
|
||||
model = random.choice([
|
||||
"gpt-3.5-turbo",
|
||||
|
||||
@@ -202,16 +202,29 @@ class GoogleChatInit:
|
||||
) # 处理 history
|
||||
|
||||
messages.append(self.__conversation_user(inputs, llm_kwargs, enable_multimodal_capacity)) # 处理用户对话
|
||||
payload = {
|
||||
"contents": messages,
|
||||
"generationConfig": {
|
||||
# "maxOutputTokens": llm_kwargs.get("max_token", 1024),
|
||||
"stopSequences": str(llm_kwargs.get("stop", "")).split(" "),
|
||||
"temperature": llm_kwargs.get("temperature", 1),
|
||||
"topP": llm_kwargs.get("top_p", 0.8),
|
||||
"topK": 10,
|
||||
},
|
||||
}
|
||||
stop_sequences = str(llm_kwargs.get("stop", "")).split(" ")
|
||||
# 过滤空字符串并确保至少有一个停止序列
|
||||
stop_sequences = [s for s in stop_sequences if s]
|
||||
if not stop_sequences:
|
||||
payload = {
|
||||
"contents": messages,
|
||||
"generationConfig": {
|
||||
"temperature": llm_kwargs.get("temperature", 1),
|
||||
"topP": llm_kwargs.get("top_p", 0.8),
|
||||
"topK": 10,
|
||||
},
|
||||
}
|
||||
else:
|
||||
payload = {
|
||||
"contents": messages,
|
||||
"generationConfig": {
|
||||
# "maxOutputTokens": llm_kwargs.get("max_token", 1024),
|
||||
"stopSequences": stop_sequences,
|
||||
"temperature": llm_kwargs.get("temperature", 1),
|
||||
"topP": llm_kwargs.get("top_p", 0.8),
|
||||
"topK": 10,
|
||||
},
|
||||
}
|
||||
|
||||
return header, payload
|
||||
|
||||
|
||||
@@ -24,18 +24,13 @@ class QwenRequestInstance():
|
||||
def generate(self, inputs, llm_kwargs, history, system_prompt):
|
||||
# import _thread as thread
|
||||
from dashscope import Generation
|
||||
QWEN_MODEL = {
|
||||
'qwen-turbo': Generation.Models.qwen_turbo,
|
||||
'qwen-plus': Generation.Models.qwen_plus,
|
||||
'qwen-max': Generation.Models.qwen_max,
|
||||
}[llm_kwargs['llm_model']]
|
||||
top_p = llm_kwargs.get('top_p', 0.8)
|
||||
if top_p == 0: top_p += 1e-5
|
||||
if top_p == 1: top_p -= 1e-5
|
||||
|
||||
self.result_buf = ""
|
||||
responses = Generation.call(
|
||||
model=QWEN_MODEL,
|
||||
model=llm_kwargs['llm_model'],
|
||||
messages=generate_message_payload(inputs, llm_kwargs, history, system_prompt),
|
||||
top_p=top_p,
|
||||
temperature=llm_kwargs.get('temperature', 1.0),
|
||||
|
||||
@@ -2,15 +2,9 @@ import json
|
||||
import time
|
||||
import traceback
|
||||
import requests
|
||||
from loguru import logger
|
||||
|
||||
# config_private.py放自己的秘密如API和代理网址
|
||||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||
from toolbox import (
|
||||
get_conf,
|
||||
update_ui,
|
||||
is_the_upload_folder,
|
||||
)
|
||||
from loguru import logger
|
||||
from toolbox import get_conf, is_the_upload_folder, update_ui, update_ui_lastest_msg
|
||||
|
||||
proxies, TIMEOUT_SECONDS, MAX_RETRY = get_conf(
|
||||
"proxies", "TIMEOUT_SECONDS", "MAX_RETRY"
|
||||
@@ -36,35 +30,50 @@ def get_full_error(chunk, stream_response):
|
||||
|
||||
def decode_chunk(chunk):
|
||||
"""
|
||||
用于解读"content"和"finish_reason"的内容
|
||||
用于解读"content"和"finish_reason"的内容(如果支持思维链也会返回"reasoning_content"内容)
|
||||
"""
|
||||
chunk = chunk.decode()
|
||||
respose = ""
|
||||
response = ""
|
||||
reasoning_content = ""
|
||||
finish_reason = "False"
|
||||
|
||||
# 考虑返回类型是 text/json 和 text/event-stream 两种
|
||||
if chunk.startswith("data: "):
|
||||
chunk = chunk[6:]
|
||||
else:
|
||||
chunk = chunk
|
||||
|
||||
try:
|
||||
chunk = json.loads(chunk[6:])
|
||||
chunk = json.loads(chunk)
|
||||
except:
|
||||
respose = ""
|
||||
response = ""
|
||||
finish_reason = chunk
|
||||
|
||||
# 错误处理部分
|
||||
if "error" in chunk:
|
||||
respose = "API_ERROR"
|
||||
response = "API_ERROR"
|
||||
try:
|
||||
chunk = json.loads(chunk)
|
||||
finish_reason = chunk["error"]["code"]
|
||||
except:
|
||||
finish_reason = "API_ERROR"
|
||||
return respose, finish_reason
|
||||
return response, reasoning_content, finish_reason
|
||||
|
||||
try:
|
||||
respose = chunk["choices"][0]["delta"]["content"]
|
||||
if chunk["choices"][0]["delta"]["content"] is not None:
|
||||
response = chunk["choices"][0]["delta"]["content"]
|
||||
except:
|
||||
pass
|
||||
try:
|
||||
if chunk["choices"][0]["delta"]["reasoning_content"] is not None:
|
||||
reasoning_content = chunk["choices"][0]["delta"]["reasoning_content"]
|
||||
except:
|
||||
pass
|
||||
try:
|
||||
finish_reason = chunk["choices"][0]["finish_reason"]
|
||||
except:
|
||||
pass
|
||||
return respose, finish_reason
|
||||
return response, reasoning_content, finish_reason, str(chunk)
|
||||
|
||||
|
||||
def generate_message(input, model, key, history, max_output_token, system_prompt, temperature):
|
||||
@@ -99,7 +108,7 @@ def generate_message(input, model, key, history, max_output_token, system_prompt
|
||||
what_i_ask_now["role"] = "user"
|
||||
what_i_ask_now["content"] = input
|
||||
messages.append(what_i_ask_now)
|
||||
playload = {
|
||||
payload = {
|
||||
"model": model,
|
||||
"messages": messages,
|
||||
"temperature": temperature,
|
||||
@@ -107,7 +116,7 @@ def generate_message(input, model, key, history, max_output_token, system_prompt
|
||||
"max_tokens": max_output_token,
|
||||
}
|
||||
|
||||
return headers, playload
|
||||
return headers, payload
|
||||
|
||||
|
||||
def get_predict_function(
|
||||
@@ -134,7 +143,7 @@ def get_predict_function(
|
||||
history=[],
|
||||
sys_prompt="",
|
||||
observe_window=None,
|
||||
console_slience=False,
|
||||
console_silence=False,
|
||||
):
|
||||
"""
|
||||
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||
@@ -149,12 +158,13 @@ def get_predict_function(
|
||||
observe_window = None:
|
||||
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
||||
"""
|
||||
watch_dog_patience = 5 # 看门狗的耐心,设置5秒不准咬人(咬的也不是人
|
||||
from .bridge_all import model_info
|
||||
watch_dog_patience = 5 # 看门狗的耐心,设置5秒不准咬人 (咬的也不是人)
|
||||
if len(APIKEY) == 0:
|
||||
raise RuntimeError(f"APIKEY为空,请检查配置文件的{APIKEY}")
|
||||
if inputs == "":
|
||||
inputs = "你好👋"
|
||||
headers, playload = generate_message(
|
||||
headers, payload = generate_message(
|
||||
input=inputs,
|
||||
model=llm_kwargs["llm_model"],
|
||||
key=APIKEY,
|
||||
@@ -163,29 +173,21 @@ def get_predict_function(
|
||||
system_prompt=sys_prompt,
|
||||
temperature=llm_kwargs["temperature"],
|
||||
)
|
||||
|
||||
reasoning = model_info[llm_kwargs['llm_model']].get('enable_reasoning', False)
|
||||
|
||||
retry = 0
|
||||
while True:
|
||||
try:
|
||||
from .bridge_all import model_info
|
||||
|
||||
endpoint = model_info[llm_kwargs["llm_model"]]["endpoint"]
|
||||
if not disable_proxy:
|
||||
response = requests.post(
|
||||
endpoint,
|
||||
headers=headers,
|
||||
proxies=proxies,
|
||||
json=playload,
|
||||
stream=True,
|
||||
timeout=TIMEOUT_SECONDS,
|
||||
)
|
||||
else:
|
||||
response = requests.post(
|
||||
endpoint,
|
||||
headers=headers,
|
||||
json=playload,
|
||||
stream=True,
|
||||
timeout=TIMEOUT_SECONDS,
|
||||
)
|
||||
response = requests.post(
|
||||
endpoint,
|
||||
headers=headers,
|
||||
proxies=None if disable_proxy else proxies,
|
||||
json=payload,
|
||||
stream=True,
|
||||
timeout=TIMEOUT_SECONDS,
|
||||
)
|
||||
break
|
||||
except:
|
||||
retry += 1
|
||||
@@ -194,10 +196,13 @@ def get_predict_function(
|
||||
raise TimeoutError
|
||||
if MAX_RETRY != 0:
|
||||
logger.error(f"请求超时,正在重试 ({retry}/{MAX_RETRY}) ……")
|
||||
|
||||
stream_response = response.iter_lines()
|
||||
|
||||
result = ""
|
||||
finish_reason = ""
|
||||
if reasoning:
|
||||
reasoning_buffer = ""
|
||||
|
||||
stream_response = response.iter_lines()
|
||||
while True:
|
||||
try:
|
||||
chunk = next(stream_response)
|
||||
@@ -207,9 +212,9 @@ def get_predict_function(
|
||||
break
|
||||
except requests.exceptions.ConnectionError:
|
||||
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||
response_text, finish_reason = decode_chunk(chunk)
|
||||
response_text, reasoning_content, finish_reason, decoded_chunk = decode_chunk(chunk)
|
||||
# 返回的数据流第一次为空,继续等待
|
||||
if response_text == "" and finish_reason != "False":
|
||||
if response_text == "" and (reasoning == False or reasoning_content == "") and finish_reason != "False":
|
||||
continue
|
||||
if response_text == "API_ERROR" and (
|
||||
finish_reason != "False" or finish_reason != "stop"
|
||||
@@ -223,10 +228,12 @@ def get_predict_function(
|
||||
if chunk:
|
||||
try:
|
||||
if finish_reason == "stop":
|
||||
if not console_slience:
|
||||
if not console_silence:
|
||||
print(f"[response] {result}")
|
||||
break
|
||||
result += response_text
|
||||
if reasoning:
|
||||
reasoning_buffer += reasoning_content
|
||||
if observe_window is not None:
|
||||
# 观测窗,把已经获取的数据显示出去
|
||||
if len(observe_window) >= 1:
|
||||
@@ -241,6 +248,9 @@ def get_predict_function(
|
||||
error_msg = chunk_decoded
|
||||
logger.error(error_msg)
|
||||
raise RuntimeError("Json解析不合常规")
|
||||
if reasoning:
|
||||
paragraphs = ''.join([f'<p style="margin: 1.25em 0;">{line}</p>' for line in reasoning_buffer.split('\n')])
|
||||
return f'''<div class="reasoning_process" >{paragraphs}</div>\n\n''' + result
|
||||
return result
|
||||
|
||||
def predict(
|
||||
@@ -259,9 +269,10 @@ def get_predict_function(
|
||||
inputs 是本次问询的输入
|
||||
top_p, temperature是chatGPT的内部调优参数
|
||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yield出去,可以直接修改对话界面内容
|
||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||
"""
|
||||
from .bridge_all import model_info
|
||||
if len(APIKEY) == 0:
|
||||
raise RuntimeError(f"APIKEY为空,请检查配置文件的{APIKEY}")
|
||||
if inputs == "":
|
||||
@@ -289,7 +300,7 @@ def get_predict_function(
|
||||
) # 刷新界面
|
||||
time.sleep(2)
|
||||
|
||||
headers, playload = generate_message(
|
||||
headers, payload = generate_message(
|
||||
input=inputs,
|
||||
model=llm_kwargs["llm_model"],
|
||||
key=APIKEY,
|
||||
@@ -298,32 +309,23 @@ def get_predict_function(
|
||||
system_prompt=system_prompt,
|
||||
temperature=llm_kwargs["temperature"],
|
||||
)
|
||||
|
||||
reasoning = model_info[llm_kwargs['llm_model']].get('enable_reasoning', False)
|
||||
|
||||
history.append(inputs)
|
||||
history.append("")
|
||||
retry = 0
|
||||
while True:
|
||||
try:
|
||||
from .bridge_all import model_info
|
||||
|
||||
endpoint = model_info[llm_kwargs["llm_model"]]["endpoint"]
|
||||
if not disable_proxy:
|
||||
response = requests.post(
|
||||
endpoint,
|
||||
headers=headers,
|
||||
proxies=proxies,
|
||||
json=playload,
|
||||
stream=True,
|
||||
timeout=TIMEOUT_SECONDS,
|
||||
)
|
||||
else:
|
||||
response = requests.post(
|
||||
endpoint,
|
||||
headers=headers,
|
||||
json=playload,
|
||||
stream=True,
|
||||
timeout=TIMEOUT_SECONDS,
|
||||
)
|
||||
response = requests.post(
|
||||
endpoint,
|
||||
headers=headers,
|
||||
proxies=None if disable_proxy else proxies,
|
||||
json=payload,
|
||||
stream=True,
|
||||
timeout=TIMEOUT_SECONDS,
|
||||
)
|
||||
break
|
||||
except:
|
||||
retry += 1
|
||||
@@ -338,18 +340,27 @@ def get_predict_function(
|
||||
raise TimeoutError
|
||||
|
||||
gpt_replying_buffer = ""
|
||||
if reasoning:
|
||||
gpt_reasoning_buffer = ""
|
||||
|
||||
stream_response = response.iter_lines()
|
||||
wait_counter = 0
|
||||
while True:
|
||||
try:
|
||||
chunk = next(stream_response)
|
||||
except StopIteration:
|
||||
if wait_counter != 0 and gpt_replying_buffer == "":
|
||||
yield from update_ui_lastest_msg(lastmsg="模型调用失败 ...", chatbot=chatbot, history=history, msg="failed")
|
||||
break
|
||||
except requests.exceptions.ConnectionError:
|
||||
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||
response_text, finish_reason = decode_chunk(chunk)
|
||||
response_text, reasoning_content, finish_reason, decoded_chunk = decode_chunk(chunk)
|
||||
if decoded_chunk == ': keep-alive':
|
||||
wait_counter += 1
|
||||
yield from update_ui_lastest_msg(lastmsg="等待中 " + "".join(["."] * (wait_counter%10)), chatbot=chatbot, history=history, msg="waiting ...")
|
||||
continue
|
||||
# 返回的数据流第一次为空,继续等待
|
||||
if response_text == "" and finish_reason != "False":
|
||||
if response_text == "" and (reasoning == False or reasoning_content == "") and finish_reason != "False":
|
||||
status_text = f"finish_reason: {finish_reason}"
|
||||
yield from update_ui(
|
||||
chatbot=chatbot, history=history, msg=status_text
|
||||
@@ -364,7 +375,7 @@ def get_predict_function(
|
||||
chunk_decoded = chunk.decode()
|
||||
chatbot[-1] = (
|
||||
chatbot[-1][0],
|
||||
"[Local Message] {finish_reason},获得以下报错信息:\n"
|
||||
f"[Local Message] {finish_reason}, 获得以下报错信息:\n"
|
||||
+ chunk_decoded,
|
||||
)
|
||||
yield from update_ui(
|
||||
@@ -379,9 +390,15 @@ def get_predict_function(
|
||||
logger.info(f"[response] {gpt_replying_buffer}")
|
||||
break
|
||||
status_text = f"finish_reason: {finish_reason}"
|
||||
gpt_replying_buffer += response_text
|
||||
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
|
||||
history[-1] = gpt_replying_buffer
|
||||
if reasoning:
|
||||
gpt_replying_buffer += response_text
|
||||
gpt_reasoning_buffer += reasoning_content
|
||||
paragraphs = ''.join([f'<p style="margin: 1.25em 0;">{line}</p>' for line in gpt_reasoning_buffer.split('\n')])
|
||||
history[-1] = f'<div class="reasoning_process">{paragraphs}</div>\n\n---\n\n' + gpt_replying_buffer
|
||||
else:
|
||||
gpt_replying_buffer += response_text
|
||||
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
|
||||
history[-1] = gpt_replying_buffer
|
||||
chatbot[-1] = (history[-2], history[-1])
|
||||
yield from update_ui(
|
||||
chatbot=chatbot, history=history, msg=status_text
|
||||
|
||||
7
request_llms/requirements_chatglm4.txt
Normal file
7
request_llms/requirements_chatglm4.txt
Normal file
@@ -0,0 +1,7 @@
|
||||
protobuf
|
||||
cpm_kernels
|
||||
torch>=1.10
|
||||
transformers>=4.44
|
||||
mdtex2html
|
||||
sentencepiece
|
||||
accelerate
|
||||
@@ -1,4 +1,4 @@
|
||||
https://public.agent-matrix.com/publish/gradio-3.32.10-py3-none-any.whl
|
||||
https://public.agent-matrix.com/publish/gradio-3.32.12-py3-none-any.whl
|
||||
fastapi==0.110
|
||||
gradio-client==0.8
|
||||
pypdf2==2.12.1
|
||||
@@ -13,7 +13,7 @@ scipdf_parser>=0.52
|
||||
spacy==3.7.4
|
||||
anthropic>=0.18.1
|
||||
python-markdown-math
|
||||
pymdown-extensions
|
||||
pymdown-extensions>=10.14
|
||||
websocket-client
|
||||
beautifulsoup4
|
||||
prompt_toolkit
|
||||
@@ -25,7 +25,7 @@ pyautogen
|
||||
colorama
|
||||
Markdown
|
||||
pygments
|
||||
edge-tts
|
||||
edge-tts>=7.0.0
|
||||
pymupdf
|
||||
openai
|
||||
rjsmin
|
||||
|
||||
@@ -2,6 +2,7 @@ import markdown
|
||||
import re
|
||||
import os
|
||||
import math
|
||||
import html
|
||||
|
||||
from loguru import logger
|
||||
from textwrap import dedent
|
||||
@@ -384,6 +385,24 @@ def markdown_convertion(txt):
|
||||
)
|
||||
|
||||
|
||||
def code_block_title_replace_format(match):
|
||||
lang = match.group(1)
|
||||
filename = match.group(2)
|
||||
return f"```{lang} {{title=\"{filename}\"}}\n"
|
||||
|
||||
|
||||
def get_last_backticks_indent(text):
|
||||
# 从后向前查找最后一个 ```
|
||||
lines = text.splitlines()
|
||||
for line in reversed(lines):
|
||||
if '```' in line:
|
||||
# 计算前面的空格数量
|
||||
indent = len(line) - len(line.lstrip())
|
||||
return indent
|
||||
return 0 # 如果没找到返回0
|
||||
|
||||
|
||||
@lru_cache(maxsize=16) # 使用lru缓存
|
||||
def close_up_code_segment_during_stream(gpt_reply):
|
||||
"""
|
||||
在gpt输出代码的中途(输出了前面的```,但还没输出完后面的```),补上后面的```
|
||||
@@ -397,6 +416,12 @@ def close_up_code_segment_during_stream(gpt_reply):
|
||||
"""
|
||||
if "```" not in gpt_reply:
|
||||
return gpt_reply
|
||||
|
||||
# replace [```python:warp.py] to [```python {title="warp.py"}]
|
||||
pattern = re.compile(r"```([a-z]{1,12}):([^:\n]{1,35}\.([a-zA-Z^:\n]{1,3}))\n")
|
||||
if pattern.search(gpt_reply):
|
||||
gpt_reply = pattern.sub(code_block_title_replace_format, gpt_reply)
|
||||
|
||||
if gpt_reply.endswith("```"):
|
||||
return gpt_reply
|
||||
|
||||
@@ -404,7 +429,11 @@ def close_up_code_segment_during_stream(gpt_reply):
|
||||
segments = gpt_reply.split("```")
|
||||
n_mark = len(segments) - 1
|
||||
if n_mark % 2 == 1:
|
||||
return gpt_reply + "\n```" # 输出代码片段中!
|
||||
try:
|
||||
num_padding = get_last_backticks_indent(gpt_reply)
|
||||
except:
|
||||
num_padding = 0
|
||||
return gpt_reply + "\n" + " "*num_padding + "```" # 输出代码片段中!
|
||||
else:
|
||||
return gpt_reply
|
||||
|
||||
@@ -421,6 +450,19 @@ def special_render_issues_for_mermaid(text):
|
||||
return text
|
||||
|
||||
|
||||
def contain_html_tag(text):
|
||||
"""
|
||||
判断文本中是否包含HTML标签。
|
||||
"""
|
||||
pattern = r'</?([a-zA-Z0-9_]{3,16})>|<script\s+[^>]*src=["\']([^"\']+)["\'][^>]*>'
|
||||
return re.search(pattern, text) is not None
|
||||
|
||||
|
||||
def contain_image(text):
|
||||
pattern = r'<br/><br/><div align="center"><img src="file=(.*?)" base64="(.*?)"></div>'
|
||||
return re.search(pattern, text) is not None
|
||||
|
||||
|
||||
def compat_non_markdown_input(text):
|
||||
"""
|
||||
改善非markdown输入的显示效果,例如将空格转换为 ,将换行符转换为</br>等。
|
||||
@@ -429,9 +471,13 @@ def compat_non_markdown_input(text):
|
||||
# careful input:markdown输入
|
||||
text = special_render_issues_for_mermaid(text) # 处理特殊的渲染问题
|
||||
return text
|
||||
elif "</div>" in text:
|
||||
elif ("<" in text) and (">" in text) and contain_html_tag(text):
|
||||
# careful input:html输入
|
||||
return text
|
||||
if contain_image(text):
|
||||
return text
|
||||
else:
|
||||
escaped_text = html.escape(text)
|
||||
return escaped_text
|
||||
else:
|
||||
# whatever input:非markdown输入
|
||||
lines = text.split("\n")
|
||||
|
||||
@@ -77,16 +77,28 @@ def make_history_cache():
|
||||
# 定义 后端state(history)、前端(history_cache)、后端setter(history_cache_update)三兄弟
|
||||
import gradio as gr
|
||||
# 定义history的后端state
|
||||
history = gr.State([])
|
||||
# 定义history的一个孪生的前端存储区(隐藏)
|
||||
history_cache = gr.Textbox(visible=False, elem_id="history_cache")
|
||||
# 定义history_cache->history的更新方法(隐藏)。在触发这个按钮时,会先执行js代码更新history_cache,然后再执行python代码更新history
|
||||
def process_history_cache(history_cache):
|
||||
return json.loads(history_cache)
|
||||
# 另一种更简单的setter方法
|
||||
history_cache_update = gr.Button("", elem_id="elem_update_history", visible=False).click(
|
||||
process_history_cache, inputs=[history_cache], outputs=[history])
|
||||
return history, history_cache, history_cache_update
|
||||
# history = gr.State([])
|
||||
history = gr.Textbox(visible=False, elem_id="history-ng")
|
||||
# # 定义history的一个孪生的前端存储区(隐藏)
|
||||
# history_cache = gr.Textbox(visible=False, elem_id="history_cache")
|
||||
# # 定义history_cache->history的更新方法(隐藏)。在触发这个按钮时,会先执行js代码更新history_cache,然后再执行python代码更新history
|
||||
# def process_history_cache(history_cache):
|
||||
# return json.loads(history_cache)
|
||||
# # 另一种更简单的setter方法
|
||||
# history_cache_update = gr.Button("", elem_id="elem_update_history", visible=False).click(
|
||||
# process_history_cache, inputs=[history_cache], outputs=[history])
|
||||
# # save history to history_cache
|
||||
# def process_history_cache(history_cache):
|
||||
# return json.dumps(history_cache)
|
||||
# # 定义history->history_cache的更新方法(隐藏)
|
||||
# def sync_history_cache(history):
|
||||
# print("sync_history_cache", history)
|
||||
# return json.dumps(history)
|
||||
# # history.change(sync_history_cache, inputs=[history], outputs=[history_cache])
|
||||
|
||||
# # history_cache_sync = gr.Button("", elem_id="elem_sync_history", visible=False).click(
|
||||
# # lambda history: (json.dumps(history)), inputs=[history_cache], outputs=[history])
|
||||
return history, None, None
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -111,6 +111,8 @@ def extract_archive(file_path, dest_dir):
|
||||
member_path = os.path.normpath(member.name)
|
||||
full_path = os.path.join(dest_dir, member_path)
|
||||
full_path = os.path.abspath(full_path)
|
||||
if member.islnk() or member.issym():
|
||||
raise Exception(f"Attempted Symlink in {member.name}")
|
||||
if not full_path.startswith(os.path.abspath(dest_dir) + os.sep):
|
||||
raise Exception(f"Attempted Path Traversal in {member.name}")
|
||||
|
||||
|
||||
@@ -45,6 +45,13 @@ def is_cohere_api_key(key):
|
||||
|
||||
|
||||
def is_any_api_key(key):
|
||||
# key 一般只包含字母、数字、下划线、逗号、中划线
|
||||
if not re.match(r"^[a-zA-Z0-9_\-,]+$", key):
|
||||
# 如果配置了 CUSTOM_API_KEY_PATTERN,再检查以下以免误杀
|
||||
if CUSTOM_API_KEY_PATTERN := get_conf('CUSTOM_API_KEY_PATTERN'):
|
||||
return bool(re.match(CUSTOM_API_KEY_PATTERN, key))
|
||||
return False
|
||||
|
||||
if ',' in key:
|
||||
keys = key.split(',')
|
||||
for k in keys:
|
||||
@@ -79,7 +86,7 @@ def select_api_key(keys, llm_model):
|
||||
key_list = keys.split(',')
|
||||
|
||||
if llm_model.startswith('gpt-') or llm_model.startswith('chatgpt-') or \
|
||||
llm_model.startswith('one-api-') or llm_model.startswith('o1-'):
|
||||
llm_model.startswith('one-api-') or llm_model == 'o1' or llm_model.startswith('o1-'):
|
||||
for k in key_list:
|
||||
if is_openai_api_key(k): avail_key_list.append(k)
|
||||
|
||||
|
||||
11
start.sh
Normal file
11
start.sh
Normal file
@@ -0,0 +1,11 @@
|
||||
#!/bin/bash
|
||||
GPT_COMMAND="/home/van/.env/python3.12-venv/bin/python main.py"
|
||||
LOG_FILE="/home/van/project/gpt/gpt.log"
|
||||
GPT_PROCESS=$(ps aux | grep "$/home/van/.env/python3.12-venv/bin/python main.py" | grep -v grep)
|
||||
if [ -n "$GPT_PROCESS" ]; then
|
||||
echo "gpt is running..."
|
||||
else
|
||||
cd /home/van/project/gpt/
|
||||
$GPT_COMMAND > "$LOG_FILE" 2>&1 &
|
||||
echo "gpt start successfully. Log file: $LOG_FILE"
|
||||
fi
|
||||
@@ -20,7 +20,7 @@ Replace 'Tex/' with the actual directory path where your files are located befor
|
||||
md = """
|
||||
Following code including wrapper
|
||||
|
||||
```mermaid
|
||||
```python:wrapper.py
|
||||
graph TD
|
||||
A[Enter Chart Definition] --> B(Preview)
|
||||
B --> C{decide}
|
||||
@@ -29,8 +29,45 @@ graph TD
|
||||
E --> B
|
||||
D --> F[Save Image and Code]
|
||||
F --> B
|
||||
|
||||
|
||||
|
||||
```
|
||||
|
||||
<details>
|
||||
<summary><b>My section header in bold</b></summary>
|
||||
|
||||
Any folded content here. It requires an empty line just above it.
|
||||
|
||||
</details>
|
||||
|
||||
"""
|
||||
|
||||
md ="""
|
||||
|
||||
在这种场景中,您希望机器 B 能够通过轮询机制来间接地“请求”机器 A,而实际上机器 A 只能主动向机器 B 发出请求。这是一种典型的客户端-服务器轮询模式。下面是如何实现这种机制的详细步骤:
|
||||
|
||||
### 机器 B 的实现
|
||||
|
||||
1. **安装 FastAPI 和必要的依赖库**:
|
||||
```bash
|
||||
pip install fastapi uvicorn
|
||||
```
|
||||
|
||||
2. **创建 FastAPI 服务**:
|
||||
```python
|
||||
from fastapi import FastAPI
|
||||
from fastapi.responses import JSONResponse
|
||||
from uuid import uuid4
|
||||
from threading import Lock
|
||||
import time
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
# 字典用于存储请求和状态
|
||||
requests = {}
|
||||
process_lock = Lock()
|
||||
|
||||
"""
|
||||
def validate_path():
|
||||
import os, sys
|
||||
@@ -43,10 +80,12 @@ def validate_path():
|
||||
|
||||
validate_path() # validate path so you can run from base directory
|
||||
from toolbox import markdown_convertion
|
||||
from shared_utils.advanced_markdown_format import markdown_convertion_for_file
|
||||
with open("gpt_log/default_user/shared/2024-04-22-01-27-43.zip.extract/translated_markdown.md", "r", encoding="utf-8") as f:
|
||||
md = f.read()
|
||||
html = markdown_convertion_for_file(md)
|
||||
# from shared_utils.advanced_markdown_format import markdown_convertion_for_file
|
||||
from shared_utils.advanced_markdown_format import close_up_code_segment_during_stream
|
||||
# with open("gpt_log/default_user/shared/2024-04-22-01-27-43.zip.extract/translated_markdown.md", "r", encoding="utf-8") as f:
|
||||
# md = f.read()
|
||||
md = close_up_code_segment_during_stream(md)
|
||||
html = markdown_convertion(md)
|
||||
# print(html)
|
||||
with open("test.html", "w", encoding="utf-8") as f:
|
||||
f.write(html)
|
||||
|
||||
67
tests/test_media.py
Normal file
67
tests/test_media.py
Normal file
@@ -0,0 +1,67 @@
|
||||
"""
|
||||
对项目中的各个插件进行测试。运行方法:直接运行 python tests/test_plugins.py
|
||||
"""
|
||||
|
||||
import init_test
|
||||
import os, sys
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from test_utils import plugin_test
|
||||
|
||||
plugin_test(plugin='crazy_functions.VideoResource_GPT->多媒体任务', main_input="我想找一首歌,里面有句歌词是“turn your face towards the sun”")
|
||||
|
||||
# plugin_test(plugin='crazy_functions.Internet_GPT->连接网络回答问题', main_input="谁是应急食品?")
|
||||
|
||||
# plugin_test(plugin='crazy_functions.函数动态生成->函数动态生成', main_input='交换图像的蓝色通道和红色通道', advanced_arg={"file_path_arg": "./build/ants.jpg"})
|
||||
|
||||
# plugin_test(plugin='crazy_functions.Latex_Function->Latex翻译中文并重新编译PDF', main_input="2307.07522")
|
||||
|
||||
# plugin_test(plugin='crazy_functions.PDF_Translate->批量翻译PDF文档', main_input='build/pdf/t1.pdf')
|
||||
|
||||
# plugin_test(
|
||||
# plugin="crazy_functions.Latex_Function->Latex翻译中文并重新编译PDF",
|
||||
# main_input="G:/SEAFILE_LOCAL/50503047/我的资料库/学位/paperlatex/aaai/Fu_8368_with_appendix",
|
||||
# )
|
||||
|
||||
# plugin_test(plugin='crazy_functions.虚空终端->虚空终端', main_input='修改api-key为sk-jhoejriotherjep')
|
||||
|
||||
# plugin_test(plugin='crazy_functions.批量翻译PDF文档_NOUGAT->批量翻译PDF文档', main_input='crazy_functions/test_project/pdf_and_word/aaai.pdf')
|
||||
|
||||
# plugin_test(plugin='crazy_functions.虚空终端->虚空终端', main_input='调用插件,对C:/Users/fuqingxu/Desktop/旧文件/gpt/chatgpt_academic/crazy_functions/latex_fns中的python文件进行解析')
|
||||
|
||||
# plugin_test(plugin='crazy_functions.命令行助手->命令行助手', main_input='查看当前的docker容器列表')
|
||||
|
||||
# plugin_test(plugin='crazy_functions.SourceCode_Analyse->解析一个Python项目', main_input="crazy_functions/test_project/python/dqn")
|
||||
|
||||
# plugin_test(plugin='crazy_functions.SourceCode_Analyse->解析一个C项目', main_input="crazy_functions/test_project/cpp/cppipc")
|
||||
|
||||
# plugin_test(plugin='crazy_functions.Latex_Project_Polish->Latex英文润色', main_input="crazy_functions/test_project/latex/attention")
|
||||
|
||||
# plugin_test(plugin='crazy_functions.Markdown_Translate->Markdown中译英', main_input="README.md")
|
||||
|
||||
# plugin_test(plugin='crazy_functions.PDF_Translate->批量翻译PDF文档', main_input='crazy_functions/test_project/pdf_and_word/aaai.pdf')
|
||||
|
||||
# plugin_test(plugin='crazy_functions.谷歌检索小助手->谷歌检索小助手', main_input="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=auto+reinforcement+learning&btnG=")
|
||||
|
||||
# plugin_test(plugin='crazy_functions.总结word文档->总结word文档', main_input="crazy_functions/test_project/pdf_and_word")
|
||||
|
||||
# plugin_test(plugin='crazy_functions.下载arxiv论文翻译摘要->下载arxiv论文并翻译摘要', main_input="1812.10695")
|
||||
|
||||
# plugin_test(plugin='crazy_functions.联网的ChatGPT->连接网络回答问题', main_input="谁是应急食品?")
|
||||
|
||||
# plugin_test(plugin='crazy_functions.解析JupyterNotebook->解析ipynb文件', main_input="crazy_functions/test_samples")
|
||||
|
||||
# plugin_test(plugin='crazy_functions.数学动画生成manim->动画生成', main_input="A ball split into 2, and then split into 4, and finally split into 8.")
|
||||
|
||||
# for lang in ["English", "French", "Japanese", "Korean", "Russian", "Italian", "German", "Portuguese", "Arabic"]:
|
||||
# plugin_test(plugin='crazy_functions.Markdown_Translate->Markdown翻译指定语言', main_input="README.md", advanced_arg={"advanced_arg": lang})
|
||||
|
||||
# plugin_test(plugin='crazy_functions.知识库文件注入->知识库文件注入', main_input="./")
|
||||
|
||||
# plugin_test(plugin='crazy_functions.知识库文件注入->读取知识库作答', main_input="What is the installation method?")
|
||||
|
||||
# plugin_test(plugin='crazy_functions.知识库文件注入->读取知识库作答', main_input="远程云服务器部署?")
|
||||
|
||||
# plugin_test(plugin='crazy_functions.Latex_Function->Latex翻译中文并重新编译PDF', main_input="2210.03629")
|
||||
|
||||
33
tests/test_tts.py
Normal file
33
tests/test_tts.py
Normal file
@@ -0,0 +1,33 @@
|
||||
import edge_tts
|
||||
import os
|
||||
import httpx
|
||||
from toolbox import get_conf
|
||||
|
||||
|
||||
async def test_tts():
|
||||
async with httpx.AsyncClient() as client:
|
||||
try:
|
||||
# Forward the request to the target service
|
||||
import tempfile
|
||||
import edge_tts
|
||||
import wave
|
||||
import uuid
|
||||
from pydub import AudioSegment
|
||||
voice = get_conf("EDGE_TTS_VOICE")
|
||||
tts = edge_tts.Communicate(text="测试", voice=voice)
|
||||
temp_folder = tempfile.gettempdir()
|
||||
temp_file_name = str(uuid.uuid4().hex)
|
||||
temp_file = os.path.join(temp_folder, f'{temp_file_name}.mp3')
|
||||
await tts.save(temp_file)
|
||||
try:
|
||||
mp3_audio = AudioSegment.from_file(temp_file, format="mp3")
|
||||
mp3_audio.export(temp_file, format="wav")
|
||||
with open(temp_file, 'rb') as wav_file: t = wav_file.read()
|
||||
except:
|
||||
raise RuntimeError("ffmpeg未安装,无法处理EdgeTTS音频。安装方法见`https://github.com/jiaaro/pydub#getting-ffmpeg-set-up`")
|
||||
except httpx.RequestError as e:
|
||||
raise RuntimeError(f"请求失败: {e}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
import asyncio
|
||||
asyncio.run(test_tts())
|
||||
@@ -1,9 +1,16 @@
|
||||
:root {
|
||||
--gpt-academic-message-font-size: 15px;
|
||||
}
|
||||
|
||||
.message {
|
||||
font-size: var(--gpt-academic-message-font-size) !important;
|
||||
}
|
||||
|
||||
#plugin_arg_menu {
|
||||
transform: translate(-50%, -50%);
|
||||
border: dashed;
|
||||
}
|
||||
|
||||
|
||||
/* hide remove all button */
|
||||
.remove-all.svelte-aqlk7e.svelte-aqlk7e.svelte-aqlk7e {
|
||||
visibility: hidden;
|
||||
@@ -25,7 +32,6 @@
|
||||
visibility: hidden;
|
||||
}
|
||||
|
||||
|
||||
/* height of the upload box */
|
||||
.wrap.svelte-xwlu1w {
|
||||
min-height: var(--size-32);
|
||||
@@ -97,13 +103,9 @@
|
||||
min-width: min(80px, 100%);
|
||||
}
|
||||
|
||||
|
||||
#cbs {
|
||||
background-color: var(--block-background-fill) !important;
|
||||
}
|
||||
|
||||
#cbs,
|
||||
#cbsc {
|
||||
background-color: var(--block-background-fill) !important;
|
||||
background-color: rgba(var(--block-background-fill), 0.5) !important;
|
||||
}
|
||||
|
||||
#interact-panel .form {
|
||||
@@ -155,7 +157,7 @@
|
||||
transform: translate(-50%, -50%);
|
||||
flex-wrap: wrap;
|
||||
justify-content: center;
|
||||
transition: opacity 1s ease-in-out;
|
||||
transition: opacity 0.6s ease-in-out;
|
||||
opacity: 0;
|
||||
}
|
||||
.welcome-card-container.show {
|
||||
@@ -207,6 +209,7 @@
|
||||
.welcome-content {
|
||||
text-wrap: balance;
|
||||
height: 55px;
|
||||
font-size: 13px;
|
||||
display: flex;
|
||||
align-items: center;
|
||||
}
|
||||
@@ -270,4 +273,53 @@
|
||||
}
|
||||
#gpt-submit-row #gpt-submit-dropdown > *:hover {
|
||||
cursor: context-menu;
|
||||
}
|
||||
}
|
||||
|
||||
.tooltip.svelte-p2nen8.svelte-p2nen8 {
|
||||
box-shadow: 10px 10px 15px rgba(0, 0, 0, 0.5);
|
||||
left: 10px;
|
||||
}
|
||||
|
||||
#tooltip .hidden {
|
||||
/* display: none; */
|
||||
opacity: 0;
|
||||
transition: opacity 0.5s ease;
|
||||
}
|
||||
|
||||
#tooltip .visible {
|
||||
/* display: block; */
|
||||
opacity: 1;
|
||||
transition: opacity 0.5s ease;
|
||||
}
|
||||
|
||||
#elem_fontsize,
|
||||
#elem_top_p,
|
||||
#elem_temperature,
|
||||
#elem_max_length_sl,
|
||||
#elem_prompt {
|
||||
/* 左右为0;顶部为0,底部为2px */
|
||||
padding: 0 0 4px 0;
|
||||
backdrop-filter: blur(10px);
|
||||
background-color: rgba(var(--block-background-fill), 0.5);
|
||||
}
|
||||
|
||||
|
||||
#tooltip #cbs,
|
||||
#tooltip #cbsc,
|
||||
#tooltip .svelte-b6y5bg,
|
||||
#tooltip .tabitem {
|
||||
backdrop-filter: blur(10px);
|
||||
background-color: rgba(var(--block-background-fill), 0.5);
|
||||
}
|
||||
|
||||
|
||||
.reasoning_process {
|
||||
font-size: smaller;
|
||||
font-style: italic;
|
||||
margin: 0px;
|
||||
padding: 1em;
|
||||
line-height: 1.5;
|
||||
text-wrap: wrap;
|
||||
opacity: 0.8;
|
||||
}
|
||||
|
||||
|
||||
365
themes/common.js
365
themes/common.js
@@ -318,7 +318,7 @@ function addCopyButton(botElement, index, is_last_in_arr) {
|
||||
}
|
||||
});
|
||||
|
||||
if (enable_tts){
|
||||
if (enable_tts) {
|
||||
var audioButton = document.createElement('button');
|
||||
audioButton.classList.add('audio-toggle-btn');
|
||||
audioButton.innerHTML = audioIcon;
|
||||
@@ -346,7 +346,7 @@ function addCopyButton(botElement, index, is_last_in_arr) {
|
||||
var messageBtnColumn = document.createElement('div');
|
||||
messageBtnColumn.classList.add('message-btn-row');
|
||||
messageBtnColumn.appendChild(copyButton);
|
||||
if (enable_tts){
|
||||
if (enable_tts) {
|
||||
messageBtnColumn.appendChild(audioButton);
|
||||
}
|
||||
botElement.appendChild(messageBtnColumn);
|
||||
@@ -391,6 +391,9 @@ function chatbotContentChanged(attempt = 1, force = false) {
|
||||
|
||||
// Now pass both the message element and the is_last_in_arr boolean to addCopyButton
|
||||
addCopyButton(message, index, is_last_in_arr);
|
||||
|
||||
// save_conversation_history
|
||||
save_conversation_history_slow_down();
|
||||
});
|
||||
// gradioApp().querySelectorAll('#gpt-chatbot .message-wrap .message.bot').forEach(addCopyButton);
|
||||
}, i === 0 ? 0 : 200);
|
||||
@@ -747,10 +750,24 @@ function minor_ui_adjustment() {
|
||||
var bar_btn_width = [];
|
||||
// 自动隐藏超出范围的toolbar按钮
|
||||
function auto_hide_toolbar() {
|
||||
var qq = document.getElementById('tooltip');
|
||||
var tab_nav = qq.getElementsByClassName('tab-nav');
|
||||
// if chatbot hit upper page boarder, hide all
|
||||
const elem_chatbot = document.getElementById('gpt-chatbot');
|
||||
const chatbot_top = elem_chatbot.getBoundingClientRect().top;
|
||||
var tooltip = document.getElementById('tooltip');
|
||||
var tab_nav = tooltip.getElementsByClassName('tab-nav')[0];
|
||||
|
||||
// 20 px 大概是一个字的高度
|
||||
if (chatbot_top < 20) {
|
||||
// tab_nav.style.display = 'none';
|
||||
if (tab_nav.classList.contains('visible')) {tab_nav.classList.remove('visible');}
|
||||
if (!tab_nav.classList.contains('hidden')) {tab_nav.classList.add('hidden');}
|
||||
return;
|
||||
}
|
||||
if (tab_nav.classList.contains('hidden')) {tab_nav.classList.remove('hidden');}
|
||||
if (!tab_nav.classList.contains('visible')) {tab_nav.classList.add('visible');}
|
||||
// tab_nav.style.display = '';
|
||||
if (tab_nav.length == 0) { return; }
|
||||
var btn_list = tab_nav[0].getElementsByTagName('button')
|
||||
var btn_list = tab_nav.getElementsByTagName('button')
|
||||
if (btn_list.length == 0) { return; }
|
||||
// 获取页面宽度
|
||||
var page_width = document.documentElement.clientWidth;
|
||||
@@ -854,8 +871,7 @@ function limit_scroll_position() {
|
||||
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||
|
||||
function loadLive2D() {
|
||||
if (document.querySelector(".waifu") )
|
||||
{
|
||||
if (document.querySelector(".waifu")) {
|
||||
$('.waifu').show();
|
||||
} else {
|
||||
try {
|
||||
@@ -922,12 +938,12 @@ function gpt_academic_gradio_saveload(
|
||||
if (save_or_load === "load") {
|
||||
let value = getCookie(cookie_key);
|
||||
if (value) {
|
||||
console.log('加载cookie', elem_id, value)
|
||||
// console.log('加载cookie', elem_id, value)
|
||||
push_data_to_gradio_component(value, elem_id, load_type);
|
||||
}
|
||||
else {
|
||||
if (load_default) {
|
||||
console.log('加载cookie的默认值', elem_id, load_default_value)
|
||||
// console.log('加载cookie的默认值', elem_id, load_default_value)
|
||||
push_data_to_gradio_component(load_default_value, elem_id, load_type);
|
||||
}
|
||||
}
|
||||
@@ -937,113 +953,153 @@ function gpt_academic_gradio_saveload(
|
||||
}
|
||||
}
|
||||
|
||||
function generateUUID() {
|
||||
// Generate a random number and convert it to a hexadecimal string
|
||||
function randomHexDigit() {
|
||||
return Math.floor((1 + Math.random()) * 0x10000).toString(16).slice(1);
|
||||
}
|
||||
|
||||
// Construct the UUID using the randomHexDigit function
|
||||
return (
|
||||
randomHexDigit() + randomHexDigit() + '-' +
|
||||
randomHexDigit() + '-' +
|
||||
'4' + randomHexDigit().slice(0, 3) + '-' + // Version 4 UUID
|
||||
((Math.floor(Math.random() * 4) + 8).toString(16)) + randomHexDigit().slice(0, 3) + '-' +
|
||||
randomHexDigit() + randomHexDigit() + randomHexDigit()
|
||||
);
|
||||
}
|
||||
|
||||
function update_conversation_metadata() {
|
||||
// Create a conversation UUID and timestamp
|
||||
try {
|
||||
const conversationId = generateUUID();
|
||||
console.log('Create conversation ID:', conversationId);
|
||||
const timestamp = new Date().toISOString();
|
||||
const conversationMetaData = {
|
||||
id: conversationId,
|
||||
timestamp: timestamp
|
||||
};
|
||||
localStorage.setItem("conversation_metadata", JSON.stringify(conversationMetaData));
|
||||
} catch (e) {
|
||||
console.error('Error in updating conversation metadata:', e);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Helper function to generate conversation preview
|
||||
function generatePreview(conversation, timestamp, maxLength = 100) {
|
||||
if (!conversation || conversation.length === 0) return "";
|
||||
// Join all messages with dash separator
|
||||
let preview = conversation.join("\n");
|
||||
const readableDate = new Date(timestamp).toLocaleString();
|
||||
preview = readableDate + "\n" + preview;
|
||||
if (preview.length <= maxLength) return preview;
|
||||
return preview.substring(0, maxLength) + "...";
|
||||
}
|
||||
|
||||
async function save_conversation_history() {
|
||||
|
||||
let chatbot = await get_data_from_gradio_component('gpt-chatbot');
|
||||
let history = await get_data_from_gradio_component('history-ng');
|
||||
let conversation = {};
|
||||
let conversation_metadata = localStorage.getItem("conversation_metadata");
|
||||
try {
|
||||
conversation_metadata = JSON.parse(conversation_metadata);
|
||||
conversation = {
|
||||
timestamp: conversation_metadata.timestamp,
|
||||
id: conversation_metadata.id,
|
||||
metadata: conversation_metadata,
|
||||
conversation: chatbot,
|
||||
history: history,
|
||||
preview: generatePreview(JSON.parse(history), conversation_metadata.timestamp)
|
||||
};
|
||||
} catch (e) {
|
||||
// console.error('Conversation metadata parse error, recreate conversation metadata');
|
||||
update_conversation_metadata();
|
||||
return;
|
||||
}
|
||||
|
||||
// Get existing conversation history from local storage
|
||||
let conversation_history = [];
|
||||
try {
|
||||
const stored = localStorage.getItem('conversation_history');
|
||||
if (stored) {
|
||||
conversation_history = JSON.parse(stored);
|
||||
}
|
||||
} catch (e) {
|
||||
// console.error('Error reading conversation history from localStorage:', e);
|
||||
}
|
||||
|
||||
// Find existing conversation with same ID
|
||||
const existingIndex = conversation_history.findIndex(c => c.id === conversation.id);
|
||||
|
||||
if (existingIndex >= 0) {
|
||||
// Update existing conversation
|
||||
conversation_history[existingIndex] = conversation;
|
||||
} else {
|
||||
// Add new conversation
|
||||
conversation_history.push(conversation);
|
||||
}
|
||||
|
||||
// Sort conversations by timestamp, newest first
|
||||
conversation_history.sort((a, b) => {
|
||||
const timeA = new Date(a.timestamp).getTime();
|
||||
const timeB = new Date(b.timestamp).getTime();
|
||||
return timeB - timeA;
|
||||
});
|
||||
|
||||
const max_chat_preserve = 10;
|
||||
|
||||
if (conversation_history.length >= max_chat_preserve + 1) {
|
||||
toast_push('对话时间线记录已满,正在移除最早的对话记录。您也可以点击左侧的记录点进行手动清理。', 3000);
|
||||
conversation_history = conversation_history.slice(0, max_chat_preserve);
|
||||
}
|
||||
|
||||
// Save back to local storage
|
||||
try {
|
||||
localStorage.setItem('conversation_history', JSON.stringify(conversation_history));
|
||||
const LOCAL_STORAGE_UPDATED = "gptac_conversation_history_updated";
|
||||
window.dispatchEvent(
|
||||
new CustomEvent(LOCAL_STORAGE_UPDATED, {
|
||||
detail: conversation_history
|
||||
})
|
||||
);
|
||||
} catch (e) {
|
||||
console.error('Error saving conversation history to localStorage:', e);
|
||||
}
|
||||
}
|
||||
|
||||
save_conversation_history_slow_down = do_something_but_not_too_frequently(300, save_conversation_history);
|
||||
|
||||
function restore_chat_from_local_storage(event) {
|
||||
let conversation = event.detail;
|
||||
push_data_to_gradio_component(conversation.conversation, "gpt-chatbot", "obj");
|
||||
push_data_to_gradio_component(conversation.history, "history-ng", "obj");
|
||||
const conversationId = conversation.id;
|
||||
const timestamp = conversation.timestamp;
|
||||
const conversationData = {
|
||||
id: conversationId,
|
||||
timestamp: timestamp
|
||||
};
|
||||
localStorage.setItem("conversation_metadata", JSON.stringify(conversationData));
|
||||
}
|
||||
|
||||
async function clear_conversation(a, b, c) {
|
||||
await save_conversation_history();
|
||||
update_conversation_metadata();
|
||||
let stopButton = document.getElementById("elem_stop");
|
||||
stopButton.click();
|
||||
return reset_conversation(a, b);
|
||||
}
|
||||
|
||||
|
||||
function reset_conversation(a, b) {
|
||||
// console.log("js_code_reset");
|
||||
a = btoa(unescape(encodeURIComponent(JSON.stringify(a))));
|
||||
setCookie("js_previous_chat_cookie", a, 1);
|
||||
gen_restore_btn();
|
||||
return [[], [], "已重置"];
|
||||
}
|
||||
|
||||
// clear -> 将 history 缓存至 history_cache -> 点击复原 -> restore_previous_chat() -> 触发elem_update_history -> 读取 history_cache
|
||||
function restore_previous_chat() {
|
||||
console.log("restore_previous_chat");
|
||||
let chat = getCookie("js_previous_chat_cookie");
|
||||
chat = JSON.parse(decodeURIComponent(escape(atob(chat))));
|
||||
push_data_to_gradio_component(chat, "gpt-chatbot", "obj");
|
||||
document.querySelector("#elem_update_history").click(); // in order to call set_history_gr_state, and send history state to server
|
||||
}
|
||||
|
||||
function gen_restore_btn() {
|
||||
|
||||
|
||||
// 创建按钮元素
|
||||
const button = document.createElement('div');
|
||||
// const recvIcon = '<span><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" height=".8em" width=".8em" xmlns="http://www.w3.org/2000/svg"><polyline points="20 6 9 17 4 12"></polyline></svg></span>';
|
||||
const rec_svg = '<svg t="1714361184567" style="transform:translate(1px, 2.5px)" class="icon" viewBox="0 0 1024 1024" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="4389" width="35" height="35"><path d="M320 512h384v64H320zM320 384h384v64H320zM320 640h192v64H320z" p-id="4390" fill="#ffffff"></path><path d="M863.7 544c-1.9 44-11.4 86.8-28.5 127.2-18.5 43.8-45.1 83.2-78.9 117-33.8 33.8-73.2 60.4-117 78.9C593.9 886.3 545.7 896 496 896s-97.9-9.7-143.2-28.9c-43.8-18.5-83.2-45.1-117-78.9-33.8-33.8-60.4-73.2-78.9-117C137.7 625.9 128 577.7 128 528s9.7-97.9 28.9-143.2c18.5-43.8 45.1-83.2 78.9-117s73.2-60.4 117-78.9C398.1 169.7 446.3 160 496 160s97.9 9.7 143.2 28.9c23.5 9.9 45.8 22.2 66.5 36.7l-119.7 20 9.9 59.4 161.6-27 59.4-9.9-9.9-59.4-27-161.5-59.4 9.9 19 114.2C670.3 123.8 586.4 96 496 96 257.4 96 64 289.4 64 528s193.4 432 432 432c233.2 0 423.3-184.8 431.7-416h-64z" p-id="4391" fill="#ffffff"></path></svg>'
|
||||
const recvIcon = '<span>' + rec_svg + '</span>';
|
||||
|
||||
// 设置按钮的样式和属性
|
||||
button.id = 'floatingButton';
|
||||
button.className = 'glow';
|
||||
button.style.textAlign = 'center';
|
||||
button.style.position = 'fixed';
|
||||
button.style.bottom = '10px';
|
||||
button.style.left = '10px';
|
||||
button.style.width = '50px';
|
||||
button.style.height = '50px';
|
||||
button.style.borderRadius = '50%';
|
||||
button.style.backgroundColor = '#007bff';
|
||||
button.style.color = 'white';
|
||||
button.style.display = 'flex';
|
||||
button.style.alignItems = 'center';
|
||||
button.style.justifyContent = 'center';
|
||||
button.style.cursor = 'pointer';
|
||||
button.style.transition = 'all 0.3s ease';
|
||||
button.style.boxShadow = '0 0 10px rgba(0,0,0,0.2)';
|
||||
|
||||
button.innerHTML = recvIcon;
|
||||
|
||||
// 添加发光动画的关键帧
|
||||
const styleSheet = document.createElement('style');
|
||||
styleSheet.id = 'floatingButtonStyle';
|
||||
styleSheet.innerText = `
|
||||
@keyframes glow {
|
||||
from {
|
||||
box-shadow: 0 0 10px rgba(0,0,0,0.2);
|
||||
}
|
||||
to {
|
||||
box-shadow: 0 0 13px rgba(0,0,0,0.5);
|
||||
}
|
||||
}
|
||||
#floatingButton.glow {
|
||||
animation: glow 1s infinite alternate;
|
||||
}
|
||||
#floatingButton:hover {
|
||||
transform: scale(1.2);
|
||||
box-shadow: 0 0 20px rgba(0,0,0,0.4);
|
||||
}
|
||||
#floatingButton.disappearing {
|
||||
animation: shrinkAndDisappear 0.5s forwards;
|
||||
}
|
||||
`;
|
||||
|
||||
// only add when not exist
|
||||
if (!document.getElementById('recvButtonStyle'))
|
||||
{
|
||||
document.head.appendChild(styleSheet);
|
||||
}
|
||||
|
||||
// 鼠标悬停和移开的事件监听器
|
||||
button.addEventListener('mouseover', function () {
|
||||
this.textContent = "还原\n对话";
|
||||
});
|
||||
|
||||
button.addEventListener('mouseout', function () {
|
||||
this.innerHTML = recvIcon;
|
||||
});
|
||||
|
||||
// 点击事件监听器
|
||||
button.addEventListener('click', function () {
|
||||
// 添加一个类来触发缩小和消失的动画
|
||||
restore_previous_chat();
|
||||
this.classList.add('disappearing');
|
||||
// 在动画结束后移除按钮
|
||||
document.body.removeChild(this);
|
||||
});
|
||||
// only add when not exist
|
||||
if (!document.getElementById('recvButton'))
|
||||
{
|
||||
document.body.appendChild(button);
|
||||
}
|
||||
|
||||
// 将按钮添加到页面中
|
||||
|
||||
}
|
||||
|
||||
async function on_plugin_exe_complete(fn_name) {
|
||||
console.log(fn_name);
|
||||
// console.log(fn_name);
|
||||
if (fn_name === "保存当前的对话") {
|
||||
// get chat profile path
|
||||
let chatbot = await get_data_from_gradio_component('gpt-chatbot');
|
||||
@@ -1062,15 +1118,15 @@ async function on_plugin_exe_complete(fn_name) {
|
||||
}
|
||||
let href = get_href(may_have_chat_profile_info);
|
||||
if (href) {
|
||||
const cleanedHref = href.replace('file=', ''); // /home/fuqingxu/chatgpt_academic/gpt_log/default_user/chat_history/GPT-Academic对话存档2024-04-12-00-35-06.html
|
||||
console.log(cleanedHref);
|
||||
const cleanedHref = href.replace('file=', ''); // gpt_log/default_user/chat_history/GPT-Academic对话存档2024-04-12-00-35-06.html
|
||||
// console.log(cleanedHref);
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
async function generate_menu(guiBase64String, btnName){
|
||||
async function generate_menu(guiBase64String, btnName) {
|
||||
// assign the button and menu data
|
||||
push_data_to_gradio_component(guiBase64String, "invisible_current_pop_up_plugin_arg", "string");
|
||||
push_data_to_gradio_component(btnName, "invisible_callback_btn_for_plugin_exe", "string");
|
||||
@@ -1104,22 +1160,22 @@ async function generate_menu(guiBase64String, btnName){
|
||||
///////////////////////////////////////////////////////////////////////////////////////////
|
||||
//////////////////////////////////// Textbox ////////////////////////////////////
|
||||
///////////////////////////////////////////////////////////////////////////////////////////
|
||||
if (gui_args[key].type=='string'){ // PLUGIN_ARG_MENU
|
||||
if (gui_args[key].type == 'string') { // PLUGIN_ARG_MENU
|
||||
const component_name = "plugin_arg_txt_" + text_cnt;
|
||||
push_data_to_gradio_component({
|
||||
visible: true,
|
||||
label: gui_args[key].title + "(" + gui_args[key].description + ")",
|
||||
label: gui_args[key].title + "(" + gui_args[key].description + ")",
|
||||
// label: gui_args[key].title,
|
||||
placeholder: gui_args[key].description,
|
||||
__type__: 'update'
|
||||
}, component_name, "obj");
|
||||
if (key === "main_input"){
|
||||
if (key === "main_input") {
|
||||
// 为了与旧插件兼容,生成菜单时,自动加载输入栏的值
|
||||
let current_main_input = await get_data_from_gradio_component('user_input_main');
|
||||
let current_main_input_2 = await get_data_from_gradio_component('user_input_float');
|
||||
push_data_to_gradio_component(current_main_input + current_main_input_2, component_name, "obj");
|
||||
}
|
||||
else if (key === "advanced_arg"){
|
||||
else if (key === "advanced_arg") {
|
||||
// 为了与旧插件兼容,生成菜单时,自动加载旧高级参数输入区的值
|
||||
let advance_arg_input_legacy = await get_data_from_gradio_component('advance_arg_input_legacy');
|
||||
push_data_to_gradio_component(advance_arg_input_legacy, component_name, "obj");
|
||||
@@ -1134,12 +1190,12 @@ async function generate_menu(guiBase64String, btnName){
|
||||
///////////////////////////////////////////////////////////////////////////////////////////
|
||||
//////////////////////////////////// Dropdown ////////////////////////////////////
|
||||
///////////////////////////////////////////////////////////////////////////////////////////
|
||||
if (gui_args[key].type=='dropdown'){ // PLUGIN_ARG_MENU
|
||||
if (gui_args[key].type == 'dropdown') { // PLUGIN_ARG_MENU
|
||||
const component_name = "plugin_arg_drop_" + dropdown_cnt;
|
||||
push_data_to_gradio_component({
|
||||
visible: true,
|
||||
choices: gui_args[key].options,
|
||||
label: gui_args[key].title + "(" + gui_args[key].description + ")",
|
||||
label: gui_args[key].title + "(" + gui_args[key].description + ")",
|
||||
// label: gui_args[key].title,
|
||||
placeholder: gui_args[key].description,
|
||||
__type__: 'update'
|
||||
@@ -1154,7 +1210,7 @@ async function generate_menu(guiBase64String, btnName){
|
||||
}
|
||||
}
|
||||
|
||||
async function execute_current_pop_up_plugin(){
|
||||
async function execute_current_pop_up_plugin() {
|
||||
let guiBase64String = await get_data_from_gradio_component('invisible_current_pop_up_plugin_arg');
|
||||
const stringData = atob(guiBase64String);
|
||||
let guiJsonData = JSON.parse(stringData);
|
||||
@@ -1170,8 +1226,8 @@ async function execute_current_pop_up_plugin(){
|
||||
let text_cnt = 0;
|
||||
for (const key in gui_args) {
|
||||
if (gui_args.hasOwnProperty(key)) {
|
||||
if (gui_args[key].type=='string'){ // PLUGIN_ARG_MENU
|
||||
corrisponding_elem_id = "plugin_arg_txt_"+text_cnt
|
||||
if (gui_args[key].type == 'string') { // PLUGIN_ARG_MENU
|
||||
corrisponding_elem_id = "plugin_arg_txt_" + text_cnt
|
||||
gui_args[key].user_confirmed_value = await get_data_from_gradio_component(corrisponding_elem_id);
|
||||
text_cnt += 1;
|
||||
}
|
||||
@@ -1180,8 +1236,8 @@ async function execute_current_pop_up_plugin(){
|
||||
let dropdown_cnt = 0;
|
||||
for (const key in gui_args) {
|
||||
if (gui_args.hasOwnProperty(key)) {
|
||||
if (gui_args[key].type=='dropdown'){ // PLUGIN_ARG_MENU
|
||||
corrisponding_elem_id = "plugin_arg_drop_"+dropdown_cnt
|
||||
if (gui_args[key].type == 'dropdown') { // PLUGIN_ARG_MENU
|
||||
corrisponding_elem_id = "plugin_arg_drop_" + dropdown_cnt
|
||||
gui_args[key].user_confirmed_value = await get_data_from_gradio_component(corrisponding_elem_id);
|
||||
dropdown_cnt += 1;
|
||||
}
|
||||
@@ -1200,29 +1256,29 @@ async function execute_current_pop_up_plugin(){
|
||||
|
||||
}
|
||||
|
||||
function hide_all_elem(){
|
||||
// PLUGIN_ARG_MENU
|
||||
for (text_cnt = 0; text_cnt < 8; text_cnt++){
|
||||
function hide_all_elem() {
|
||||
// PLUGIN_ARG_MENU
|
||||
for (text_cnt = 0; text_cnt < 8; text_cnt++) {
|
||||
push_data_to_gradio_component({
|
||||
visible: false,
|
||||
label: "",
|
||||
__type__: 'update'
|
||||
}, "plugin_arg_txt_"+text_cnt, "obj");
|
||||
document.getElementById("plugin_arg_txt_"+text_cnt).parentNode.parentNode.style.display = 'none';
|
||||
}, "plugin_arg_txt_" + text_cnt, "obj");
|
||||
document.getElementById("plugin_arg_txt_" + text_cnt).parentNode.parentNode.style.display = 'none';
|
||||
}
|
||||
for (dropdown_cnt = 0; dropdown_cnt < 8; dropdown_cnt++){
|
||||
for (dropdown_cnt = 0; dropdown_cnt < 8; dropdown_cnt++) {
|
||||
push_data_to_gradio_component({
|
||||
visible: false,
|
||||
choices: [],
|
||||
label: "",
|
||||
__type__: 'update'
|
||||
}, "plugin_arg_drop_"+dropdown_cnt, "obj");
|
||||
document.getElementById("plugin_arg_drop_"+dropdown_cnt).parentNode.style.display = 'none';
|
||||
}, "plugin_arg_drop_" + dropdown_cnt, "obj");
|
||||
document.getElementById("plugin_arg_drop_" + dropdown_cnt).parentNode.style.display = 'none';
|
||||
}
|
||||
}
|
||||
|
||||
function close_current_pop_up_plugin(){
|
||||
// PLUGIN_ARG_MENU
|
||||
function close_current_pop_up_plugin() {
|
||||
// PLUGIN_ARG_MENU
|
||||
push_data_to_gradio_component({
|
||||
visible: false,
|
||||
__type__: 'update'
|
||||
@@ -1233,15 +1289,13 @@ function close_current_pop_up_plugin(){
|
||||
|
||||
// 生成高级插件的选择菜单
|
||||
plugin_init_info_lib = {}
|
||||
function register_plugin_init(key, base64String){
|
||||
function register_plugin_init(key, base64String) {
|
||||
// console.log('x')
|
||||
const stringData = atob(base64String);
|
||||
let guiJsonData = JSON.parse(stringData);
|
||||
if (key in plugin_init_info_lib)
|
||||
{
|
||||
if (key in plugin_init_info_lib) {
|
||||
}
|
||||
else
|
||||
{
|
||||
else {
|
||||
plugin_init_info_lib[key] = {};
|
||||
}
|
||||
plugin_init_info_lib[key].info = guiJsonData.Info;
|
||||
@@ -1251,28 +1305,26 @@ function register_plugin_init(key, base64String){
|
||||
plugin_init_info_lib[key].enable_advanced_arg = guiJsonData.AdvancedArgs;
|
||||
plugin_init_info_lib[key].arg_reminder = guiJsonData.ArgsReminder;
|
||||
}
|
||||
function register_advanced_plugin_init_code(key, code){
|
||||
if (key in plugin_init_info_lib)
|
||||
{
|
||||
function register_advanced_plugin_init_code(key, code) {
|
||||
if (key in plugin_init_info_lib) {
|
||||
}
|
||||
else
|
||||
{
|
||||
else {
|
||||
plugin_init_info_lib[key] = {};
|
||||
}
|
||||
plugin_init_info_lib[key].secondary_menu_code = code;
|
||||
}
|
||||
function run_advanced_plugin_launch_code(key){
|
||||
function run_advanced_plugin_launch_code(key) {
|
||||
// convert js code string to function
|
||||
generate_menu(plugin_init_info_lib[key].secondary_menu_code, key);
|
||||
}
|
||||
function on_flex_button_click(key){
|
||||
if (plugin_init_info_lib.hasOwnProperty(key) && plugin_init_info_lib[key].hasOwnProperty('secondary_menu_code')){
|
||||
function on_flex_button_click(key) {
|
||||
if (plugin_init_info_lib.hasOwnProperty(key) && plugin_init_info_lib[key].hasOwnProperty('secondary_menu_code')) {
|
||||
run_advanced_plugin_launch_code(key);
|
||||
}else{
|
||||
} else {
|
||||
document.getElementById("old_callback_btn_for_plugin_exe").click();
|
||||
}
|
||||
}
|
||||
async function run_dropdown_shift(dropdown){
|
||||
async function run_dropdown_shift(dropdown) {
|
||||
let key = dropdown;
|
||||
push_data_to_gradio_component({
|
||||
value: key,
|
||||
@@ -1281,7 +1333,7 @@ async function run_dropdown_shift(dropdown){
|
||||
__type__: 'update'
|
||||
}, "elem_switchy_bt", "obj");
|
||||
|
||||
if (plugin_init_info_lib[key].enable_advanced_arg){
|
||||
if (plugin_init_info_lib[key].enable_advanced_arg) {
|
||||
push_data_to_gradio_component({
|
||||
visible: true,
|
||||
label: plugin_init_info_lib[key].label,
|
||||
@@ -1303,9 +1355,9 @@ async function duplicate_in_new_window() {
|
||||
window.open(url, '_blank');
|
||||
}
|
||||
|
||||
async function run_classic_plugin_via_id(plugin_elem_id){
|
||||
for (key in plugin_init_info_lib){
|
||||
if (plugin_init_info_lib[key].elem_id == plugin_elem_id){
|
||||
async function run_classic_plugin_via_id(plugin_elem_id) {
|
||||
for (key in plugin_init_info_lib) {
|
||||
if (plugin_init_info_lib[key].elem_id == plugin_elem_id) {
|
||||
// 获取按钮名称
|
||||
let current_btn_name = await get_data_from_gradio_component(plugin_elem_id);
|
||||
// 执行
|
||||
@@ -1326,7 +1378,7 @@ async function call_plugin_via_name(current_btn_name) {
|
||||
hide_all_elem();
|
||||
// 为了与旧插件兼容,生成菜单时,自动加载旧高级参数输入区的值
|
||||
let advance_arg_input_legacy = await get_data_from_gradio_component('advance_arg_input_legacy');
|
||||
if (advance_arg_input_legacy.length != 0){
|
||||
if (advance_arg_input_legacy.length != 0) {
|
||||
gui_args["advanced_arg"] = {};
|
||||
gui_args["advanced_arg"].user_confirmed_value = advance_arg_input_legacy;
|
||||
}
|
||||
@@ -1353,7 +1405,7 @@ async function multiplex_function_begin(multiplex_sel) {
|
||||
// do not delete `REPLACE_EXTENDED_MULTIPLEX_FUNCTIONS_HERE`! It will be read and replaced by Python code.
|
||||
// REPLACE_EXTENDED_MULTIPLEX_FUNCTIONS_HERE
|
||||
}
|
||||
async function run_multiplex_shift(multiplex_sel){
|
||||
async function run_multiplex_shift(multiplex_sel) {
|
||||
let key = multiplex_sel;
|
||||
if (multiplex_sel === "常规对话") {
|
||||
key = "提交";
|
||||
@@ -1365,3 +1417,8 @@ async function run_multiplex_shift(multiplex_sel){
|
||||
__type__: 'update'
|
||||
}, "elem_submit_visible", "obj");
|
||||
}
|
||||
|
||||
|
||||
async function persistent_cookie_init(web_cookie_cache, cookie) {
|
||||
return [localStorage.getItem('web_cookie_cache'), cookie];
|
||||
}
|
||||
1178
themes/green.css
1178
themes/green.css
File diff suppressed because it is too large
Load Diff
@@ -10,6 +10,14 @@ theme_dir = os.path.dirname(__file__)
|
||||
def adjust_theme():
|
||||
try:
|
||||
set_theme = gr.themes.Soft(
|
||||
font=[
|
||||
"Helvetica",
|
||||
"Microsoft YaHei",
|
||||
"ui-sans-serif",
|
||||
"sans-serif",
|
||||
"system-ui",
|
||||
],
|
||||
font_mono=["ui-monospace", "Consolas", "monospace"],
|
||||
primary_hue=gr.themes.Color(
|
||||
c50="#EBFAF2",
|
||||
c100="#CFF3E1",
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import gradio as gr
|
||||
|
||||
def define_gui_floating_menu(customize_btns, functional, predefined_btns, cookies, web_cookie_cache):
|
||||
with gr.Floating(init_x="20%", init_y="50%", visible=False, width="40%", drag="top") as area_input_secondary:
|
||||
with gr.Floating(init_x="20%", init_y="50%", visible=False, width="40%", drag="top", elem_id="f_area_input_secondary") as area_input_secondary:
|
||||
with gr.Accordion("浮动输入区", open=True, elem_id="input-panel2"):
|
||||
with gr.Row() as row:
|
||||
row.style(equal_height=True)
|
||||
@@ -17,7 +17,7 @@ def define_gui_floating_menu(customize_btns, functional, predefined_btns, cookie
|
||||
clearBtn2 = gr.Button("清除", elem_id="elem_clear2", variant="secondary", visible=False); clearBtn2.style(size="sm")
|
||||
|
||||
|
||||
with gr.Floating(init_x="20%", init_y="50%", visible=False, width="40%", drag="top") as area_customize:
|
||||
with gr.Floating(init_x="20%", init_y="50%", visible=False, width="40%", drag="top", elem_id="f_area_customize") as area_customize:
|
||||
with gr.Accordion("自定义菜单", open=True, elem_id="edit-panel"):
|
||||
with gr.Row() as row:
|
||||
with gr.Column(scale=10):
|
||||
@@ -35,9 +35,9 @@ def define_gui_floating_menu(customize_btns, functional, predefined_btns, cookie
|
||||
# update btn
|
||||
h = basic_fn_confirm.click(assign_btn, [web_cookie_cache, cookies, basic_btn_dropdown, basic_fn_title, basic_fn_prefix, basic_fn_suffix],
|
||||
[web_cookie_cache, cookies, *customize_btns.values(), *predefined_btns.values()])
|
||||
h.then(None, [web_cookie_cache], None, _js="""(web_cookie_cache)=>{setCookie("web_cookie_cache", web_cookie_cache, 365);}""")
|
||||
h.then(None, [web_cookie_cache], None, _js="""(web_cookie_cache)=>{localStorage.setItem("web_cookie_cache", web_cookie_cache);}""")
|
||||
# clean up btn
|
||||
h2 = basic_fn_clean.click(assign_btn, [web_cookie_cache, cookies, basic_btn_dropdown, basic_fn_title, basic_fn_prefix, basic_fn_suffix, gr.State(True)],
|
||||
[web_cookie_cache, cookies, *customize_btns.values(), *predefined_btns.values()])
|
||||
h2.then(None, [web_cookie_cache], None, _js="""(web_cookie_cache)=>{setCookie("web_cookie_cache", web_cookie_cache, 365);}""")
|
||||
h2.then(None, [web_cookie_cache], None, _js="""(web_cookie_cache)=>{localStorage.setItem("web_cookie_cache", web_cookie_cache);}""")
|
||||
return area_input_secondary, txt2, area_customize, submitBtn2, resetBtn2, clearBtn2, stopBtn2
|
||||
@@ -1,6 +1,7 @@
|
||||
import gradio as gr
|
||||
from toolbox import get_conf
|
||||
|
||||
def define_gui_toolbar(AVAIL_LLM_MODELS, LLM_MODEL, INIT_SYS_PROMPT, THEME, AVAIL_THEMES, ADD_WAIFU, help_menu_description, js_code_for_toggle_darkmode):
|
||||
def define_gui_toolbar(AVAIL_LLM_MODELS, LLM_MODEL, INIT_SYS_PROMPT, THEME, AVAIL_THEMES, AVAIL_FONTS, ADD_WAIFU, help_menu_description, js_code_for_toggle_darkmode):
|
||||
with gr.Floating(init_x="0%", init_y="0%", visible=True, width=None, drag="forbidden", elem_id="tooltip"):
|
||||
with gr.Row():
|
||||
with gr.Tab("上传文件", elem_id="interact-panel"):
|
||||
@@ -9,12 +10,12 @@ def define_gui_toolbar(AVAIL_LLM_MODELS, LLM_MODEL, INIT_SYS_PROMPT, THEME, AVAI
|
||||
|
||||
with gr.Tab("更换模型", elem_id="interact-panel"):
|
||||
md_dropdown = gr.Dropdown(AVAIL_LLM_MODELS, value=LLM_MODEL, elem_id="elem_model_sel", label="更换LLM模型/请求源").style(container=False)
|
||||
top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.01,interactive=True, label="Top-p (nucleus sampling)",)
|
||||
top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.01,interactive=True, label="Top-p (nucleus sampling)", elem_id="elem_top_p")
|
||||
temperature = gr.Slider(minimum=-0, maximum=2.0, value=1.0, step=0.01, interactive=True, label="Temperature", elem_id="elem_temperature")
|
||||
max_length_sl = gr.Slider(minimum=256, maximum=1024*32, value=4096, step=128, interactive=True, label="Local LLM MaxLength",)
|
||||
max_length_sl = gr.Slider(minimum=256, maximum=1024*32, value=4096, step=128, interactive=True, label="Local LLM MaxLength", elem_id="elem_max_length_sl")
|
||||
system_prompt = gr.Textbox(show_label=True, lines=2, placeholder=f"System Prompt", label="System prompt", value=INIT_SYS_PROMPT, elem_id="elem_prompt")
|
||||
temperature.change(None, inputs=[temperature], outputs=None,
|
||||
_js="""(temperature)=>gpt_academic_gradio_saveload("save", "elem_prompt", "js_temperature_cookie", temperature)""")
|
||||
_js="""(temperature)=>gpt_academic_gradio_saveload("save", "elem_temperature", "js_temperature_cookie", temperature)""")
|
||||
system_prompt.change(None, inputs=[system_prompt], outputs=None,
|
||||
_js="""(system_prompt)=>gpt_academic_gradio_saveload("save", "elem_prompt", "js_system_prompt_cookie", system_prompt)""")
|
||||
md_dropdown.change(None, inputs=[md_dropdown], outputs=None,
|
||||
@@ -22,16 +23,21 @@ def define_gui_toolbar(AVAIL_LLM_MODELS, LLM_MODEL, INIT_SYS_PROMPT, THEME, AVAI
|
||||
|
||||
with gr.Tab("界面外观", elem_id="interact-panel"):
|
||||
theme_dropdown = gr.Dropdown(AVAIL_THEMES, value=THEME, label="更换UI主题").style(container=False)
|
||||
fontfamily_dropdown = gr.Dropdown(AVAIL_FONTS, value=get_conf("FONT"), elem_id="elem_fontfamily", label="更换字体类型").style(container=False)
|
||||
fontsize_slider = gr.Slider(minimum=5, maximum=25, value=15, step=1, interactive=True, label="字体大小(默认15)", elem_id="elem_fontsize")
|
||||
checkboxes = gr.CheckboxGroup(["基础功能区", "函数插件区", "浮动输入区", "输入清除键", "插件参数区"], value=["基础功能区", "函数插件区"], label="显示/隐藏功能区", elem_id='cbs').style(container=False)
|
||||
opt = ["自定义菜单"]
|
||||
value=[]
|
||||
opt = ["自定义菜单", "主标题", "副标题", "显示logo"]
|
||||
value=["主标题", "副标题", "显示logo"]
|
||||
if ADD_WAIFU: opt += ["添加Live2D形象"]; value += ["添加Live2D形象"]
|
||||
checkboxes_2 = gr.CheckboxGroup(opt, value=value, label="显示/隐藏自定义菜单", elem_id='cbsc').style(container=False)
|
||||
dark_mode_btn = gr.Button("切换界面明暗 ☀", variant="secondary").style(size="sm")
|
||||
dark_mode_btn.click(None, None, None, _js=js_code_for_toggle_darkmode)
|
||||
open_new_tab = gr.Button("打开新对话", variant="secondary").style(size="sm")
|
||||
open_new_tab.click(None, None, None, _js=f"""()=>duplicate_in_new_window()""")
|
||||
|
||||
fontfamily_dropdown.select(None, inputs=[fontfamily_dropdown], outputs=None,
|
||||
_js="""(fontfamily)=>{gpt_academic_gradio_saveload("save", "elem_fontfamily", "js_fontfamily", fontfamily); gpt_academic_change_chatbot_font(fontfamily, null, null);}""")
|
||||
fontsize_slider.change(None, inputs=[fontsize_slider], outputs=None,
|
||||
_js="""(fontsize)=>{gpt_academic_gradio_saveload("save", "elem_fontsize", "js_fontsize", fontsize); gpt_academic_change_chatbot_font(null, fontsize, null);}""")
|
||||
|
||||
with gr.Tab("帮助", elem_id="interact-panel"):
|
||||
gr.Markdown(help_menu_description)
|
||||
|
||||
290
themes/init.js
290
themes/init.js
@@ -1,9 +1,150 @@
|
||||
function remove_legacy_cookie() {
|
||||
setCookie("web_cookie_cache", "", -1);
|
||||
setCookie("js_previous_chat_cookie", "", -1);
|
||||
setCookie("js_previous_history_cookie", "", -1);
|
||||
}
|
||||
|
||||
|
||||
function processFontFamily(fontfamily) {
|
||||
// 检查是否包含括号
|
||||
if (fontfamily.includes('(')) {
|
||||
// 分割字符串
|
||||
const parts = fontfamily.split('(');
|
||||
const fontNamePart = parts[1].split(')')[0].trim(); // 获取括号内的部分
|
||||
|
||||
// 检查是否包含 @
|
||||
if (fontNamePart.includes('@')) {
|
||||
const [fontName, fontUrl] = fontNamePart.split('@').map(part => part.trim());
|
||||
return { fontName, fontUrl };
|
||||
} else {
|
||||
return { fontName: fontNamePart, fontUrl: null };
|
||||
}
|
||||
} else {
|
||||
return { fontName: fontfamily, fontUrl: null };
|
||||
}
|
||||
}
|
||||
|
||||
// 检查字体是否存在
|
||||
function checkFontAvailability(fontfamily) {
|
||||
return new Promise((resolve) => {
|
||||
const canvas = document.createElement('canvas');
|
||||
const context = canvas.getContext('2d');
|
||||
|
||||
// 设置两个不同的字体进行比较
|
||||
const testText = 'abcdefghijklmnopqrstuvwxyz0123456789';
|
||||
context.font = `16px ${fontfamily}, sans-serif`;
|
||||
const widthWithFont = context.measureText(testText).width;
|
||||
|
||||
context.font = '16px sans-serif';
|
||||
const widthWithFallback = context.measureText(testText).width;
|
||||
|
||||
// 如果宽度相同,说明字体不存在
|
||||
resolve(widthWithFont !== widthWithFallback);
|
||||
});
|
||||
}
|
||||
async function checkFontAvailabilityV2(fontfamily) {
|
||||
fontName = fontfamily;
|
||||
console.log('Checking font availability:', fontName);
|
||||
if ('queryLocalFonts' in window) {
|
||||
try {
|
||||
const fonts = await window.queryLocalFonts();
|
||||
const fontExists = fonts.some(font => font.family === fontName);
|
||||
console.log(`Local Font "${fontName}" exists:`, fontExists);
|
||||
return fontExists;
|
||||
} catch (error) {
|
||||
console.error('Error querying local fonts:', error);
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
console.error('queryLocalFonts is not supported in this browser.');
|
||||
return false;
|
||||
}
|
||||
}
|
||||
// 动态加载字体
|
||||
function loadFont(fontfamily, fontUrl) {
|
||||
return new Promise((resolve, reject) => {
|
||||
// 使用 Google Fonts 或其他字体来源
|
||||
const link = document.createElement('link');
|
||||
link.rel = 'stylesheet';
|
||||
link.href = fontUrl;
|
||||
link.onload = () => {
|
||||
toast_push(`字体 "${fontfamily}" 已成功加载`, 3000);
|
||||
resolve();
|
||||
};
|
||||
link.onerror = (error) => {
|
||||
reject(error);
|
||||
};
|
||||
document.head.appendChild(link);
|
||||
});
|
||||
}
|
||||
function gpt_academic_change_chatbot_font(fontfamily, fontsize, fontcolor) {
|
||||
const chatbot = document.querySelector('#gpt-chatbot');
|
||||
// 检查元素是否存在
|
||||
if (chatbot) {
|
||||
if (fontfamily != null) {
|
||||
// 更改字体
|
||||
const result = processFontFamily(fontfamily);
|
||||
if (result.fontName == "Theme-Default-Font") {
|
||||
chatbot.style.fontFamily = result.fontName;
|
||||
return;
|
||||
}
|
||||
// 检查字体是否存在
|
||||
checkFontAvailability(result.fontName).then((isAvailable) => {
|
||||
if (isAvailable) {
|
||||
// 如果字体存在,直接应用
|
||||
chatbot.style.fontFamily = result.fontName;
|
||||
} else {
|
||||
if (result.fontUrl == null) {
|
||||
// toast_push('无法加载字体,本地字体不存在,且URL未提供', 3000);
|
||||
// 直接把失效的字体放上去,让系统自动fallback
|
||||
chatbot.style.fontFamily = result.fontName;
|
||||
return;
|
||||
} else {
|
||||
toast_push('正在下载字体', 3000);
|
||||
// 如果字体不存在,尝试加载字体
|
||||
loadFont(result.fontName, result.fontUrl).then(() => {
|
||||
chatbot.style.fontFamily = result.fontName;
|
||||
}).catch((error) => {
|
||||
console.error(`无法加载字体 "${result.fontName}":`, error);
|
||||
});
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
}
|
||||
if (fontsize != null) {
|
||||
// 修改字体大小
|
||||
document.documentElement.style.setProperty(
|
||||
'--gpt-academic-message-font-size',
|
||||
`${fontsize}px`
|
||||
);
|
||||
}
|
||||
if (fontcolor != null) {
|
||||
// 更改字体颜色
|
||||
chatbot.style.color = fontcolor;
|
||||
}
|
||||
} else {
|
||||
console.error('#gpt-chatbot is missing');
|
||||
}
|
||||
}
|
||||
|
||||
function footer_show_hide(show) {
|
||||
if (show) {
|
||||
document.querySelector('footer').style.display = '';
|
||||
} else {
|
||||
document.querySelector('footer').style.display = 'none';
|
||||
}
|
||||
}
|
||||
|
||||
async function GptAcademicJavaScriptInit(dark, prompt, live2d, layout, tts) {
|
||||
// 第一部分,布局初始化
|
||||
remove_legacy_cookie();
|
||||
audio_fn_init();
|
||||
minor_ui_adjustment();
|
||||
ButtonWithDropdown_init();
|
||||
|
||||
update_conversation_metadata();
|
||||
window.addEventListener("gptac_restore_chat_from_local_storage", restore_chat_from_local_storage);
|
||||
|
||||
// 加载欢迎页面
|
||||
const welcomeMessage = new WelcomeMessage();
|
||||
welcomeMessage.begin_render();
|
||||
@@ -13,7 +154,7 @@ async function GptAcademicJavaScriptInit(dark, prompt, live2d, layout, tts) {
|
||||
welcomeMessage.update();
|
||||
});
|
||||
chatbotObserver.observe(chatbotIndicator, { attributes: true, childList: true, subtree: true });
|
||||
|
||||
|
||||
if (layout === "LEFT-RIGHT") { chatbotAutoHeight(); }
|
||||
if (layout === "LEFT-RIGHT") { limit_scroll_position(); }
|
||||
|
||||
@@ -36,7 +177,7 @@ async function GptAcademicJavaScriptInit(dark, prompt, live2d, layout, tts) {
|
||||
}
|
||||
|
||||
// 自动朗读
|
||||
if (tts != "DISABLE"){
|
||||
if (tts != "DISABLE") {
|
||||
enable_tts = true;
|
||||
if (getCookie("js_auto_read_cookie")) {
|
||||
auto_read_tts = getCookie("js_auto_read_cookie")
|
||||
@@ -47,6 +188,11 @@ async function GptAcademicJavaScriptInit(dark, prompt, live2d, layout, tts) {
|
||||
}
|
||||
}
|
||||
|
||||
// 字体
|
||||
gpt_academic_gradio_saveload("load", "elem_fontfamily", "js_fontfamily", null, "str");
|
||||
gpt_academic_change_chatbot_font(getCookie("js_fontfamily"), null, null);
|
||||
gpt_academic_gradio_saveload("load", "elem_fontsize", "js_fontsize", null, "str");
|
||||
gpt_academic_change_chatbot_font(null, getCookie("js_fontsize"), null);
|
||||
// SysPrompt 系统静默提示词
|
||||
gpt_academic_gradio_saveload("load", "elem_prompt", "js_system_prompt_cookie", null, "str");
|
||||
// Temperature 大模型温度参数
|
||||
@@ -56,7 +202,7 @@ async function GptAcademicJavaScriptInit(dark, prompt, live2d, layout, tts) {
|
||||
const cached_model = getCookie("js_md_dropdown_cookie");
|
||||
var model_sel = await get_gradio_component("elem_model_sel");
|
||||
// determine whether the cached model is in the choices
|
||||
if (model_sel.props.choices.includes(cached_model)){
|
||||
if (model_sel.props.choices.includes(cached_model)) {
|
||||
// change dropdown
|
||||
gpt_academic_gradio_saveload("load", "elem_model_sel", "js_md_dropdown_cookie", null, "str");
|
||||
// 连锁修改chatbot的label
|
||||
@@ -68,7 +214,93 @@ async function GptAcademicJavaScriptInit(dark, prompt, live2d, layout, tts) {
|
||||
}
|
||||
|
||||
|
||||
|
||||
if (getCookie("js_show_title")) {
|
||||
// have cookie
|
||||
bool_value = getCookie("js_show_title")
|
||||
bool_value = bool_value == "True";
|
||||
searchString = "主标题";
|
||||
tool_bar_group = "cbsc";
|
||||
const true_function = function () {
|
||||
document.querySelector('.prose.svelte-1ybaih5 h1').style.display = '';
|
||||
}
|
||||
const false_function = function () {
|
||||
document.querySelector('.prose.svelte-1ybaih5 h1').style.display = 'none';
|
||||
}
|
||||
if (bool_value) {
|
||||
// make btns appear
|
||||
true_function();
|
||||
// deal with checkboxes
|
||||
let arr_with_clear_btn = update_array(
|
||||
await get_data_from_gradio_component(tool_bar_group), searchString, "add"
|
||||
)
|
||||
push_data_to_gradio_component(arr_with_clear_btn, tool_bar_group, "no_conversion");
|
||||
} else {
|
||||
false_function();
|
||||
// deal with checkboxes
|
||||
let arr_without_clear_btn = update_array(
|
||||
await get_data_from_gradio_component(tool_bar_group), searchString, "remove"
|
||||
)
|
||||
push_data_to_gradio_component(arr_without_clear_btn, tool_bar_group, "no_conversion");
|
||||
}
|
||||
}
|
||||
if (getCookie("js_show_subtitle")) {
|
||||
// have cookie
|
||||
bool_value = getCookie("js_show_subtitle")
|
||||
bool_value = bool_value == "True";
|
||||
searchString = "副标题";
|
||||
tool_bar_group = "cbsc";
|
||||
const true_function = function () {
|
||||
element = document.querySelector('.prose.svelte-1ybaih5 h2');
|
||||
if (element) element.style.display = '';
|
||||
element = document.querySelector('.prose.svelte-1ybaih5 h6');
|
||||
if (element) element.style.display = '';
|
||||
}
|
||||
const false_function = function () {
|
||||
element = document.querySelector('.prose.svelte-1ybaih5 h2');
|
||||
if (element) element.style.display = 'none';
|
||||
element = document.querySelector('.prose.svelte-1ybaih5 h6');
|
||||
if (element) element.style.display = 'none';
|
||||
}
|
||||
if (bool_value) {
|
||||
// make btns appear
|
||||
true_function();
|
||||
// deal with checkboxes
|
||||
let arr_with_clear_btn = update_array(
|
||||
await get_data_from_gradio_component(tool_bar_group), searchString, "add"
|
||||
)
|
||||
push_data_to_gradio_component(arr_with_clear_btn, tool_bar_group, "no_conversion");
|
||||
} else {
|
||||
false_function();
|
||||
// deal with checkboxes
|
||||
let arr_without_clear_btn = update_array(
|
||||
await get_data_from_gradio_component(tool_bar_group), searchString, "remove"
|
||||
)
|
||||
push_data_to_gradio_component(arr_without_clear_btn, tool_bar_group, "no_conversion");
|
||||
}
|
||||
}
|
||||
if (getCookie("js_show_footer")) {
|
||||
// have cookie
|
||||
bool_value = getCookie("js_show_footer")
|
||||
searchString = "显示logo";
|
||||
tool_bar_group = "cbsc";
|
||||
bool_value = bool_value == "True";
|
||||
if (bool_value) {
|
||||
// make btns appear
|
||||
footer_show_hide(true);
|
||||
// deal with checkboxes
|
||||
let arr_with_clear_btn = update_array(
|
||||
await get_data_from_gradio_component(tool_bar_group), searchString, "add"
|
||||
)
|
||||
push_data_to_gradio_component(arr_with_clear_btn, tool_bar_group, "no_conversion");
|
||||
} else {
|
||||
footer_show_hide(false);
|
||||
// deal with checkboxes
|
||||
let arr_without_clear_btn = update_array(
|
||||
await get_data_from_gradio_component(tool_bar_group), searchString, "remove"
|
||||
)
|
||||
push_data_to_gradio_component(arr_without_clear_btn, tool_bar_group, "no_conversion");
|
||||
}
|
||||
}
|
||||
// clearButton 自动清除按钮
|
||||
if (getCookie("js_clearbtn_show_cookie")) {
|
||||
// have cookie
|
||||
@@ -82,7 +314,7 @@ async function GptAcademicJavaScriptInit(dark, prompt, live2d, layout, tts) {
|
||||
let clearButton2 = document.getElementById("elem_clear2"); clearButton2.style.display = "block";
|
||||
// deal with checkboxes
|
||||
let arr_with_clear_btn = update_array(
|
||||
await get_data_from_gradio_component('cbs'), "输入清除键", "add"
|
||||
await get_data_from_gradio_component("cbs"), "输入清除键", "add"
|
||||
)
|
||||
push_data_to_gradio_component(arr_with_clear_btn, "cbs", "no_conversion");
|
||||
} else {
|
||||
@@ -91,7 +323,7 @@ async function GptAcademicJavaScriptInit(dark, prompt, live2d, layout, tts) {
|
||||
let clearButton2 = document.getElementById("elem_clear2"); clearButton2.style.display = "none";
|
||||
// deal with checkboxes
|
||||
let arr_without_clear_btn = update_array(
|
||||
await get_data_from_gradio_component('cbs'), "输入清除键", "remove"
|
||||
await get_data_from_gradio_component("cbs"), "输入清除键", "remove"
|
||||
)
|
||||
push_data_to_gradio_component(arr_without_clear_btn, "cbs", "no_conversion");
|
||||
}
|
||||
@@ -131,3 +363,47 @@ async function GptAcademicJavaScriptInit(dark, prompt, live2d, layout, tts) {
|
||||
change_theme("", "")
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
function apply_checkbox_change_for_group2(display_panel_arr) {
|
||||
setTimeout(() => {
|
||||
display_panel_arr = get_checkbox_selected_items("cbsc");
|
||||
|
||||
let searchString = "添加Live2D形象";
|
||||
if (display_panel_arr.includes(searchString)) {
|
||||
setCookie("js_live2d_show_cookie", "True", 365);
|
||||
loadLive2D();
|
||||
} else {
|
||||
try {
|
||||
setCookie("js_live2d_show_cookie", "False", 365);
|
||||
$('.waifu').hide();
|
||||
} catch (e) {
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
function handleDisplay(searchString, key, displayElement, showFn, hideFn) {
|
||||
if (display_panel_arr.includes(searchString)) {
|
||||
setCookie(key, "True", 365);
|
||||
if (showFn) showFn();
|
||||
if (displayElement) displayElement.style.display = '';
|
||||
} else {
|
||||
setCookie(key, "False", 365);
|
||||
if (hideFn) hideFn();
|
||||
if (displayElement) displayElement.style.display = 'none';
|
||||
}
|
||||
}
|
||||
|
||||
// 主标题
|
||||
const mainTitle = document.querySelector('.prose.svelte-1ybaih5 h1');
|
||||
handleDisplay("主标题", "js_show_title", mainTitle, null, null);
|
||||
|
||||
// 副标题
|
||||
const subTitle = document.querySelector('.prose.svelte-1ybaih5 h2');
|
||||
handleDisplay("副标题", "js_show_subtitle", subTitle, null, null);
|
||||
|
||||
// 显示logo
|
||||
handleDisplay("显示logo", "js_show_footer", null, () => footer_show_hide(true), () => footer_show_hide(false));
|
||||
}, 50);
|
||||
}
|
||||
@@ -87,21 +87,6 @@ js_code_for_toggle_darkmode = """() => {
|
||||
}"""
|
||||
|
||||
|
||||
js_code_for_persistent_cookie_init = """(web_cookie_cache, cookie) => {
|
||||
return [getCookie("web_cookie_cache"), cookie];
|
||||
}
|
||||
"""
|
||||
|
||||
# 详见 themes/common.js
|
||||
js_code_reset = """
|
||||
(a,b,c)=>{
|
||||
let stopButton = document.getElementById("elem_stop");
|
||||
stopButton.click();
|
||||
return reset_conversation(a,b);
|
||||
}
|
||||
"""
|
||||
|
||||
|
||||
js_code_clear = """
|
||||
(a,b)=>{
|
||||
return ["", ""];
|
||||
@@ -156,23 +141,3 @@ setTimeout(() => {
|
||||
}
|
||||
"""
|
||||
|
||||
|
||||
|
||||
js_code_show_or_hide_group2 = """
|
||||
(display_panel_arr)=>{
|
||||
setTimeout(() => {
|
||||
display_panel_arr = get_checkbox_selected_items("cbsc");
|
||||
|
||||
let searchString = "添加Live2D形象";
|
||||
let ele = "none";
|
||||
if (display_panel_arr.includes(searchString)) {
|
||||
setCookie("js_live2d_show_cookie", "True", 365);
|
||||
loadLive2D();
|
||||
} else {
|
||||
setCookie("js_live2d_show_cookie", "False", 365);
|
||||
$('.waifu').hide();
|
||||
}
|
||||
|
||||
}, 50);
|
||||
}
|
||||
"""
|
||||
|
||||
@@ -84,8 +84,9 @@ class WelcomeMessage {
|
||||
this.max_welcome_card_num = 6;
|
||||
this.card_array = [];
|
||||
this.static_welcome_message_previous = [];
|
||||
this.reflesh_time_interval = 15*1000;
|
||||
|
||||
this.reflesh_time_interval = 15 * 1000;
|
||||
this.update_time_interval = 2 * 1000;
|
||||
this.major_title = "欢迎使用GPT-Academic";
|
||||
|
||||
const reflesh_render_status = () => {
|
||||
for (let index = 0; index < this.card_array.length; index++) {
|
||||
@@ -96,16 +97,31 @@ class WelcomeMessage {
|
||||
};
|
||||
const pageFocusHandler = new PageFocusHandler();
|
||||
pageFocusHandler.addFocusCallback(reflesh_render_status);
|
||||
|
||||
// call update when page size change, call this.update when page size change
|
||||
window.addEventListener('resize', this.update.bind(this));
|
||||
// add a loop to reflesh cards
|
||||
this.startRefleshCards();
|
||||
this.startAutoUpdate();
|
||||
}
|
||||
|
||||
begin_render() {
|
||||
this.update();
|
||||
}
|
||||
|
||||
async startAutoUpdate() {
|
||||
// sleep certain time
|
||||
await new Promise(r => setTimeout(r, this.update_time_interval));
|
||||
this.update();
|
||||
}
|
||||
|
||||
async startRefleshCards() {
|
||||
// sleep certain time
|
||||
await new Promise(r => setTimeout(r, this.reflesh_time_interval));
|
||||
await this.reflesh_cards();
|
||||
if (this.visible){
|
||||
// checkout visible status
|
||||
if (this.visible) {
|
||||
// if visible, then reflesh cards
|
||||
await this.reflesh_cards();
|
||||
setTimeout(() => {
|
||||
this.startRefleshCards.call(this);
|
||||
}, 1);
|
||||
@@ -113,7 +129,7 @@ class WelcomeMessage {
|
||||
}
|
||||
|
||||
async reflesh_cards() {
|
||||
if (!this.visible){
|
||||
if (!this.visible) {
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -126,6 +142,7 @@ class WelcomeMessage {
|
||||
|
||||
// combine two lists
|
||||
this.static_welcome_message_previous = not_shown_previously.concat(already_shown_previously);
|
||||
this.static_welcome_message_previous = this.static_welcome_message_previous.slice(0, this.max_welcome_card_num);
|
||||
|
||||
(async () => {
|
||||
// 使用 for...of 循环来处理异步操作
|
||||
@@ -142,8 +159,10 @@ class WelcomeMessage {
|
||||
continue;
|
||||
}
|
||||
|
||||
// 等待动画结束
|
||||
card.addEventListener('transitionend', () => {
|
||||
|
||||
card.classList.add('hide');
|
||||
const timeout = 100; // 与CSS中transition的时间保持一致(0.1s)
|
||||
setTimeout(() => {
|
||||
// 更新卡片信息
|
||||
const message = this.static_welcome_message_previous[index];
|
||||
const title = card.getElementsByClassName('welcome-card-title')[0];
|
||||
@@ -155,16 +174,14 @@ class WelcomeMessage {
|
||||
text.href = message.url;
|
||||
content.textContent = message.content;
|
||||
card.classList.remove('hide');
|
||||
|
||||
// 等待动画结束
|
||||
card.addEventListener('transitionend', () => {
|
||||
card.classList.remove('show');
|
||||
}, { once: true });
|
||||
card.classList.add('show');
|
||||
const timeout = 100; // 与CSS中transition的时间保持一致(0.1s)
|
||||
setTimeout(() => {
|
||||
card.classList.remove('show');
|
||||
}, timeout);
|
||||
}, timeout);
|
||||
|
||||
}, { once: true });
|
||||
|
||||
card.classList.add('hide');
|
||||
|
||||
// 等待 250 毫秒
|
||||
await new Promise(r => setTimeout(r, 200));
|
||||
@@ -173,43 +190,55 @@ class WelcomeMessage {
|
||||
}
|
||||
|
||||
shuffle(array) {
|
||||
var currentIndex = array.length, randomIndex;
|
||||
var currentIndex = array.length, randomIndex;
|
||||
|
||||
// While there remain elements to shuffle...
|
||||
while (currentIndex != 0) {
|
||||
|
||||
// Pick a remaining element...
|
||||
randomIndex = Math.floor(Math.random() * currentIndex);
|
||||
currentIndex--;
|
||||
// Pick a remaining element...
|
||||
randomIndex = Math.floor(Math.random() * currentIndex);
|
||||
currentIndex--;
|
||||
|
||||
// And swap it with the current element.
|
||||
[array[currentIndex], array[randomIndex]] = [
|
||||
array[randomIndex], array[currentIndex]];
|
||||
// And swap it with the current element.
|
||||
[array[currentIndex], array[randomIndex]] = [
|
||||
array[randomIndex], array[currentIndex]];
|
||||
}
|
||||
|
||||
return array;
|
||||
}
|
||||
|
||||
async update() {
|
||||
// console.log('update')
|
||||
async can_display() {
|
||||
// update the card visibility
|
||||
const elem_chatbot = document.getElementById('gpt-chatbot');
|
||||
const chatbot_top = elem_chatbot.getBoundingClientRect().top;
|
||||
const welcome_card_container = document.getElementsByClassName('welcome-card-container')[0];
|
||||
// detect if welcome card overflow
|
||||
let welcome_card_overflow = false;
|
||||
if (welcome_card_container) {
|
||||
const welcome_card_top = welcome_card_container.getBoundingClientRect().top;
|
||||
if (welcome_card_top < chatbot_top) {
|
||||
welcome_card_overflow = true;
|
||||
}
|
||||
}
|
||||
var page_width = document.documentElement.clientWidth;
|
||||
const width_to_hide_welcome = 1200;
|
||||
if (!await this.isChatbotEmpty() || page_width < width_to_hide_welcome) {
|
||||
if (this.visible) {
|
||||
this.removeWelcome();
|
||||
this.visible = false;
|
||||
this.card_array = [];
|
||||
this.static_welcome_message_previous = [];
|
||||
}
|
||||
if (!await this.isChatbotEmpty() || page_width < width_to_hide_welcome || welcome_card_overflow) {
|
||||
// cannot display
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
async update() {
|
||||
const can_display = await this.can_display();
|
||||
if (can_display && !this.visible) {
|
||||
this.showWelcome();
|
||||
return;
|
||||
}
|
||||
if (this.visible){
|
||||
if (!can_display && this.visible) {
|
||||
this.removeWelcome();
|
||||
return;
|
||||
}
|
||||
// console.log("welcome");
|
||||
this.showWelcome();
|
||||
this.visible = true;
|
||||
this.startRefleshCards();
|
||||
}
|
||||
|
||||
showCard(message) {
|
||||
@@ -220,28 +249,28 @@ class WelcomeMessage {
|
||||
const title = document.createElement('div');
|
||||
title.classList.add('welcome-card-title');
|
||||
|
||||
// 创建图标
|
||||
const svg = document.createElement('img');
|
||||
svg.classList.add('welcome-svg');
|
||||
svg.src = message.svg;
|
||||
svg.style.height = '30px';
|
||||
title.appendChild(svg);
|
||||
// 创建图标
|
||||
const svg = document.createElement('img');
|
||||
svg.classList.add('welcome-svg');
|
||||
svg.src = message.svg;
|
||||
svg.style.height = '30px';
|
||||
title.appendChild(svg);
|
||||
|
||||
// 创建标题
|
||||
const text = document.createElement('a');
|
||||
text.textContent = message.title;
|
||||
text.classList.add('welcome-title-text');
|
||||
text.href = message.url;
|
||||
text.target = "_blank";
|
||||
title.appendChild(text)
|
||||
// 创建标题
|
||||
const text = document.createElement('a');
|
||||
text.textContent = message.title;
|
||||
text.classList.add('welcome-title-text');
|
||||
text.href = message.url;
|
||||
text.target = "_blank";
|
||||
title.appendChild(text)
|
||||
|
||||
// 创建内容
|
||||
const content = document.createElement('div');
|
||||
content.classList.add('welcome-content');
|
||||
const content_c = document.createElement('div');
|
||||
content_c.classList.add('welcome-content-c');
|
||||
content_c.textContent = message.content;
|
||||
content.appendChild(content_c);
|
||||
const content_c = document.createElement('div');
|
||||
content_c.classList.add('welcome-content-c');
|
||||
content_c.textContent = message.content;
|
||||
content.appendChild(content_c);
|
||||
|
||||
// 将标题和内容添加到卡片 div 中
|
||||
card.appendChild(title);
|
||||
@@ -250,7 +279,7 @@ class WelcomeMessage {
|
||||
}
|
||||
|
||||
async showWelcome() {
|
||||
|
||||
this.visible = true;
|
||||
// 首先,找到想要添加子元素的父元素
|
||||
const elem_chatbot = document.getElementById('gpt-chatbot');
|
||||
|
||||
@@ -261,7 +290,7 @@ class WelcomeMessage {
|
||||
// 创建主标题
|
||||
const major_title = document.createElement('div');
|
||||
major_title.classList.add('welcome-title');
|
||||
major_title.textContent = "欢迎使用GPT-Academic";
|
||||
major_title.textContent = this.major_title;
|
||||
welcome_card_container.appendChild(major_title)
|
||||
|
||||
// 创建卡片
|
||||
@@ -276,6 +305,16 @@ class WelcomeMessage {
|
||||
});
|
||||
|
||||
elem_chatbot.appendChild(welcome_card_container);
|
||||
const can_display = await this.can_display();
|
||||
if (!can_display) {
|
||||
// undo
|
||||
this.visible = false;
|
||||
this.card_array = [];
|
||||
this.static_welcome_message_previous = [];
|
||||
elem_chatbot.removeChild(welcome_card_container);
|
||||
await new Promise(r => setTimeout(r, this.update_time_interval / 2));
|
||||
return;
|
||||
}
|
||||
|
||||
// 添加显示动画
|
||||
requestAnimationFrame(() => {
|
||||
@@ -284,15 +323,24 @@ class WelcomeMessage {
|
||||
}
|
||||
|
||||
async removeWelcome() {
|
||||
this.visible = false;
|
||||
// remove welcome-card-container
|
||||
const elem_chatbot = document.getElementById('gpt-chatbot');
|
||||
const welcome_card_container = document.getElementsByClassName('welcome-card-container')[0];
|
||||
// 添加隐藏动画
|
||||
// begin hide animation
|
||||
welcome_card_container.classList.add('hide');
|
||||
// 等待动画结束后再移除元素
|
||||
welcome_card_container.addEventListener('transitionend', () => {
|
||||
elem_chatbot.removeChild(welcome_card_container);
|
||||
this.card_array = [];
|
||||
this.static_welcome_message_previous = [];
|
||||
}, { once: true });
|
||||
// add a fail safe timeout
|
||||
const timeout = 600; // 与 CSS 中 transition 的时间保持一致(1s)
|
||||
setTimeout(() => {
|
||||
if (welcome_card_container.parentNode) {
|
||||
elem_chatbot.removeChild(welcome_card_container);
|
||||
}
|
||||
}, timeout);
|
||||
}
|
||||
|
||||
async isChatbotEmpty() {
|
||||
@@ -307,28 +355,28 @@ class WelcomeMessage {
|
||||
|
||||
class PageFocusHandler {
|
||||
constructor() {
|
||||
this.hasReturned = false;
|
||||
this.focusCallbacks = [];
|
||||
this.hasReturned = false;
|
||||
this.focusCallbacks = [];
|
||||
|
||||
// Bind the focus and blur event handlers
|
||||
window.addEventListener('visibilitychange', this.handleFocus.bind(this));
|
||||
// Bind the focus and blur event handlers
|
||||
window.addEventListener('visibilitychange', this.handleFocus.bind(this));
|
||||
}
|
||||
|
||||
// Method to handle the focus event
|
||||
handleFocus() {
|
||||
if (this.hasReturned) {
|
||||
this.focusCallbacks.forEach(callback => callback());
|
||||
}
|
||||
this.hasReturned = true;
|
||||
if (this.hasReturned) {
|
||||
this.focusCallbacks.forEach(callback => callback());
|
||||
}
|
||||
this.hasReturned = true;
|
||||
}
|
||||
|
||||
// Method to add a custom callback function
|
||||
addFocusCallback(callback) {
|
||||
if (typeof callback === 'function') {
|
||||
this.focusCallbacks.push(callback);
|
||||
} else {
|
||||
throw new Error('Callback must be a function');
|
||||
}
|
||||
if (typeof callback === 'function') {
|
||||
this.focusCallbacks.push(callback);
|
||||
} else {
|
||||
throw new Error('Callback must be a function');
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
13
toolbox.py
13
toolbox.py
@@ -8,6 +8,7 @@ import base64
|
||||
import gradio
|
||||
import shutil
|
||||
import glob
|
||||
import json
|
||||
import uuid
|
||||
from loguru import logger
|
||||
from functools import wraps
|
||||
@@ -92,8 +93,9 @@ def ArgsGeneralWrapper(f):
|
||||
"""
|
||||
def decorated(request: gradio.Request, cookies:dict, max_length:int, llm_model:str,
|
||||
txt:str, txt2:str, top_p:float, temperature:float, chatbot:list,
|
||||
history:list, system_prompt:str, plugin_advanced_arg:dict, *args):
|
||||
json_history:str, system_prompt:str, plugin_advanced_arg:dict, *args):
|
||||
txt_passon = txt
|
||||
history = json.loads(json_history) if json_history else []
|
||||
if txt == "" and txt2 != "": txt_passon = txt2
|
||||
# 引入一个有cookie的chatbot
|
||||
if request.username is not None:
|
||||
@@ -148,10 +150,11 @@ def ArgsGeneralWrapper(f):
|
||||
return decorated
|
||||
|
||||
|
||||
def update_ui(chatbot:ChatBotWithCookies, history, msg="正常", **kwargs): # 刷新界面
|
||||
def update_ui(chatbot:ChatBotWithCookies, history:list, msg:str="正常", **kwargs): # 刷新界面
|
||||
"""
|
||||
刷新用户界面
|
||||
"""
|
||||
assert isinstance(history, list), "history必须是一个list"
|
||||
assert isinstance(
|
||||
chatbot, ChatBotWithCookies
|
||||
), "在传递chatbot的过程中不要将其丢弃。必要时, 可用clear将其清空, 然后用for+append循环重新赋值。"
|
||||
@@ -175,10 +178,12 @@ def update_ui(chatbot:ChatBotWithCookies, history, msg="正常", **kwargs): #
|
||||
else:
|
||||
chatbot_gr = chatbot
|
||||
|
||||
yield cookies, chatbot_gr, history, msg
|
||||
history = [str(history_item) for history_item in history] # ensure all items are string
|
||||
json_history = json.dumps(history, ensure_ascii=False)
|
||||
yield cookies, chatbot_gr, json_history, msg
|
||||
|
||||
|
||||
def update_ui_lastest_msg(lastmsg:str, chatbot:ChatBotWithCookies, history:list, delay=1, msg="正常"): # 刷新界面
|
||||
def update_ui_lastest_msg(lastmsg:str, chatbot:ChatBotWithCookies, history:list, delay:float=1, msg:str="正常"): # 刷新界面
|
||||
"""
|
||||
刷新用户界面
|
||||
"""
|
||||
|
||||
Reference in New Issue
Block a user