def validate_path(): import os, sys os.path.dirname(__file__) root_dir_assume = os.path.abspath(os.path.dirname(__file__) + "/..") os.chdir(root_dir_assume) sys.path.append(root_dir_assume) validate_path() # validate path so you can run from base directory # """ # Test 1 # """ # from request_llms.embed_models.openai_embed import OpenAiEmbeddingModel # from shared_utils.connect_void_terminal import get_chat_default_kwargs # oaiem = OpenAiEmbeddingModel() # chat_kwargs = get_chat_default_kwargs() # llm_kwargs = chat_kwargs['llm_kwargs'] # llm_kwargs.update({ # 'llm_model': "text-embedding-3-small" # }) # res = oaiem.compute_embedding("你好", llm_kwargs) # print(res) """ Test 2 """ from request_llms.embed_models.openai_embed import OpenAiEmbeddingModel from shared_utils.connect_void_terminal import get_chat_default_kwargs from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from crazy_functions.rag_fns.vector_store_index import GptacVectorStoreIndex from llama_index.core.ingestion import run_transformations chat_kwargs = get_chat_default_kwargs() llm_kwargs = chat_kwargs['llm_kwargs'] llm_kwargs.update({ 'llm_model': "text-embedding-3-small" }) embed_model = OpenAiEmbeddingModel(llm_kwargs) ## dir documents = SimpleDirectoryReader("private_upload/rag_test/").load_data() ## single files # from llama_index.core import Document # text_list = [text1, text2, ...] # documents = [Document(text=t) for t in text_list] vsi = GptacVectorStoreIndex.default_vector_store(embed_model=embed_model) documents_nodes = run_transformations( documents, # type: ignore vsi._transformations, show_progress=True ) index = vsi.insert_nodes(documents_nodes) query_engine = index.as_query_engine() response = query_engine.query("Some question about the data should go here") print(response)