This commit is contained in:
lbykkkk
2024-11-23 20:01:33 +08:00
parent 81ab9f91a4
commit 6557c3822a

View File

@@ -46,10 +46,10 @@ class ArxivRagWorker:
def __init__(self, user_name: str, llm_kwargs: Dict, arxiv_id: str = None):
self.user_name = user_name
self.llm_kwargs = llm_kwargs
self.max_concurrent_papers = MAX_CONCURRENT_PAPERS
self.max_concurrent_papers = MAX_CONCURRENT_PAPERS # 存储最大并发数
self.arxiv_id = self._normalize_arxiv_id(arxiv_id) if arxiv_id else None
# Initialize base storage directory
# 初始化基础存储目录
self.base_dir = Path(get_log_folder(user_name, plugin_name='rag_cache'))
if self.arxiv_id:
@@ -57,6 +57,7 @@ class ArxivRagWorker:
self.vector_store_dir = self.checkpoint_dir / "vector_store"
self.fragment_store_dir = self.checkpoint_dir / "fragments"
else:
# 如果没有 arxiv_id,使用基础目录
self.checkpoint_dir = self.base_dir
self.vector_store_dir = self.base_dir / "vector_store"
self.fragment_store_dir = self.base_dir / "fragments"
@@ -75,11 +76,11 @@ class ArxivRagWorker:
logger.info(f"Vector store directory: {self.vector_store_dir}")
logger.info(f"Fragment store directory: {self.fragment_store_dir}")
# Initialize processing queue and thread pool
# 初始化处理队列和线程池
self.processing_queue = {}
self.thread_pool = ThreadPoolExecutor(max_workers=MAX_WORKERS)
# Initialize RAG worker
# 初始化RAG worker
self.rag_worker = LlamaIndexRagWorker(
user_name=user_name,
llm_kwargs=llm_kwargs,
@@ -87,24 +88,97 @@ class ArxivRagWorker:
auto_load_checkpoint=True
)
# Initialize arxiv splitter
# 初始化arxiv splitter
# 初始化 arxiv splitter
self.arxiv_splitter = ArxivSplitter(
root_dir=str(self.checkpoint_dir / "arxiv_cache")
)
async def _async_get_fragments(self, arxiv_id: str) -> List[Fragment]:
"""Async helper to get fragments"""
return await self.arxiv_splitter.process(arxiv_id)
# 初始化处理队列和线程池
self._semaphore = None
self._loop = None
@property
def loop(self):
"""获取当前事件循环"""
if self._loop is None:
self._loop = asyncio.get_event_loop()
return self._loop
@property
def semaphore(self):
"""延迟创建 semaphore"""
if self._semaphore is None:
self._semaphore = asyncio.Semaphore(self.max_concurrent_papers)
return self._semaphore
async def _process_fragments(self, fragments: List[Fragment]) -> None:
"""并行处理论文片段"""
if not fragments:
logger.warning("No fragments to process")
return
# 首先添加论文概述
overview = {
"title": fragments[0].title,
"abstract": fragments[0].abstract,
"arxiv_id": fragments[0].arxiv_id,
"section_tree": fragments[0].section_tree,
}
overview_text = (
f"Paper Title: {overview['title']}\n"
f"ArXiv ID: {overview['arxiv_id']}\n"
f"Abstract: {overview['abstract']}\n"
f"Section Tree:{overview['section_tree']}\n"
f"Type: OVERVIEW"
)
def _get_fragments_sync(self, arxiv_id: str) -> List[Fragment]:
"""Synchronous wrapper for async fragment retrieval"""
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
return loop.run_until_complete(self._async_get_fragments(arxiv_id))
finally:
loop.close()
def _process_single_fragment(self, fragment: Fragment, index: int) -> None:
"""Process a single paper fragment"""
# 同步添加概述
self.rag_worker.add_text_to_vector_store(overview_text)
logger.info(f"Added paper overview for {overview['arxiv_id']}")
# 并行处理其余片段
tasks = []
for i, fragment in enumerate(fragments):
tasks.append(self._process_single_fragment(fragment, i))
await asyncio.gather(*tasks)
logger.info(f"Processed {len(fragments)} fragments successfully")
# 保存到本地文件用于调试
save_fragments_to_file(
fragments,
str(self.fragment_store_dir / f"{overview['arxiv_id']}_fragments.json")
)
except Exception as e:
logger.error(f"Error processing fragments: {str(e)}")
raise
async def _process_single_fragment(self, fragment: Fragment, index: int) -> None:
"""处理单个论文片段(改为异步方法)"""
try:
text = (
f"Paper Title: {fragment.title}\n"
f"Abstract: {fragment.abstract}\n"
f"ArXiv ID: {fragment.arxiv_id}\n"
f"Section: {fragment.current_section}\n"
f"Section Tree: {fragment.section_tree}\n"
f"Content: {fragment.content}\n"
f"Bibliography: {fragment.bibliography}\n"
f"Type: FRAGMENT"
)
logger.info(f"Processing fragment {index} for paper {fragment.arxiv_id}")
# 如果 add_text_to_vector_store 是异步的,使用 await
self.rag_worker.add_text_to_vector_store(text)
logger.info(f"Successfully added fragment {index} to vector store")
except Exception as e:
logger.error(f"Error processing fragment {index}: {str(e)}")
raise """处理单个论文片段"""
try:
text = (
f"Paper Title: {fragment.title}\n"
@@ -124,62 +198,8 @@ class ArxivRagWorker:
logger.error(f"Error processing fragment {index}: {str(e)}")
raise
def _process_fragments(self, fragments: List[Fragment]) -> None:
"""Process paper fragments in parallel using thread pool"""
if not fragments:
logger.warning("No fragments to process")
return
# First add paper overview
overview = {
"title": fragments[0].title,
"abstract": fragments[0].abstract,
"arxiv_id": fragments[0].arxiv_id,
"section_tree": fragments[0].section_tree,
}
overview_text = (
f"Paper Title: {overview['title']}\n"
f"ArXiv ID: {overview['arxiv_id']}\n"
f"Abstract: {overview['abstract']}\n"
f"Section Tree:{overview['section_tree']}\n"
f"Type: OVERVIEW"
)
try:
# Add overview synchronously
self.rag_worker.add_text_to_vector_store(overview_text)
logger.info(f"Added paper overview for {overview['arxiv_id']}")
# Process fragments in parallel using thread pool
with ThreadPoolExecutor(max_workers=10) as executor:
# Submit all fragments for processing
futures = [
executor.submit(self._process_single_fragment, fragment, i)
for i, fragment in enumerate(fragments)
]
# Wait for all tasks to complete and handle any exceptions
for future in futures:
try:
future.result()
except Exception as e:
logger.error(f"Error processing fragment: {str(e)}")
logger.info(f"Processed {len(fragments)} fragments successfully")
# Save to local file for debugging
save_fragments_to_file(
fragments,
str(self.fragment_store_dir / f"{overview['arxiv_id']}_fragments.json")
)
except Exception as e:
logger.error(f"Error processing fragments: {str(e)}")
raise
def process_paper(self, arxiv_id: str) -> bool:
"""Process paper main function - mixed sync/async version"""
async def process_paper(self, arxiv_id: str) -> bool:
"""处理论文主函数"""
try:
arxiv_id = self._normalize_arxiv_id(arxiv_id)
logger.info(f"Starting to process paper: {arxiv_id}")
@@ -190,29 +210,30 @@ class ArxivRagWorker:
logger.info(f"Paper {arxiv_id} already processed")
return True
# Create processing task
# 创建处理任务
task = ProcessingTask(arxiv_id=arxiv_id)
self.processing_queue[arxiv_id] = task
task.status = "processing"
# Download and split paper using the sync wrapper
fragments = self._get_fragments_sync(arxiv_id)
async with self.semaphore:
# 下载和分割论文
fragments = await self.arxiv_splitter.process(arxiv_id)
if not fragments:
raise ValueError(f"No fragments extracted from paper {arxiv_id}")
if not fragments:
raise ValueError(f"No fragments extracted from paper {arxiv_id}")
logger.info(f"Got {len(fragments)} fragments from paper {arxiv_id}")
logger.info(f"Got {len(fragments)} fragments from paper {arxiv_id}")
# Process fragments
self._process_fragments(fragments)
# 处理片段
await self._process_fragments(fragments)
# Mark as completed
paper_path.touch()
task.status = "completed"
task.fragments = fragments
# 标记完成
paper_path.touch()
task.status = "completed"
task.fragments = fragments
logger.info(f"Successfully processed paper {arxiv_id}")
return True
logger.info(f"Successfully processed paper {arxiv_id}")
return True
except Exception as e:
logger.error(f"Error processing paper {arxiv_id}: {str(e)}")
@@ -220,8 +241,19 @@ class ArxivRagWorker:
self.processing_queue[arxiv_id].status = "failed"
self.processing_queue[arxiv_id].error = str(e)
return False
def wait_for_paper(self, arxiv_id: str, timeout: float = 300.0) -> bool:
"""Wait for paper processing to complete - synchronous version"""
def _normalize_arxiv_id(self, input_str: str) -> str:
"""规范化ArXiv ID"""
if 'arxiv.org/' in input_str.lower():
if '/pdf/' in input_str:
arxiv_id = input_str.split('/pdf/')[-1]
else:
arxiv_id = input_str.split('/abs/')[-1]
return arxiv_id.split('v')[0].strip()
return input_str.split('v')[0].strip()
async def wait_for_paper(self, arxiv_id: str, timeout: float = 300.0) -> bool:
"""等待论文处理完成"""
try:
start_time = datetime.now()
while True:
@@ -235,27 +267,16 @@ class ArxivRagWorker:
if task.status == "failed":
return False
# Check timeout
# 检查超时
if (datetime.now() - start_time).total_seconds() > timeout:
logger.error(f"Processing paper {arxiv_id} timed out")
return False
time.sleep(0.1)
await asyncio.sleep(0.1)
except Exception as e:
logger.error(f"Error waiting for paper {arxiv_id}: {str(e)}")
return False
def _normalize_arxiv_id(self, input_str: str) -> str:
"""Normalize ArXiv ID"""
if 'arxiv.org/' in input_str.lower():
if '/pdf/' in input_str:
arxiv_id = input_str.split('/pdf/')[-1]
else:
arxiv_id = input_str.split('/abs/')[-1]
return arxiv_id.split('v')[0].strip()
return input_str.split('v')[0].strip()
def retrieve_and_generate(self, query: str) -> str:
"""检索相关内容并生成提示词"""
try:
@@ -332,10 +353,20 @@ def Arxiv论文对话(txt: str, llm_kwargs: Dict, plugin_kwargs: Dict, chatbot:
chatbot.append((txt, "正在处理论文,请稍等..."))
yield from update_ui(chatbot=chatbot, history=history)
success = worker.process_paper(txt)
if success:
arxiv_id = worker._normalize_arxiv_id(txt)
success = worker.wait_for_paper(arxiv_id)
# 创建事件循环来处理异步调用
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
# 运行异步处理函数
success = loop.run_until_complete(worker.process_paper(txt))
if success:
arxiv_id = worker._normalize_arxiv_id(txt)
success = loop.run_until_complete(worker.wait_for_paper(arxiv_id))
if success:
# 执行自动分析
yield from worker.auto_analyze_paper(chatbot, history, system_prompt)
finally:
loop.close()
if not success:
chatbot[-1] = (txt, "论文处理失败请检查论文ID是否正确或稍后重试。")