111 lines
6.2 KiB
Python
111 lines
6.2 KiB
Python
from toolbox import get_log_folder
|
||
from toolbox import update_ui, promote_file_to_downloadzone
|
||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||
from crazy_functions.crazy_utils import read_and_clean_pdf_text
|
||
from shared_utils.colorful import *
|
||
import os
|
||
|
||
def 解析PDF_简单拆解(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||
"""
|
||
注意:此函数已经弃用!!新函数位于:crazy_functions/pdf_fns/parse_pdf.py
|
||
"""
|
||
import copy
|
||
TOKEN_LIMIT_PER_FRAGMENT = 1024
|
||
generated_conclusion_files = []
|
||
generated_html_files = []
|
||
from crazy_functions.pdf_fns.report_gen_html import construct_html
|
||
for index, fp in enumerate(file_manifest):
|
||
# 读取PDF文件
|
||
file_content, page_one = read_and_clean_pdf_text(fp)
|
||
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||
page_one = str(page_one).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||
|
||
# 递归地切割PDF文件
|
||
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
||
paper_fragments = breakdown_text_to_satisfy_token_limit(txt=file_content, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs['llm_model'])
|
||
page_one_fragments = breakdown_text_to_satisfy_token_limit(txt=page_one, limit=TOKEN_LIMIT_PER_FRAGMENT//4, llm_model=llm_kwargs['llm_model'])
|
||
|
||
# 为了更好的效果,我们剥离Introduction之后的部分(如果有)
|
||
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
|
||
|
||
# 单线,获取文章meta信息
|
||
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||
inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}",
|
||
inputs_show_user=f"请从{fp}中提取出“标题”、“收录会议或期刊”等基本信息。",
|
||
llm_kwargs=llm_kwargs,
|
||
chatbot=chatbot, history=[],
|
||
sys_prompt="Your job is to collect information from materials。",
|
||
)
|
||
|
||
# 多线,翻译
|
||
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||
inputs_array=[
|
||
f"你需要翻译以下内容:\n{frag}" for frag in paper_fragments],
|
||
inputs_show_user_array=[f"\n---\n 原文: \n\n {frag.replace('#', '')} \n---\n 翻译:\n " for frag in paper_fragments],
|
||
llm_kwargs=llm_kwargs,
|
||
chatbot=chatbot,
|
||
history_array=[[paper_meta] for _ in paper_fragments],
|
||
sys_prompt_array=[
|
||
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" + plugin_kwargs.get("additional_prompt", "")
|
||
for _ in paper_fragments],
|
||
# max_workers=5 # OpenAI所允许的最大并行过载
|
||
)
|
||
gpt_response_collection_md = copy.deepcopy(gpt_response_collection)
|
||
# 整理报告的格式
|
||
for i,k in enumerate(gpt_response_collection_md):
|
||
if i%2==0:
|
||
gpt_response_collection_md[i] = f"\n\n---\n\n ## 原文[{i//2}/{len(gpt_response_collection_md)//2}]: \n\n {paper_fragments[i//2].replace('#', '')} \n\n---\n\n ## 翻译[{i//2}/{len(gpt_response_collection_md)//2}]:\n "
|
||
else:
|
||
gpt_response_collection_md[i] = gpt_response_collection_md[i]
|
||
final = ["一、论文概况\n\n---\n\n", paper_meta_info.replace('# ', '### ') + '\n\n---\n\n', "二、论文翻译", ""]
|
||
final.extend(gpt_response_collection_md)
|
||
create_report_file_name = f"{os.path.basename(fp)}.trans.md"
|
||
res = write_history_to_file(final, create_report_file_name)
|
||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
||
|
||
# 更新UI
|
||
generated_conclusion_files.append(f'{get_log_folder()}/{create_report_file_name}')
|
||
chatbot.append((f"{fp}完成了吗?", res))
|
||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||
|
||
# write html
|
||
try:
|
||
ch = construct_html()
|
||
orig = ""
|
||
trans = ""
|
||
gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
|
||
for i,k in enumerate(gpt_response_collection_html):
|
||
if i%2==0:
|
||
gpt_response_collection_html[i] = paper_fragments[i//2].replace('#', '')
|
||
else:
|
||
gpt_response_collection_html[i] = gpt_response_collection_html[i]
|
||
final = ["论文概况", paper_meta_info.replace('# ', '### '), "二、论文翻译", ""]
|
||
final.extend(gpt_response_collection_html)
|
||
for i, k in enumerate(final):
|
||
if i%2==0:
|
||
orig = k
|
||
if i%2==1:
|
||
trans = k
|
||
ch.add_row(a=orig, b=trans)
|
||
create_report_file_name = f"{os.path.basename(fp)}.trans.html"
|
||
generated_html_files.append(ch.save_file(create_report_file_name))
|
||
except:
|
||
from toolbox import trimmed_format_exc
|
||
print('writing html result failed:', trimmed_format_exc())
|
||
|
||
# 准备文件的下载
|
||
for pdf_path in generated_conclusion_files:
|
||
# 重命名文件
|
||
rename_file = f'翻译-{os.path.basename(pdf_path)}'
|
||
promote_file_to_downloadzone(pdf_path, rename_file=rename_file, chatbot=chatbot)
|
||
for html_path in generated_html_files:
|
||
# 重命名文件
|
||
rename_file = f'翻译-{os.path.basename(html_path)}'
|
||
promote_file_to_downloadzone(html_path, rename_file=rename_file, chatbot=chatbot)
|
||
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
|
||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||
|
||
|