101 lines
5.1 KiB
Python
101 lines
5.1 KiB
Python
from toolbox import update_ui
|
||
from toolbox import CatchException, report_exception
|
||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||
from crazy_functions.rag_fns.rag_file_support import extract_text, supports_format
|
||
|
||
fast_debug = False
|
||
|
||
|
||
def 文档总结(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||
import time, os
|
||
# pip install python-docx 用于docx格式,跨平台
|
||
# pip install pywin32 用于doc格式,仅支持Win平台
|
||
for index, fp in enumerate(file_manifest):
|
||
file_content = extract_text(fp)
|
||
# private_upload里面的文件名在解压zip后容易出现乱码(rar和7z格式正常),故可以只分析文章内容,不输入文件名
|
||
if file_content==None:
|
||
chatbot.append(
|
||
[f"上传文件: {os.path.basename(fp)}", f"此文件解析失败,无法提取文本内容。失败原因可能为:1.文档格式过于复杂;2. 不支持的文件格式,支持的文件格式后缀有:" + ", ".join(supports_format)+ "等其他文本格式类型文件。"])
|
||
continue
|
||
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
||
from request_llms.bridge_all import model_info
|
||
max_token = model_info[llm_kwargs['llm_model']]['max_token']
|
||
TOKEN_LIMIT_PER_FRAGMENT = max_token * 3 // 4
|
||
paper_fragments = breakdown_text_to_satisfy_token_limit(txt=file_content, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs['llm_model'])
|
||
this_paper_history = []
|
||
for i, paper_frag in enumerate(paper_fragments):
|
||
i_say = f'请对下面的内容用中文做概述,文件名是{os.path.relpath(fp, project_folder)},做概述时请优先满足以下要求:{plugin_kwargs['advanced_arg']}:内容是 ```{paper_frag}```'
|
||
i_say_show_user = f'请对下面的内容片段做概述,做概述时请优先满足以下要求:{plugin_kwargs['advanced_arg']}: {os.path.abspath(fp)}的第{i+1}/{len(paper_fragments)}个片段。'
|
||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||
inputs=i_say,
|
||
inputs_show_user=i_say_show_user,
|
||
llm_kwargs=llm_kwargs,
|
||
chatbot=chatbot,
|
||
history=[],
|
||
sys_prompt="总结文章。"
|
||
)
|
||
|
||
chatbot[-1] = (i_say_show_user, gpt_say)
|
||
history.extend([i_say_show_user,gpt_say])
|
||
this_paper_history.extend([i_say_show_user,gpt_say])
|
||
|
||
# 已经对该文章的所有片段总结完毕,如果文章被切分了,
|
||
if len(paper_fragments) > 1:
|
||
i_say = f"根据以上的对话,总结时请注意以下要求:{plugin_kwargs['advanced_arg']},总结文件{os.path.abspath(fp)}的主要内容。"
|
||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||
inputs=i_say,
|
||
inputs_show_user=i_say,
|
||
llm_kwargs=llm_kwargs,
|
||
chatbot=chatbot,
|
||
history=this_paper_history,
|
||
sys_prompt="总结文件内容。"
|
||
)
|
||
|
||
history.extend([i_say,gpt_say])
|
||
this_paper_history.extend([i_say,gpt_say])
|
||
|
||
res = write_history_to_file(history)
|
||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
||
chatbot.append((f"路径{fp}文件解读完成了吗?", "解读完成,存储路径为"+res))
|
||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||
|
||
res = write_history_to_file(history)
|
||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
||
|
||
|
||
@CatchException
|
||
def 总结文件(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||
import glob, os
|
||
|
||
# 基本信息:功能、贡献者
|
||
chatbot.append([
|
||
"函数插件功能?",
|
||
f"批量总结各类文件。函数插件贡献者: JasonGuo1 and BoyinLiu。支持的文件类型包括:{', '.join(supports_format)}。"
|
||
])
|
||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||
|
||
# 清空历史,以免输入溢出
|
||
history = []
|
||
|
||
# 检测输入参数,如没有给定输入参数,直接退出
|
||
if os.path.exists(txt):
|
||
project_folder = txt
|
||
else:
|
||
if txt == "": txt = '空空如也的输入栏'
|
||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||
return
|
||
|
||
# 搜索需要处理的文件清单
|
||
|
||
file_manifest = [f for f in glob.glob(f'{project_folder}/**', recursive=True) if os.path.isfile(f)]
|
||
|
||
# 如果没找到任何文件
|
||
if len(file_manifest) == 0:
|
||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何支持的文件类型: {txt}")
|
||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||
return
|
||
|
||
# 开始正式执行任务
|
||
yield from 文档总结(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt) |