Files
gpt_academic/tests/test_markdown.py
2025-01-09 22:31:59 +08:00

94 lines
2.4 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

md = """
You can use the following Python script to rename files matching the pattern '* - 副本.tex' to '* - wushiguang.tex' in a directory:
```python
import os
# Directory containing the files
directory = 'Tex/'
for filename in os.listdir(directory):
if filename.endswith(' - 副本.tex'):
new_filename = filename.replace(' - 副本.tex', ' - wushiguang.tex')
os.rename(os.path.join(directory, filename), os.path.join(directory, new_filename))
```
Replace 'Tex/' with the actual directory path where your files are located before running the script.
"""
md = """
Following code including wrapper
```python:wrapper.py
graph TD
A[Enter Chart Definition] --> B(Preview)
B --> C{decide}
C --> D[Keep]
C --> E[Edit Definition]
E --> B
D --> F[Save Image and Code]
F --> B
```
<details>
<summary><b>My section header in bold</b></summary>
Any folded content here. It requires an empty line just above it.
</details>
"""
md ="""
在这种场景中,您希望机器 B 能够通过轮询机制来间接地“请求”机器 A而实际上机器 A 只能主动向机器 B 发出请求。这是一种典型的客户端-服务器轮询模式。下面是如何实现这种机制的详细步骤:
### 机器 B 的实现
1. **安装 FastAPI 和必要的依赖库**
```bash
pip install fastapi uvicorn
```
2. **创建 FastAPI 服务**
```python
from fastapi import FastAPI
from fastapi.responses import JSONResponse
from uuid import uuid4
from threading import Lock
import time
app = FastAPI()
# 字典用于存储请求和状态
requests = {}
process_lock = Lock()
"""
def validate_path():
import os, sys
os.path.dirname(__file__)
root_dir_assume = os.path.abspath(os.path.dirname(__file__) + "/..")
os.chdir(root_dir_assume)
sys.path.append(root_dir_assume)
validate_path() # validate path so you can run from base directory
from toolbox import markdown_convertion
# from shared_utils.advanced_markdown_format import markdown_convertion_for_file
from shared_utils.advanced_markdown_format import close_up_code_segment_during_stream
# with open("gpt_log/default_user/shared/2024-04-22-01-27-43.zip.extract/translated_markdown.md", "r", encoding="utf-8") as f:
# md = f.read()
md = close_up_code_segment_during_stream(md)
html = markdown_convertion(md)
# print(html)
with open("test.html", "w", encoding="utf-8") as f:
f.write(html)
# TODO: 列出10个经典名著