Files
gpt_academic/crazy_functions/Internet_GPT.py
2024-12-04 00:36:34 +08:00

311 lines
13 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import requests
import random
import time
import re
import json
from bs4 import BeautifulSoup
from functools import lru_cache
from itertools import zip_longest
from check_proxy import check_proxy
from toolbox import CatchException, update_ui, get_conf, update_ui_lastest_msg
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
from request_llms.bridge_all import model_info
from request_llms.bridge_all import predict_no_ui_long_connection
from crazy_functions.prompts.internet import SearchOptimizerPrompt, SearchAcademicOptimizerPrompt
def search_optimizer(
query,
proxies,
history,
llm_kwargs,
optimizer=1,
categories="general",
searxng_url=None,
engines=None,
):
# ------------- < 第1步尝试进行搜索优化 > -------------
# * 增强优化,会尝试结合历史记录进行搜索优化
if optimizer == 2:
his = " "
if len(history) == 0:
pass
else:
for i, h in enumerate(history):
if i % 2 == 0:
his += f"Q: {h}\n"
else:
his += f"A: {h}\n"
if categories == "general":
sys_prompt = SearchOptimizerPrompt.format(query=query, history=his, num=4)
elif categories == "science":
sys_prompt = SearchAcademicOptimizerPrompt.format(query=query, history=his, num=4)
else:
his = " "
if categories == "general":
sys_prompt = SearchOptimizerPrompt.format(query=query, history=his, num=3)
elif categories == "science":
sys_prompt = SearchAcademicOptimizerPrompt.format(query=query, history=his, num=3)
mutable = ["", time.time(), ""]
llm_kwargs["temperature"] = 0.8
try:
querys_json = predict_no_ui_long_connection(
inputs=query,
llm_kwargs=llm_kwargs,
history=[],
sys_prompt=sys_prompt,
observe_window=mutable,
)
except Exception:
querys_json = "1234"
#* 尝试解码优化后的搜索结果
querys_json = re.sub(r"```json|```", "", querys_json)
try:
querys = json.loads(querys_json)
except Exception:
#* 如果解码失败,降低温度再试一次
try:
llm_kwargs["temperature"] = 0.4
querys_json = predict_no_ui_long_connection(
inputs=query,
llm_kwargs=llm_kwargs,
history=[],
sys_prompt=sys_prompt,
observe_window=mutable,
)
querys_json = re.sub(r"```json|```", "", querys_json)
querys = json.loads(querys_json)
except Exception:
#* 如果再次失败,直接返回原始问题
querys = [query]
links = []
success = 0
Exceptions = ""
for q in querys:
try:
link = searxng_request(q, proxies, categories, searxng_url, engines=engines)
if len(link) > 0:
links.append(link[:-5])
success += 1
except Exception:
Exceptions = Exception
pass
if success == 0:
raise ValueError(f"在线搜索失败!\n{Exceptions}")
# * 清洗搜索结果,依次放入每组第一,第二个搜索结果,并清洗重复的搜索结果
seen_links = set()
result = []
for tuple in zip_longest(*links, fillvalue=None):
for item in tuple:
if item is not None:
link = item["link"]
if link not in seen_links:
seen_links.add(link)
result.append(item)
return result
@lru_cache
def get_auth_ip():
ip = check_proxy(None, return_ip=True)
if ip is None:
return '114.114.114.' + str(random.randint(1, 10))
return ip
def searxng_request(query, proxies, categories='general', searxng_url=None, engines=None):
if searxng_url is None:
urls = get_conf("SEARXNG_URLS")
url = random.choice(urls)
else:
url = searxng_url
if engines == "Mixed":
engines = None
if categories == 'general':
params = {
'q': query, # 搜索查询
'format': 'json', # 输出格式为JSON
'language': 'zh', # 搜索语言
'engines': engines,
}
elif categories == 'science':
params = {
'q': query, # 搜索查询
'format': 'json', # 输出格式为JSON
'language': 'zh', # 搜索语言
'categories': 'science'
}
else:
raise ValueError('不支持的检索类型')
headers = {
'Accept-Language': 'zh-CN,zh;q=0.9',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36',
'X-Forwarded-For': get_auth_ip(),
'X-Real-IP': get_auth_ip()
}
results = []
response = requests.post(url, params=params, headers=headers, proxies=proxies, timeout=30)
if response.status_code == 200:
json_result = response.json()
for result in json_result['results']:
item = {
"title": result.get("title", ""),
"source": result.get("engines", "unknown"),
"content": result.get("content", ""),
"link": result["url"],
}
results.append(item)
return results
else:
if response.status_code == 429:
raise ValueError("Searxng在线搜索服务当前使用人数太多请稍后。")
else:
raise ValueError("在线搜索失败,状态码: " + str(response.status_code) + '\t' + response.content.decode('utf-8'))
def scrape_text(url, proxies) -> str:
"""Scrape text from a webpage
Args:
url (str): The URL to scrape text from
Returns:
str: The scraped text
"""
headers = {
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36',
'Content-Type': 'text/plain',
}
try:
response = requests.get(url, headers=headers, proxies=proxies, timeout=8)
if response.encoding == "ISO-8859-1": response.encoding = response.apparent_encoding
except:
return "无法连接到该网页"
soup = BeautifulSoup(response.text, "html.parser")
for script in soup(["script", "style"]):
script.extract()
text = soup.get_text()
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = "\n".join(chunk for chunk in chunks if chunk)
return text
def internet_search_with_analysis_prompt(prompt, analysis_prompt, llm_kwargs, chatbot):
from toolbox import get_conf
proxies = get_conf('proxies')
categories = 'general'
searxng_url = None # 使用默认的searxng_url
engines = None # 使用默认的搜索引擎
yield from update_ui_lastest_msg(lastmsg=f"检索中: {prompt} ...", chatbot=chatbot, history=[], delay=1)
urls = searxng_request(prompt, proxies, categories, searxng_url, engines=engines)
yield from update_ui_lastest_msg(lastmsg=f"依次访问搜索到的网站 ...", chatbot=chatbot, history=[], delay=1)
if len(urls) == 0:
return None
max_search_result = 5 # 最多收纳多少个网页的结果
history = []
for index, url in enumerate(urls[:max_search_result]):
yield from update_ui_lastest_msg(lastmsg=f"依次访问搜索到的网站: {url['link']} ...", chatbot=chatbot, history=[], delay=1)
res = scrape_text(url['link'], proxies)
prefix = f"{index}份搜索结果 [源自{url['source'][0]}搜索] {url['title'][:25]}"
history.extend([prefix, res])
i_say = f"从以上搜索结果中抽取信息,然后回答问题:{prompt} {analysis_prompt}"
i_say, history = input_clipping( # 裁剪输入从最长的条目开始裁剪防止爆token
inputs=i_say,
history=history,
max_token_limit=8192
)
gpt_say = predict_no_ui_long_connection(
inputs=i_say,
llm_kwargs=llm_kwargs,
history=history,
sys_prompt="请从搜索结果中抽取信息,对最相关的两个搜索结果进行总结,然后回答问题。",
console_slience=False,
)
return gpt_say
@CatchException
def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
optimizer_history = history[:-8]
history = [] # 清空历史,以免输入溢出
chatbot.append((f"请结合互联网信息回答以下问题:{txt}", "检索中..."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# ------------- < 第1步爬取搜索引擎的结果 > -------------
from toolbox import get_conf
proxies = get_conf('proxies')
categories = plugin_kwargs.get('categories', 'general')
searxng_url = plugin_kwargs.get('searxng_url', None)
engines = plugin_kwargs.get('engine', None)
optimizer = plugin_kwargs.get('optimizer', "关闭")
if optimizer == "关闭":
urls = searxng_request(txt, proxies, categories, searxng_url, engines=engines)
else:
urls = search_optimizer(txt, proxies, optimizer_history, llm_kwargs, optimizer, categories, searxng_url, engines)
history = []
if len(urls) == 0:
chatbot.append((f"结论:{txt}",
"[Local Message] 受到限制无法从searxng获取信息请尝试更换搜索引擎。"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# ------------- < 第2步依次访问网页 > -------------
max_search_result = 5 # 最多收纳多少个网页的结果
if optimizer == "开启(增强)":
max_search_result = 8
chatbot.append(["联网检索中 ...", None])
for index, url in enumerate(urls[:max_search_result]):
res = scrape_text(url['link'], proxies)
prefix = f"{index}份搜索结果 [源自{url['source'][0]}搜索] {url['title'][:25]}"
history.extend([prefix, res])
res_squeeze = res.replace('\n', '...')
chatbot[-1] = [prefix + "\n\n" + res_squeeze[:500] + "......", None]
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# ------------- < 第3步ChatGPT综合 > -------------
if (optimizer != "开启(增强)"):
i_say = f"从以上搜索结果中抽取信息,然后回答问题:{txt}"
i_say, history = input_clipping( # 裁剪输入从最长的条目开始裁剪防止爆token
inputs=i_say,
history=history,
max_token_limit=min(model_info[llm_kwargs['llm_model']]['max_token']*3//4, 8192)
)
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say, inputs_show_user=i_say,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
sys_prompt="请从给定的若干条搜索结果中抽取信息,对最相关的两个搜索结果进行总结,然后回答问题。"
)
chatbot[-1] = (i_say, gpt_say)
history.append(i_say);history.append(gpt_say)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
#* 或者使用搜索优化器,这样可以保证后续问答能读取到有效的历史记录
else:
i_say = f"从以上搜索结果中抽取与问题:{txt} 相关的信息:"
i_say, history = input_clipping( # 裁剪输入从最长的条目开始裁剪防止爆token
inputs=i_say,
history=history,
max_token_limit=min(model_info[llm_kwargs['llm_model']]['max_token']*3//4, 8192)
)
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say, inputs_show_user=i_say,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
sys_prompt="请从给定的若干条搜索结果中抽取信息,对最相关的三个搜索结果进行总结"
)
chatbot[-1] = (i_say, gpt_say)
history = []
history.append(i_say);history.append(gpt_say)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
# ------------- < 第4步根据综合回答问题 > -------------
i_say = f"请根据以上搜索结果回答问题:{txt}"
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say, inputs_show_user=i_say,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
sys_prompt="请根据给定的若干条搜索结果回答问题"
)
chatbot[-1] = (i_say, gpt_say)
history.append(i_say);history.append(gpt_say)
yield from update_ui(chatbot=chatbot, history=history)