Compare commits
83 Commits
mini-core
...
0055ea2df7
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
0055ea2df7 | ||
|
|
4a79aa6a93 | ||
|
|
5dffe8627f | ||
|
|
2aefef26db | ||
|
|
957da731db | ||
|
|
155e7e0deb | ||
|
|
add29eba08 | ||
|
|
163e59c0f3 | ||
|
|
07ece29c7c | ||
|
|
991a903fa9 | ||
|
|
cf7c81170c | ||
|
|
6dda2061dd | ||
|
|
e9de41b7e8 | ||
|
|
b34c79a94b | ||
|
|
8a0d96afd3 | ||
|
|
37f9b94dee | ||
|
|
95284d859b | ||
|
|
a552592b5a | ||
|
|
e305f1b4a8 | ||
| a88497c3ab | |||
|
|
0f1d2e0e48 | ||
|
|
936e2f5206 | ||
|
|
7f4b87a633 | ||
|
|
2ddd1bb634 | ||
|
|
c68285aeac | ||
|
|
caaebe4296 | ||
|
|
39d50c1c95 | ||
|
|
25dc7bf912 | ||
|
|
0458590a77 | ||
|
|
44fe78fff5 | ||
|
|
5ddd657ebc | ||
|
|
9b0b2cf260 | ||
|
|
9f39a6571a | ||
|
|
d07e736214 | ||
|
|
a1f7ae5b55 | ||
|
|
1213ef19e5 | ||
|
|
aaafe2a797 | ||
|
|
2716606f0c | ||
|
|
286f7303be | ||
|
|
7eeab9e376 | ||
|
|
4ca331fb28 | ||
|
|
9487829930 | ||
|
|
a73074b89e | ||
|
|
fd93622840 | ||
|
|
09a82a572d | ||
|
|
c53ddf65aa | ||
|
|
ac64a77c2d | ||
|
|
dae8a0affc | ||
|
|
97a81e9388 | ||
|
|
1dd1d0ed6c | ||
|
|
060af0d2e6 | ||
|
|
a848f714b6 | ||
|
|
924f8e30c7 | ||
|
|
f40347665b | ||
|
|
734c40bbde | ||
|
|
4ec87fbb54 | ||
|
|
17b5c22e61 | ||
|
|
c6cd04a407 | ||
|
|
f60a12f8b4 | ||
|
|
8413fb15ba | ||
|
|
72b2ce9b62 | ||
|
|
f43ef909e2 | ||
|
|
9651ad488f | ||
|
|
81da7bb1a5 | ||
|
|
4127162ee7 | ||
|
|
98e5cb7b77 | ||
|
|
c88d8047dd | ||
|
|
e4bebea28d | ||
|
|
294df6c2d5 | ||
|
|
239894544e | ||
|
|
ed5fc84d4e | ||
|
|
e3f84069ee | ||
|
|
7bf094b6b6 | ||
|
|
57d7dc33d3 | ||
|
|
94ccd77480 | ||
|
|
48e53cba05 | ||
|
|
e9a7f9439f | ||
|
|
a88b119bf0 | ||
|
|
eee8115434 | ||
|
|
4f6a272113 | ||
|
|
cf3dd5ddb6 | ||
|
|
f6f10b7230 | ||
|
|
bd7b219e8f |
56
.github/workflows/conda-pack-windows.yml
vendored
Normal file
56
.github/workflows/conda-pack-windows.yml
vendored
Normal file
@@ -0,0 +1,56 @@
|
|||||||
|
name: Create Conda Environment Package
|
||||||
|
|
||||||
|
on:
|
||||||
|
workflow_dispatch:
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
build:
|
||||||
|
runs-on: windows-latest
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- name: Checkout repository
|
||||||
|
uses: actions/checkout@v4
|
||||||
|
|
||||||
|
- name: Setup Miniconda
|
||||||
|
uses: conda-incubator/setup-miniconda@v3
|
||||||
|
with:
|
||||||
|
auto-activate-base: true
|
||||||
|
activate-environment: ""
|
||||||
|
|
||||||
|
- name: Create new Conda environment
|
||||||
|
shell: bash -l {0}
|
||||||
|
run: |
|
||||||
|
conda create -n gpt python=3.11 -y
|
||||||
|
conda activate gpt
|
||||||
|
|
||||||
|
- name: Install requirements
|
||||||
|
shell: bash -l {0}
|
||||||
|
run: |
|
||||||
|
conda activate gpt
|
||||||
|
pip install -r requirements.txt
|
||||||
|
|
||||||
|
- name: Install conda-pack
|
||||||
|
shell: bash -l {0}
|
||||||
|
run: |
|
||||||
|
conda activate gpt
|
||||||
|
conda install conda-pack -y
|
||||||
|
|
||||||
|
- name: Pack conda environment
|
||||||
|
shell: bash -l {0}
|
||||||
|
run: |
|
||||||
|
conda activate gpt
|
||||||
|
conda pack -n gpt -o gpt.tar.gz
|
||||||
|
|
||||||
|
- name: Create workspace zip
|
||||||
|
shell: pwsh
|
||||||
|
run: |
|
||||||
|
mkdir workspace
|
||||||
|
Get-ChildItem -Exclude "workspace" | Copy-Item -Destination workspace -Recurse
|
||||||
|
Remove-Item -Path workspace/.git* -Recurse -Force -ErrorAction SilentlyContinue
|
||||||
|
Copy-Item gpt.tar.gz workspace/ -Force
|
||||||
|
|
||||||
|
- name: Upload packed files
|
||||||
|
uses: actions/upload-artifact@v4
|
||||||
|
with:
|
||||||
|
name: gpt-academic-package
|
||||||
|
path: workspace
|
||||||
7
.github/workflows/stale.yml
vendored
7
.github/workflows/stale.yml
vendored
@@ -7,7 +7,7 @@
|
|||||||
name: 'Close stale issues and PRs'
|
name: 'Close stale issues and PRs'
|
||||||
on:
|
on:
|
||||||
schedule:
|
schedule:
|
||||||
- cron: '*/5 * * * *'
|
- cron: '*/30 * * * *'
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
stale:
|
stale:
|
||||||
@@ -19,7 +19,6 @@ jobs:
|
|||||||
steps:
|
steps:
|
||||||
- uses: actions/stale@v8
|
- uses: actions/stale@v8
|
||||||
with:
|
with:
|
||||||
stale-issue-message: 'This issue is stale because it has been open 100 days with no activity. Remove stale label or comment or this will be closed in 1 days.'
|
stale-issue-message: 'This issue is stale because it has been open 100 days with no activity. Remove stale label or comment or this will be closed in 7 days.'
|
||||||
days-before-stale: 100
|
days-before-stale: 100
|
||||||
days-before-close: 1
|
days-before-close: 7
|
||||||
debug-only: true
|
|
||||||
|
|||||||
@@ -15,6 +15,7 @@ RUN echo '[global]' > /etc/pip.conf && \
|
|||||||
# 语音输出功能(以下两行,第一行更换阿里源,第二行安装ffmpeg,都可以删除)
|
# 语音输出功能(以下两行,第一行更换阿里源,第二行安装ffmpeg,都可以删除)
|
||||||
RUN UBUNTU_VERSION=$(awk -F= '/^VERSION_CODENAME=/{print $2}' /etc/os-release); echo "deb https://mirrors.aliyun.com/debian/ $UBUNTU_VERSION main non-free contrib" > /etc/apt/sources.list; apt-get update
|
RUN UBUNTU_VERSION=$(awk -F= '/^VERSION_CODENAME=/{print $2}' /etc/os-release); echo "deb https://mirrors.aliyun.com/debian/ $UBUNTU_VERSION main non-free contrib" > /etc/apt/sources.list; apt-get update
|
||||||
RUN apt-get install ffmpeg -y
|
RUN apt-get install ffmpeg -y
|
||||||
|
RUN apt-get clean
|
||||||
|
|
||||||
|
|
||||||
# 进入工作路径(必要)
|
# 进入工作路径(必要)
|
||||||
@@ -33,6 +34,7 @@ RUN pip3 install -r requirements.txt
|
|||||||
|
|
||||||
# 非必要步骤,用于预热模块(可以删除)
|
# 非必要步骤,用于预热模块(可以删除)
|
||||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||||
|
RUN python3 -m pip cache purge
|
||||||
|
|
||||||
|
|
||||||
# 启动(必要)
|
# 启动(必要)
|
||||||
|
|||||||
52
README.md
52
README.md
@@ -1,9 +1,14 @@
|
|||||||
> [!IMPORTANT]
|
> [!IMPORTANT]
|
||||||
> 2024.10.10: 突发停电,紧急恢复了提供[whl包](https://drive.google.com/file/d/19U_hsLoMrjOlQSzYS3pzWX9fTzyusArP/view?usp=sharing)的文件服务器
|
> `master主分支`最新动态(2025.3.2): 修复大量代码typo / 联网组件支持Jina的api / 增加deepseek-r1支持
|
||||||
> 2024.10.8: 版本3.90加入对llama-index的初步支持,版本3.80加入插件二级菜单功能(详见wiki)
|
> `frontier开发分支`最新动态(2024.12.9): 更新对话时间线功能,优化xelatex论文翻译
|
||||||
|
> `wiki文档`最新动态(2024.12.5): 更新ollama接入指南
|
||||||
|
>
|
||||||
|
> 2025.2.2: 三分钟快速接入最强qwen2.5-max[视频](https://www.bilibili.com/video/BV1LeFuerEG4)
|
||||||
|
> 2025.2.1: 支持自定义字体
|
||||||
|
> 2024.10.10: 突发停电,紧急恢复了提供[whl包](https://drive.google.com/drive/folders/14kR-3V-lIbvGxri4AHc8TpiA1fqsw7SK?usp=sharing)的文件服务器
|
||||||
> 2024.5.1: 加入Doc2x翻译PDF论文的功能,[查看详情](https://github.com/binary-husky/gpt_academic/wiki/Doc2x)
|
> 2024.5.1: 加入Doc2x翻译PDF论文的功能,[查看详情](https://github.com/binary-husky/gpt_academic/wiki/Doc2x)
|
||||||
> 2024.3.11: 全力支持Qwen、GLM、DeepseekCoder等中文大语言模型! SoVits语音克隆模块,[查看详情](https://www.bilibili.com/video/BV1Rp421S7tF/)
|
> 2024.3.11: 全力支持Qwen、GLM、DeepseekCoder等中文大语言模型! SoVits语音克隆模块,[查看详情](https://www.bilibili.com/video/BV1Rp421S7tF/)
|
||||||
> 2024.1.17: 安装依赖时,请选择`requirements.txt`中**指定的版本**。 安装命令:`pip install -r requirements.txt`。本项目完全开源免费,您可通过订阅[在线服务](https://github.com/binary-husky/gpt_academic/wiki/online)的方式鼓励本项目的发展。
|
> 2024.1.17: 安装依赖时,请选择`requirements.txt`中**指定的版本**。 安装命令:`pip install -r requirements.txt`。
|
||||||
|
|
||||||
<br>
|
<br>
|
||||||
|
|
||||||
@@ -124,20 +129,20 @@ Latex论文一键校对 | [插件] 仿Grammarly对Latex文章进行语法、拼
|
|||||||
|
|
||||||
```mermaid
|
```mermaid
|
||||||
flowchart TD
|
flowchart TD
|
||||||
A{"安装方法"} --> W1("I. 🔑直接运行 (Windows, Linux or MacOS)")
|
A{"安装方法"} --> W1("I 🔑直接运行 (Windows, Linux or MacOS)")
|
||||||
W1 --> W11["1. Python pip包管理依赖"]
|
W1 --> W11["1 Python pip包管理依赖"]
|
||||||
W1 --> W12["2. Anaconda包管理依赖(推荐⭐)"]
|
W1 --> W12["2 Anaconda包管理依赖(推荐⭐)"]
|
||||||
|
|
||||||
A --> W2["II. 🐳使用Docker (Windows, Linux or MacOS)"]
|
A --> W2["II 🐳使用Docker (Windows, Linux or MacOS)"]
|
||||||
|
|
||||||
W2 --> k1["1. 部署项目全部能力的大镜像(推荐⭐)"]
|
W2 --> k1["1 部署项目全部能力的大镜像(推荐⭐)"]
|
||||||
W2 --> k2["2. 仅在线模型(GPT, GLM4等)镜像"]
|
W2 --> k2["2 仅在线模型(GPT, GLM4等)镜像"]
|
||||||
W2 --> k3["3. 在线模型 + Latex的大镜像"]
|
W2 --> k3["3 在线模型 + Latex的大镜像"]
|
||||||
|
|
||||||
A --> W4["IV. 🚀其他部署方法"]
|
A --> W4["IV 🚀其他部署方法"]
|
||||||
W4 --> C1["1. Windows/MacOS 一键安装运行脚本(推荐⭐)"]
|
W4 --> C1["1 Windows/MacOS 一键安装运行脚本(推荐⭐)"]
|
||||||
W4 --> C2["2. Huggingface, Sealos远程部署"]
|
W4 --> C2["2 Huggingface, Sealos远程部署"]
|
||||||
W4 --> C4["3. ... 其他 ..."]
|
W4 --> C4["3 其他 ..."]
|
||||||
```
|
```
|
||||||
|
|
||||||
### 安装方法I:直接运行 (Windows, Linux or MacOS)
|
### 安装方法I:直接运行 (Windows, Linux or MacOS)
|
||||||
@@ -170,26 +175,32 @@ flowchart TD
|
|||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
<details><summary>如果需要支持清华ChatGLM2/复旦MOSS/RWKV作为后端,请点击展开此处</summary>
|
<details><summary>如果需要支持清华ChatGLM系列/复旦MOSS/RWKV作为后端,请点击展开此处</summary>
|
||||||
<p>
|
<p>
|
||||||
|
|
||||||
【可选步骤】如果需要支持清华ChatGLM3/复旦MOSS作为后端,需要额外安装更多依赖(前提条件:熟悉Python + 用过Pytorch + 电脑配置够强):
|
【可选步骤】如果需要支持清华ChatGLM系列/复旦MOSS作为后端,需要额外安装更多依赖(前提条件:熟悉Python + 用过Pytorch + 电脑配置够强):
|
||||||
|
|
||||||
```sh
|
```sh
|
||||||
# 【可选步骤I】支持清华ChatGLM3。清华ChatGLM备注:如果遇到"Call ChatGLM fail 不能正常加载ChatGLM的参数" 错误,参考如下: 1:以上默认安装的为torch+cpu版,使用cuda需要卸载torch重新安装torch+cuda; 2:如因本机配置不够无法加载模型,可以修改request_llm/bridge_chatglm.py中的模型精度, 将 AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) 都修改为 AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
|
# 【可选步骤I】支持清华ChatGLM3。清华ChatGLM备注:如果遇到"Call ChatGLM fail 不能正常加载ChatGLM的参数" 错误,参考如下: 1:以上默认安装的为torch+cpu版,使用cuda需要卸载torch重新安装torch+cuda; 2:如因本机配置不够无法加载模型,可以修改request_llm/bridge_chatglm.py中的模型精度, 将 AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) 都修改为 AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
|
||||||
python -m pip install -r request_llms/requirements_chatglm.txt
|
python -m pip install -r request_llms/requirements_chatglm.txt
|
||||||
|
|
||||||
# 【可选步骤II】支持复旦MOSS
|
# 【可选步骤II】支持清华ChatGLM4 注意:此模型至少需要24G显存
|
||||||
|
python -m pip install -r request_llms/requirements_chatglm4.txt
|
||||||
|
# 可使用modelscope下载ChatGLM4模型
|
||||||
|
# pip install modelscope
|
||||||
|
# modelscope download --model ZhipuAI/glm-4-9b-chat --local_dir ./THUDM/glm-4-9b-chat
|
||||||
|
|
||||||
|
# 【可选步骤III】支持复旦MOSS
|
||||||
python -m pip install -r request_llms/requirements_moss.txt
|
python -m pip install -r request_llms/requirements_moss.txt
|
||||||
git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llms/moss # 注意执行此行代码时,必须处于项目根路径
|
git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llms/moss # 注意执行此行代码时,必须处于项目根路径
|
||||||
|
|
||||||
# 【可选步骤III】支持RWKV Runner
|
# 【可选步骤IV】支持RWKV Runner
|
||||||
参考wiki:https://github.com/binary-husky/gpt_academic/wiki/%E9%80%82%E9%85%8DRWKV-Runner
|
参考wiki:https://github.com/binary-husky/gpt_academic/wiki/%E9%80%82%E9%85%8DRWKV-Runner
|
||||||
|
|
||||||
# 【可选步骤IV】确保config.py配置文件的AVAIL_LLM_MODELS包含了期望的模型,目前支持的全部模型如下(jittorllms系列目前仅支持docker方案):
|
# 【可选步骤V】确保config.py配置文件的AVAIL_LLM_MODELS包含了期望的模型,目前支持的全部模型如下(jittorllms系列目前仅支持docker方案):
|
||||||
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
|
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
|
||||||
|
|
||||||
# 【可选步骤V】支持本地模型INT8,INT4量化(这里所指的模型本身不是量化版本,目前deepseek-coder支持,后面测试后会加入更多模型量化选择)
|
# 【可选步骤VI】支持本地模型INT8,INT4量化(这里所指的模型本身不是量化版本,目前deepseek-coder支持,后面测试后会加入更多模型量化选择)
|
||||||
pip install bitsandbyte
|
pip install bitsandbyte
|
||||||
# windows用户安装bitsandbytes需要使用下面bitsandbytes-windows-webui
|
# windows用户安装bitsandbytes需要使用下面bitsandbytes-windows-webui
|
||||||
python -m pip install bitsandbytes --prefer-binary --extra-index-url=https://jllllll.github.io/bitsandbytes-windows-webui
|
python -m pip install bitsandbytes --prefer-binary --extra-index-url=https://jllllll.github.io/bitsandbytes-windows-webui
|
||||||
@@ -417,7 +428,6 @@ timeline LR
|
|||||||
1. `master` 分支: 主分支,稳定版
|
1. `master` 分支: 主分支,稳定版
|
||||||
2. `frontier` 分支: 开发分支,测试版
|
2. `frontier` 分支: 开发分支,测试版
|
||||||
3. 如何[接入其他大模型](request_llms/README.md)
|
3. 如何[接入其他大模型](request_llms/README.md)
|
||||||
4. 访问GPT-Academic的[在线服务并支持我们](https://github.com/binary-husky/gpt_academic/wiki/online)
|
|
||||||
|
|
||||||
### V:参考与学习
|
### V:参考与学习
|
||||||
|
|
||||||
|
|||||||
73
config.py
73
config.py
@@ -7,11 +7,16 @@
|
|||||||
Configuration reading priority: environment variable > config_private.py > config.py
|
Configuration reading priority: environment variable > config_private.py > config.py
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# [step 1]>> API_KEY = "sk-123456789xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx123456789"。极少数情况下,还需要填写组织(格式如org-123456789abcdefghijklmno的),请向下翻,找 API_ORG 设置项
|
# [step 1-1]>> ( 接入GPT等模型 ) API_KEY = "sk-123456789xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx123456789"。极少数情况下,还需要填写组织(格式如org-123456789abcdefghijklmno的),请向下翻,找 API_ORG 设置项
|
||||||
API_KEY = "此处填API密钥" # 可同时填写多个API-KEY,用英文逗号分割,例如API_KEY = "sk-openaikey1,sk-openaikey2,fkxxxx-api2dkey3,azure-apikey4"
|
API_KEY = "在此处填写APIKEY" # 可同时填写多个API-KEY,用英文逗号分割,例如API_KEY = "sk-openaikey1,sk-openaikey2,fkxxxx-api2dkey3,azure-apikey4"
|
||||||
|
|
||||||
|
# [step 1-2]>> ( 接入通义 qwen-max ) 接入通义千问在线大模型,api-key获取地址 https://dashscope.console.aliyun.com/
|
||||||
|
DASHSCOPE_API_KEY = "" # 阿里灵积云API_KEY
|
||||||
|
|
||||||
# [step 2]>> 改为True应用代理,如果直接在海外服务器部署,此处不修改;如果使用本地或无地域限制的大模型时,此处也不需要修改
|
# [step 1-3]>> ( 接入 deepseek-reasoner, 即 deepseek-r1 ) 深度求索(DeepSeek) API KEY,默认请求地址为"https://api.deepseek.com/v1/chat/completions"
|
||||||
|
DEEPSEEK_API_KEY = ""
|
||||||
|
|
||||||
|
# [step 2]>> 改为True应用代理。如果使用本地或无地域限制的大模型时,此处不修改;如果直接在海外服务器部署,此处不修改
|
||||||
USE_PROXY = False
|
USE_PROXY = False
|
||||||
if USE_PROXY:
|
if USE_PROXY:
|
||||||
"""
|
"""
|
||||||
@@ -32,11 +37,13 @@ else:
|
|||||||
|
|
||||||
# [step 3]>> 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
|
# [step 3]>> 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
|
||||||
LLM_MODEL = "gpt-3.5-turbo-16k" # 可选 ↓↓↓
|
LLM_MODEL = "gpt-3.5-turbo-16k" # 可选 ↓↓↓
|
||||||
AVAIL_LLM_MODELS = ["gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-preview",
|
AVAIL_LLM_MODELS = ["qwen-max", "o1-mini", "o1-mini-2024-09-12", "o1", "o1-2024-12-17", "o1-preview", "o1-preview-2024-09-12",
|
||||||
|
"gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-preview",
|
||||||
"gpt-4o", "gpt-4o-mini", "gpt-4-turbo", "gpt-4-turbo-2024-04-09",
|
"gpt-4o", "gpt-4o-mini", "gpt-4-turbo", "gpt-4-turbo-2024-04-09",
|
||||||
"gpt-3.5-turbo-1106", "gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
|
"gpt-3.5-turbo-1106", "gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
|
||||||
"gpt-4", "gpt-4-32k", "azure-gpt-4", "glm-4", "glm-4v", "glm-3-turbo",
|
"gpt-4", "gpt-4-32k", "azure-gpt-4", "glm-4", "glm-4v", "glm-3-turbo",
|
||||||
"gemini-1.5-pro", "chatglm3"
|
"gemini-1.5-pro", "chatglm3", "chatglm4",
|
||||||
|
"deepseek-chat", "deepseek-coder", "deepseek-reasoner"
|
||||||
]
|
]
|
||||||
|
|
||||||
EMBEDDING_MODEL = "text-embedding-3-small"
|
EMBEDDING_MODEL = "text-embedding-3-small"
|
||||||
@@ -47,7 +54,7 @@ EMBEDDING_MODEL = "text-embedding-3-small"
|
|||||||
# "glm-4-0520", "glm-4-air", "glm-4-airx", "glm-4-flash",
|
# "glm-4-0520", "glm-4-air", "glm-4-airx", "glm-4-flash",
|
||||||
# "qianfan", "deepseekcoder",
|
# "qianfan", "deepseekcoder",
|
||||||
# "spark", "sparkv2", "sparkv3", "sparkv3.5", "sparkv4",
|
# "spark", "sparkv2", "sparkv3", "sparkv3.5", "sparkv4",
|
||||||
# "qwen-turbo", "qwen-plus", "qwen-max", "qwen-local",
|
# "qwen-turbo", "qwen-plus", "qwen-local",
|
||||||
# "moonshot-v1-128k", "moonshot-v1-32k", "moonshot-v1-8k",
|
# "moonshot-v1-128k", "moonshot-v1-32k", "moonshot-v1-8k",
|
||||||
# "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-turbo-0125", "gpt-4o-2024-05-13"
|
# "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-turbo-0125", "gpt-4o-2024-05-13"
|
||||||
# "claude-3-haiku-20240307","claude-3-sonnet-20240229","claude-3-opus-20240229", "claude-2.1", "claude-instant-1.2",
|
# "claude-3-haiku-20240307","claude-3-sonnet-20240229","claude-3-opus-20240229", "claude-2.1", "claude-instant-1.2",
|
||||||
@@ -55,6 +62,7 @@ EMBEDDING_MODEL = "text-embedding-3-small"
|
|||||||
# "deepseek-chat" ,"deepseek-coder",
|
# "deepseek-chat" ,"deepseek-coder",
|
||||||
# "gemini-1.5-flash",
|
# "gemini-1.5-flash",
|
||||||
# "yi-34b-chat-0205","yi-34b-chat-200k","yi-large","yi-medium","yi-spark","yi-large-turbo","yi-large-preview",
|
# "yi-34b-chat-0205","yi-34b-chat-200k","yi-large","yi-medium","yi-spark","yi-large-turbo","yi-large-preview",
|
||||||
|
# "grok-beta",
|
||||||
# ]
|
# ]
|
||||||
# --- --- --- ---
|
# --- --- --- ---
|
||||||
# 此外,您还可以在接入one-api/vllm/ollama/Openroute时,
|
# 此外,您还可以在接入one-api/vllm/ollama/Openroute时,
|
||||||
@@ -73,7 +81,7 @@ API_URL_REDIRECT = {}
|
|||||||
|
|
||||||
# 多线程函数插件中,默认允许多少路线程同时访问OpenAI。Free trial users的限制是每分钟3次,Pay-as-you-go users的限制是每分钟3500次
|
# 多线程函数插件中,默认允许多少路线程同时访问OpenAI。Free trial users的限制是每分钟3次,Pay-as-you-go users的限制是每分钟3500次
|
||||||
# 一言以蔽之:免费(5刀)用户填3,OpenAI绑了信用卡的用户可以填 16 或者更高。提高限制请查询:https://platform.openai.com/docs/guides/rate-limits/overview
|
# 一言以蔽之:免费(5刀)用户填3,OpenAI绑了信用卡的用户可以填 16 或者更高。提高限制请查询:https://platform.openai.com/docs/guides/rate-limits/overview
|
||||||
DEFAULT_WORKER_NUM = 3
|
DEFAULT_WORKER_NUM = 8
|
||||||
|
|
||||||
|
|
||||||
# 色彩主题, 可选 ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast"]
|
# 色彩主题, 可选 ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast"]
|
||||||
@@ -81,6 +89,31 @@ DEFAULT_WORKER_NUM = 3
|
|||||||
THEME = "Default"
|
THEME = "Default"
|
||||||
AVAIL_THEMES = ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast", "Gstaff/Xkcd", "NoCrypt/Miku"]
|
AVAIL_THEMES = ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast", "Gstaff/Xkcd", "NoCrypt/Miku"]
|
||||||
|
|
||||||
|
FONT = "Theme-Default-Font"
|
||||||
|
AVAIL_FONTS = [
|
||||||
|
"默认值(Theme-Default-Font)",
|
||||||
|
"宋体(SimSun)",
|
||||||
|
"黑体(SimHei)",
|
||||||
|
"楷体(KaiTi)",
|
||||||
|
"仿宋(FangSong)",
|
||||||
|
"华文细黑(STHeiti Light)",
|
||||||
|
"华文楷体(STKaiti)",
|
||||||
|
"华文仿宋(STFangsong)",
|
||||||
|
"华文宋体(STSong)",
|
||||||
|
"华文中宋(STZhongsong)",
|
||||||
|
"华文新魏(STXinwei)",
|
||||||
|
"华文隶书(STLiti)",
|
||||||
|
# 备注:以下字体需要网络支持,您可以自定义任意您喜欢的字体,如下所示,需要满足的格式为 "字体昵称(字体英文真名@字体css下载链接)"
|
||||||
|
"思源宋体(Source Han Serif CN VF@https://chinese-fonts-cdn.deno.dev/packages/syst/dist/SourceHanSerifCN/result.css)",
|
||||||
|
"月星楷(Moon Stars Kai HW@https://chinese-fonts-cdn.deno.dev/packages/moon-stars-kai/dist/MoonStarsKaiHW-Regular/result.css)",
|
||||||
|
"珠圆体(MaokenZhuyuanTi@https://chinese-fonts-cdn.deno.dev/packages/mkzyt/dist/猫啃珠圆体/result.css)",
|
||||||
|
"平方萌萌哒(PING FANG MENG MNEG DA@https://chinese-fonts-cdn.deno.dev/packages/pfmmd/dist/平方萌萌哒/result.css)",
|
||||||
|
"Helvetica",
|
||||||
|
"ui-sans-serif",
|
||||||
|
"sans-serif",
|
||||||
|
"system-ui"
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
# 默认的系统提示词(system prompt)
|
# 默认的系统提示词(system prompt)
|
||||||
INIT_SYS_PROMPT = "Serve me as a writing and programming assistant."
|
INIT_SYS_PROMPT = "Serve me as a writing and programming assistant."
|
||||||
@@ -132,16 +165,15 @@ MULTI_QUERY_LLM_MODELS = "gpt-3.5-turbo&chatglm3"
|
|||||||
QWEN_LOCAL_MODEL_SELECTION = "Qwen/Qwen-1_8B-Chat-Int8"
|
QWEN_LOCAL_MODEL_SELECTION = "Qwen/Qwen-1_8B-Chat-Int8"
|
||||||
|
|
||||||
|
|
||||||
# 接入通义千问在线大模型 https://dashscope.console.aliyun.com/
|
|
||||||
DASHSCOPE_API_KEY = "" # 阿里灵积云API_KEY
|
|
||||||
|
|
||||||
|
|
||||||
# 百度千帆(LLM_MODEL="qianfan")
|
# 百度千帆(LLM_MODEL="qianfan")
|
||||||
BAIDU_CLOUD_API_KEY = ''
|
BAIDU_CLOUD_API_KEY = ''
|
||||||
BAIDU_CLOUD_SECRET_KEY = ''
|
BAIDU_CLOUD_SECRET_KEY = ''
|
||||||
BAIDU_CLOUD_QIANFAN_MODEL = 'ERNIE-Bot' # 可选 "ERNIE-Bot-4"(文心大模型4.0), "ERNIE-Bot"(文心一言), "ERNIE-Bot-turbo", "BLOOMZ-7B", "Llama-2-70B-Chat", "Llama-2-13B-Chat", "Llama-2-7B-Chat", "ERNIE-Speed-128K", "ERNIE-Speed-8K", "ERNIE-Lite-8K"
|
BAIDU_CLOUD_QIANFAN_MODEL = 'ERNIE-Bot' # 可选 "ERNIE-Bot-4"(文心大模型4.0), "ERNIE-Bot"(文心一言), "ERNIE-Bot-turbo", "BLOOMZ-7B", "Llama-2-70B-Chat", "Llama-2-13B-Chat", "Llama-2-7B-Chat", "ERNIE-Speed-128K", "ERNIE-Speed-8K", "ERNIE-Lite-8K"
|
||||||
|
|
||||||
|
|
||||||
|
# 如果使用ChatGLM3或ChatGLM4本地模型,请把 LLM_MODEL="chatglm3" 或LLM_MODEL="chatglm4",并在此处指定模型路径
|
||||||
|
CHATGLM_LOCAL_MODEL_PATH = "THUDM/glm-4-9b-chat" # 例如"/home/hmp/ChatGLM3-6B/"
|
||||||
|
|
||||||
# 如果使用ChatGLM2微调模型,请把 LLM_MODEL="chatglmft",并在此处指定模型路径
|
# 如果使用ChatGLM2微调模型,请把 LLM_MODEL="chatglmft",并在此处指定模型路径
|
||||||
CHATGLM_PTUNING_CHECKPOINT = "" # 例如"/home/hmp/ChatGLM2-6B/ptuning/output/6b-pt-128-1e-2/checkpoint-100"
|
CHATGLM_PTUNING_CHECKPOINT = "" # 例如"/home/hmp/ChatGLM2-6B/ptuning/output/6b-pt-128-1e-2/checkpoint-100"
|
||||||
|
|
||||||
@@ -235,13 +267,11 @@ MOONSHOT_API_KEY = ""
|
|||||||
YIMODEL_API_KEY = ""
|
YIMODEL_API_KEY = ""
|
||||||
|
|
||||||
|
|
||||||
# 深度求索(DeepSeek) API KEY,默认请求地址为"https://api.deepseek.com/v1/chat/completions"
|
|
||||||
DEEPSEEK_API_KEY = ""
|
|
||||||
|
|
||||||
|
|
||||||
# 紫东太初大模型 https://ai-maas.wair.ac.cn
|
# 紫东太初大模型 https://ai-maas.wair.ac.cn
|
||||||
TAICHU_API_KEY = ""
|
TAICHU_API_KEY = ""
|
||||||
|
|
||||||
|
# Grok API KEY
|
||||||
|
GROK_API_KEY = ""
|
||||||
|
|
||||||
# Mathpix 拥有执行PDF的OCR功能,但是需要注册账号
|
# Mathpix 拥有执行PDF的OCR功能,但是需要注册账号
|
||||||
MATHPIX_APPID = ""
|
MATHPIX_APPID = ""
|
||||||
@@ -273,8 +303,8 @@ GROBID_URLS = [
|
|||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
# Searxng互联网检索服务
|
# Searxng互联网检索服务(这是一个huggingface空间,请前往huggingface复制该空间,然后把自己新的空间地址填在这里)
|
||||||
SEARXNG_URL = "https://cloud-1.agent-matrix.com/"
|
SEARXNG_URLS = [ f"https://kaletianlre-beardvs{i}dd.hf.space/" for i in range(1,5) ]
|
||||||
|
|
||||||
|
|
||||||
# 是否允许通过自然语言描述修改本页的配置,该功能具有一定的危险性,默认关闭
|
# 是否允许通过自然语言描述修改本页的配置,该功能具有一定的危险性,默认关闭
|
||||||
@@ -298,7 +328,7 @@ ARXIV_CACHE_DIR = "gpt_log/arxiv_cache"
|
|||||||
|
|
||||||
|
|
||||||
# 除了连接OpenAI之外,还有哪些场合允许使用代理,请尽量不要修改
|
# 除了连接OpenAI之外,还有哪些场合允许使用代理,请尽量不要修改
|
||||||
WHEN_TO_USE_PROXY = ["Download_LLM", "Download_Gradio_Theme", "Connect_Grobid",
|
WHEN_TO_USE_PROXY = ["Connect_OpenAI", "Download_LLM", "Download_Gradio_Theme", "Connect_Grobid",
|
||||||
"Warmup_Modules", "Nougat_Download", "AutoGen", "Connect_OpenAI_Embedding"]
|
"Warmup_Modules", "Nougat_Download", "AutoGen", "Connect_OpenAI_Embedding"]
|
||||||
|
|
||||||
|
|
||||||
@@ -311,9 +341,11 @@ NUM_CUSTOM_BASIC_BTN = 4
|
|||||||
|
|
||||||
|
|
||||||
# 媒体智能体的服务地址(这是一个huggingface空间,请前往huggingface复制该空间,然后把自己新的空间地址填在这里)
|
# 媒体智能体的服务地址(这是一个huggingface空间,请前往huggingface复制该空间,然后把自己新的空间地址填在这里)
|
||||||
DAAS_SERVER_URL = "https://hamercity-bbdown.hf.space/stream"
|
DAAS_SERVER_URLS = [ f"https://niuziniu-biligpt{i}.hf.space/stream" for i in range(1,5) ]
|
||||||
|
|
||||||
|
|
||||||
|
# 在互联网搜索组件中,负责将搜索结果整理成干净的Markdown
|
||||||
|
JINA_API_KEY = ""
|
||||||
|
|
||||||
"""
|
"""
|
||||||
--------------- 配置关联关系说明 ---------------
|
--------------- 配置关联关系说明 ---------------
|
||||||
@@ -373,6 +405,7 @@ DAAS_SERVER_URL = "https://hamercity-bbdown.hf.space/stream"
|
|||||||
|
|
||||||
本地大模型示意图
|
本地大模型示意图
|
||||||
│
|
│
|
||||||
|
├── "chatglm4"
|
||||||
├── "chatglm3"
|
├── "chatglm3"
|
||||||
├── "chatglm"
|
├── "chatglm"
|
||||||
├── "chatglm_onnx"
|
├── "chatglm_onnx"
|
||||||
@@ -403,7 +436,7 @@ DAAS_SERVER_URL = "https://hamercity-bbdown.hf.space/stream"
|
|||||||
插件在线服务配置依赖关系示意图
|
插件在线服务配置依赖关系示意图
|
||||||
│
|
│
|
||||||
├── 互联网检索
|
├── 互联网检索
|
||||||
│ └── SEARXNG_URL
|
│ └── SEARXNG_URLS
|
||||||
│
|
│
|
||||||
├── 语音功能
|
├── 语音功能
|
||||||
│ ├── ENABLE_AUDIO
|
│ ├── ENABLE_AUDIO
|
||||||
|
|||||||
444
config_private.py
Normal file
444
config_private.py
Normal file
@@ -0,0 +1,444 @@
|
|||||||
|
"""
|
||||||
|
以下所有配置也都支持利用环境变量覆写,环境变量配置格式见docker-compose.yml。
|
||||||
|
读取优先级:环境变量 > config_private.py > config.py
|
||||||
|
--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
|
||||||
|
All the following configurations also support using environment variables to override,
|
||||||
|
and the environment variable configuration format can be seen in docker-compose.yml.
|
||||||
|
Configuration reading priority: environment variable > config_private.py > config.py
|
||||||
|
"""
|
||||||
|
|
||||||
|
# [step 1-1]>> ( 接入GPT等模型 ) API_KEY = "sk-123456789xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx123456789"。极少数情况下,还需要填写组织(格式如org-123456789abcdefghijklmno的),请向下翻,找 API_ORG 设置项
|
||||||
|
API_KEY = "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" # 可同时填写多个API-KEY,用英文逗号分割,例如API_KEY = "sk-openaikey1,sk-openaikey2,fkxxxx-api2dkey1,fkxxxx-api2dkey2"
|
||||||
|
|
||||||
|
# [step 1-2]>> ( 接入通义 qwen-max ) 接入通义千问在线大模型,api-key获取地址 https://dashscope.console.aliyun.com/
|
||||||
|
DASHSCOPE_API_KEY = "" # 阿里灵积云API_KEY
|
||||||
|
|
||||||
|
# [step 1-3]>> ( 接入 deepseek-reasoner, 即 deepseek-r1 ) 深度求索(DeepSeek) API KEY,默认请求地址为"https://api.deepseek.com/v1/chat/completions"
|
||||||
|
DEEPSEEK_API_KEY = "sk-d99b8cc6b7414cc88a5d950a3ff7585e"
|
||||||
|
|
||||||
|
# [step 2]>> 改为True应用代理。如果使用本地或无地域限制的大模型时,此处不修改;如果直接在海外服务器部署,此处不修改
|
||||||
|
USE_PROXY = True
|
||||||
|
if USE_PROXY:
|
||||||
|
proxies = {
|
||||||
|
"http":"socks5h://192.168.8.9:1070", # 再例如 "http": "http://127.0.0.1:7890",
|
||||||
|
"https":"socks5h://192.168.8.9:1070", # 再例如 "https": "http://127.0.0.1:7890",
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
proxies = None
|
||||||
|
DEFAULT_WORKER_NUM = 256
|
||||||
|
|
||||||
|
# [step 3]>> 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
|
||||||
|
LLM_MODEL = "gpt-4-32k" # 可选 ↓↓↓
|
||||||
|
AVAIL_LLM_MODELS = ["deepseek-chat", "deepseek-coder", "deepseek-reasoner",
|
||||||
|
"gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-preview",
|
||||||
|
"gpt-4o", "gpt-4o-mini", "gpt-4-turbo", "gpt-4-turbo-2024-04-09",
|
||||||
|
"gpt-3.5-turbo-1106", "gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
|
||||||
|
"gpt-4", "gpt-4-32k", "azure-gpt-4", "glm-4", "glm-4v", "glm-3-turbo",
|
||||||
|
"gemini-1.5-pro", "chatglm3", "chatglm4",
|
||||||
|
]
|
||||||
|
|
||||||
|
EMBEDDING_MODEL = "text-embedding-3-small"
|
||||||
|
|
||||||
|
# --- --- --- ---
|
||||||
|
# P.S. 其他可用的模型还包括
|
||||||
|
# AVAIL_LLM_MODELS = [
|
||||||
|
# "glm-4-0520", "glm-4-air", "glm-4-airx", "glm-4-flash",
|
||||||
|
# "qianfan", "deepseekcoder",
|
||||||
|
# "spark", "sparkv2", "sparkv3", "sparkv3.5", "sparkv4",
|
||||||
|
# "qwen-turbo", "qwen-plus", "qwen-local",
|
||||||
|
# "moonshot-v1-128k", "moonshot-v1-32k", "moonshot-v1-8k",
|
||||||
|
# "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-turbo-0125", "gpt-4o-2024-05-13"
|
||||||
|
# "claude-3-haiku-20240307","claude-3-sonnet-20240229","claude-3-opus-20240229", "claude-2.1", "claude-instant-1.2",
|
||||||
|
# "moss", "llama2", "chatglm_onnx", "internlm", "jittorllms_pangualpha", "jittorllms_llama",
|
||||||
|
# "deepseek-chat" ,"deepseek-coder",
|
||||||
|
# "gemini-1.5-flash",
|
||||||
|
# "yi-34b-chat-0205","yi-34b-chat-200k","yi-large","yi-medium","yi-spark","yi-large-turbo","yi-large-preview",
|
||||||
|
# "grok-beta",
|
||||||
|
# ]
|
||||||
|
# --- --- --- ---
|
||||||
|
# 此外,您还可以在接入one-api/vllm/ollama/Openroute时,
|
||||||
|
# 使用"one-api-*","vllm-*","ollama-*","openrouter-*"前缀直接使用非标准方式接入的模型,例如
|
||||||
|
# AVAIL_LLM_MODELS = ["one-api-claude-3-sonnet-20240229(max_token=100000)", "ollama-phi3(max_token=4096)","openrouter-openai/gpt-4o-mini","openrouter-openai/chatgpt-4o-latest"]
|
||||||
|
# --- --- --- ---
|
||||||
|
|
||||||
|
|
||||||
|
# --------------- 以下配置可以优化体验 ---------------
|
||||||
|
|
||||||
|
# 重新URL重新定向,实现更换API_URL的作用(高危设置! 常规情况下不要修改! 通过修改此设置,您将把您的API-KEY和对话隐私完全暴露给您设定的中间人!)
|
||||||
|
# 格式: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "在这里填写重定向的api.openai.com的URL"}
|
||||||
|
# 举例: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "https://reverse-proxy-url/v1/chat/completions", "http://localhost:11434/api/chat": "在这里填写您ollama的URL"}
|
||||||
|
API_URL_REDIRECT = {}
|
||||||
|
|
||||||
|
|
||||||
|
# 多线程函数插件中,默认允许多少路线程同时访问OpenAI。Free trial users的限制是每分钟3次,Pay-as-you-go users的限制是每分钟3500次
|
||||||
|
# 一言以蔽之:免费(5刀)用户填3,OpenAI绑了信用卡的用户可以填 16 或者更高。提高限制请查询:https://platform.openai.com/docs/guides/rate-limits/overview
|
||||||
|
DEFAULT_WORKER_NUM = 64
|
||||||
|
|
||||||
|
|
||||||
|
# 色彩主题, 可选 ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast"]
|
||||||
|
# 更多主题, 请查阅Gradio主题商店: https://huggingface.co/spaces/gradio/theme-gallery 可选 ["Gstaff/Xkcd", "NoCrypt/Miku", ...]
|
||||||
|
THEME = "Default"
|
||||||
|
AVAIL_THEMES = ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast", "Gstaff/Xkcd", "NoCrypt/Miku"]
|
||||||
|
|
||||||
|
FONT = "Theme-Default-Font"
|
||||||
|
AVAIL_FONTS = [
|
||||||
|
"默认值(Theme-Default-Font)",
|
||||||
|
"宋体(SimSun)",
|
||||||
|
"黑体(SimHei)",
|
||||||
|
"楷体(KaiTi)",
|
||||||
|
"仿宋(FangSong)",
|
||||||
|
"华文细黑(STHeiti Light)",
|
||||||
|
"华文楷体(STKaiti)",
|
||||||
|
"华文仿宋(STFangsong)",
|
||||||
|
"华文宋体(STSong)",
|
||||||
|
"华文中宋(STZhongsong)",
|
||||||
|
"华文新魏(STXinwei)",
|
||||||
|
"华文隶书(STLiti)",
|
||||||
|
"思源宋体(Source Han Serif CN VF@https://chinese-fonts-cdn.deno.dev/packages/syst/dist/SourceHanSerifCN/result.css)",
|
||||||
|
"月星楷(Moon Stars Kai HW@https://chinese-fonts-cdn.deno.dev/packages/moon-stars-kai/dist/MoonStarsKaiHW-Regular/result.css)",
|
||||||
|
"珠圆体(MaokenZhuyuanTi@https://chinese-fonts-cdn.deno.dev/packages/mkzyt/dist/猫啃珠圆体/result.css)",
|
||||||
|
"平方萌萌哒(PING FANG MENG MNEG DA@https://chinese-fonts-cdn.deno.dev/packages/pfmmd/dist/平方萌萌哒/result.css)",
|
||||||
|
"Helvetica",
|
||||||
|
"ui-sans-serif",
|
||||||
|
"sans-serif",
|
||||||
|
"system-ui"
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
# 默认的系统提示词(system prompt)
|
||||||
|
INIT_SYS_PROMPT = "Serve me as a writing and programming assistant."
|
||||||
|
|
||||||
|
|
||||||
|
# 对话窗的高度 (仅在LAYOUT="TOP-DOWN"时生效)
|
||||||
|
CHATBOT_HEIGHT = 1115
|
||||||
|
|
||||||
|
|
||||||
|
# 代码高亮
|
||||||
|
CODE_HIGHLIGHT = True
|
||||||
|
|
||||||
|
|
||||||
|
# 窗口布局
|
||||||
|
LAYOUT = "LEFT-RIGHT" # "LEFT-RIGHT"(左右布局) # "TOP-DOWN"(上下布局)
|
||||||
|
|
||||||
|
|
||||||
|
# 暗色模式 / 亮色模式
|
||||||
|
DARK_MODE = True
|
||||||
|
|
||||||
|
|
||||||
|
# 发送请求到OpenAI后,等待多久判定为超时
|
||||||
|
TIMEOUT_SECONDS = 60
|
||||||
|
|
||||||
|
|
||||||
|
# 网页的端口, -1代表随机端口
|
||||||
|
WEB_PORT = 19998
|
||||||
|
|
||||||
|
# 是否自动打开浏览器页面
|
||||||
|
AUTO_OPEN_BROWSER = True
|
||||||
|
|
||||||
|
|
||||||
|
# 如果OpenAI不响应(网络卡顿、代理失败、KEY失效),重试的次数限制
|
||||||
|
MAX_RETRY = 5
|
||||||
|
|
||||||
|
|
||||||
|
# 插件分类默认选项
|
||||||
|
DEFAULT_FN_GROUPS = ['对话', '编程', '学术', '智能体']
|
||||||
|
|
||||||
|
|
||||||
|
# 定义界面上“询问多个GPT模型”插件应该使用哪些模型,请从AVAIL_LLM_MODELS中选择,并在不同模型之间用`&`间隔,例如"gpt-3.5-turbo&chatglm3&azure-gpt-4"
|
||||||
|
MULTI_QUERY_LLM_MODELS = "gpt-3.5-turbo&chatglm3"
|
||||||
|
|
||||||
|
|
||||||
|
# 选择本地模型变体(只有当AVAIL_LLM_MODELS包含了对应本地模型时,才会起作用)
|
||||||
|
# 如果你选择Qwen系列的模型,那么请在下面的QWEN_MODEL_SELECTION中指定具体的模型
|
||||||
|
# 也可以是具体的模型路径
|
||||||
|
QWEN_LOCAL_MODEL_SELECTION = "Qwen/Qwen-1_8B-Chat-Int8"
|
||||||
|
|
||||||
|
|
||||||
|
# 百度千帆(LLM_MODEL="qianfan")
|
||||||
|
BAIDU_CLOUD_API_KEY = ''
|
||||||
|
BAIDU_CLOUD_SECRET_KEY = ''
|
||||||
|
BAIDU_CLOUD_QIANFAN_MODEL = 'ERNIE-Bot' # 可选 "ERNIE-Bot-4"(文心大模型4.0), "ERNIE-Bot"(文心一言), "ERNIE-Bot-turbo", "BLOOMZ-7B", "Llama-2-70B-Chat", "Llama-2-13B-Chat", "Llama-2-7B-Chat", "ERNIE-Speed-128K", "ERNIE-Speed-8K", "ERNIE-Lite-8K"
|
||||||
|
|
||||||
|
|
||||||
|
# 如果使用ChatGLM3或ChatGLM4本地模型,请把 LLM_MODEL="chatglm3" 或LLM_MODEL="chatglm4",并在此处指定模型路径
|
||||||
|
CHATGLM_LOCAL_MODEL_PATH = "THUDM/glm-4-9b-chat" # 例如"/home/hmp/ChatGLM3-6B/"
|
||||||
|
|
||||||
|
# 如果使用ChatGLM2微调模型,请把 LLM_MODEL="chatglmft",并在此处指定模型路径
|
||||||
|
CHATGLM_PTUNING_CHECKPOINT = "" # 例如"/home/hmp/ChatGLM2-6B/ptuning/output/6b-pt-128-1e-2/checkpoint-100"
|
||||||
|
|
||||||
|
|
||||||
|
# 本地LLM模型如ChatGLM的执行方式 CPU/GPU
|
||||||
|
LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
|
||||||
|
LOCAL_MODEL_QUANT = "FP16" # 默认 "FP16" "INT4" 启用量化INT4版本 "INT8" 启用量化INT8版本
|
||||||
|
|
||||||
|
|
||||||
|
# 设置gradio的并行线程数(不需要修改)
|
||||||
|
CONCURRENT_COUNT = 100
|
||||||
|
|
||||||
|
|
||||||
|
# 是否在提交时自动清空输入框
|
||||||
|
AUTO_CLEAR_TXT = False
|
||||||
|
|
||||||
|
|
||||||
|
# 加一个live2d装饰
|
||||||
|
ADD_WAIFU = False
|
||||||
|
|
||||||
|
|
||||||
|
# 设置用户名和密码(不需要修改)(相关功能不稳定,与gradio版本和网络都相关,如果本地使用不建议加这个)
|
||||||
|
# [("username", "password"), ("username2", "password2"), ...]
|
||||||
|
AUTHENTICATION = [("van", "L807878712"),("林", "L807878712"),("源", "L807878712"),("欣", "L807878712"),("z", "czh123456789")]
|
||||||
|
|
||||||
|
|
||||||
|
# 如果需要在二级路径下运行(常规情况下,不要修改!!)
|
||||||
|
# (举例 CUSTOM_PATH = "/gpt_academic",可以让软件运行在 http://ip:port/gpt_academic/ 下。)
|
||||||
|
CUSTOM_PATH = "/"
|
||||||
|
|
||||||
|
|
||||||
|
# HTTPS 秘钥和证书(不需要修改)
|
||||||
|
SSL_KEYFILE = ""
|
||||||
|
SSL_CERTFILE = ""
|
||||||
|
|
||||||
|
|
||||||
|
# 极少数情况下,openai的官方KEY需要伴随组织编码(格式如org-xxxxxxxxxxxxxxxxxxxxxxxx)使用
|
||||||
|
API_ORG = ""
|
||||||
|
|
||||||
|
|
||||||
|
# 如果需要使用Slack Claude,使用教程详情见 request_llms/README.md
|
||||||
|
SLACK_CLAUDE_BOT_ID = ''
|
||||||
|
SLACK_CLAUDE_USER_TOKEN = ''
|
||||||
|
|
||||||
|
|
||||||
|
# 如果需要使用AZURE(方法一:单个azure模型部署)详情请见额外文档 docs\use_azure.md
|
||||||
|
AZURE_ENDPOINT = "https://你亲手写的api名称.openai.azure.com/"
|
||||||
|
AZURE_API_KEY = "填入azure openai api的密钥" # 建议直接在API_KEY处填写,该选项即将被弃用
|
||||||
|
AZURE_ENGINE = "填入你亲手写的部署名" # 读 docs\use_azure.md
|
||||||
|
|
||||||
|
|
||||||
|
# 如果需要使用AZURE(方法二:多个azure模型部署+动态切换)详情请见额外文档 docs\use_azure.md
|
||||||
|
AZURE_CFG_ARRAY = {}
|
||||||
|
|
||||||
|
|
||||||
|
# 阿里云实时语音识别 配置难度较高
|
||||||
|
# 参考 https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md
|
||||||
|
ENABLE_AUDIO = False
|
||||||
|
ALIYUN_TOKEN="" # 例如 f37f30e0f9934c34a992f6f64f7eba4f
|
||||||
|
ALIYUN_APPKEY="" # 例如 RoPlZrM88DnAFkZK
|
||||||
|
ALIYUN_ACCESSKEY="" # (无需填写)
|
||||||
|
ALIYUN_SECRET="" # (无需填写)
|
||||||
|
|
||||||
|
|
||||||
|
# GPT-SOVITS 文本转语音服务的运行地址(将语言模型的生成文本朗读出来)
|
||||||
|
TTS_TYPE = "DISABLE" # EDGE_TTS / LOCAL_SOVITS_API / DISABLE
|
||||||
|
GPT_SOVITS_URL = ""
|
||||||
|
EDGE_TTS_VOICE = "zh-CN-XiaoxiaoNeural"
|
||||||
|
|
||||||
|
|
||||||
|
# 接入讯飞星火大模型 https://console.xfyun.cn/services/iat
|
||||||
|
XFYUN_APPID = "00000000"
|
||||||
|
XFYUN_API_SECRET = "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"
|
||||||
|
XFYUN_API_KEY = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
|
||||||
|
|
||||||
|
|
||||||
|
# 接入智谱大模型
|
||||||
|
ZHIPUAI_API_KEY = ""
|
||||||
|
ZHIPUAI_MODEL = "" # 此选项已废弃,不再需要填写
|
||||||
|
|
||||||
|
|
||||||
|
# Claude API KEY
|
||||||
|
ANTHROPIC_API_KEY = ""
|
||||||
|
|
||||||
|
|
||||||
|
# 月之暗面 API KEY
|
||||||
|
MOONSHOT_API_KEY = ""
|
||||||
|
|
||||||
|
|
||||||
|
# 零一万物(Yi Model) API KEY
|
||||||
|
YIMODEL_API_KEY = ""
|
||||||
|
|
||||||
|
|
||||||
|
# 紫东太初大模型 https://ai-maas.wair.ac.cn
|
||||||
|
TAICHU_API_KEY = ""
|
||||||
|
|
||||||
|
# Grok API KEY
|
||||||
|
GROK_API_KEY = ""
|
||||||
|
|
||||||
|
# Mathpix 拥有执行PDF的OCR功能,但是需要注册账号
|
||||||
|
MATHPIX_APPID = ""
|
||||||
|
MATHPIX_APPKEY = ""
|
||||||
|
|
||||||
|
|
||||||
|
# DOC2X的PDF解析服务,注册账号并获取API KEY: https://doc2x.noedgeai.com/login
|
||||||
|
DOC2X_API_KEY = ""
|
||||||
|
|
||||||
|
|
||||||
|
# 自定义API KEY格式
|
||||||
|
CUSTOM_API_KEY_PATTERN = ""
|
||||||
|
|
||||||
|
|
||||||
|
# Google Gemini API-Key
|
||||||
|
GEMINI_API_KEY = ''
|
||||||
|
|
||||||
|
|
||||||
|
# HUGGINGFACE的TOKEN,下载LLAMA时起作用 https://huggingface.co/docs/hub/security-tokens
|
||||||
|
HUGGINGFACE_ACCESS_TOKEN = "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"
|
||||||
|
|
||||||
|
|
||||||
|
# GROBID服务器地址(填写多个可以均衡负载),用于高质量地读取PDF文档
|
||||||
|
# 获取方法:复制以下空间https://huggingface.co/spaces/qingxu98/grobid,设为public,然后GROBID_URL = "https://(你的hf用户名如qingxu98)-(你的填写的空间名如grobid).hf.space"
|
||||||
|
GROBID_URLS = [
|
||||||
|
"https://qingxu98-grobid.hf.space","https://qingxu98-grobid2.hf.space","https://qingxu98-grobid3.hf.space",
|
||||||
|
"https://qingxu98-grobid4.hf.space","https://qingxu98-grobid5.hf.space", "https://qingxu98-grobid6.hf.space",
|
||||||
|
"https://qingxu98-grobid7.hf.space", "https://qingxu98-grobid8.hf.space",
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
# Searxng互联网检索服务(这是一个huggingface空间,请前往huggingface复制该空间,然后把自己新的空间地址填在这里)
|
||||||
|
SEARXNG_URLS = [ f"https://kaletianlre-beardvs{i}dd.hf.space/" for i in range(1,5) ]
|
||||||
|
|
||||||
|
|
||||||
|
# 是否允许通过自然语言描述修改本页的配置,该功能具有一定的危险性,默认关闭
|
||||||
|
ALLOW_RESET_CONFIG = False
|
||||||
|
|
||||||
|
|
||||||
|
# 在使用AutoGen插件时,是否使用Docker容器运行代码
|
||||||
|
AUTOGEN_USE_DOCKER = False
|
||||||
|
|
||||||
|
|
||||||
|
# 临时的上传文件夹位置,请尽量不要修改
|
||||||
|
PATH_PRIVATE_UPLOAD = "private_upload"
|
||||||
|
|
||||||
|
|
||||||
|
# 日志文件夹的位置,请尽量不要修改
|
||||||
|
PATH_LOGGING = "gpt_log"
|
||||||
|
|
||||||
|
|
||||||
|
# 存储翻译好的arxiv论文的路径,请尽量不要修改
|
||||||
|
ARXIV_CACHE_DIR = "gpt_log/arxiv_cache"
|
||||||
|
|
||||||
|
|
||||||
|
# 除了连接OpenAI之外,还有哪些场合允许使用代理,请尽量不要修改
|
||||||
|
WHEN_TO_USE_PROXY = ["Connect_OpenAI", "Download_LLM", "Download_Gradio_Theme", "Connect_Grobid",
|
||||||
|
"Warmup_Modules", "Nougat_Download", "AutoGen", "Connect_OpenAI_Embedding"]
|
||||||
|
|
||||||
|
|
||||||
|
# 启用插件热加载
|
||||||
|
PLUGIN_HOT_RELOAD = False
|
||||||
|
|
||||||
|
|
||||||
|
# 自定义按钮的最大数量限制
|
||||||
|
NUM_CUSTOM_BASIC_BTN = 4
|
||||||
|
|
||||||
|
|
||||||
|
# 媒体智能体的服务地址(这是一个huggingface空间,请前往huggingface复制该空间,然后把自己新的空间地址填在这里)
|
||||||
|
DAAS_SERVER_URLS = [ f"https://niuziniu-biligpt{i}.hf.space/stream" for i in range(1,5) ]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
--------------- 配置关联关系说明 ---------------
|
||||||
|
|
||||||
|
在线大模型配置关联关系示意图
|
||||||
|
│
|
||||||
|
├── "gpt-3.5-turbo" 等openai模型
|
||||||
|
│ ├── API_KEY
|
||||||
|
│ ├── CUSTOM_API_KEY_PATTERN(不常用)
|
||||||
|
│ ├── API_ORG(不常用)
|
||||||
|
│ └── API_URL_REDIRECT(不常用)
|
||||||
|
│
|
||||||
|
├── "azure-gpt-3.5" 等azure模型(单个azure模型,不需要动态切换)
|
||||||
|
│ ├── API_KEY
|
||||||
|
│ ├── AZURE_ENDPOINT
|
||||||
|
│ ├── AZURE_API_KEY
|
||||||
|
│ ├── AZURE_ENGINE
|
||||||
|
│ └── API_URL_REDIRECT
|
||||||
|
│
|
||||||
|
├── "azure-gpt-3.5" 等azure模型(多个azure模型,需要动态切换,高优先级)
|
||||||
|
│ └── AZURE_CFG_ARRAY
|
||||||
|
│
|
||||||
|
├── "spark" 星火认知大模型 spark & sparkv2
|
||||||
|
│ ├── XFYUN_APPID
|
||||||
|
│ ├── XFYUN_API_SECRET
|
||||||
|
│ └── XFYUN_API_KEY
|
||||||
|
│
|
||||||
|
├── "claude-3-opus-20240229" 等claude模型
|
||||||
|
│ └── ANTHROPIC_API_KEY
|
||||||
|
│
|
||||||
|
├── "stack-claude"
|
||||||
|
│ ├── SLACK_CLAUDE_BOT_ID
|
||||||
|
│ └── SLACK_CLAUDE_USER_TOKEN
|
||||||
|
│
|
||||||
|
├── "qianfan" 百度千帆大模型库
|
||||||
|
│ ├── BAIDU_CLOUD_QIANFAN_MODEL
|
||||||
|
│ ├── BAIDU_CLOUD_API_KEY
|
||||||
|
│ └── BAIDU_CLOUD_SECRET_KEY
|
||||||
|
│
|
||||||
|
├── "glm-4", "glm-3-turbo", "zhipuai" 智谱AI大模型
|
||||||
|
│ └── ZHIPUAI_API_KEY
|
||||||
|
│
|
||||||
|
├── "yi-34b-chat-0205", "yi-34b-chat-200k" 等零一万物(Yi Model)大模型
|
||||||
|
│ └── YIMODEL_API_KEY
|
||||||
|
│
|
||||||
|
├── "qwen-turbo" 等通义千问大模型
|
||||||
|
│ └── DASHSCOPE_API_KEY
|
||||||
|
│
|
||||||
|
├── "Gemini"
|
||||||
|
│ └── GEMINI_API_KEY
|
||||||
|
│
|
||||||
|
└── "one-api-...(max_token=...)" 用一种更方便的方式接入one-api多模型管理界面
|
||||||
|
├── AVAIL_LLM_MODELS
|
||||||
|
├── API_KEY
|
||||||
|
└── API_URL_REDIRECT
|
||||||
|
|
||||||
|
|
||||||
|
本地大模型示意图
|
||||||
|
│
|
||||||
|
├── "chatglm4"
|
||||||
|
├── "chatglm3"
|
||||||
|
├── "chatglm"
|
||||||
|
├── "chatglm_onnx"
|
||||||
|
├── "chatglmft"
|
||||||
|
├── "internlm"
|
||||||
|
├── "moss"
|
||||||
|
├── "jittorllms_pangualpha"
|
||||||
|
├── "jittorllms_llama"
|
||||||
|
├── "deepseekcoder"
|
||||||
|
├── "qwen-local"
|
||||||
|
├── RWKV的支持见Wiki
|
||||||
|
└── "llama2"
|
||||||
|
|
||||||
|
|
||||||
|
用户图形界面布局依赖关系示意图
|
||||||
|
│
|
||||||
|
├── CHATBOT_HEIGHT 对话窗的高度
|
||||||
|
├── CODE_HIGHLIGHT 代码高亮
|
||||||
|
├── LAYOUT 窗口布局
|
||||||
|
├── DARK_MODE 暗色模式 / 亮色模式
|
||||||
|
├── DEFAULT_FN_GROUPS 插件分类默认选项
|
||||||
|
├── THEME 色彩主题
|
||||||
|
├── AUTO_CLEAR_TXT 是否在提交时自动清空输入框
|
||||||
|
├── ADD_WAIFU 加一个live2d装饰
|
||||||
|
└── ALLOW_RESET_CONFIG 是否允许通过自然语言描述修改本页的配置,该功能具有一定的危险性
|
||||||
|
|
||||||
|
|
||||||
|
插件在线服务配置依赖关系示意图
|
||||||
|
│
|
||||||
|
├── 互联网检索
|
||||||
|
│ └── SEARXNG_URLS
|
||||||
|
│
|
||||||
|
├── 语音功能
|
||||||
|
│ ├── ENABLE_AUDIO
|
||||||
|
│ ├── ALIYUN_TOKEN
|
||||||
|
│ ├── ALIYUN_APPKEY
|
||||||
|
│ ├── ALIYUN_ACCESSKEY
|
||||||
|
│ └── ALIYUN_SECRET
|
||||||
|
│
|
||||||
|
└── PDF文档精准解析
|
||||||
|
├── GROBID_URLS
|
||||||
|
├── MATHPIX_APPID
|
||||||
|
└── MATHPIX_APPKEY
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@@ -113,7 +113,7 @@ def get_crazy_functions():
|
|||||||
"Group": "学术",
|
"Group": "学术",
|
||||||
"Color": "stop",
|
"Color": "stop",
|
||||||
"AsButton": True,
|
"AsButton": True,
|
||||||
"Info": "Arixv论文精细翻译 | 输入参数arxiv论文的ID,比如1812.10695",
|
"Info": "ArXiv论文精细翻译 | 输入参数arxiv论文的ID,比如1812.10695",
|
||||||
"Function": HotReload(Latex翻译中文并重新编译PDF), # 当注册Class后,Function旧接口仅会在“虚空终端”中起作用
|
"Function": HotReload(Latex翻译中文并重新编译PDF), # 当注册Class后,Function旧接口仅会在“虚空终端”中起作用
|
||||||
"Class": Arxiv_Localize, # 新一代插件需要注册Class
|
"Class": Arxiv_Localize, # 新一代插件需要注册Class
|
||||||
},
|
},
|
||||||
@@ -352,7 +352,7 @@ def get_crazy_functions():
|
|||||||
"ArgsReminder": r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
|
"ArgsReminder": r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
|
||||||
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
|
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
|
||||||
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
||||||
"Info": "Arixv论文精细翻译 | 输入参数arxiv论文的ID,比如1812.10695",
|
"Info": "ArXiv论文精细翻译 | 输入参数arxiv论文的ID,比如1812.10695",
|
||||||
"Function": HotReload(Latex翻译中文并重新编译PDF), # 当注册Class后,Function旧接口仅会在“虚空终端”中起作用
|
"Function": HotReload(Latex翻译中文并重新编译PDF), # 当注册Class后,Function旧接口仅会在“虚空终端”中起作用
|
||||||
"Class": Arxiv_Localize, # 新一代插件需要注册Class
|
"Class": Arxiv_Localize, # 新一代插件需要注册Class
|
||||||
},
|
},
|
||||||
@@ -434,36 +434,6 @@ def get_crazy_functions():
|
|||||||
logger.error(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
logger.error("Load function plugin failed")
|
logger.error("Load function plugin failed")
|
||||||
|
|
||||||
# try:
|
|
||||||
# from crazy_functions.联网的ChatGPT import 连接网络回答问题
|
|
||||||
|
|
||||||
# function_plugins.update(
|
|
||||||
# {
|
|
||||||
# "连接网络回答问题(输入问题后点击该插件,需要访问谷歌)": {
|
|
||||||
# "Group": "对话",
|
|
||||||
# "Color": "stop",
|
|
||||||
# "AsButton": False, # 加入下拉菜单中
|
|
||||||
# # "Info": "连接网络回答问题(需要访问谷歌)| 输入参数是一个问题",
|
|
||||||
# "Function": HotReload(连接网络回答问题),
|
|
||||||
# }
|
|
||||||
# }
|
|
||||||
# )
|
|
||||||
# from crazy_functions.联网的ChatGPT_bing版 import 连接bing搜索回答问题
|
|
||||||
|
|
||||||
# function_plugins.update(
|
|
||||||
# {
|
|
||||||
# "连接网络回答问题(中文Bing版,输入问题后点击该插件)": {
|
|
||||||
# "Group": "对话",
|
|
||||||
# "Color": "stop",
|
|
||||||
# "AsButton": False, # 加入下拉菜单中
|
|
||||||
# "Info": "连接网络回答问题(需要访问中文Bing)| 输入参数是一个问题",
|
|
||||||
# "Function": HotReload(连接bing搜索回答问题),
|
|
||||||
# }
|
|
||||||
# }
|
|
||||||
# )
|
|
||||||
# except:
|
|
||||||
# logger.error(trimmed_format_exc())
|
|
||||||
# logger.error("Load function plugin failed")
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from crazy_functions.SourceCode_Analyse import 解析任意code项目
|
from crazy_functions.SourceCode_Analyse import 解析任意code项目
|
||||||
@@ -771,6 +741,9 @@ def get_multiplex_button_functions():
|
|||||||
"常规对话":
|
"常规对话":
|
||||||
"",
|
"",
|
||||||
|
|
||||||
|
"查互联网后回答":
|
||||||
|
"查互联网后回答",
|
||||||
|
|
||||||
"多模型对话":
|
"多模型对话":
|
||||||
"询问多个GPT模型", # 映射到上面的 `询问多个GPT模型` 插件
|
"询问多个GPT模型", # 映射到上面的 `询问多个GPT模型` 插件
|
||||||
|
|
||||||
|
|||||||
@@ -7,7 +7,7 @@ from bs4 import BeautifulSoup
|
|||||||
from functools import lru_cache
|
from functools import lru_cache
|
||||||
from itertools import zip_longest
|
from itertools import zip_longest
|
||||||
from check_proxy import check_proxy
|
from check_proxy import check_proxy
|
||||||
from toolbox import CatchException, update_ui, get_conf
|
from toolbox import CatchException, update_ui, get_conf, update_ui_latest_msg
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
|
||||||
from request_llms.bridge_all import model_info
|
from request_llms.bridge_all import model_info
|
||||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||||
@@ -49,7 +49,7 @@ def search_optimizer(
|
|||||||
mutable = ["", time.time(), ""]
|
mutable = ["", time.time(), ""]
|
||||||
llm_kwargs["temperature"] = 0.8
|
llm_kwargs["temperature"] = 0.8
|
||||||
try:
|
try:
|
||||||
querys_json = predict_no_ui_long_connection(
|
query_json = predict_no_ui_long_connection(
|
||||||
inputs=query,
|
inputs=query,
|
||||||
llm_kwargs=llm_kwargs,
|
llm_kwargs=llm_kwargs,
|
||||||
history=[],
|
history=[],
|
||||||
@@ -57,31 +57,31 @@ def search_optimizer(
|
|||||||
observe_window=mutable,
|
observe_window=mutable,
|
||||||
)
|
)
|
||||||
except Exception:
|
except Exception:
|
||||||
querys_json = "1234"
|
query_json = "null"
|
||||||
#* 尝试解码优化后的搜索结果
|
#* 尝试解码优化后的搜索结果
|
||||||
querys_json = re.sub(r"```json|```", "", querys_json)
|
query_json = re.sub(r"```json|```", "", query_json)
|
||||||
try:
|
try:
|
||||||
querys = json.loads(querys_json)
|
queries = json.loads(query_json)
|
||||||
except Exception:
|
except Exception:
|
||||||
#* 如果解码失败,降低温度再试一次
|
#* 如果解码失败,降低温度再试一次
|
||||||
try:
|
try:
|
||||||
llm_kwargs["temperature"] = 0.4
|
llm_kwargs["temperature"] = 0.4
|
||||||
querys_json = predict_no_ui_long_connection(
|
query_json = predict_no_ui_long_connection(
|
||||||
inputs=query,
|
inputs=query,
|
||||||
llm_kwargs=llm_kwargs,
|
llm_kwargs=llm_kwargs,
|
||||||
history=[],
|
history=[],
|
||||||
sys_prompt=sys_prompt,
|
sys_prompt=sys_prompt,
|
||||||
observe_window=mutable,
|
observe_window=mutable,
|
||||||
)
|
)
|
||||||
querys_json = re.sub(r"```json|```", "", querys_json)
|
query_json = re.sub(r"```json|```", "", query_json)
|
||||||
querys = json.loads(querys_json)
|
queries = json.loads(query_json)
|
||||||
except Exception:
|
except Exception:
|
||||||
#* 如果再次失败,直接返回原始问题
|
#* 如果再次失败,直接返回原始问题
|
||||||
querys = [query]
|
queries = [query]
|
||||||
links = []
|
links = []
|
||||||
success = 0
|
success = 0
|
||||||
Exceptions = ""
|
Exceptions = ""
|
||||||
for q in querys:
|
for q in queries:
|
||||||
try:
|
try:
|
||||||
link = searxng_request(q, proxies, categories, searxng_url, engines=engines)
|
link = searxng_request(q, proxies, categories, searxng_url, engines=engines)
|
||||||
if len(link) > 0:
|
if len(link) > 0:
|
||||||
@@ -115,7 +115,8 @@ def get_auth_ip():
|
|||||||
|
|
||||||
def searxng_request(query, proxies, categories='general', searxng_url=None, engines=None):
|
def searxng_request(query, proxies, categories='general', searxng_url=None, engines=None):
|
||||||
if searxng_url is None:
|
if searxng_url is None:
|
||||||
url = get_conf("SEARXNG_URL")
|
urls = get_conf("SEARXNG_URLS")
|
||||||
|
url = random.choice(urls)
|
||||||
else:
|
else:
|
||||||
url = searxng_url
|
url = searxng_url
|
||||||
|
|
||||||
@@ -174,10 +175,17 @@ def scrape_text(url, proxies) -> str:
|
|||||||
Returns:
|
Returns:
|
||||||
str: The scraped text
|
str: The scraped text
|
||||||
"""
|
"""
|
||||||
|
from loguru import logger
|
||||||
headers = {
|
headers = {
|
||||||
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36',
|
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36',
|
||||||
'Content-Type': 'text/plain',
|
'Content-Type': 'text/plain',
|
||||||
}
|
}
|
||||||
|
|
||||||
|
# 首先采用Jina进行文本提取
|
||||||
|
if get_conf("JINA_API_KEY"):
|
||||||
|
try: return jina_scrape_text(url)
|
||||||
|
except: logger.debug("Jina API 请求失败,回到旧方法")
|
||||||
|
|
||||||
try:
|
try:
|
||||||
response = requests.get(url, headers=headers, proxies=proxies, timeout=8)
|
response = requests.get(url, headers=headers, proxies=proxies, timeout=8)
|
||||||
if response.encoding == "ISO-8859-1": response.encoding = response.apparent_encoding
|
if response.encoding == "ISO-8859-1": response.encoding = response.apparent_encoding
|
||||||
@@ -193,6 +201,56 @@ def scrape_text(url, proxies) -> str:
|
|||||||
return text
|
return text
|
||||||
|
|
||||||
|
|
||||||
|
def jina_scrape_text(url) -> str:
|
||||||
|
"jina_39727421c8fa4e4fa9bd698e5211feaaDyGeVFESNrRaepWiLT0wmHYJSh-d"
|
||||||
|
headers = {
|
||||||
|
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36',
|
||||||
|
'Content-Type': 'text/plain',
|
||||||
|
"X-Retain-Images": "none",
|
||||||
|
"Authorization": f'Bearer {get_conf("JINA_API_KEY")}'
|
||||||
|
}
|
||||||
|
response = requests.get("https://r.jina.ai/" + url, headers=headers, proxies=None, timeout=8)
|
||||||
|
if response.status_code != 200:
|
||||||
|
raise ValueError("Jina API 请求失败,开始尝试旧方法!" + response.text)
|
||||||
|
if response.encoding == "ISO-8859-1": response.encoding = response.apparent_encoding
|
||||||
|
result = response.text
|
||||||
|
result = result.replace("\\[", "[").replace("\\]", "]").replace("\\(", "(").replace("\\)", ")")
|
||||||
|
return response.text
|
||||||
|
|
||||||
|
|
||||||
|
def internet_search_with_analysis_prompt(prompt, analysis_prompt, llm_kwargs, chatbot):
|
||||||
|
from toolbox import get_conf
|
||||||
|
proxies = get_conf('proxies')
|
||||||
|
categories = 'general'
|
||||||
|
searxng_url = None # 使用默认的searxng_url
|
||||||
|
engines = None # 使用默认的搜索引擎
|
||||||
|
yield from update_ui_latest_msg(lastmsg=f"检索中: {prompt} ...", chatbot=chatbot, history=[], delay=1)
|
||||||
|
urls = searxng_request(prompt, proxies, categories, searxng_url, engines=engines)
|
||||||
|
yield from update_ui_latest_msg(lastmsg=f"依次访问搜索到的网站 ...", chatbot=chatbot, history=[], delay=1)
|
||||||
|
if len(urls) == 0:
|
||||||
|
return None
|
||||||
|
max_search_result = 5 # 最多收纳多少个网页的结果
|
||||||
|
history = []
|
||||||
|
for index, url in enumerate(urls[:max_search_result]):
|
||||||
|
yield from update_ui_latest_msg(lastmsg=f"依次访问搜索到的网站: {url['link']} ...", chatbot=chatbot, history=[], delay=1)
|
||||||
|
res = scrape_text(url['link'], proxies)
|
||||||
|
prefix = f"第{index}份搜索结果 [源自{url['source'][0]}搜索] ({url['title'][:25]}):"
|
||||||
|
history.extend([prefix, res])
|
||||||
|
i_say = f"从以上搜索结果中抽取信息,然后回答问题:{prompt} {analysis_prompt}"
|
||||||
|
i_say, history = input_clipping( # 裁剪输入,从最长的条目开始裁剪,防止爆token
|
||||||
|
inputs=i_say,
|
||||||
|
history=history,
|
||||||
|
max_token_limit=8192
|
||||||
|
)
|
||||||
|
gpt_say = predict_no_ui_long_connection(
|
||||||
|
inputs=i_say,
|
||||||
|
llm_kwargs=llm_kwargs,
|
||||||
|
history=history,
|
||||||
|
sys_prompt="请从搜索结果中抽取信息,对最相关的两个搜索结果进行总结,然后回答问题。",
|
||||||
|
console_silence=False,
|
||||||
|
)
|
||||||
|
return gpt_say
|
||||||
|
|
||||||
@CatchException
|
@CatchException
|
||||||
def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||||
optimizer_history = history[:-8]
|
optimizer_history = history[:-8]
|
||||||
@@ -213,23 +271,52 @@ def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
|||||||
urls = search_optimizer(txt, proxies, optimizer_history, llm_kwargs, optimizer, categories, searxng_url, engines)
|
urls = search_optimizer(txt, proxies, optimizer_history, llm_kwargs, optimizer, categories, searxng_url, engines)
|
||||||
history = []
|
history = []
|
||||||
if len(urls) == 0:
|
if len(urls) == 0:
|
||||||
chatbot.append((f"结论:{txt}",
|
chatbot.append((f"结论:{txt}", "[Local Message] 受到限制,无法从searxng获取信息!请尝试更换搜索引擎。"))
|
||||||
"[Local Message] 受到限制,无法从searxng获取信息!请尝试更换搜索引擎。"))
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
return
|
return
|
||||||
|
|
||||||
# ------------- < 第2步:依次访问网页 > -------------
|
# ------------- < 第2步:依次访问网页 > -------------
|
||||||
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
|
from textwrap import dedent
|
||||||
max_search_result = 5 # 最多收纳多少个网页的结果
|
max_search_result = 5 # 最多收纳多少个网页的结果
|
||||||
if optimizer == "开启(增强)":
|
if optimizer == "开启(增强)":
|
||||||
max_search_result = 8
|
max_search_result = 8
|
||||||
chatbot.append(["联网检索中 ...", None])
|
template = dedent("""
|
||||||
for index, url in enumerate(urls[:max_search_result]):
|
<details>
|
||||||
res = scrape_text(url['link'], proxies)
|
<summary>{TITLE}</summary>
|
||||||
prefix = f"第{index}份搜索结果 [源自{url['source'][0]}搜索] ({url['title'][:25]}):"
|
<div class="search_result">{URL}</div>
|
||||||
history.extend([prefix, res])
|
<div class="search_result">{CONTENT}</div>
|
||||||
res_squeeze = res.replace('\n', '...')
|
</details>
|
||||||
chatbot[-1] = [prefix + "\n\n" + res_squeeze[:500] + "......", None]
|
""")
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
|
buffer = ""
|
||||||
|
|
||||||
|
# 创建线程池
|
||||||
|
with ThreadPoolExecutor(max_workers=5) as executor:
|
||||||
|
# 提交任务到线程池
|
||||||
|
futures = []
|
||||||
|
for index, url in enumerate(urls[:max_search_result]):
|
||||||
|
future = executor.submit(scrape_text, url['link'], proxies)
|
||||||
|
futures.append((index, future, url))
|
||||||
|
|
||||||
|
# 处理完成的任务
|
||||||
|
for index, future, url in futures:
|
||||||
|
# 开始
|
||||||
|
prefix = f"正在加载 第{index+1}份搜索结果 [源自{url['source'][0]}搜索] ({url['title'][:25]}):"
|
||||||
|
string_structure = template.format(TITLE=prefix, URL=url['link'], CONTENT="正在加载,请稍后 ......")
|
||||||
|
yield from update_ui_latest_msg(lastmsg=(buffer + string_structure), chatbot=chatbot, history=history, delay=0.1) # 刷新界面
|
||||||
|
|
||||||
|
# 获取结果
|
||||||
|
res = future.result()
|
||||||
|
|
||||||
|
# 显示结果
|
||||||
|
prefix = f"第{index+1}份搜索结果 [源自{url['source'][0]}搜索] ({url['title'][:25]}):"
|
||||||
|
string_structure = template.format(TITLE=prefix, URL=url['link'], CONTENT=res[:1000] + "......")
|
||||||
|
buffer += string_structure
|
||||||
|
|
||||||
|
# 更新历史
|
||||||
|
history.extend([prefix, res])
|
||||||
|
yield from update_ui_latest_msg(lastmsg=buffer, chatbot=chatbot, history=history, delay=0.1) # 刷新界面
|
||||||
|
|
||||||
# ------------- < 第3步:ChatGPT综合 > -------------
|
# ------------- < 第3步:ChatGPT综合 > -------------
|
||||||
if (optimizer != "开启(增强)"):
|
if (optimizer != "开启(增强)"):
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
|
import random
|
||||||
from toolbox import get_conf
|
from toolbox import get_conf
|
||||||
from crazy_functions.Internet_GPT import 连接网络回答问题
|
from crazy_functions.Internet_GPT import 连接网络回答问题
|
||||||
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
|
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
|
||||||
@@ -20,6 +20,9 @@ class NetworkGPT_Wrap(GptAcademicPluginTemplate):
|
|||||||
第三个参数,名称`allow_cache`,参数`type`声明这是一个下拉菜单,下拉菜单上方显示`title`+`description`,下拉菜单的选项为`options`,`default_value`为下拉菜单默认值;
|
第三个参数,名称`allow_cache`,参数`type`声明这是一个下拉菜单,下拉菜单上方显示`title`+`description`,下拉菜单的选项为`options`,`default_value`为下拉菜单默认值;
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
urls = get_conf("SEARXNG_URLS")
|
||||||
|
url = random.choice(urls)
|
||||||
|
|
||||||
gui_definition = {
|
gui_definition = {
|
||||||
"main_input":
|
"main_input":
|
||||||
ArgProperty(title="输入问题", description="待通过互联网检索的问题,会自动读取输入框内容", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
|
ArgProperty(title="输入问题", description="待通过互联网检索的问题,会自动读取输入框内容", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
|
||||||
@@ -30,16 +33,17 @@ class NetworkGPT_Wrap(GptAcademicPluginTemplate):
|
|||||||
"optimizer":
|
"optimizer":
|
||||||
ArgProperty(title="搜索优化", options=["关闭", "开启", "开启(增强)"], default_value="关闭", description="是否使用搜索增强。注意这可能会消耗较多token", type="dropdown").model_dump_json(),
|
ArgProperty(title="搜索优化", options=["关闭", "开启", "开启(增强)"], default_value="关闭", description="是否使用搜索增强。注意这可能会消耗较多token", type="dropdown").model_dump_json(),
|
||||||
"searxng_url":
|
"searxng_url":
|
||||||
ArgProperty(title="Searxng服务地址", description="输入Searxng的地址", default_value=get_conf("SEARXNG_URL"), type="string").model_dump_json(), # 主输入,自动从输入框同步
|
ArgProperty(title="Searxng服务地址", description="输入Searxng的地址", default_value=url, type="string").model_dump_json(), # 主输入,自动从输入框同步
|
||||||
|
|
||||||
}
|
}
|
||||||
return gui_definition
|
return gui_definition
|
||||||
|
|
||||||
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
def execute(txt, llm_kwargs, plugin_kwargs:dict, chatbot, history, system_prompt, user_request):
|
||||||
"""
|
"""
|
||||||
执行插件
|
执行插件
|
||||||
"""
|
"""
|
||||||
if plugin_kwargs["categories"] == "网页": plugin_kwargs["categories"] = "general"
|
if plugin_kwargs.get("categories", None) == "网页": plugin_kwargs["categories"] = "general"
|
||||||
if plugin_kwargs["categories"] == "学术论文": plugin_kwargs["categories"] = "science"
|
elif plugin_kwargs.get("categories", None) == "学术论文": plugin_kwargs["categories"] = "science"
|
||||||
|
else: plugin_kwargs["categories"] = "general"
|
||||||
yield from 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
yield from 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||||
|
|
||||||
|
|||||||
@@ -1,5 +1,5 @@
|
|||||||
from toolbox import update_ui, trimmed_format_exc, get_conf, get_log_folder, promote_file_to_downloadzone, check_repeat_upload, map_file_to_sha256
|
from toolbox import update_ui, trimmed_format_exc, get_conf, get_log_folder, promote_file_to_downloadzone, check_repeat_upload, map_file_to_sha256
|
||||||
from toolbox import CatchException, report_exception, update_ui_lastest_msg, zip_result, gen_time_str
|
from toolbox import CatchException, report_exception, update_ui_latest_msg, zip_result, gen_time_str
|
||||||
from functools import partial
|
from functools import partial
|
||||||
from loguru import logger
|
from loguru import logger
|
||||||
|
|
||||||
@@ -41,7 +41,7 @@ def switch_prompt(pfg, mode, more_requirement):
|
|||||||
return inputs_array, sys_prompt_array
|
return inputs_array, sys_prompt_array
|
||||||
|
|
||||||
|
|
||||||
def desend_to_extracted_folder_if_exist(project_folder):
|
def descend_to_extracted_folder_if_exist(project_folder):
|
||||||
"""
|
"""
|
||||||
Descend into the extracted folder if it exists, otherwise return the original folder.
|
Descend into the extracted folder if it exists, otherwise return the original folder.
|
||||||
|
|
||||||
@@ -130,7 +130,7 @@ def arxiv_download(chatbot, history, txt, allow_cache=True):
|
|||||||
|
|
||||||
if not txt.startswith('https://arxiv.org/abs/'):
|
if not txt.startswith('https://arxiv.org/abs/'):
|
||||||
msg = f"解析arxiv网址失败, 期望格式例如: https://arxiv.org/abs/1707.06690。实际得到格式: {url_}。"
|
msg = f"解析arxiv网址失败, 期望格式例如: https://arxiv.org/abs/1707.06690。实际得到格式: {url_}。"
|
||||||
yield from update_ui_lastest_msg(msg, chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui_latest_msg(msg, chatbot=chatbot, history=history) # 刷新界面
|
||||||
return msg, None
|
return msg, None
|
||||||
# <-------------- set format ------------->
|
# <-------------- set format ------------->
|
||||||
arxiv_id = url_.split('/abs/')[-1]
|
arxiv_id = url_.split('/abs/')[-1]
|
||||||
@@ -156,16 +156,16 @@ def arxiv_download(chatbot, history, txt, allow_cache=True):
|
|||||||
return False
|
return False
|
||||||
|
|
||||||
if os.path.exists(dst) and allow_cache:
|
if os.path.exists(dst) and allow_cache:
|
||||||
yield from update_ui_lastest_msg(f"调用缓存 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui_latest_msg(f"调用缓存 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
|
||||||
success = True
|
success = True
|
||||||
else:
|
else:
|
||||||
yield from update_ui_lastest_msg(f"开始下载 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui_latest_msg(f"开始下载 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
|
||||||
success = fix_url_and_download()
|
success = fix_url_and_download()
|
||||||
yield from update_ui_lastest_msg(f"下载完成 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui_latest_msg(f"下载完成 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
|
|
||||||
if not success:
|
if not success:
|
||||||
yield from update_ui_lastest_msg(f"下载失败 {arxiv_id}", chatbot=chatbot, history=history)
|
yield from update_ui_latest_msg(f"下载失败 {arxiv_id}", chatbot=chatbot, history=history)
|
||||||
raise tarfile.ReadError(f"论文下载失败 {arxiv_id}")
|
raise tarfile.ReadError(f"论文下载失败 {arxiv_id}")
|
||||||
|
|
||||||
# <-------------- extract file ------------->
|
# <-------------- extract file ------------->
|
||||||
@@ -288,7 +288,7 @@ def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, histo
|
|||||||
return
|
return
|
||||||
|
|
||||||
# <-------------- if is a zip/tar file ------------->
|
# <-------------- if is a zip/tar file ------------->
|
||||||
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
project_folder = descend_to_extracted_folder_if_exist(project_folder)
|
||||||
|
|
||||||
# <-------------- move latex project away from temp folder ------------->
|
# <-------------- move latex project away from temp folder ------------->
|
||||||
from shared_utils.fastapi_server import validate_path_safety
|
from shared_utils.fastapi_server import validate_path_safety
|
||||||
@@ -365,7 +365,7 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
|
|||||||
try:
|
try:
|
||||||
txt, arxiv_id = yield from arxiv_download(chatbot, history, txt, allow_cache)
|
txt, arxiv_id = yield from arxiv_download(chatbot, history, txt, allow_cache)
|
||||||
except tarfile.ReadError as e:
|
except tarfile.ReadError as e:
|
||||||
yield from update_ui_lastest_msg(
|
yield from update_ui_latest_msg(
|
||||||
"无法自动下载该论文的Latex源码,请前往arxiv打开此论文下载页面,点other Formats,然后download source手动下载latex源码包。接下来调用本地Latex翻译插件即可。",
|
"无法自动下载该论文的Latex源码,请前往arxiv打开此论文下载页面,点other Formats,然后download source手动下载latex源码包。接下来调用本地Latex翻译插件即可。",
|
||||||
chatbot=chatbot, history=history)
|
chatbot=chatbot, history=history)
|
||||||
return
|
return
|
||||||
@@ -404,7 +404,7 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
|
|||||||
return
|
return
|
||||||
|
|
||||||
# <-------------- if is a zip/tar file ------------->
|
# <-------------- if is a zip/tar file ------------->
|
||||||
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
project_folder = descend_to_extracted_folder_if_exist(project_folder)
|
||||||
|
|
||||||
# <-------------- move latex project away from temp folder ------------->
|
# <-------------- move latex project away from temp folder ------------->
|
||||||
from shared_utils.fastapi_server import validate_path_safety
|
from shared_utils.fastapi_server import validate_path_safety
|
||||||
@@ -518,7 +518,7 @@ def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, h
|
|||||||
# repeat, project_folder = check_repeat_upload(file_manifest[0], hash_tag)
|
# repeat, project_folder = check_repeat_upload(file_manifest[0], hash_tag)
|
||||||
|
|
||||||
# if repeat:
|
# if repeat:
|
||||||
# yield from update_ui_lastest_msg(f"发现重复上传,请查收结果(压缩包)...", chatbot=chatbot, history=history)
|
# yield from update_ui_latest_msg(f"发现重复上传,请查收结果(压缩包)...", chatbot=chatbot, history=history)
|
||||||
# try:
|
# try:
|
||||||
# translate_pdf = [f for f in glob.glob(f'{project_folder}/**/merge_translate_zh.pdf', recursive=True)][0]
|
# translate_pdf = [f for f in glob.glob(f'{project_folder}/**/merge_translate_zh.pdf', recursive=True)][0]
|
||||||
# promote_file_to_downloadzone(translate_pdf, rename_file=None, chatbot=chatbot)
|
# promote_file_to_downloadzone(translate_pdf, rename_file=None, chatbot=chatbot)
|
||||||
@@ -531,7 +531,7 @@ def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, h
|
|||||||
# report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"发现重复上传,但是无法找到相关文件")
|
# report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"发现重复上传,但是无法找到相关文件")
|
||||||
# yield from update_ui(chatbot=chatbot, history=history)
|
# yield from update_ui(chatbot=chatbot, history=history)
|
||||||
# else:
|
# else:
|
||||||
# yield from update_ui_lastest_msg(f"未发现重复上传", chatbot=chatbot, history=history)
|
# yield from update_ui_latest_msg(f"未发现重复上传", chatbot=chatbot, history=history)
|
||||||
|
|
||||||
# <-------------- convert pdf into tex ------------->
|
# <-------------- convert pdf into tex ------------->
|
||||||
chatbot.append([f"解析项目: {txt}", "正在将PDF转换为tex项目,请耐心等待..."])
|
chatbot.append([f"解析项目: {txt}", "正在将PDF转换为tex项目,请耐心等待..."])
|
||||||
@@ -543,7 +543,7 @@ def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, h
|
|||||||
return False
|
return False
|
||||||
|
|
||||||
# <-------------- translate latex file into Chinese ------------->
|
# <-------------- translate latex file into Chinese ------------->
|
||||||
yield from update_ui_lastest_msg("正在tex项目将翻译为中文...", chatbot=chatbot, history=history)
|
yield from update_ui_latest_msg("正在tex项目将翻译为中文...", chatbot=chatbot, history=history)
|
||||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
|
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
|
||||||
if len(file_manifest) == 0:
|
if len(file_manifest) == 0:
|
||||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex文件: {txt}")
|
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex文件: {txt}")
|
||||||
@@ -551,7 +551,7 @@ def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, h
|
|||||||
return
|
return
|
||||||
|
|
||||||
# <-------------- if is a zip/tar file ------------->
|
# <-------------- if is a zip/tar file ------------->
|
||||||
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
project_folder = descend_to_extracted_folder_if_exist(project_folder)
|
||||||
|
|
||||||
# <-------------- move latex project away from temp folder ------------->
|
# <-------------- move latex project away from temp folder ------------->
|
||||||
from shared_utils.fastapi_server import validate_path_safety
|
from shared_utils.fastapi_server import validate_path_safety
|
||||||
@@ -571,7 +571,7 @@ def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, h
|
|||||||
switch_prompt=_switch_prompt_)
|
switch_prompt=_switch_prompt_)
|
||||||
|
|
||||||
# <-------------- compile PDF ------------->
|
# <-------------- compile PDF ------------->
|
||||||
yield from update_ui_lastest_msg("正在将翻译好的项目tex项目编译为PDF...", chatbot=chatbot, history=history)
|
yield from update_ui_latest_msg("正在将翻译好的项目tex项目编译为PDF...", chatbot=chatbot, history=history)
|
||||||
success = yield from 编译Latex(chatbot, history, main_file_original='merge',
|
success = yield from 编译Latex(chatbot, history, main_file_original='merge',
|
||||||
main_file_modified='merge_translate_zh', mode='translate_zh',
|
main_file_modified='merge_translate_zh', mode='translate_zh',
|
||||||
work_folder_original=project_folder, work_folder_modified=project_folder,
|
work_folder_original=project_folder, work_folder_modified=project_folder,
|
||||||
|
|||||||
@@ -1,5 +1,5 @@
|
|||||||
from toolbox import CatchException, check_packages, get_conf
|
from toolbox import CatchException, check_packages, get_conf
|
||||||
from toolbox import update_ui, update_ui_lastest_msg, disable_auto_promotion
|
from toolbox import update_ui, update_ui_latest_msg, disable_auto_promotion
|
||||||
from toolbox import trimmed_format_exc_markdown
|
from toolbox import trimmed_format_exc_markdown
|
||||||
from crazy_functions.crazy_utils import get_files_from_everything
|
from crazy_functions.crazy_utils import get_files_from_everything
|
||||||
from crazy_functions.pdf_fns.parse_pdf import get_avail_grobid_url
|
from crazy_functions.pdf_fns.parse_pdf import get_avail_grobid_url
|
||||||
@@ -47,7 +47,7 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
yield from 解析PDF_基于DOC2X(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, DOC2X_API_KEY, user_request)
|
yield from 解析PDF_基于DOC2X(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, DOC2X_API_KEY, user_request)
|
||||||
return
|
return
|
||||||
except:
|
except:
|
||||||
chatbot.append([None, f"DOC2X服务不可用,现在将执行效果稍差的旧版代码。{trimmed_format_exc_markdown()}"])
|
chatbot.append([None, f"DOC2X服务不可用,请检查报错详细。{trimmed_format_exc_markdown()}"])
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
|
||||||
if method == "GROBID":
|
if method == "GROBID":
|
||||||
@@ -57,9 +57,9 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
yield from 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url)
|
yield from 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url)
|
||||||
return
|
return
|
||||||
|
|
||||||
if method == "ClASSIC":
|
if method == "Classic":
|
||||||
# ------- 第三种方法,早期代码,效果不理想 -------
|
# ------- 第三种方法,早期代码,效果不理想 -------
|
||||||
yield from update_ui_lastest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
|
yield from update_ui_latest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
|
||||||
yield from 解析PDF_简单拆解(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
yield from 解析PDF_简单拆解(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||||
return
|
return
|
||||||
|
|
||||||
@@ -77,7 +77,7 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
if grobid_url is not None:
|
if grobid_url is not None:
|
||||||
yield from 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url)
|
yield from 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url)
|
||||||
return
|
return
|
||||||
yield from update_ui_lastest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
|
yield from update_ui_latest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
|
||||||
yield from 解析PDF_简单拆解(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
yield from 解析PDF_简单拆解(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||||
return
|
return
|
||||||
|
|
||||||
|
|||||||
@@ -19,7 +19,7 @@ class PDF_Tran(GptAcademicPluginTemplate):
|
|||||||
"additional_prompt":
|
"additional_prompt":
|
||||||
ArgProperty(title="额外提示词", description="例如:对专有名词、翻译语气等方面的要求", default_value="", type="string").model_dump_json(), # 高级参数输入区,自动同步
|
ArgProperty(title="额外提示词", description="例如:对专有名词、翻译语气等方面的要求", default_value="", type="string").model_dump_json(), # 高级参数输入区,自动同步
|
||||||
"pdf_parse_method":
|
"pdf_parse_method":
|
||||||
ArgProperty(title="PDF解析方法", options=["DOC2X", "GROBID", "ClASSIC"], description="无", default_value="GROBID", type="dropdown").model_dump_json(),
|
ArgProperty(title="PDF解析方法", options=["DOC2X", "GROBID", "Classic"], description="无", default_value="GROBID", type="dropdown").model_dump_json(),
|
||||||
}
|
}
|
||||||
return gui_definition
|
return gui_definition
|
||||||
|
|
||||||
|
|||||||
@@ -4,7 +4,7 @@ from typing import List
|
|||||||
from shared_utils.fastapi_server import validate_path_safety
|
from shared_utils.fastapi_server import validate_path_safety
|
||||||
|
|
||||||
from toolbox import report_exception
|
from toolbox import report_exception
|
||||||
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_lastest_msg
|
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_latest_msg
|
||||||
from shared_utils.fastapi_server import validate_path_safety
|
from shared_utils.fastapi_server import validate_path_safety
|
||||||
from crazy_functions.crazy_utils import input_clipping
|
from crazy_functions.crazy_utils import input_clipping
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
@@ -92,7 +92,7 @@ def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, u
|
|||||||
chatbot.append([txt, f'正在清空 ({current_context}) ...'])
|
chatbot.append([txt, f'正在清空 ({current_context}) ...'])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
rag_worker.purge_vector_store()
|
rag_worker.purge_vector_store()
|
||||||
yield from update_ui_lastest_msg('已清空', chatbot, history, delay=0) # 刷新界面
|
yield from update_ui_latest_msg('已清空', chatbot, history, delay=0) # 刷新界面
|
||||||
return
|
return
|
||||||
|
|
||||||
# 3. Normal Q&A processing
|
# 3. Normal Q&A processing
|
||||||
@@ -109,10 +109,10 @@ def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, u
|
|||||||
|
|
||||||
# 5. If input is clipped, add input to vector store before retrieve
|
# 5. If input is clipped, add input to vector store before retrieve
|
||||||
if input_is_clipped_flag:
|
if input_is_clipped_flag:
|
||||||
yield from update_ui_lastest_msg('检测到长输入, 正在向量化 ...', chatbot, history, delay=0) # 刷新界面
|
yield from update_ui_latest_msg('检测到长输入, 正在向量化 ...', chatbot, history, delay=0) # 刷新界面
|
||||||
# Save input to vector store
|
# Save input to vector store
|
||||||
rag_worker.add_text_to_vector_store(txt_origin)
|
rag_worker.add_text_to_vector_store(txt_origin)
|
||||||
yield from update_ui_lastest_msg('向量化完成 ...', chatbot, history, delay=0) # 刷新界面
|
yield from update_ui_latest_msg('向量化完成 ...', chatbot, history, delay=0) # 刷新界面
|
||||||
|
|
||||||
if len(txt_origin) > REMEMBER_PREVIEW:
|
if len(txt_origin) > REMEMBER_PREVIEW:
|
||||||
HALF = REMEMBER_PREVIEW // 2
|
HALF = REMEMBER_PREVIEW // 2
|
||||||
@@ -142,7 +142,7 @@ def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, u
|
|||||||
)
|
)
|
||||||
|
|
||||||
# 8. Remember Q&A
|
# 8. Remember Q&A
|
||||||
yield from update_ui_lastest_msg(
|
yield from update_ui_latest_msg(
|
||||||
model_say + '</br></br>' + f'对话记忆中, 请稍等 ({current_context}) ...',
|
model_say + '</br></br>' + f'对话记忆中, 请稍等 ({current_context}) ...',
|
||||||
chatbot, history, delay=0.5
|
chatbot, history, delay=0.5
|
||||||
)
|
)
|
||||||
@@ -150,4 +150,4 @@ def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, u
|
|||||||
history.extend([i_say, model_say])
|
history.extend([i_say, model_say])
|
||||||
|
|
||||||
# 9. Final UI Update
|
# 9. Final UI Update
|
||||||
yield from update_ui_lastest_msg(model_say, chatbot, history, delay=0, msg=tip)
|
yield from update_ui_latest_msg(model_say, chatbot, history, delay=0, msg=tip)
|
||||||
@@ -1,5 +1,5 @@
|
|||||||
import pickle, os, random
|
import pickle, os, random
|
||||||
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_lastest_msg
|
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_latest_msg
|
||||||
from crazy_functions.crazy_utils import input_clipping
|
from crazy_functions.crazy_utils import input_clipping
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||||
@@ -9,7 +9,7 @@ from loguru import logger
|
|||||||
from typing import List
|
from typing import List
|
||||||
|
|
||||||
|
|
||||||
SOCIAL_NETWOK_WORKER_REGISTER = {}
|
SOCIAL_NETWORK_WORKER_REGISTER = {}
|
||||||
|
|
||||||
class SocialNetwork():
|
class SocialNetwork():
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
@@ -78,7 +78,7 @@ class SocialNetworkWorker(SaveAndLoad):
|
|||||||
for f in friend.friends_list:
|
for f in friend.friends_list:
|
||||||
self.add_friend(f)
|
self.add_friend(f)
|
||||||
msg = f"成功添加{len(friend.friends_list)}个联系人: {str(friend.friends_list)}"
|
msg = f"成功添加{len(friend.friends_list)}个联系人: {str(friend.friends_list)}"
|
||||||
yield from update_ui_lastest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=0)
|
yield from update_ui_latest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=0)
|
||||||
|
|
||||||
|
|
||||||
def run(self, txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
def run(self, txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||||
@@ -104,12 +104,12 @@ class SocialNetworkWorker(SaveAndLoad):
|
|||||||
}
|
}
|
||||||
|
|
||||||
try:
|
try:
|
||||||
Explaination = '\n'.join([f'{k}: {v["explain_to_llm"]}' for k, v in self.tools_to_select.items()])
|
Explanation = '\n'.join([f'{k}: {v["explain_to_llm"]}' for k, v in self.tools_to_select.items()])
|
||||||
class UserSociaIntention(BaseModel):
|
class UserSociaIntention(BaseModel):
|
||||||
intention_type: str = Field(
|
intention_type: str = Field(
|
||||||
description=
|
description=
|
||||||
f"The type of user intention. You must choose from {self.tools_to_select.keys()}.\n\n"
|
f"The type of user intention. You must choose from {self.tools_to_select.keys()}.\n\n"
|
||||||
f"Explaination:\n{Explaination}",
|
f"Explanation:\n{Explanation}",
|
||||||
default="SocialAdvice"
|
default="SocialAdvice"
|
||||||
)
|
)
|
||||||
pydantic_cls_instance, err_msg = select_tool(
|
pydantic_cls_instance, err_msg = select_tool(
|
||||||
@@ -118,7 +118,7 @@ class SocialNetworkWorker(SaveAndLoad):
|
|||||||
pydantic_cls=UserSociaIntention
|
pydantic_cls=UserSociaIntention
|
||||||
)
|
)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
yield from update_ui_lastest_msg(
|
yield from update_ui_latest_msg(
|
||||||
lastmsg=f"无法理解用户意图 {err_msg}",
|
lastmsg=f"无法理解用户意图 {err_msg}",
|
||||||
chatbot=chatbot,
|
chatbot=chatbot,
|
||||||
history=history,
|
history=history,
|
||||||
@@ -150,10 +150,10 @@ def I人助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt,
|
|||||||
# 1. we retrieve worker from global context
|
# 1. we retrieve worker from global context
|
||||||
user_name = chatbot.get_user()
|
user_name = chatbot.get_user()
|
||||||
checkpoint_dir=get_log_folder(user_name, plugin_name='experimental_rag')
|
checkpoint_dir=get_log_folder(user_name, plugin_name='experimental_rag')
|
||||||
if user_name in SOCIAL_NETWOK_WORKER_REGISTER:
|
if user_name in SOCIAL_NETWORK_WORKER_REGISTER:
|
||||||
social_network_worker = SOCIAL_NETWOK_WORKER_REGISTER[user_name]
|
social_network_worker = SOCIAL_NETWORK_WORKER_REGISTER[user_name]
|
||||||
else:
|
else:
|
||||||
social_network_worker = SOCIAL_NETWOK_WORKER_REGISTER[user_name] = SocialNetworkWorker(
|
social_network_worker = SOCIAL_NETWORK_WORKER_REGISTER[user_name] = SocialNetworkWorker(
|
||||||
user_name,
|
user_name,
|
||||||
llm_kwargs,
|
llm_kwargs,
|
||||||
checkpoint_dir=checkpoint_dir,
|
checkpoint_dir=checkpoint_dir,
|
||||||
|
|||||||
@@ -1,5 +1,5 @@
|
|||||||
import os, copy, time
|
import os, copy, time
|
||||||
from toolbox import CatchException, report_exception, update_ui, zip_result, promote_file_to_downloadzone, update_ui_lastest_msg, get_conf, generate_file_link
|
from toolbox import CatchException, report_exception, update_ui, zip_result, promote_file_to_downloadzone, update_ui_latest_msg, get_conf, generate_file_link
|
||||||
from shared_utils.fastapi_server import validate_path_safety
|
from shared_utils.fastapi_server import validate_path_safety
|
||||||
from crazy_functions.crazy_utils import input_clipping
|
from crazy_functions.crazy_utils import input_clipping
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
@@ -117,7 +117,7 @@ def 注释源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
|||||||
logger.error(f"文件: {fp} 的注释结果未能成功")
|
logger.error(f"文件: {fp} 的注释结果未能成功")
|
||||||
file_links = generate_file_link(preview_html_list)
|
file_links = generate_file_link(preview_html_list)
|
||||||
|
|
||||||
yield from update_ui_lastest_msg(
|
yield from update_ui_latest_msg(
|
||||||
f"当前任务: <br/>{'<br/>'.join(tasks)}.<br/>" +
|
f"当前任务: <br/>{'<br/>'.join(tasks)}.<br/>" +
|
||||||
f"剩余源文件数量: {remain}.<br/>" +
|
f"剩余源文件数量: {remain}.<br/>" +
|
||||||
f"已完成的文件: {sum(worker_done)}.<br/>" +
|
f"已完成的文件: {sum(worker_done)}.<br/>" +
|
||||||
|
|||||||
@@ -7,7 +7,7 @@ from bs4 import BeautifulSoup
|
|||||||
from functools import lru_cache
|
from functools import lru_cache
|
||||||
from itertools import zip_longest
|
from itertools import zip_longest
|
||||||
from check_proxy import check_proxy
|
from check_proxy import check_proxy
|
||||||
from toolbox import CatchException, update_ui, get_conf, promote_file_to_downloadzone, update_ui_lastest_msg, generate_file_link
|
from toolbox import CatchException, update_ui, get_conf, promote_file_to_downloadzone, update_ui_latest_msg, generate_file_link
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
|
||||||
from request_llms.bridge_all import model_info
|
from request_llms.bridge_all import model_info
|
||||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||||
@@ -26,6 +26,7 @@ class VideoResource(BaseModel):
|
|||||||
title: str = Field(description="title of the video")
|
title: str = Field(description="title of the video")
|
||||||
author: str = Field(description="author/uploader of the video")
|
author: str = Field(description="author/uploader of the video")
|
||||||
bvid: str = Field(description="unique ID of the video")
|
bvid: str = Field(description="unique ID of the video")
|
||||||
|
another_failsafe_bvid: str = Field(description="provide another bvid, the other one is not working")
|
||||||
|
|
||||||
|
|
||||||
def get_video_resource(search_keyword):
|
def get_video_resource(search_keyword):
|
||||||
@@ -45,7 +46,7 @@ def download_video(bvid, user_name, chatbot, history):
|
|||||||
# pause a while
|
# pause a while
|
||||||
tic_time = 8
|
tic_time = 8
|
||||||
for i in range(tic_time):
|
for i in range(tic_time):
|
||||||
yield from update_ui_lastest_msg(
|
yield from update_ui_latest_msg(
|
||||||
lastmsg=f"即将下载音频。等待{tic_time-i}秒后自动继续, 点击“停止”键取消此操作。",
|
lastmsg=f"即将下载音频。等待{tic_time-i}秒后自动继续, 点击“停止”键取消此操作。",
|
||||||
chatbot=chatbot, history=[], delay=1)
|
chatbot=chatbot, history=[], delay=1)
|
||||||
|
|
||||||
@@ -53,16 +54,20 @@ def download_video(bvid, user_name, chatbot, history):
|
|||||||
chatbot.append((None, "下载音频, 请稍等...")); yield from update_ui(chatbot=chatbot, history=history)
|
chatbot.append((None, "下载音频, 请稍等...")); yield from update_ui(chatbot=chatbot, history=history)
|
||||||
downloaded_files = yield from download_video(bvid, only_audio=True, user_name=user_name, chatbot=chatbot, history=history)
|
downloaded_files = yield from download_video(bvid, only_audio=True, user_name=user_name, chatbot=chatbot, history=history)
|
||||||
|
|
||||||
|
if len(downloaded_files) == 0:
|
||||||
|
# failed to download audio
|
||||||
|
return []
|
||||||
|
|
||||||
# preview
|
# preview
|
||||||
preview_list = [promote_file_to_downloadzone(fp) for fp in downloaded_files]
|
preview_list = [promote_file_to_downloadzone(fp) for fp in downloaded_files]
|
||||||
file_links = generate_file_link(preview_list)
|
file_links = generate_file_link(preview_list)
|
||||||
yield from update_ui_lastest_msg(f"已完成的文件: <br/>" + file_links, chatbot=chatbot, history=history, delay=0)
|
yield from update_ui_latest_msg(f"已完成的文件: <br/>" + file_links, chatbot=chatbot, history=history, delay=0)
|
||||||
chatbot.append((None, f"即将下载视频。"))
|
chatbot.append((None, f"即将下载视频。"))
|
||||||
|
|
||||||
# pause a while
|
# pause a while
|
||||||
tic_time = 16
|
tic_time = 16
|
||||||
for i in range(tic_time):
|
for i in range(tic_time):
|
||||||
yield from update_ui_lastest_msg(
|
yield from update_ui_latest_msg(
|
||||||
lastmsg=f"即将下载视频。等待{tic_time-i}秒后自动继续, 点击“停止”键取消此操作。",
|
lastmsg=f"即将下载视频。等待{tic_time-i}秒后自动继续, 点击“停止”键取消此操作。",
|
||||||
chatbot=chatbot, history=[], delay=1)
|
chatbot=chatbot, history=[], delay=1)
|
||||||
|
|
||||||
@@ -73,41 +78,80 @@ def download_video(bvid, user_name, chatbot, history):
|
|||||||
# preview
|
# preview
|
||||||
preview_list = [promote_file_to_downloadzone(fp) for fp in downloaded_files_part2]
|
preview_list = [promote_file_to_downloadzone(fp) for fp in downloaded_files_part2]
|
||||||
file_links = generate_file_link(preview_list)
|
file_links = generate_file_link(preview_list)
|
||||||
yield from update_ui_lastest_msg(f"已完成的文件: <br/>" + file_links, chatbot=chatbot, history=history, delay=0)
|
yield from update_ui_latest_msg(f"已完成的文件: <br/>" + file_links, chatbot=chatbot, history=history, delay=0)
|
||||||
|
|
||||||
# return
|
# return
|
||||||
return downloaded_files + downloaded_files_part2
|
return downloaded_files + downloaded_files_part2
|
||||||
|
|
||||||
|
|
||||||
|
class Strategy(BaseModel):
|
||||||
|
thought: str = Field(description="analysis of the user's wish, for example, can you recall the name of the resource?")
|
||||||
|
which_methods: str = Field(description="Which method to use to find the necessary information? choose from 'method_1' and 'method_2'.")
|
||||||
|
method_1_search_keywords: str = Field(description="Generate keywords to search the internet if you choose method 1, otherwise empty.")
|
||||||
|
method_2_generate_keywords: str = Field(description="Generate keywords for video download engine if you choose method 2, otherwise empty.")
|
||||||
|
|
||||||
|
|
||||||
@CatchException
|
@CatchException
|
||||||
def 多媒体任务(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
def 多媒体任务(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||||
user_wish: str = txt
|
user_wish: str = txt
|
||||||
|
# query demos:
|
||||||
|
# - "我想找一首歌,里面有句歌词是“turn your face towards the sun”"
|
||||||
|
# - "一首歌,第一句是红豆生南国"
|
||||||
|
# - "一首音乐,中国航天任务专用的那首"
|
||||||
|
# - "戴森球计划在熔岩星球的音乐"
|
||||||
|
# - "hanser的百变什么精"
|
||||||
|
# - "打大圣残躯时的bgm"
|
||||||
|
# - "渊下宫战斗音乐"
|
||||||
|
|
||||||
# 搜索
|
# 搜索
|
||||||
chatbot.append((txt, "检索中, 请稍等..."))
|
chatbot.append((txt, "检索中, 请稍等..."))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
# 结构化生成
|
if "跳过联网搜索" not in user_wish:
|
||||||
rf_req = dedent(f"""
|
# 结构化生成
|
||||||
The user wish to get the following resource:
|
internet_search_keyword = user_wish
|
||||||
{user_wish}
|
|
||||||
Generate reseach keywords (less than 5 keywords) accordingly.
|
yield from update_ui_latest_msg(lastmsg=f"发起互联网检索: {internet_search_keyword} ...", chatbot=chatbot, history=[], delay=1)
|
||||||
""")
|
from crazy_functions.Internet_GPT import internet_search_with_analysis_prompt
|
||||||
|
result = yield from internet_search_with_analysis_prompt(
|
||||||
|
prompt=internet_search_keyword,
|
||||||
|
analysis_prompt="请根据搜索结果分析,获取用户需要找的资源的名称、作者、出处等信息。",
|
||||||
|
llm_kwargs=llm_kwargs,
|
||||||
|
chatbot=chatbot
|
||||||
|
)
|
||||||
|
|
||||||
|
yield from update_ui_latest_msg(lastmsg=f"互联网检索结论: {result} \n\n 正在生成进一步检索方案 ...", chatbot=chatbot, history=[], delay=1)
|
||||||
|
rf_req = dedent(f"""
|
||||||
|
The user wish to get the following resource:
|
||||||
|
{user_wish}
|
||||||
|
Meanwhile, you can access another expert's opinion on the user's wish:
|
||||||
|
{result}
|
||||||
|
Generate search keywords (less than 5 keywords) for video download engine accordingly.
|
||||||
|
""")
|
||||||
|
else:
|
||||||
|
user_wish = user_wish.replace("跳过联网搜索", "").strip()
|
||||||
|
rf_req = dedent(f"""
|
||||||
|
The user wish to get the following resource:
|
||||||
|
{user_wish}
|
||||||
|
Generate research keywords (less than 5 keywords) accordingly.
|
||||||
|
""")
|
||||||
gpt_json_io = GptJsonIO(Query)
|
gpt_json_io = GptJsonIO(Query)
|
||||||
inputs = rf_req + gpt_json_io.format_instructions
|
inputs = rf_req + gpt_json_io.format_instructions
|
||||||
run_gpt_fn = lambda inputs, sys_prompt: predict_no_ui_long_connection(inputs=inputs, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=[])
|
run_gpt_fn = lambda inputs, sys_prompt: predict_no_ui_long_connection(inputs=inputs, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=[])
|
||||||
analyze_res = run_gpt_fn(inputs, "")
|
analyze_res = run_gpt_fn(inputs, "")
|
||||||
logger.info(analyze_res)
|
logger.info(analyze_res)
|
||||||
query: Query = gpt_json_io.generate_output_auto_repair(analyze_res, run_gpt_fn)
|
query: Query = gpt_json_io.generate_output_auto_repair(analyze_res, run_gpt_fn)
|
||||||
|
video_engine_keywords = query.search_keyword
|
||||||
# 关键词展示
|
# 关键词展示
|
||||||
chatbot.append((None, f"检索关键词已确认: {query.search_keyword}。筛选中, 请稍等..."))
|
chatbot.append((None, f"检索关键词已确认: {video_engine_keywords}。筛选中, 请稍等..."))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
# 获取候选资源
|
# 获取候选资源
|
||||||
candadate_dictionary: dict = get_video_resource(query.search_keyword)
|
candidate_dictionary: dict = get_video_resource(video_engine_keywords)
|
||||||
candadate_dictionary_as_str = json.dumps(candadate_dictionary, ensure_ascii=False, indent=4)
|
candidate_dictionary_as_str = json.dumps(candidate_dictionary, ensure_ascii=False, indent=4)
|
||||||
|
|
||||||
# 展示候选资源
|
# 展示候选资源
|
||||||
candadate_display = "\n".join([f"{i+1}. {it['title']}" for i, it in enumerate(candadate_dictionary)])
|
candidate_display = "\n".join([f"{i+1}. {it['title']}" for i, it in enumerate(candidate_dictionary)])
|
||||||
chatbot.append((None, f"候选:\n\n{candadate_display}"))
|
chatbot.append((None, f"候选:\n\n{candidate_display}"))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
# 结构化生成
|
# 结构化生成
|
||||||
@@ -116,13 +160,14 @@ def 多媒体任务(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
|||||||
{user_wish}
|
{user_wish}
|
||||||
|
|
||||||
Select the most relevant and suitable video resource from the following search results:
|
Select the most relevant and suitable video resource from the following search results:
|
||||||
{candadate_dictionary_as_str}
|
{candidate_dictionary_as_str}
|
||||||
|
|
||||||
Note:
|
Note:
|
||||||
1. The first several search video results are more likely to satisfy the user's wish.
|
1. The first several search video results are more likely to satisfy the user's wish.
|
||||||
2. The time duration of the video should be less than 10 minutes.
|
2. The time duration of the video should be less than 10 minutes.
|
||||||
3. You should analyze the search results first, before giving your answer.
|
3. You should analyze the search results first, before giving your answer.
|
||||||
4. Use Chinese if possible.
|
4. Use Chinese if possible.
|
||||||
|
5. Beside the primary video selection, give a backup video resource `bvid`.
|
||||||
""")
|
""")
|
||||||
gpt_json_io = GptJsonIO(VideoResource)
|
gpt_json_io = GptJsonIO(VideoResource)
|
||||||
inputs = rf_req_2 + gpt_json_io.format_instructions
|
inputs = rf_req_2 + gpt_json_io.format_instructions
|
||||||
@@ -144,4 +189,16 @@ def 多媒体任务(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
|||||||
|
|
||||||
if video_resource and video_resource.bvid:
|
if video_resource and video_resource.bvid:
|
||||||
logger.info(video_resource)
|
logger.info(video_resource)
|
||||||
yield from download_video(video_resource.bvid, chatbot.get_user(), chatbot, history)
|
downloaded = yield from download_video(video_resource.bvid, chatbot.get_user(), chatbot, history)
|
||||||
|
if not downloaded:
|
||||||
|
chatbot.append((None, f"下载失败, 尝试备选 ..."))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
downloaded = yield from download_video(video_resource.another_failsafe_bvid, chatbot.get_user(), chatbot, history)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@CatchException
|
||||||
|
def debug(bvid, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||||
|
yield from download_video(bvid, chatbot.get_user(), chatbot, history)
|
||||||
@@ -1,5 +1,5 @@
|
|||||||
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, ProxyNetworkActivate
|
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, ProxyNetworkActivate
|
||||||
from toolbox import report_exception, get_log_folder, update_ui_lastest_msg, Singleton
|
from toolbox import report_exception, get_log_folder, update_ui_latest_msg, Singleton
|
||||||
from crazy_functions.agent_fns.pipe import PluginMultiprocessManager, PipeCom
|
from crazy_functions.agent_fns.pipe import PluginMultiprocessManager, PipeCom
|
||||||
from crazy_functions.agent_fns.general import AutoGenGeneral
|
from crazy_functions.agent_fns.general import AutoGenGeneral
|
||||||
|
|
||||||
|
|||||||
@@ -8,7 +8,7 @@ class EchoDemo(PluginMultiprocessManager):
|
|||||||
while True:
|
while True:
|
||||||
msg = self.child_conn.recv() # PipeCom
|
msg = self.child_conn.recv() # PipeCom
|
||||||
if msg.cmd == "user_input":
|
if msg.cmd == "user_input":
|
||||||
# wait futher user input
|
# wait father user input
|
||||||
self.child_conn.send(PipeCom("show", msg.content))
|
self.child_conn.send(PipeCom("show", msg.content))
|
||||||
wait_success = self.subprocess_worker_wait_user_feedback(wait_msg="我准备好处理下一个问题了.")
|
wait_success = self.subprocess_worker_wait_user_feedback(wait_msg="我准备好处理下一个问题了.")
|
||||||
if not wait_success:
|
if not wait_success:
|
||||||
|
|||||||
@@ -27,7 +27,7 @@ def gpt_academic_generate_oai_reply(
|
|||||||
llm_kwargs=llm_config,
|
llm_kwargs=llm_config,
|
||||||
history=history,
|
history=history,
|
||||||
sys_prompt=self._oai_system_message[0]['content'],
|
sys_prompt=self._oai_system_message[0]['content'],
|
||||||
console_slience=True
|
console_silence=True
|
||||||
)
|
)
|
||||||
assumed_done = reply.endswith('\nTERMINATE')
|
assumed_done = reply.endswith('\nTERMINATE')
|
||||||
return True, reply
|
return True, reply
|
||||||
|
|||||||
@@ -10,7 +10,7 @@ from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_
|
|||||||
# TODO: 解决缩进问题
|
# TODO: 解决缩进问题
|
||||||
|
|
||||||
find_function_end_prompt = '''
|
find_function_end_prompt = '''
|
||||||
Below is a page of code that you need to read. This page may not yet complete, you job is to split this page to sperate functions, class functions etc.
|
Below is a page of code that you need to read. This page may not yet complete, you job is to split this page to separate functions, class functions etc.
|
||||||
- Provide the line number where the first visible function ends.
|
- Provide the line number where the first visible function ends.
|
||||||
- Provide the line number where the next visible function begins.
|
- Provide the line number where the next visible function begins.
|
||||||
- If there are no other functions in this page, you should simply return the line number of the last line.
|
- If there are no other functions in this page, you should simply return the line number of the last line.
|
||||||
@@ -59,7 +59,7 @@ OUTPUT:
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
revise_funtion_prompt = '''
|
revise_function_prompt = '''
|
||||||
You need to read the following code, and revise the source code ({FILE_BASENAME}) according to following instructions:
|
You need to read the following code, and revise the source code ({FILE_BASENAME}) according to following instructions:
|
||||||
1. You should analyze the purpose of the functions (if there are any).
|
1. You should analyze the purpose of the functions (if there are any).
|
||||||
2. You need to add docstring for the provided functions (if there are any).
|
2. You need to add docstring for the provided functions (if there are any).
|
||||||
@@ -117,7 +117,7 @@ def zip_result(folder):
|
|||||||
'''
|
'''
|
||||||
|
|
||||||
|
|
||||||
revise_funtion_prompt_chinese = '''
|
revise_function_prompt_chinese = '''
|
||||||
您需要阅读以下代码,并根据以下说明修订源代码({FILE_BASENAME}):
|
您需要阅读以下代码,并根据以下说明修订源代码({FILE_BASENAME}):
|
||||||
1. 如果源代码中包含函数的话, 你应该分析给定函数实现了什么功能
|
1. 如果源代码中包含函数的话, 你应该分析给定函数实现了什么功能
|
||||||
2. 如果源代码中包含函数的话, 你需要为函数添加docstring, docstring必须使用中文
|
2. 如果源代码中包含函数的话, 你需要为函数添加docstring, docstring必须使用中文
|
||||||
@@ -188,9 +188,9 @@ class PythonCodeComment():
|
|||||||
self.language = language
|
self.language = language
|
||||||
self.observe_window_update = observe_window_update
|
self.observe_window_update = observe_window_update
|
||||||
if self.language == "chinese":
|
if self.language == "chinese":
|
||||||
self.core_prompt = revise_funtion_prompt_chinese
|
self.core_prompt = revise_function_prompt_chinese
|
||||||
else:
|
else:
|
||||||
self.core_prompt = revise_funtion_prompt
|
self.core_prompt = revise_function_prompt
|
||||||
self.path = None
|
self.path = None
|
||||||
self.file_basename = None
|
self.file_basename = None
|
||||||
self.file_brief = ""
|
self.file_brief = ""
|
||||||
@@ -222,7 +222,7 @@ class PythonCodeComment():
|
|||||||
history=[],
|
history=[],
|
||||||
sys_prompt="",
|
sys_prompt="",
|
||||||
observe_window=[],
|
observe_window=[],
|
||||||
console_slience=True
|
console_silence=True
|
||||||
)
|
)
|
||||||
|
|
||||||
def extract_number(text):
|
def extract_number(text):
|
||||||
@@ -316,7 +316,7 @@ class PythonCodeComment():
|
|||||||
def tag_code(self, fn, hint):
|
def tag_code(self, fn, hint):
|
||||||
code = fn
|
code = fn
|
||||||
_, n_indent = self.dedent(code)
|
_, n_indent = self.dedent(code)
|
||||||
indent_reminder = "" if n_indent == 0 else "(Reminder: as you can see, this piece of code has indent made up with {n_indent} whitespace, please preseve them in the OUTPUT.)"
|
indent_reminder = "" if n_indent == 0 else "(Reminder: as you can see, this piece of code has indent made up with {n_indent} whitespace, please preserve them in the OUTPUT.)"
|
||||||
brief_reminder = "" if self.file_brief == "" else f"({self.file_basename} abstract: {self.file_brief})"
|
brief_reminder = "" if self.file_brief == "" else f"({self.file_basename} abstract: {self.file_brief})"
|
||||||
hint_reminder = "" if hint is None else f"(Reminder: do not ignore or modify code such as `{hint}`, provide complete code in the OUTPUT.)"
|
hint_reminder = "" if hint is None else f"(Reminder: do not ignore or modify code such as `{hint}`, provide complete code in the OUTPUT.)"
|
||||||
self.llm_kwargs['temperature'] = 0
|
self.llm_kwargs['temperature'] = 0
|
||||||
@@ -333,7 +333,7 @@ class PythonCodeComment():
|
|||||||
history=[],
|
history=[],
|
||||||
sys_prompt="",
|
sys_prompt="",
|
||||||
observe_window=[],
|
observe_window=[],
|
||||||
console_slience=True
|
console_silence=True
|
||||||
)
|
)
|
||||||
|
|
||||||
def get_code_block(reply):
|
def get_code_block(reply):
|
||||||
@@ -400,7 +400,7 @@ class PythonCodeComment():
|
|||||||
return revised
|
return revised
|
||||||
|
|
||||||
def begin_comment_source_code(self, chatbot=None, history=None):
|
def begin_comment_source_code(self, chatbot=None, history=None):
|
||||||
# from toolbox import update_ui_lastest_msg
|
# from toolbox import update_ui_latest_msg
|
||||||
assert self.path is not None
|
assert self.path is not None
|
||||||
assert '.py' in self.path # must be python source code
|
assert '.py' in self.path # must be python source code
|
||||||
# write_target = self.path + '.revised.py'
|
# write_target = self.path + '.revised.py'
|
||||||
@@ -409,10 +409,10 @@ class PythonCodeComment():
|
|||||||
# with open(self.path + '.revised.py', 'w+', encoding='utf8') as f:
|
# with open(self.path + '.revised.py', 'w+', encoding='utf8') as f:
|
||||||
while True:
|
while True:
|
||||||
try:
|
try:
|
||||||
# yield from update_ui_lastest_msg(f"({self.file_basename}) 正在读取下一段代码片段:\n", chatbot=chatbot, history=history, delay=0)
|
# yield from update_ui_latest_msg(f"({self.file_basename}) 正在读取下一段代码片段:\n", chatbot=chatbot, history=history, delay=0)
|
||||||
next_batch, line_no_start, line_no_end = self.get_next_batch()
|
next_batch, line_no_start, line_no_end = self.get_next_batch()
|
||||||
self.observe_window_update(f"正在处理{self.file_basename} - {line_no_start}/{len(self.full_context)}\n")
|
self.observe_window_update(f"正在处理{self.file_basename} - {line_no_start}/{len(self.full_context)}\n")
|
||||||
# yield from update_ui_lastest_msg(f"({self.file_basename}) 处理代码片段:\n\n{next_batch}", chatbot=chatbot, history=history, delay=0)
|
# yield from update_ui_latest_msg(f"({self.file_basename}) 处理代码片段:\n\n{next_batch}", chatbot=chatbot, history=history, delay=0)
|
||||||
|
|
||||||
hint = None
|
hint = None
|
||||||
MAX_ATTEMPT = 2
|
MAX_ATTEMPT = 2
|
||||||
|
|||||||
@@ -1,7 +1,7 @@
|
|||||||
import os
|
import os
|
||||||
import threading
|
import threading
|
||||||
from loguru import logger
|
from loguru import logger
|
||||||
from shared_utils.char_visual_effect import scolling_visual_effect
|
from shared_utils.char_visual_effect import scrolling_visual_effect
|
||||||
from toolbox import update_ui, get_conf, trimmed_format_exc, get_max_token, Singleton
|
from toolbox import update_ui, get_conf, trimmed_format_exc, get_max_token, Singleton
|
||||||
|
|
||||||
def input_clipping(inputs, history, max_token_limit, return_clip_flags=False):
|
def input_clipping(inputs, history, max_token_limit, return_clip_flags=False):
|
||||||
@@ -256,7 +256,7 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
|||||||
# 【第一种情况】:顺利完成
|
# 【第一种情况】:顺利完成
|
||||||
gpt_say = predict_no_ui_long_connection(
|
gpt_say = predict_no_ui_long_connection(
|
||||||
inputs=inputs, llm_kwargs=llm_kwargs, history=history,
|
inputs=inputs, llm_kwargs=llm_kwargs, history=history,
|
||||||
sys_prompt=sys_prompt, observe_window=mutable[index], console_slience=True
|
sys_prompt=sys_prompt, observe_window=mutable[index], console_silence=True
|
||||||
)
|
)
|
||||||
mutable[index][2] = "已成功"
|
mutable[index][2] = "已成功"
|
||||||
return gpt_say
|
return gpt_say
|
||||||
@@ -326,7 +326,7 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
|||||||
mutable[thread_index][1] = time.time()
|
mutable[thread_index][1] = time.time()
|
||||||
# 在前端打印些好玩的东西
|
# 在前端打印些好玩的东西
|
||||||
for thread_index, _ in enumerate(worker_done):
|
for thread_index, _ in enumerate(worker_done):
|
||||||
print_something_really_funny = f"[ ...`{scolling_visual_effect(mutable[thread_index][0], scroller_max_len)}`... ]"
|
print_something_really_funny = f"[ ...`{scrolling_visual_effect(mutable[thread_index][0], scroller_max_len)}`... ]"
|
||||||
observe_win.append(print_something_really_funny)
|
observe_win.append(print_something_really_funny)
|
||||||
# 在前端打印些好玩的东西
|
# 在前端打印些好玩的东西
|
||||||
stat_str = ''.join([f'`{mutable[thread_index][2]}`: {obs}\n\n'
|
stat_str = ''.join([f'`{mutable[thread_index][2]}`: {obs}\n\n'
|
||||||
@@ -389,11 +389,11 @@ def read_and_clean_pdf_text(fp):
|
|||||||
"""
|
"""
|
||||||
提取文本块主字体
|
提取文本块主字体
|
||||||
"""
|
"""
|
||||||
fsize_statiscs = {}
|
fsize_statistics = {}
|
||||||
for wtf in l['spans']:
|
for wtf in l['spans']:
|
||||||
if wtf['size'] not in fsize_statiscs: fsize_statiscs[wtf['size']] = 0
|
if wtf['size'] not in fsize_statistics: fsize_statistics[wtf['size']] = 0
|
||||||
fsize_statiscs[wtf['size']] += len(wtf['text'])
|
fsize_statistics[wtf['size']] += len(wtf['text'])
|
||||||
return max(fsize_statiscs, key=fsize_statiscs.get)
|
return max(fsize_statistics, key=fsize_statistics.get)
|
||||||
|
|
||||||
def ffsize_same(a,b):
|
def ffsize_same(a,b):
|
||||||
"""
|
"""
|
||||||
@@ -433,11 +433,11 @@ def read_and_clean_pdf_text(fp):
|
|||||||
|
|
||||||
############################## <第 2 步,获取正文主字体> ##################################
|
############################## <第 2 步,获取正文主字体> ##################################
|
||||||
try:
|
try:
|
||||||
fsize_statiscs = {}
|
fsize_statistics = {}
|
||||||
for span in meta_span:
|
for span in meta_span:
|
||||||
if span[1] not in fsize_statiscs: fsize_statiscs[span[1]] = 0
|
if span[1] not in fsize_statistics: fsize_statistics[span[1]] = 0
|
||||||
fsize_statiscs[span[1]] += span[2]
|
fsize_statistics[span[1]] += span[2]
|
||||||
main_fsize = max(fsize_statiscs, key=fsize_statiscs.get)
|
main_fsize = max(fsize_statistics, key=fsize_statistics.get)
|
||||||
if REMOVE_FOOT_NOTE:
|
if REMOVE_FOOT_NOTE:
|
||||||
give_up_fize_threshold = main_fsize * REMOVE_FOOT_FFSIZE_PERCENT
|
give_up_fize_threshold = main_fsize * REMOVE_FOOT_FFSIZE_PERCENT
|
||||||
except:
|
except:
|
||||||
@@ -610,9 +610,9 @@ class nougat_interface():
|
|||||||
|
|
||||||
|
|
||||||
def NOUGAT_parse_pdf(self, fp, chatbot, history):
|
def NOUGAT_parse_pdf(self, fp, chatbot, history):
|
||||||
from toolbox import update_ui_lastest_msg
|
from toolbox import update_ui_latest_msg
|
||||||
|
|
||||||
yield from update_ui_lastest_msg("正在解析论文, 请稍候。进度:正在排队, 等待线程锁...",
|
yield from update_ui_latest_msg("正在解析论文, 请稍候。进度:正在排队, 等待线程锁...",
|
||||||
chatbot=chatbot, history=history, delay=0)
|
chatbot=chatbot, history=history, delay=0)
|
||||||
self.threadLock.acquire()
|
self.threadLock.acquire()
|
||||||
import glob, threading, os
|
import glob, threading, os
|
||||||
@@ -620,7 +620,7 @@ class nougat_interface():
|
|||||||
dst = os.path.join(get_log_folder(plugin_name='nougat'), gen_time_str())
|
dst = os.path.join(get_log_folder(plugin_name='nougat'), gen_time_str())
|
||||||
os.makedirs(dst)
|
os.makedirs(dst)
|
||||||
|
|
||||||
yield from update_ui_lastest_msg("正在解析论文, 请稍候。进度:正在加载NOUGAT... (提示:首次运行需要花费较长时间下载NOUGAT参数)",
|
yield from update_ui_latest_msg("正在解析论文, 请稍候。进度:正在加载NOUGAT... (提示:首次运行需要花费较长时间下载NOUGAT参数)",
|
||||||
chatbot=chatbot, history=history, delay=0)
|
chatbot=chatbot, history=history, delay=0)
|
||||||
command = ['nougat', '--out', os.path.abspath(dst), os.path.abspath(fp)]
|
command = ['nougat', '--out', os.path.abspath(dst), os.path.abspath(fp)]
|
||||||
self.nougat_with_timeout(command, cwd=os.getcwd(), timeout=3600)
|
self.nougat_with_timeout(command, cwd=os.getcwd(), timeout=3600)
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
from toolbox import CatchException, update_ui, update_ui_lastest_msg
|
from toolbox import CatchException, update_ui, update_ui_latest_msg
|
||||||
from crazy_functions.multi_stage.multi_stage_utils import GptAcademicGameBaseState
|
from crazy_functions.multi_stage.multi_stage_utils import GptAcademicGameBaseState
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||||
@@ -13,7 +13,7 @@ class MiniGame_ASCII_Art(GptAcademicGameBaseState):
|
|||||||
else:
|
else:
|
||||||
if prompt.strip() == 'exit':
|
if prompt.strip() == 'exit':
|
||||||
self.delete_game = True
|
self.delete_game = True
|
||||||
yield from update_ui_lastest_msg(lastmsg=f"谜底是{self.obj},游戏结束。", chatbot=chatbot, history=history, delay=0.)
|
yield from update_ui_latest_msg(lastmsg=f"谜底是{self.obj},游戏结束。", chatbot=chatbot, history=history, delay=0.)
|
||||||
return
|
return
|
||||||
chatbot.append([prompt, ""])
|
chatbot.append([prompt, ""])
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
@@ -31,12 +31,12 @@ class MiniGame_ASCII_Art(GptAcademicGameBaseState):
|
|||||||
self.cur_task = 'identify user guess'
|
self.cur_task = 'identify user guess'
|
||||||
res = get_code_block(raw_res)
|
res = get_code_block(raw_res)
|
||||||
history += ['', f'the answer is {self.obj}', inputs, res]
|
history += ['', f'the answer is {self.obj}', inputs, res]
|
||||||
yield from update_ui_lastest_msg(lastmsg=res, chatbot=chatbot, history=history, delay=0.)
|
yield from update_ui_latest_msg(lastmsg=res, chatbot=chatbot, history=history, delay=0.)
|
||||||
|
|
||||||
elif self.cur_task == 'identify user guess':
|
elif self.cur_task == 'identify user guess':
|
||||||
if is_same_thing(self.obj, prompt, self.llm_kwargs):
|
if is_same_thing(self.obj, prompt, self.llm_kwargs):
|
||||||
self.delete_game = True
|
self.delete_game = True
|
||||||
yield from update_ui_lastest_msg(lastmsg="你猜对了!", chatbot=chatbot, history=history, delay=0.)
|
yield from update_ui_latest_msg(lastmsg="你猜对了!", chatbot=chatbot, history=history, delay=0.)
|
||||||
else:
|
else:
|
||||||
self.cur_task = 'identify user guess'
|
self.cur_task = 'identify user guess'
|
||||||
yield from update_ui_lastest_msg(lastmsg="猜错了,再试试,输入“exit”获取答案。", chatbot=chatbot, history=history, delay=0.)
|
yield from update_ui_latest_msg(lastmsg="猜错了,再试试,输入“exit”获取答案。", chatbot=chatbot, history=history, delay=0.)
|
||||||
@@ -63,7 +63,7 @@ prompts_terminate = """小说的前文回顾:
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
from toolbox import CatchException, update_ui, update_ui_lastest_msg
|
from toolbox import CatchException, update_ui, update_ui_latest_msg
|
||||||
from crazy_functions.multi_stage.multi_stage_utils import GptAcademicGameBaseState
|
from crazy_functions.multi_stage.multi_stage_utils import GptAcademicGameBaseState
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||||
@@ -112,7 +112,7 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
|
|||||||
if prompt.strip() == 'exit' or prompt.strip() == '结束剧情':
|
if prompt.strip() == 'exit' or prompt.strip() == '结束剧情':
|
||||||
# should we terminate game here?
|
# should we terminate game here?
|
||||||
self.delete_game = True
|
self.delete_game = True
|
||||||
yield from update_ui_lastest_msg(lastmsg=f"游戏结束。", chatbot=chatbot, history=history, delay=0.)
|
yield from update_ui_latest_msg(lastmsg=f"游戏结束。", chatbot=chatbot, history=history, delay=0.)
|
||||||
return
|
return
|
||||||
if '剧情收尾' in prompt:
|
if '剧情收尾' in prompt:
|
||||||
self.cur_task = 'story_terminate'
|
self.cur_task = 'story_terminate'
|
||||||
@@ -137,8 +137,8 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
|
|||||||
)
|
)
|
||||||
self.story.append(story_paragraph)
|
self.story.append(story_paragraph)
|
||||||
# # 配图
|
# # 配图
|
||||||
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>正在生成插图中 ...', chatbot=chatbot, history=history, delay=0.)
|
yield from update_ui_latest_msg(lastmsg=story_paragraph + '<br/>正在生成插图中 ...', chatbot=chatbot, history=history, delay=0.)
|
||||||
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>'+ self.generate_story_image(story_paragraph), chatbot=chatbot, history=history, delay=0.)
|
yield from update_ui_latest_msg(lastmsg=story_paragraph + '<br/>'+ self.generate_story_image(story_paragraph), chatbot=chatbot, history=history, delay=0.)
|
||||||
|
|
||||||
# # 构建后续剧情引导
|
# # 构建后续剧情引导
|
||||||
previously_on_story = ""
|
previously_on_story = ""
|
||||||
@@ -171,8 +171,8 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
|
|||||||
)
|
)
|
||||||
self.story.append(story_paragraph)
|
self.story.append(story_paragraph)
|
||||||
# # 配图
|
# # 配图
|
||||||
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>正在生成插图中 ...', chatbot=chatbot, history=history, delay=0.)
|
yield from update_ui_latest_msg(lastmsg=story_paragraph + '<br/>正在生成插图中 ...', chatbot=chatbot, history=history, delay=0.)
|
||||||
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>'+ self.generate_story_image(story_paragraph), chatbot=chatbot, history=history, delay=0.)
|
yield from update_ui_latest_msg(lastmsg=story_paragraph + '<br/>'+ self.generate_story_image(story_paragraph), chatbot=chatbot, history=history, delay=0.)
|
||||||
|
|
||||||
# # 构建后续剧情引导
|
# # 构建后续剧情引导
|
||||||
previously_on_story = ""
|
previously_on_story = ""
|
||||||
@@ -204,8 +204,8 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
|
|||||||
chatbot, history_, self.sys_prompt_
|
chatbot, history_, self.sys_prompt_
|
||||||
)
|
)
|
||||||
# # 配图
|
# # 配图
|
||||||
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>正在生成插图中 ...', chatbot=chatbot, history=history, delay=0.)
|
yield from update_ui_latest_msg(lastmsg=story_paragraph + '<br/>正在生成插图中 ...', chatbot=chatbot, history=history, delay=0.)
|
||||||
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>'+ self.generate_story_image(story_paragraph), chatbot=chatbot, history=history, delay=0.)
|
yield from update_ui_latest_msg(lastmsg=story_paragraph + '<br/>'+ self.generate_story_image(story_paragraph), chatbot=chatbot, history=history, delay=0.)
|
||||||
|
|
||||||
# terminate game
|
# terminate game
|
||||||
self.delete_game = True
|
self.delete_game = True
|
||||||
|
|||||||
@@ -2,7 +2,7 @@ import time
|
|||||||
import importlib
|
import importlib
|
||||||
from toolbox import trimmed_format_exc, gen_time_str, get_log_folder
|
from toolbox import trimmed_format_exc, gen_time_str, get_log_folder
|
||||||
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, is_the_upload_folder
|
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, is_the_upload_folder
|
||||||
from toolbox import promote_file_to_downloadzone, get_log_folder, update_ui_lastest_msg
|
from toolbox import promote_file_to_downloadzone, get_log_folder, update_ui_latest_msg
|
||||||
import multiprocessing
|
import multiprocessing
|
||||||
|
|
||||||
def get_class_name(class_string):
|
def get_class_name(class_string):
|
||||||
|
|||||||
@@ -102,10 +102,10 @@ class GptJsonIO():
|
|||||||
logging.info(f'Repairing json:{response}')
|
logging.info(f'Repairing json:{response}')
|
||||||
repair_prompt = self.generate_repair_prompt(broken_json = response, error=repr(e))
|
repair_prompt = self.generate_repair_prompt(broken_json = response, error=repr(e))
|
||||||
result = self.generate_output(gpt_gen_fn(repair_prompt, self.format_instructions))
|
result = self.generate_output(gpt_gen_fn(repair_prompt, self.format_instructions))
|
||||||
logging.info('Repaire json success.')
|
logging.info('Repair json success.')
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
# 没辙了,放弃治疗
|
# 没辙了,放弃治疗
|
||||||
logging.info('Repaire json fail.')
|
logging.info('Repair json fail.')
|
||||||
raise JsonStringError('Cannot repair json.', str(e))
|
raise JsonStringError('Cannot repair json.', str(e))
|
||||||
return result
|
return result
|
||||||
|
|
||||||
|
|||||||
@@ -3,7 +3,7 @@ import re
|
|||||||
import shutil
|
import shutil
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from loguru import logger
|
from loguru import logger
|
||||||
from toolbox import update_ui, update_ui_lastest_msg, get_log_folder, gen_time_str
|
from toolbox import update_ui, update_ui_latest_msg, get_log_folder, gen_time_str
|
||||||
from toolbox import get_conf, promote_file_to_downloadzone
|
from toolbox import get_conf, promote_file_to_downloadzone
|
||||||
from crazy_functions.latex_fns.latex_toolbox import PRESERVE, TRANSFORM
|
from crazy_functions.latex_fns.latex_toolbox import PRESERVE, TRANSFORM
|
||||||
from crazy_functions.latex_fns.latex_toolbox import set_forbidden_text, set_forbidden_text_begin_end, set_forbidden_text_careful_brace
|
from crazy_functions.latex_fns.latex_toolbox import set_forbidden_text, set_forbidden_text_begin_end, set_forbidden_text_careful_brace
|
||||||
@@ -20,7 +20,7 @@ def split_subprocess(txt, project_folder, return_dict, opts):
|
|||||||
"""
|
"""
|
||||||
break down latex file to a linked list,
|
break down latex file to a linked list,
|
||||||
each node use a preserve flag to indicate whether it should
|
each node use a preserve flag to indicate whether it should
|
||||||
be proccessed by GPT.
|
be processed by GPT.
|
||||||
"""
|
"""
|
||||||
text = txt
|
text = txt
|
||||||
mask = np.zeros(len(txt), dtype=np.uint8) + TRANSFORM
|
mask = np.zeros(len(txt), dtype=np.uint8) + TRANSFORM
|
||||||
@@ -85,14 +85,14 @@ class LatexPaperSplit():
|
|||||||
"""
|
"""
|
||||||
break down latex file to a linked list,
|
break down latex file to a linked list,
|
||||||
each node use a preserve flag to indicate whether it should
|
each node use a preserve flag to indicate whether it should
|
||||||
be proccessed by GPT.
|
be processed by GPT.
|
||||||
"""
|
"""
|
||||||
def __init__(self) -> None:
|
def __init__(self) -> None:
|
||||||
self.nodes = None
|
self.nodes = None
|
||||||
self.msg = "*{\\scriptsize\\textbf{警告:该PDF由GPT-Academic开源项目调用大语言模型+Latex翻译插件一键生成," + \
|
self.msg = "*{\\scriptsize\\textbf{警告:该PDF由GPT-Academic开源项目调用大语言模型+Latex翻译插件一键生成," + \
|
||||||
"版权归原文作者所有。翻译内容可靠性无保障,请仔细鉴别并以原文为准。" + \
|
"版权归原文作者所有。翻译内容可靠性无保障,请仔细鉴别并以原文为准。" + \
|
||||||
"项目Github地址 \\url{https://github.com/binary-husky/gpt_academic/}。"
|
"项目Github地址 \\url{https://github.com/binary-husky/gpt_academic/}。"
|
||||||
# 请您不要删除或修改这行警告,除非您是论文的原作者(如果您是论文原作者,欢迎加REAME中的QQ联系开发者)
|
# 请您不要删除或修改这行警告,除非您是论文的原作者(如果您是论文原作者,欢迎加README中的QQ联系开发者)
|
||||||
self.msg_declare = "为了防止大语言模型的意外谬误产生扩散影响,禁止移除或修改此警告。}}\\\\"
|
self.msg_declare = "为了防止大语言模型的意外谬误产生扩散影响,禁止移除或修改此警告。}}\\\\"
|
||||||
self.title = "unknown"
|
self.title = "unknown"
|
||||||
self.abstract = "unknown"
|
self.abstract = "unknown"
|
||||||
@@ -151,7 +151,7 @@ class LatexPaperSplit():
|
|||||||
"""
|
"""
|
||||||
break down latex file to a linked list,
|
break down latex file to a linked list,
|
||||||
each node use a preserve flag to indicate whether it should
|
each node use a preserve flag to indicate whether it should
|
||||||
be proccessed by GPT.
|
be processed by GPT.
|
||||||
P.S. use multiprocessing to avoid timeout error
|
P.S. use multiprocessing to avoid timeout error
|
||||||
"""
|
"""
|
||||||
import multiprocessing
|
import multiprocessing
|
||||||
@@ -300,7 +300,8 @@ def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin
|
|||||||
write_html(pfg.sp_file_contents, pfg.sp_file_result, chatbot=chatbot, project_folder=project_folder)
|
write_html(pfg.sp_file_contents, pfg.sp_file_result, chatbot=chatbot, project_folder=project_folder)
|
||||||
|
|
||||||
# <-------- 写出文件 ---------->
|
# <-------- 写出文件 ---------->
|
||||||
msg = f"当前大语言模型: {llm_kwargs['llm_model']},当前语言模型温度设定: {llm_kwargs['temperature']}。"
|
model_name = llm_kwargs['llm_model'].replace('_', '\\_') # 替换LLM模型名称中的下划线为转义字符
|
||||||
|
msg = f"当前大语言模型: {model_name},当前语言模型温度设定: {llm_kwargs['temperature']}。"
|
||||||
final_tex = lps.merge_result(pfg.file_result, mode, msg)
|
final_tex = lps.merge_result(pfg.file_result, mode, msg)
|
||||||
objdump((lps, pfg.file_result, mode, msg), file=pj(project_folder,'merge_result.pkl'))
|
objdump((lps, pfg.file_result, mode, msg), file=pj(project_folder,'merge_result.pkl'))
|
||||||
|
|
||||||
@@ -350,7 +351,42 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
|||||||
max_try = 32
|
max_try = 32
|
||||||
chatbot.append([f"正在编译PDF文档", f'编译已经开始。当前工作路径为{work_folder},如果程序停顿5分钟以上,请直接去该路径下取回翻译结果,或者重启之后再度尝试 ...']); yield from update_ui(chatbot=chatbot, history=history)
|
chatbot.append([f"正在编译PDF文档", f'编译已经开始。当前工作路径为{work_folder},如果程序停顿5分钟以上,请直接去该路径下取回翻译结果,或者重启之后再度尝试 ...']); yield from update_ui(chatbot=chatbot, history=history)
|
||||||
chatbot.append([f"正在编译PDF文档", '...']); yield from update_ui(chatbot=chatbot, history=history); time.sleep(1); chatbot[-1] = list(chatbot[-1]) # 刷新界面
|
chatbot.append([f"正在编译PDF文档", '...']); yield from update_ui(chatbot=chatbot, history=history); time.sleep(1); chatbot[-1] = list(chatbot[-1]) # 刷新界面
|
||||||
yield from update_ui_lastest_msg('编译已经开始...', chatbot, history) # 刷新Gradio前端界面
|
yield from update_ui_latest_msg('编译已经开始...', chatbot, history) # 刷新Gradio前端界面
|
||||||
|
# 检查是否需要使用xelatex
|
||||||
|
def check_if_need_xelatex(tex_path):
|
||||||
|
try:
|
||||||
|
with open(tex_path, 'r', encoding='utf-8', errors='replace') as f:
|
||||||
|
content = f.read(5000)
|
||||||
|
# 检查是否有使用xelatex的宏包
|
||||||
|
need_xelatex = any(
|
||||||
|
pkg in content
|
||||||
|
for pkg in ['fontspec', 'xeCJK', 'xetex', 'unicode-math', 'xltxtra', 'xunicode']
|
||||||
|
)
|
||||||
|
if need_xelatex:
|
||||||
|
logger.info(f"检测到宏包需要xelatex编译, 切换至xelatex编译")
|
||||||
|
else:
|
||||||
|
logger.info(f"未检测到宏包需要xelatex编译, 使用pdflatex编译")
|
||||||
|
return need_xelatex
|
||||||
|
except Exception:
|
||||||
|
return False
|
||||||
|
|
||||||
|
# 根据编译器类型返回编译命令
|
||||||
|
def get_compile_command(compiler, filename):
|
||||||
|
compile_command = f'{compiler} -interaction=batchmode -file-line-error {filename}.tex'
|
||||||
|
logger.info('Latex 编译指令: ' + compile_command)
|
||||||
|
return compile_command
|
||||||
|
|
||||||
|
# 确定使用的编译器
|
||||||
|
compiler = 'pdflatex'
|
||||||
|
if check_if_need_xelatex(pj(work_folder_modified, f'{main_file_modified}.tex')):
|
||||||
|
logger.info("检测到宏包需要xelatex编译,切换至xelatex编译")
|
||||||
|
# Check if xelatex is installed
|
||||||
|
try:
|
||||||
|
import subprocess
|
||||||
|
subprocess.run(['xelatex', '--version'], capture_output=True, check=True)
|
||||||
|
compiler = 'xelatex'
|
||||||
|
except (subprocess.CalledProcessError, FileNotFoundError):
|
||||||
|
raise RuntimeError("检测到需要使用xelatex编译,但系统中未安装xelatex。请先安装texlive或其他提供xelatex的LaTeX发行版。")
|
||||||
|
|
||||||
while True:
|
while True:
|
||||||
import os
|
import os
|
||||||
@@ -360,36 +396,36 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
|||||||
shutil.copyfile(may_exist_bbl, target_bbl)
|
shutil.copyfile(may_exist_bbl, target_bbl)
|
||||||
|
|
||||||
# https://stackoverflow.com/questions/738755/dont-make-me-manually-abort-a-latex-compile-when-theres-an-error
|
# https://stackoverflow.com/questions/738755/dont-make-me-manually-abort-a-latex-compile-when-theres-an-error
|
||||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译原始PDF ...', chatbot, history) # 刷新Gradio前端界面
|
yield from update_ui_latest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译原始PDF ...', chatbot, history) # 刷新Gradio前端界面
|
||||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex', work_folder_original)
|
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_original), work_folder_original)
|
||||||
|
|
||||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译转化后的PDF ...', chatbot, history) # 刷新Gradio前端界面
|
yield from update_ui_latest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译转化后的PDF ...', chatbot, history) # 刷新Gradio前端界面
|
||||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex', work_folder_modified)
|
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_modified), work_folder_modified)
|
||||||
|
|
||||||
if ok and os.path.exists(pj(work_folder_modified, f'{main_file_modified}.pdf')):
|
if ok and os.path.exists(pj(work_folder_modified, f'{main_file_modified}.pdf')):
|
||||||
# 只有第二步成功,才能继续下面的步骤
|
# 只有第二步成功,才能继续下面的步骤
|
||||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译BibTex ...', chatbot, history) # 刷新Gradio前端界面
|
yield from update_ui_latest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译BibTex ...', chatbot, history) # 刷新Gradio前端界面
|
||||||
if not os.path.exists(pj(work_folder_original, f'{main_file_original}.bbl')):
|
if not os.path.exists(pj(work_folder_original, f'{main_file_original}.bbl')):
|
||||||
ok = compile_latex_with_timeout(f'bibtex {main_file_original}.aux', work_folder_original)
|
ok = compile_latex_with_timeout(f'bibtex {main_file_original}.aux', work_folder_original)
|
||||||
if not os.path.exists(pj(work_folder_modified, f'{main_file_modified}.bbl')):
|
if not os.path.exists(pj(work_folder_modified, f'{main_file_modified}.bbl')):
|
||||||
ok = compile_latex_with_timeout(f'bibtex {main_file_modified}.aux', work_folder_modified)
|
ok = compile_latex_with_timeout(f'bibtex {main_file_modified}.aux', work_folder_modified)
|
||||||
|
|
||||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译文献交叉引用 ...', chatbot, history) # 刷新Gradio前端界面
|
yield from update_ui_latest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译文献交叉引用 ...', chatbot, history) # 刷新Gradio前端界面
|
||||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex', work_folder_original)
|
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_original), work_folder_original)
|
||||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex', work_folder_modified)
|
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_modified), work_folder_modified)
|
||||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex', work_folder_original)
|
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_original), work_folder_original)
|
||||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex', work_folder_modified)
|
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_modified), work_folder_modified)
|
||||||
|
|
||||||
if mode!='translate_zh':
|
if mode!='translate_zh':
|
||||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 使用latexdiff生成论文转化前后对比 ...', chatbot, history) # 刷新Gradio前端界面
|
yield from update_ui_latest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 使用latexdiff生成论文转化前后对比 ...', chatbot, history) # 刷新Gradio前端界面
|
||||||
logger.info( f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex')
|
logger.info( f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex')
|
||||||
ok = compile_latex_with_timeout(f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex', os.getcwd())
|
ok = compile_latex_with_timeout(f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex', os.getcwd())
|
||||||
|
|
||||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 正在编译对比PDF ...', chatbot, history) # 刷新Gradio前端界面
|
yield from update_ui_latest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 正在编译对比PDF ...', chatbot, history) # 刷新Gradio前端界面
|
||||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
|
ok = compile_latex_with_timeout(get_compile_command(compiler, 'merge_diff'), work_folder)
|
||||||
ok = compile_latex_with_timeout(f'bibtex merge_diff.aux', work_folder)
|
ok = compile_latex_with_timeout(f'bibtex merge_diff.aux', work_folder)
|
||||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
|
ok = compile_latex_with_timeout(get_compile_command(compiler, 'merge_diff'), work_folder)
|
||||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
|
ok = compile_latex_with_timeout(get_compile_command(compiler, 'merge_diff'), work_folder)
|
||||||
|
|
||||||
# <---------- 检查结果 ----------->
|
# <---------- 检查结果 ----------->
|
||||||
results_ = ""
|
results_ = ""
|
||||||
@@ -399,13 +435,13 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
|||||||
results_ += f"原始PDF编译是否成功: {original_pdf_success};"
|
results_ += f"原始PDF编译是否成功: {original_pdf_success};"
|
||||||
results_ += f"转化PDF编译是否成功: {modified_pdf_success};"
|
results_ += f"转化PDF编译是否成功: {modified_pdf_success};"
|
||||||
results_ += f"对比PDF编译是否成功: {diff_pdf_success};"
|
results_ += f"对比PDF编译是否成功: {diff_pdf_success};"
|
||||||
yield from update_ui_lastest_msg(f'第{n_fix}编译结束:<br/>{results_}...', chatbot, history) # 刷新Gradio前端界面
|
yield from update_ui_latest_msg(f'第{n_fix}编译结束:<br/>{results_}...', chatbot, history) # 刷新Gradio前端界面
|
||||||
|
|
||||||
if diff_pdf_success:
|
if diff_pdf_success:
|
||||||
result_pdf = pj(work_folder_modified, f'merge_diff.pdf') # get pdf path
|
result_pdf = pj(work_folder_modified, f'merge_diff.pdf') # get pdf path
|
||||||
promote_file_to_downloadzone(result_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
|
promote_file_to_downloadzone(result_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
|
||||||
if modified_pdf_success:
|
if modified_pdf_success:
|
||||||
yield from update_ui_lastest_msg(f'转化PDF编译已经成功, 正在尝试生成对比PDF, 请稍候 ...', chatbot, history) # 刷新Gradio前端界面
|
yield from update_ui_latest_msg(f'转化PDF编译已经成功, 正在尝试生成对比PDF, 请稍候 ...', chatbot, history) # 刷新Gradio前端界面
|
||||||
result_pdf = pj(work_folder_modified, f'{main_file_modified}.pdf') # get pdf path
|
result_pdf = pj(work_folder_modified, f'{main_file_modified}.pdf') # get pdf path
|
||||||
origin_pdf = pj(work_folder_original, f'{main_file_original}.pdf') # get pdf path
|
origin_pdf = pj(work_folder_original, f'{main_file_original}.pdf') # get pdf path
|
||||||
if os.path.exists(pj(work_folder, '..', 'translation')):
|
if os.path.exists(pj(work_folder, '..', 'translation')):
|
||||||
@@ -436,7 +472,7 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
|||||||
work_folder_modified=work_folder_modified,
|
work_folder_modified=work_folder_modified,
|
||||||
fixed_line=fixed_line
|
fixed_line=fixed_line
|
||||||
)
|
)
|
||||||
yield from update_ui_lastest_msg(f'由于最为关键的转化PDF编译失败, 将根据报错信息修正tex源文件并重试, 当前报错的latex代码处于第{buggy_lines}行 ...', chatbot, history) # 刷新Gradio前端界面
|
yield from update_ui_latest_msg(f'由于最为关键的转化PDF编译失败, 将根据报错信息修正tex源文件并重试, 当前报错的latex代码处于第{buggy_lines}行 ...', chatbot, history) # 刷新Gradio前端界面
|
||||||
if not can_retry: break
|
if not can_retry: break
|
||||||
|
|
||||||
return False # 失败啦
|
return False # 失败啦
|
||||||
|
|||||||
@@ -168,7 +168,7 @@ def set_forbidden_text(text, mask, pattern, flags=0):
|
|||||||
def reverse_forbidden_text(text, mask, pattern, flags=0, forbid_wrapper=True):
|
def reverse_forbidden_text(text, mask, pattern, flags=0, forbid_wrapper=True):
|
||||||
"""
|
"""
|
||||||
Move area out of preserve area (make text editable for GPT)
|
Move area out of preserve area (make text editable for GPT)
|
||||||
count the number of the braces so as to catch compelete text area.
|
count the number of the braces so as to catch complete text area.
|
||||||
e.g.
|
e.g.
|
||||||
\begin{abstract} blablablablablabla. \end{abstract}
|
\begin{abstract} blablablablablabla. \end{abstract}
|
||||||
"""
|
"""
|
||||||
@@ -188,7 +188,7 @@ def reverse_forbidden_text(text, mask, pattern, flags=0, forbid_wrapper=True):
|
|||||||
def set_forbidden_text_careful_brace(text, mask, pattern, flags=0):
|
def set_forbidden_text_careful_brace(text, mask, pattern, flags=0):
|
||||||
"""
|
"""
|
||||||
Add a preserve text area in this paper (text become untouchable for GPT).
|
Add a preserve text area in this paper (text become untouchable for GPT).
|
||||||
count the number of the braces so as to catch compelete text area.
|
count the number of the braces so as to catch complete text area.
|
||||||
e.g.
|
e.g.
|
||||||
\caption{blablablablabla\texbf{blablabla}blablabla.}
|
\caption{blablablablabla\texbf{blablabla}blablabla.}
|
||||||
"""
|
"""
|
||||||
@@ -214,7 +214,7 @@ def reverse_forbidden_text_careful_brace(
|
|||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
Move area out of preserve area (make text editable for GPT)
|
Move area out of preserve area (make text editable for GPT)
|
||||||
count the number of the braces so as to catch compelete text area.
|
count the number of the braces so as to catch complete text area.
|
||||||
e.g.
|
e.g.
|
||||||
\caption{blablablablabla\texbf{blablabla}blablabla.}
|
\caption{blablablablabla\texbf{blablabla}blablabla.}
|
||||||
"""
|
"""
|
||||||
@@ -287,23 +287,23 @@ def find_main_tex_file(file_manifest, mode):
|
|||||||
在多Tex文档中,寻找主文件,必须包含documentclass,返回找到的第一个。
|
在多Tex文档中,寻找主文件,必须包含documentclass,返回找到的第一个。
|
||||||
P.S. 但愿没人把latex模板放在里面传进来 (6.25 加入判定latex模板的代码)
|
P.S. 但愿没人把latex模板放在里面传进来 (6.25 加入判定latex模板的代码)
|
||||||
"""
|
"""
|
||||||
canidates = []
|
candidates = []
|
||||||
for texf in file_manifest:
|
for texf in file_manifest:
|
||||||
if os.path.basename(texf).startswith("merge"):
|
if os.path.basename(texf).startswith("merge"):
|
||||||
continue
|
continue
|
||||||
with open(texf, "r", encoding="utf8", errors="ignore") as f:
|
with open(texf, "r", encoding="utf8", errors="ignore") as f:
|
||||||
file_content = f.read()
|
file_content = f.read()
|
||||||
if r"\documentclass" in file_content:
|
if r"\documentclass" in file_content:
|
||||||
canidates.append(texf)
|
candidates.append(texf)
|
||||||
else:
|
else:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
if len(canidates) == 0:
|
if len(candidates) == 0:
|
||||||
raise RuntimeError("无法找到一个主Tex文件(包含documentclass关键字)")
|
raise RuntimeError("无法找到一个主Tex文件(包含documentclass关键字)")
|
||||||
elif len(canidates) == 1:
|
elif len(candidates) == 1:
|
||||||
return canidates[0]
|
return candidates[0]
|
||||||
else: # if len(canidates) >= 2 通过一些Latex模板中常见(但通常不会出现在正文)的单词,对不同latex源文件扣分,取评分最高者返回
|
else: # if len(candidates) >= 2 通过一些Latex模板中常见(但通常不会出现在正文)的单词,对不同latex源文件扣分,取评分最高者返回
|
||||||
canidates_score = []
|
candidates_score = []
|
||||||
# 给出一些判定模板文档的词作为扣分项
|
# 给出一些判定模板文档的词作为扣分项
|
||||||
unexpected_words = [
|
unexpected_words = [
|
||||||
"\\LaTeX",
|
"\\LaTeX",
|
||||||
@@ -316,19 +316,19 @@ def find_main_tex_file(file_manifest, mode):
|
|||||||
"reviewers",
|
"reviewers",
|
||||||
]
|
]
|
||||||
expected_words = ["\\input", "\\ref", "\\cite"]
|
expected_words = ["\\input", "\\ref", "\\cite"]
|
||||||
for texf in canidates:
|
for texf in candidates:
|
||||||
canidates_score.append(0)
|
candidates_score.append(0)
|
||||||
with open(texf, "r", encoding="utf8", errors="ignore") as f:
|
with open(texf, "r", encoding="utf8", errors="ignore") as f:
|
||||||
file_content = f.read()
|
file_content = f.read()
|
||||||
file_content = rm_comments(file_content)
|
file_content = rm_comments(file_content)
|
||||||
for uw in unexpected_words:
|
for uw in unexpected_words:
|
||||||
if uw in file_content:
|
if uw in file_content:
|
||||||
canidates_score[-1] -= 1
|
candidates_score[-1] -= 1
|
||||||
for uw in expected_words:
|
for uw in expected_words:
|
||||||
if uw in file_content:
|
if uw in file_content:
|
||||||
canidates_score[-1] += 1
|
candidates_score[-1] += 1
|
||||||
select = np.argmax(canidates_score) # 取评分最高者返回
|
select = np.argmax(candidates_score) # 取评分最高者返回
|
||||||
return canidates[select]
|
return candidates[select]
|
||||||
|
|
||||||
|
|
||||||
def rm_comments(main_file):
|
def rm_comments(main_file):
|
||||||
@@ -374,7 +374,7 @@ def find_tex_file_ignore_case(fp):
|
|||||||
|
|
||||||
def merge_tex_files_(project_foler, main_file, mode):
|
def merge_tex_files_(project_foler, main_file, mode):
|
||||||
"""
|
"""
|
||||||
Merge Tex project recrusively
|
Merge Tex project recursively
|
||||||
"""
|
"""
|
||||||
main_file = rm_comments(main_file)
|
main_file = rm_comments(main_file)
|
||||||
for s in reversed([q for q in re.finditer(r"\\input\{(.*?)\}", main_file, re.M)]):
|
for s in reversed([q for q in re.finditer(r"\\input\{(.*?)\}", main_file, re.M)]):
|
||||||
@@ -429,7 +429,7 @@ def find_title_and_abs(main_file):
|
|||||||
|
|
||||||
def merge_tex_files(project_foler, main_file, mode):
|
def merge_tex_files(project_foler, main_file, mode):
|
||||||
"""
|
"""
|
||||||
Merge Tex project recrusively
|
Merge Tex project recursively
|
||||||
P.S. 顺便把CTEX塞进去以支持中文
|
P.S. 顺便把CTEX塞进去以支持中文
|
||||||
P.S. 顺便把Latex的注释去除
|
P.S. 顺便把Latex的注释去除
|
||||||
"""
|
"""
|
||||||
|
|||||||
@@ -1,13 +1,15 @@
|
|||||||
from toolbox import update_ui, get_conf, promote_file_to_downloadzone, update_ui_lastest_msg, generate_file_link
|
from toolbox import update_ui, get_conf, promote_file_to_downloadzone, update_ui_latest_msg, generate_file_link
|
||||||
from shared_utils.docker_as_service_api import stream_daas
|
from shared_utils.docker_as_service_api import stream_daas
|
||||||
from shared_utils.docker_as_service_api import DockerServiceApiComModel
|
from shared_utils.docker_as_service_api import DockerServiceApiComModel
|
||||||
|
import random
|
||||||
|
|
||||||
def download_video(video_id, only_audio, user_name, chatbot, history):
|
def download_video(video_id, only_audio, user_name, chatbot, history):
|
||||||
from toolbox import get_log_folder
|
from toolbox import get_log_folder
|
||||||
chatbot.append([None, "Processing..."])
|
chatbot.append([None, "Processing..."])
|
||||||
yield from update_ui(chatbot, history)
|
yield from update_ui(chatbot, history)
|
||||||
client_command = f'{video_id} --audio-only' if only_audio else video_id
|
client_command = f'{video_id} --audio-only' if only_audio else video_id
|
||||||
server_url = get_conf('DAAS_SERVER_URL')
|
server_urls = get_conf('DAAS_SERVER_URLS')
|
||||||
|
server_url = random.choice(server_urls)
|
||||||
docker_service_api_com_model = DockerServiceApiComModel(client_command=client_command)
|
docker_service_api_com_model = DockerServiceApiComModel(client_command=client_command)
|
||||||
save_file_dir = get_log_folder(user_name, plugin_name='media_downloader')
|
save_file_dir = get_log_folder(user_name, plugin_name='media_downloader')
|
||||||
for output_manifest in stream_daas(docker_service_api_com_model, server_url, save_file_dir):
|
for output_manifest in stream_daas(docker_service_api_com_model, server_url, save_file_dir):
|
||||||
@@ -23,7 +25,7 @@ def download_video(video_id, only_audio, user_name, chatbot, history):
|
|||||||
status_buf += "\n\n"
|
status_buf += "\n\n"
|
||||||
status_buf += "DaaS file attach: \n\n"
|
status_buf += "DaaS file attach: \n\n"
|
||||||
status_buf += str(output_manifest['server_file_attach'])
|
status_buf += str(output_manifest['server_file_attach'])
|
||||||
yield from update_ui_lastest_msg(status_buf, chatbot, history)
|
yield from update_ui_latest_msg(status_buf, chatbot, history)
|
||||||
|
|
||||||
return output_manifest['server_file_attach']
|
return output_manifest['server_file_attach']
|
||||||
|
|
||||||
@@ -31,7 +33,9 @@ def download_video(video_id, only_audio, user_name, chatbot, history):
|
|||||||
def search_videos(keywords):
|
def search_videos(keywords):
|
||||||
from toolbox import get_log_folder
|
from toolbox import get_log_folder
|
||||||
client_command = keywords
|
client_command = keywords
|
||||||
server_url = get_conf('DAAS_SERVER_URL').replace('stream', 'search')
|
server_urls = get_conf('DAAS_SERVER_URLS')
|
||||||
|
server_url = random.choice(server_urls)
|
||||||
|
server_url = server_url.replace('stream', 'search')
|
||||||
docker_service_api_com_model = DockerServiceApiComModel(client_command=client_command)
|
docker_service_api_com_model = DockerServiceApiComModel(client_command=client_command)
|
||||||
save_file_dir = get_log_folder("default_user", plugin_name='media_downloader')
|
save_file_dir = get_log_folder("default_user", plugin_name='media_downloader')
|
||||||
for output_manifest in stream_daas(docker_service_api_com_model, server_url, save_file_dir):
|
for output_manifest in stream_daas(docker_service_api_com_model, server_url, save_file_dir):
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
from pydantic import BaseModel, Field
|
from pydantic import BaseModel, Field
|
||||||
from typing import List
|
from typing import List
|
||||||
from toolbox import update_ui_lastest_msg, disable_auto_promotion
|
from toolbox import update_ui_latest_msg, disable_auto_promotion
|
||||||
from toolbox import CatchException, update_ui, get_conf, select_api_key, get_log_folder
|
from toolbox import CatchException, update_ui, get_conf, select_api_key, get_log_folder
|
||||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||||
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
|
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
|
||||||
|
|||||||
@@ -113,7 +113,7 @@ def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_fi
|
|||||||
return [txt]
|
return [txt]
|
||||||
else:
|
else:
|
||||||
# raw_token_num > TOKEN_LIMIT_PER_FRAGMENT
|
# raw_token_num > TOKEN_LIMIT_PER_FRAGMENT
|
||||||
# find a smooth token limit to achieve even seperation
|
# find a smooth token limit to achieve even separation
|
||||||
count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
|
count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
|
||||||
token_limit_smooth = raw_token_num // count + count
|
token_limit_smooth = raw_token_num // count + count
|
||||||
return breakdown_text_to_satisfy_token_limit(txt, limit=token_limit_smooth, llm_model=llm_kwargs['llm_model'])
|
return breakdown_text_to_satisfy_token_limit(txt, limit=token_limit_smooth, llm_model=llm_kwargs['llm_model'])
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
import os
|
import os
|
||||||
from toolbox import CatchException, report_exception, get_log_folder, gen_time_str, check_packages
|
from toolbox import CatchException, report_exception, get_log_folder, gen_time_str, check_packages
|
||||||
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
|
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_latest_msg, disable_auto_promotion
|
||||||
from toolbox import write_history_to_file, promote_file_to_downloadzone, get_conf, extract_archive
|
from toolbox import write_history_to_file, promote_file_to_downloadzone, get_conf, extract_archive
|
||||||
from crazy_functions.pdf_fns.parse_pdf import parse_pdf, translate_pdf
|
from crazy_functions.pdf_fns.parse_pdf import parse_pdf, translate_pdf
|
||||||
|
|
||||||
|
|||||||
@@ -6,75 +6,128 @@ from crazy_functions.crazy_utils import get_files_from_everything
|
|||||||
from shared_utils.colorful import *
|
from shared_utils.colorful import *
|
||||||
from loguru import logger
|
from loguru import logger
|
||||||
import os
|
import os
|
||||||
|
import requests
|
||||||
import time
|
import time
|
||||||
|
|
||||||
def refresh_key(doc2x_api_key):
|
|
||||||
import requests, json
|
|
||||||
url = "https://api.doc2x.noedgeai.com/api/token/refresh"
|
|
||||||
res = requests.post(
|
|
||||||
url,
|
|
||||||
headers={"Authorization": "Bearer " + doc2x_api_key}
|
|
||||||
)
|
|
||||||
res_json = []
|
|
||||||
if res.status_code == 200:
|
|
||||||
decoded = res.content.decode("utf-8")
|
|
||||||
res_json = json.loads(decoded)
|
|
||||||
doc2x_api_key = res_json['data']['token']
|
|
||||||
else:
|
|
||||||
raise RuntimeError(format("[ERROR] status code: %d, body: %s" % (res.status_code, res.text)))
|
|
||||||
return doc2x_api_key
|
|
||||||
|
|
||||||
|
def retry_request(max_retries=3, delay=3):
|
||||||
|
"""
|
||||||
|
Decorator for retrying HTTP requests
|
||||||
|
Args:
|
||||||
|
max_retries: Maximum number of retry attempts
|
||||||
|
delay: Delay between retries in seconds
|
||||||
|
"""
|
||||||
|
|
||||||
|
def decorator(func):
|
||||||
|
def wrapper(*args, **kwargs):
|
||||||
|
for attempt in range(max_retries):
|
||||||
|
try:
|
||||||
|
return func(*args, **kwargs)
|
||||||
|
except Exception as e:
|
||||||
|
if attempt < max_retries - 1:
|
||||||
|
logger.error(
|
||||||
|
f"Request failed, retrying... ({attempt + 1}/{max_retries}) Error: {e}"
|
||||||
|
)
|
||||||
|
time.sleep(delay)
|
||||||
|
continue
|
||||||
|
raise e
|
||||||
|
return None
|
||||||
|
|
||||||
|
return wrapper
|
||||||
|
|
||||||
|
return decorator
|
||||||
|
|
||||||
|
|
||||||
|
@retry_request()
|
||||||
|
def make_request(method, url, **kwargs):
|
||||||
|
"""
|
||||||
|
Make HTTP request with retry mechanism
|
||||||
|
"""
|
||||||
|
return requests.request(method, url, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
def doc2x_api_response_status(response, uid=""):
|
||||||
|
"""
|
||||||
|
Check the status of Doc2x API response
|
||||||
|
Args:
|
||||||
|
response_data: Response object from Doc2x API
|
||||||
|
"""
|
||||||
|
response_json = response.json()
|
||||||
|
response_data = response_json.get("data", {})
|
||||||
|
code = response_json.get("code", "Unknown")
|
||||||
|
meg = response_data.get("message", response_json)
|
||||||
|
trace_id = response.headers.get("trace-id", "Failed to get trace-id")
|
||||||
|
if response.status_code != 200:
|
||||||
|
raise RuntimeError(
|
||||||
|
f"Doc2x return an error:\nTrace ID: {trace_id} {uid}\n{response.status_code} - {response_json}"
|
||||||
|
)
|
||||||
|
if code in ["parse_page_limit_exceeded", "parse_concurrency_limit"]:
|
||||||
|
raise RuntimeError(
|
||||||
|
f"Reached the limit of Doc2x:\nTrace ID: {trace_id} {uid}\n{code} - {meg}"
|
||||||
|
)
|
||||||
|
if code not in ["ok", "success"]:
|
||||||
|
raise RuntimeError(
|
||||||
|
f"Doc2x return an error:\nTrace ID: {trace_id} {uid}\n{code} - {meg}"
|
||||||
|
)
|
||||||
|
return response_data
|
||||||
|
|
||||||
|
|
||||||
def 解析PDF_DOC2X_转Latex(pdf_file_path):
|
def 解析PDF_DOC2X_转Latex(pdf_file_path):
|
||||||
zip_file_path, unzipped_folder = 解析PDF_DOC2X(pdf_file_path, format='tex')
|
zip_file_path, unzipped_folder = 解析PDF_DOC2X(pdf_file_path, format="tex")
|
||||||
return unzipped_folder
|
return unzipped_folder
|
||||||
|
|
||||||
|
|
||||||
def 解析PDF_DOC2X(pdf_file_path, format='tex'):
|
def 解析PDF_DOC2X(pdf_file_path, format="tex"):
|
||||||
"""
|
"""
|
||||||
format: 'tex', 'md', 'docx'
|
format: 'tex', 'md', 'docx'
|
||||||
"""
|
"""
|
||||||
import requests, json, os
|
|
||||||
DOC2X_API_KEY = get_conf('DOC2X_API_KEY')
|
DOC2X_API_KEY = get_conf("DOC2X_API_KEY")
|
||||||
latex_dir = get_log_folder(plugin_name="pdf_ocr_latex")
|
latex_dir = get_log_folder(plugin_name="pdf_ocr_latex")
|
||||||
markdown_dir = get_log_folder(plugin_name="pdf_ocr")
|
markdown_dir = get_log_folder(plugin_name="pdf_ocr")
|
||||||
doc2x_api_key = DOC2X_API_KEY
|
doc2x_api_key = DOC2X_API_KEY
|
||||||
|
|
||||||
|
# < ------ 第1步:预上传获取URL,然后上传文件 ------ >
|
||||||
|
logger.info("Doc2x 上传文件:预上传获取URL")
|
||||||
|
res = make_request(
|
||||||
|
"POST",
|
||||||
|
"https://v2.doc2x.noedgeai.com/api/v2/parse/preupload",
|
||||||
|
headers={"Authorization": "Bearer " + doc2x_api_key},
|
||||||
|
timeout=15,
|
||||||
|
)
|
||||||
|
res_data = doc2x_api_response_status(res)
|
||||||
|
upload_url = res_data["url"]
|
||||||
|
uuid = res_data["uid"]
|
||||||
|
|
||||||
# < ------ 第1步:上传 ------ >
|
logger.info("Doc2x 上传文件:上传文件")
|
||||||
logger.info("Doc2x 第1步:上传")
|
with open(pdf_file_path, "rb") as file:
|
||||||
with open(pdf_file_path, 'rb') as file:
|
res = make_request("PUT", upload_url, data=file, timeout=60)
|
||||||
res = requests.post(
|
res.raise_for_status()
|
||||||
"https://v2.doc2x.noedgeai.com/api/v2/parse/pdf",
|
|
||||||
headers={"Authorization": "Bearer " + doc2x_api_key},
|
|
||||||
data=file
|
|
||||||
)
|
|
||||||
# res_json = []
|
|
||||||
if res.status_code == 200:
|
|
||||||
res_json = res.json()
|
|
||||||
else:
|
|
||||||
raise RuntimeError(f"Doc2x return an error: {res.json()}")
|
|
||||||
uuid = res_json['data']['uid']
|
|
||||||
|
|
||||||
# < ------ 第2步:轮询等待 ------ >
|
# < ------ 第2步:轮询等待 ------ >
|
||||||
logger.info("Doc2x 第2步:轮询等待")
|
logger.info("Doc2x 处理文件中:轮询等待")
|
||||||
params = {'uid': uuid}
|
params = {"uid": uuid}
|
||||||
while True:
|
max_attempts = 60
|
||||||
res = requests.get(
|
attempt = 0
|
||||||
'https://v2.doc2x.noedgeai.com/api/v2/parse/status',
|
while attempt < max_attempts:
|
||||||
|
res = make_request(
|
||||||
|
"GET",
|
||||||
|
"https://v2.doc2x.noedgeai.com/api/v2/parse/status",
|
||||||
headers={"Authorization": "Bearer " + doc2x_api_key},
|
headers={"Authorization": "Bearer " + doc2x_api_key},
|
||||||
params=params
|
params=params,
|
||||||
|
timeout=15,
|
||||||
)
|
)
|
||||||
res_json = res.json()
|
res_data = doc2x_api_response_status(res)
|
||||||
if res_json['data']['status'] == "success":
|
if res_data["status"] == "success":
|
||||||
break
|
break
|
||||||
elif res_json['data']['status'] == "processing":
|
elif res_data["status"] == "processing":
|
||||||
time.sleep(3)
|
time.sleep(5)
|
||||||
logger.info(f"Doc2x is processing at {res_json['data']['progress']}%")
|
logger.info(f"Doc2x is processing at {res_data['progress']}%")
|
||||||
elif res_json['data']['status'] == "failed":
|
attempt += 1
|
||||||
raise RuntimeError(f"Doc2x return an error: {res_json}")
|
else:
|
||||||
|
raise RuntimeError(f"Doc2x return an error: {res_data}")
|
||||||
|
if attempt >= max_attempts:
|
||||||
|
raise RuntimeError("Doc2x processing timeout after maximum attempts")
|
||||||
|
|
||||||
# < ------ 第3步:提交转化 ------ >
|
# < ------ 第3步:提交转化 ------ >
|
||||||
logger.info("Doc2x 第3步:提交转化")
|
logger.info("Doc2x 第3步:提交转化")
|
||||||
@@ -84,42 +137,44 @@ def 解析PDF_DOC2X(pdf_file_path, format='tex'):
|
|||||||
"formula_mode": "dollar",
|
"formula_mode": "dollar",
|
||||||
"filename": "output"
|
"filename": "output"
|
||||||
}
|
}
|
||||||
res = requests.post(
|
res = make_request(
|
||||||
'https://v2.doc2x.noedgeai.com/api/v2/convert/parse',
|
"POST",
|
||||||
|
"https://v2.doc2x.noedgeai.com/api/v2/convert/parse",
|
||||||
headers={"Authorization": "Bearer " + doc2x_api_key},
|
headers={"Authorization": "Bearer " + doc2x_api_key},
|
||||||
json=data
|
json=data,
|
||||||
|
timeout=15,
|
||||||
)
|
)
|
||||||
if res.status_code == 200:
|
doc2x_api_response_status(res, uid=f"uid: {uuid}")
|
||||||
res_json = res.json()
|
|
||||||
else:
|
|
||||||
raise RuntimeError(f"Doc2x return an error: {res.json()}")
|
|
||||||
|
|
||||||
|
|
||||||
# < ------ 第4步:等待结果 ------ >
|
# < ------ 第4步:等待结果 ------ >
|
||||||
logger.info("Doc2x 第4步:等待结果")
|
logger.info("Doc2x 第4步:等待结果")
|
||||||
params = {'uid': uuid}
|
params = {"uid": uuid}
|
||||||
while True:
|
max_attempts = 36
|
||||||
res = requests.get(
|
attempt = 0
|
||||||
'https://v2.doc2x.noedgeai.com/api/v2/convert/parse/result',
|
while attempt < max_attempts:
|
||||||
|
res = make_request(
|
||||||
|
"GET",
|
||||||
|
"https://v2.doc2x.noedgeai.com/api/v2/convert/parse/result",
|
||||||
headers={"Authorization": "Bearer " + doc2x_api_key},
|
headers={"Authorization": "Bearer " + doc2x_api_key},
|
||||||
params=params
|
params=params,
|
||||||
|
timeout=15,
|
||||||
)
|
)
|
||||||
res_json = res.json()
|
res_data = doc2x_api_response_status(res, uid=f"uid: {uuid}")
|
||||||
if res_json['data']['status'] == "success":
|
if res_data["status"] == "success":
|
||||||
break
|
break
|
||||||
elif res_json['data']['status'] == "processing":
|
elif res_data["status"] == "processing":
|
||||||
time.sleep(3)
|
time.sleep(3)
|
||||||
logger.info(f"Doc2x still processing")
|
logger.info("Doc2x still processing to convert file")
|
||||||
elif res_json['data']['status'] == "failed":
|
attempt += 1
|
||||||
raise RuntimeError(f"Doc2x return an error: {res_json}")
|
if attempt >= max_attempts:
|
||||||
|
raise RuntimeError("Doc2x conversion timeout after maximum attempts")
|
||||||
|
|
||||||
# < ------ 第5步:最后的处理 ------ >
|
# < ------ 第5步:最后的处理 ------ >
|
||||||
logger.info("Doc2x 第5步:最后的处理")
|
logger.info("Doc2x 第5步:下载转换后的文件")
|
||||||
|
|
||||||
if format=='tex':
|
if format == "tex":
|
||||||
target_path = latex_dir
|
target_path = latex_dir
|
||||||
if format=='md':
|
if format == "md":
|
||||||
target_path = markdown_dir
|
target_path = markdown_dir
|
||||||
os.makedirs(target_path, exist_ok=True)
|
os.makedirs(target_path, exist_ok=True)
|
||||||
|
|
||||||
@@ -127,17 +182,18 @@ def 解析PDF_DOC2X(pdf_file_path, format='tex'):
|
|||||||
# < ------ 下载 ------ >
|
# < ------ 下载 ------ >
|
||||||
for attempt in range(max_attempt):
|
for attempt in range(max_attempt):
|
||||||
try:
|
try:
|
||||||
result_url = res_json['data']['url']
|
result_url = res_data["url"]
|
||||||
res = requests.get(result_url)
|
res = make_request("GET", result_url, timeout=60)
|
||||||
zip_path = os.path.join(target_path, gen_time_str() + '.zip')
|
zip_path = os.path.join(target_path, gen_time_str() + ".zip")
|
||||||
unzip_path = os.path.join(target_path, gen_time_str())
|
unzip_path = os.path.join(target_path, gen_time_str())
|
||||||
if res.status_code == 200:
|
if res.status_code == 200:
|
||||||
with open(zip_path, "wb") as f: f.write(res.content)
|
with open(zip_path, "wb") as f:
|
||||||
|
f.write(res.content)
|
||||||
else:
|
else:
|
||||||
raise RuntimeError(f"Doc2x return an error: {res.json()}")
|
raise RuntimeError(f"Doc2x return an error: {res.json()}")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
if attempt < max_attempt - 1:
|
if attempt < max_attempt - 1:
|
||||||
logger.error(f"Failed to download latex file, retrying... {e}")
|
logger.error(f"Failed to download uid = {uuid} file, retrying... {e}")
|
||||||
time.sleep(3)
|
time.sleep(3)
|
||||||
continue
|
continue
|
||||||
else:
|
else:
|
||||||
@@ -145,22 +201,31 @@ def 解析PDF_DOC2X(pdf_file_path, format='tex'):
|
|||||||
|
|
||||||
# < ------ 解压 ------ >
|
# < ------ 解压 ------ >
|
||||||
import zipfile
|
import zipfile
|
||||||
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
||||||
zip_ref.extractall(unzip_path)
|
zip_ref.extractall(unzip_path)
|
||||||
return zip_path, unzip_path
|
return zip_path, unzip_path
|
||||||
|
|
||||||
|
|
||||||
def 解析PDF_DOC2X_单文件(fp, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, DOC2X_API_KEY, user_request):
|
def 解析PDF_DOC2X_单文件(
|
||||||
|
fp,
|
||||||
|
project_folder,
|
||||||
|
llm_kwargs,
|
||||||
|
plugin_kwargs,
|
||||||
|
chatbot,
|
||||||
|
history,
|
||||||
|
system_prompt,
|
||||||
|
DOC2X_API_KEY,
|
||||||
|
user_request,
|
||||||
|
):
|
||||||
def pdf2markdown(filepath):
|
def pdf2markdown(filepath):
|
||||||
chatbot.append((None, f"Doc2x 解析中"))
|
chatbot.append((None, f"Doc2x 解析中"))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
md_zip_path, unzipped_folder = 解析PDF_DOC2X(filepath, format='md')
|
md_zip_path, unzipped_folder = 解析PDF_DOC2X(filepath, format="md")
|
||||||
|
|
||||||
promote_file_to_downloadzone(md_zip_path, chatbot=chatbot)
|
promote_file_to_downloadzone(md_zip_path, chatbot=chatbot)
|
||||||
chatbot.append((None, f"完成解析 {md_zip_path} ..."))
|
chatbot.append((None, f"完成解析 {md_zip_path} ..."))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
return md_zip_path
|
return md_zip_path
|
||||||
|
|
||||||
def deliver_to_markdown_plugin(md_zip_path, user_request):
|
def deliver_to_markdown_plugin(md_zip_path, user_request):
|
||||||
@@ -174,77 +239,97 @@ def 解析PDF_DOC2X_单文件(fp, project_folder, llm_kwargs, plugin_kwargs, cha
|
|||||||
os.makedirs(target_path_base, exist_ok=True)
|
os.makedirs(target_path_base, exist_ok=True)
|
||||||
shutil.copyfile(md_zip_path, this_file_path)
|
shutil.copyfile(md_zip_path, this_file_path)
|
||||||
ex_folder = this_file_path + ".extract"
|
ex_folder = this_file_path + ".extract"
|
||||||
extract_archive(
|
extract_archive(file_path=this_file_path, dest_dir=ex_folder)
|
||||||
file_path=this_file_path, dest_dir=ex_folder
|
|
||||||
)
|
|
||||||
|
|
||||||
# edit markdown files
|
# edit markdown files
|
||||||
success, file_manifest, project_folder = get_files_from_everything(ex_folder, type='.md')
|
success, file_manifest, project_folder = get_files_from_everything(
|
||||||
|
ex_folder, type=".md"
|
||||||
|
)
|
||||||
for generated_fp in file_manifest:
|
for generated_fp in file_manifest:
|
||||||
# 修正一些公式问题
|
# 修正一些公式问题
|
||||||
with open(generated_fp, 'r', encoding='utf8') as f:
|
with open(generated_fp, "r", encoding="utf8") as f:
|
||||||
content = f.read()
|
content = f.read()
|
||||||
# 将公式中的\[ \]替换成$$
|
# 将公式中的\[ \]替换成$$
|
||||||
content = content.replace(r'\[', r'$$').replace(r'\]', r'$$')
|
content = content.replace(r"\[", r"$$").replace(r"\]", r"$$")
|
||||||
# 将公式中的\( \)替换成$
|
# 将公式中的\( \)替换成$
|
||||||
content = content.replace(r'\(', r'$').replace(r'\)', r'$')
|
content = content.replace(r"\(", r"$").replace(r"\)", r"$")
|
||||||
content = content.replace('```markdown', '\n').replace('```', '\n')
|
content = content.replace("```markdown", "\n").replace("```", "\n")
|
||||||
with open(generated_fp, 'w', encoding='utf8') as f:
|
with open(generated_fp, "w", encoding="utf8") as f:
|
||||||
f.write(content)
|
f.write(content)
|
||||||
promote_file_to_downloadzone(generated_fp, chatbot=chatbot)
|
promote_file_to_downloadzone(generated_fp, chatbot=chatbot)
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
# 生成在线预览html
|
# 生成在线预览html
|
||||||
file_name = '在线预览翻译(原文)' + gen_time_str() + '.html'
|
file_name = "在线预览翻译(原文)" + gen_time_str() + ".html"
|
||||||
preview_fp = os.path.join(ex_folder, file_name)
|
preview_fp = os.path.join(ex_folder, file_name)
|
||||||
from shared_utils.advanced_markdown_format import markdown_convertion_for_file
|
from shared_utils.advanced_markdown_format import (
|
||||||
|
markdown_convertion_for_file,
|
||||||
|
)
|
||||||
|
|
||||||
with open(generated_fp, "r", encoding="utf-8") as f:
|
with open(generated_fp, "r", encoding="utf-8") as f:
|
||||||
md = f.read()
|
md = f.read()
|
||||||
# # Markdown中使用不标准的表格,需要在表格前加上一个emoji,以便公式渲染
|
# # Markdown中使用不标准的表格,需要在表格前加上一个emoji,以便公式渲染
|
||||||
# md = re.sub(r'^<table>', r'.<table>', md, flags=re.MULTILINE)
|
# md = re.sub(r'^<table>', r'.<table>', md, flags=re.MULTILINE)
|
||||||
html = markdown_convertion_for_file(md)
|
html = markdown_convertion_for_file(md)
|
||||||
with open(preview_fp, "w", encoding="utf-8") as f: f.write(html)
|
with open(preview_fp, "w", encoding="utf-8") as f:
|
||||||
|
f.write(html)
|
||||||
chatbot.append([None, f"生成在线预览:{generate_file_link([preview_fp])}"])
|
chatbot.append([None, f"生成在线预览:{generate_file_link([preview_fp])}"])
|
||||||
promote_file_to_downloadzone(preview_fp, chatbot=chatbot)
|
promote_file_to_downloadzone(preview_fp, chatbot=chatbot)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
chatbot.append((None, f"调用Markdown插件 {ex_folder} ..."))
|
chatbot.append((None, f"调用Markdown插件 {ex_folder} ..."))
|
||||||
plugin_kwargs['markdown_expected_output_dir'] = ex_folder
|
plugin_kwargs["markdown_expected_output_dir"] = ex_folder
|
||||||
|
|
||||||
translated_f_name = 'translated_markdown.md'
|
translated_f_name = "translated_markdown.md"
|
||||||
generated_fp = plugin_kwargs['markdown_expected_output_path'] = os.path.join(ex_folder, translated_f_name)
|
generated_fp = plugin_kwargs["markdown_expected_output_path"] = os.path.join(
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
ex_folder, translated_f_name
|
||||||
yield from Markdown英译中(ex_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
yield from Markdown英译中(
|
||||||
|
ex_folder,
|
||||||
|
llm_kwargs,
|
||||||
|
plugin_kwargs,
|
||||||
|
chatbot,
|
||||||
|
history,
|
||||||
|
system_prompt,
|
||||||
|
user_request,
|
||||||
|
)
|
||||||
if os.path.exists(generated_fp):
|
if os.path.exists(generated_fp):
|
||||||
# 修正一些公式问题
|
# 修正一些公式问题
|
||||||
with open(generated_fp, 'r', encoding='utf8') as f: content = f.read()
|
with open(generated_fp, "r", encoding="utf8") as f:
|
||||||
content = content.replace('```markdown', '\n').replace('```', '\n')
|
content = f.read()
|
||||||
|
content = content.replace("```markdown", "\n").replace("```", "\n")
|
||||||
# Markdown中使用不标准的表格,需要在表格前加上一个emoji,以便公式渲染
|
# Markdown中使用不标准的表格,需要在表格前加上一个emoji,以便公式渲染
|
||||||
# content = re.sub(r'^<table>', r'.<table>', content, flags=re.MULTILINE)
|
# content = re.sub(r'^<table>', r'.<table>', content, flags=re.MULTILINE)
|
||||||
with open(generated_fp, 'w', encoding='utf8') as f: f.write(content)
|
with open(generated_fp, "w", encoding="utf8") as f:
|
||||||
|
f.write(content)
|
||||||
# 生成在线预览html
|
# 生成在线预览html
|
||||||
file_name = '在线预览翻译' + gen_time_str() + '.html'
|
file_name = "在线预览翻译" + gen_time_str() + ".html"
|
||||||
preview_fp = os.path.join(ex_folder, file_name)
|
preview_fp = os.path.join(ex_folder, file_name)
|
||||||
from shared_utils.advanced_markdown_format import markdown_convertion_for_file
|
from shared_utils.advanced_markdown_format import (
|
||||||
|
markdown_convertion_for_file,
|
||||||
|
)
|
||||||
|
|
||||||
with open(generated_fp, "r", encoding="utf-8") as f:
|
with open(generated_fp, "r", encoding="utf-8") as f:
|
||||||
md = f.read()
|
md = f.read()
|
||||||
html = markdown_convertion_for_file(md)
|
html = markdown_convertion_for_file(md)
|
||||||
with open(preview_fp, "w", encoding="utf-8") as f: f.write(html)
|
with open(preview_fp, "w", encoding="utf-8") as f:
|
||||||
|
f.write(html)
|
||||||
promote_file_to_downloadzone(preview_fp, chatbot=chatbot)
|
promote_file_to_downloadzone(preview_fp, chatbot=chatbot)
|
||||||
# 生成包含图片的压缩包
|
# 生成包含图片的压缩包
|
||||||
dest_folder = get_log_folder(chatbot.get_user())
|
dest_folder = get_log_folder(chatbot.get_user())
|
||||||
zip_name = '翻译后的带图文档.zip'
|
zip_name = "翻译后的带图文档.zip"
|
||||||
zip_folder(source_folder=ex_folder, dest_folder=dest_folder, zip_name=zip_name)
|
zip_folder(
|
||||||
|
source_folder=ex_folder, dest_folder=dest_folder, zip_name=zip_name
|
||||||
|
)
|
||||||
zip_fp = os.path.join(dest_folder, zip_name)
|
zip_fp = os.path.join(dest_folder, zip_name)
|
||||||
promote_file_to_downloadzone(zip_fp, chatbot=chatbot)
|
promote_file_to_downloadzone(zip_fp, chatbot=chatbot)
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
md_zip_path = yield from pdf2markdown(fp)
|
md_zip_path = yield from pdf2markdown(fp)
|
||||||
yield from deliver_to_markdown_plugin(md_zip_path, user_request)
|
yield from deliver_to_markdown_plugin(md_zip_path, user_request)
|
||||||
|
|
||||||
|
|
||||||
def 解析PDF_基于DOC2X(file_manifest, *args):
|
def 解析PDF_基于DOC2X(file_manifest, *args):
|
||||||
for index, fp in enumerate(file_manifest):
|
for index, fp in enumerate(file_manifest):
|
||||||
yield from 解析PDF_DOC2X_单文件(fp, *args)
|
yield from 解析PDF_DOC2X_单文件(fp, *args)
|
||||||
return
|
return
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -14,17 +14,17 @@ def extract_text_from_files(txt, chatbot, history):
|
|||||||
final_result(list):文本内容
|
final_result(list):文本内容
|
||||||
page_one(list):第一页内容/摘要
|
page_one(list):第一页内容/摘要
|
||||||
file_manifest(list):文件路径
|
file_manifest(list):文件路径
|
||||||
excption(string):需要用户手动处理的信息,如没出错则保持为空
|
exception(string):需要用户手动处理的信息,如没出错则保持为空
|
||||||
"""
|
"""
|
||||||
|
|
||||||
final_result = []
|
final_result = []
|
||||||
page_one = []
|
page_one = []
|
||||||
file_manifest = []
|
file_manifest = []
|
||||||
excption = ""
|
exception = ""
|
||||||
|
|
||||||
if txt == "":
|
if txt == "":
|
||||||
final_result.append(txt)
|
final_result.append(txt)
|
||||||
return False, final_result, page_one, file_manifest, excption #如输入区内容不是文件则直接返回输入区内容
|
return False, final_result, page_one, file_manifest, exception #如输入区内容不是文件则直接返回输入区内容
|
||||||
|
|
||||||
#查找输入区内容中的文件
|
#查找输入区内容中的文件
|
||||||
file_pdf,pdf_manifest,folder_pdf = get_files_from_everything(txt, '.pdf')
|
file_pdf,pdf_manifest,folder_pdf = get_files_from_everything(txt, '.pdf')
|
||||||
@@ -33,20 +33,20 @@ def extract_text_from_files(txt, chatbot, history):
|
|||||||
file_doc,doc_manifest,folder_doc = get_files_from_everything(txt, '.doc')
|
file_doc,doc_manifest,folder_doc = get_files_from_everything(txt, '.doc')
|
||||||
|
|
||||||
if file_doc:
|
if file_doc:
|
||||||
excption = "word"
|
exception = "word"
|
||||||
return False, final_result, page_one, file_manifest, excption
|
return False, final_result, page_one, file_manifest, exception
|
||||||
|
|
||||||
file_num = len(pdf_manifest) + len(md_manifest) + len(word_manifest)
|
file_num = len(pdf_manifest) + len(md_manifest) + len(word_manifest)
|
||||||
if file_num == 0:
|
if file_num == 0:
|
||||||
final_result.append(txt)
|
final_result.append(txt)
|
||||||
return False, final_result, page_one, file_manifest, excption #如输入区内容不是文件则直接返回输入区内容
|
return False, final_result, page_one, file_manifest, exception #如输入区内容不是文件则直接返回输入区内容
|
||||||
|
|
||||||
if file_pdf:
|
if file_pdf:
|
||||||
try: # 尝试导入依赖,如果缺少依赖,则给出安装建议
|
try: # 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||||
import fitz
|
import fitz
|
||||||
except:
|
except:
|
||||||
excption = "pdf"
|
exception = "pdf"
|
||||||
return False, final_result, page_one, file_manifest, excption
|
return False, final_result, page_one, file_manifest, exception
|
||||||
for index, fp in enumerate(pdf_manifest):
|
for index, fp in enumerate(pdf_manifest):
|
||||||
file_content, pdf_one = read_and_clean_pdf_text(fp) # (尝试)按照章节切割PDF
|
file_content, pdf_one = read_and_clean_pdf_text(fp) # (尝试)按照章节切割PDF
|
||||||
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||||||
@@ -72,8 +72,8 @@ def extract_text_from_files(txt, chatbot, history):
|
|||||||
try: # 尝试导入依赖,如果缺少依赖,则给出安装建议
|
try: # 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||||
from docx import Document
|
from docx import Document
|
||||||
except:
|
except:
|
||||||
excption = "word_pip"
|
exception = "word_pip"
|
||||||
return False, final_result, page_one, file_manifest, excption
|
return False, final_result, page_one, file_manifest, exception
|
||||||
for index, fp in enumerate(word_manifest):
|
for index, fp in enumerate(word_manifest):
|
||||||
doc = Document(fp)
|
doc = Document(fp)
|
||||||
file_content = '\n'.join([p.text for p in doc.paragraphs])
|
file_content = '\n'.join([p.text for p in doc.paragraphs])
|
||||||
@@ -82,4 +82,4 @@ def extract_text_from_files(txt, chatbot, history):
|
|||||||
final_result.append(file_content)
|
final_result.append(file_content)
|
||||||
file_manifest.append(os.path.relpath(fp, folder_word))
|
file_manifest.append(os.path.relpath(fp, folder_word))
|
||||||
|
|
||||||
return True, final_result, page_one, file_manifest, excption
|
return True, final_result, page_one, file_manifest, exception
|
||||||
@@ -60,7 +60,7 @@ def similarity_search_with_score_by_vector(
|
|||||||
self, embedding: List[float], k: int = 4
|
self, embedding: List[float], k: int = 4
|
||||||
) -> List[Tuple[Document, float]]:
|
) -> List[Tuple[Document, float]]:
|
||||||
|
|
||||||
def seperate_list(ls: List[int]) -> List[List[int]]:
|
def separate_list(ls: List[int]) -> List[List[int]]:
|
||||||
lists = []
|
lists = []
|
||||||
ls1 = [ls[0]]
|
ls1 = [ls[0]]
|
||||||
for i in range(1, len(ls)):
|
for i in range(1, len(ls)):
|
||||||
@@ -82,7 +82,7 @@ def similarity_search_with_score_by_vector(
|
|||||||
continue
|
continue
|
||||||
_id = self.index_to_docstore_id[i]
|
_id = self.index_to_docstore_id[i]
|
||||||
doc = self.docstore.search(_id)
|
doc = self.docstore.search(_id)
|
||||||
if not self.chunk_conent:
|
if not self.chunk_content:
|
||||||
if not isinstance(doc, Document):
|
if not isinstance(doc, Document):
|
||||||
raise ValueError(f"Could not find document for id {_id}, got {doc}")
|
raise ValueError(f"Could not find document for id {_id}, got {doc}")
|
||||||
doc.metadata["score"] = int(scores[0][j])
|
doc.metadata["score"] = int(scores[0][j])
|
||||||
@@ -104,12 +104,12 @@ def similarity_search_with_score_by_vector(
|
|||||||
id_set.add(l)
|
id_set.add(l)
|
||||||
if break_flag:
|
if break_flag:
|
||||||
break
|
break
|
||||||
if not self.chunk_conent:
|
if not self.chunk_content:
|
||||||
return docs
|
return docs
|
||||||
if len(id_set) == 0 and self.score_threshold > 0:
|
if len(id_set) == 0 and self.score_threshold > 0:
|
||||||
return []
|
return []
|
||||||
id_list = sorted(list(id_set))
|
id_list = sorted(list(id_set))
|
||||||
id_lists = seperate_list(id_list)
|
id_lists = separate_list(id_list)
|
||||||
for id_seq in id_lists:
|
for id_seq in id_lists:
|
||||||
for id in id_seq:
|
for id in id_seq:
|
||||||
if id == id_seq[0]:
|
if id == id_seq[0]:
|
||||||
@@ -132,7 +132,7 @@ class LocalDocQA:
|
|||||||
embeddings: object = None
|
embeddings: object = None
|
||||||
top_k: int = VECTOR_SEARCH_TOP_K
|
top_k: int = VECTOR_SEARCH_TOP_K
|
||||||
chunk_size: int = CHUNK_SIZE
|
chunk_size: int = CHUNK_SIZE
|
||||||
chunk_conent: bool = True
|
chunk_content: bool = True
|
||||||
score_threshold: int = VECTOR_SEARCH_SCORE_THRESHOLD
|
score_threshold: int = VECTOR_SEARCH_SCORE_THRESHOLD
|
||||||
|
|
||||||
def init_cfg(self,
|
def init_cfg(self,
|
||||||
@@ -209,16 +209,16 @@ class LocalDocQA:
|
|||||||
|
|
||||||
# query 查询内容
|
# query 查询内容
|
||||||
# vs_path 知识库路径
|
# vs_path 知识库路径
|
||||||
# chunk_conent 是否启用上下文关联
|
# chunk_content 是否启用上下文关联
|
||||||
# score_threshold 搜索匹配score阈值
|
# score_threshold 搜索匹配score阈值
|
||||||
# vector_search_top_k 搜索知识库内容条数,默认搜索5条结果
|
# vector_search_top_k 搜索知识库内容条数,默认搜索5条结果
|
||||||
# chunk_sizes 匹配单段内容的连接上下文长度
|
# chunk_sizes 匹配单段内容的连接上下文长度
|
||||||
def get_knowledge_based_conent_test(self, query, vs_path, chunk_conent,
|
def get_knowledge_based_content_test(self, query, vs_path, chunk_content,
|
||||||
score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD,
|
score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD,
|
||||||
vector_search_top_k=VECTOR_SEARCH_TOP_K, chunk_size=CHUNK_SIZE,
|
vector_search_top_k=VECTOR_SEARCH_TOP_K, chunk_size=CHUNK_SIZE,
|
||||||
text2vec=None):
|
text2vec=None):
|
||||||
self.vector_store = FAISS.load_local(vs_path, text2vec)
|
self.vector_store = FAISS.load_local(vs_path, text2vec)
|
||||||
self.vector_store.chunk_conent = chunk_conent
|
self.vector_store.chunk_content = chunk_content
|
||||||
self.vector_store.score_threshold = score_threshold
|
self.vector_store.score_threshold = score_threshold
|
||||||
self.vector_store.chunk_size = chunk_size
|
self.vector_store.chunk_size = chunk_size
|
||||||
|
|
||||||
@@ -241,7 +241,7 @@ class LocalDocQA:
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
def construct_vector_store(vs_id, vs_path, files, sentence_size, history, one_conent, one_content_segmentation, text2vec):
|
def construct_vector_store(vs_id, vs_path, files, sentence_size, history, one_content, one_content_segmentation, text2vec):
|
||||||
for file in files:
|
for file in files:
|
||||||
assert os.path.exists(file), "输入文件不存在:" + file
|
assert os.path.exists(file), "输入文件不存在:" + file
|
||||||
import nltk
|
import nltk
|
||||||
@@ -297,7 +297,7 @@ class knowledge_archive_interface():
|
|||||||
files=file_manifest,
|
files=file_manifest,
|
||||||
sentence_size=100,
|
sentence_size=100,
|
||||||
history=[],
|
history=[],
|
||||||
one_conent="",
|
one_content="",
|
||||||
one_content_segmentation="",
|
one_content_segmentation="",
|
||||||
text2vec = self.get_chinese_text2vec(),
|
text2vec = self.get_chinese_text2vec(),
|
||||||
)
|
)
|
||||||
@@ -319,19 +319,19 @@ class knowledge_archive_interface():
|
|||||||
files=[],
|
files=[],
|
||||||
sentence_size=100,
|
sentence_size=100,
|
||||||
history=[],
|
history=[],
|
||||||
one_conent="",
|
one_content="",
|
||||||
one_content_segmentation="",
|
one_content_segmentation="",
|
||||||
text2vec = self.get_chinese_text2vec(),
|
text2vec = self.get_chinese_text2vec(),
|
||||||
)
|
)
|
||||||
VECTOR_SEARCH_SCORE_THRESHOLD = 0
|
VECTOR_SEARCH_SCORE_THRESHOLD = 0
|
||||||
VECTOR_SEARCH_TOP_K = 4
|
VECTOR_SEARCH_TOP_K = 4
|
||||||
CHUNK_SIZE = 512
|
CHUNK_SIZE = 512
|
||||||
resp, prompt = self.qa_handle.get_knowledge_based_conent_test(
|
resp, prompt = self.qa_handle.get_knowledge_based_content_test(
|
||||||
query = txt,
|
query = txt,
|
||||||
vs_path = self.kai_path,
|
vs_path = self.kai_path,
|
||||||
score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD,
|
score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD,
|
||||||
vector_search_top_k=VECTOR_SEARCH_TOP_K,
|
vector_search_top_k=VECTOR_SEARCH_TOP_K,
|
||||||
chunk_conent=True,
|
chunk_content=True,
|
||||||
chunk_size=CHUNK_SIZE,
|
chunk_size=CHUNK_SIZE,
|
||||||
text2vec = self.get_chinese_text2vec(),
|
text2vec = self.get_chinese_text2vec(),
|
||||||
)
|
)
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
from pydantic import BaseModel, Field
|
from pydantic import BaseModel, Field
|
||||||
from typing import List
|
from typing import List
|
||||||
from toolbox import update_ui_lastest_msg, disable_auto_promotion
|
from toolbox import update_ui_latest_msg, disable_auto_promotion
|
||||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||||
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
|
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
|
||||||
import copy, json, pickle, os, sys, time
|
import copy, json, pickle, os, sys, time
|
||||||
@@ -9,14 +9,14 @@ import copy, json, pickle, os, sys, time
|
|||||||
def read_avail_plugin_enum():
|
def read_avail_plugin_enum():
|
||||||
from crazy_functional import get_crazy_functions
|
from crazy_functional import get_crazy_functions
|
||||||
plugin_arr = get_crazy_functions()
|
plugin_arr = get_crazy_functions()
|
||||||
# remove plugins with out explaination
|
# remove plugins with out explanation
|
||||||
plugin_arr = {k:v for k, v in plugin_arr.items() if ('Info' in v) and ('Function' in v)}
|
plugin_arr = {k:v for k, v in plugin_arr.items() if ('Info' in v) and ('Function' in v)}
|
||||||
plugin_arr_info = {"F_{:04d}".format(i):v["Info"] for i, v in enumerate(plugin_arr.values(), start=1)}
|
plugin_arr_info = {"F_{:04d}".format(i):v["Info"] for i, v in enumerate(plugin_arr.values(), start=1)}
|
||||||
plugin_arr_dict = {"F_{:04d}".format(i):v for i, v in enumerate(plugin_arr.values(), start=1)}
|
plugin_arr_dict = {"F_{:04d}".format(i):v for i, v in enumerate(plugin_arr.values(), start=1)}
|
||||||
plugin_arr_dict_parse = {"F_{:04d}".format(i):v for i, v in enumerate(plugin_arr.values(), start=1)}
|
plugin_arr_dict_parse = {"F_{:04d}".format(i):v for i, v in enumerate(plugin_arr.values(), start=1)}
|
||||||
plugin_arr_dict_parse.update({f"F_{i}":v for i, v in enumerate(plugin_arr.values(), start=1)})
|
plugin_arr_dict_parse.update({f"F_{i}":v for i, v in enumerate(plugin_arr.values(), start=1)})
|
||||||
prompt = json.dumps(plugin_arr_info, ensure_ascii=False, indent=2)
|
prompt = json.dumps(plugin_arr_info, ensure_ascii=False, indent=2)
|
||||||
prompt = "\n\nThe defination of PluginEnum:\nPluginEnum=" + prompt
|
prompt = "\n\nThe definition of PluginEnum:\nPluginEnum=" + prompt
|
||||||
return prompt, plugin_arr_dict, plugin_arr_dict_parse
|
return prompt, plugin_arr_dict, plugin_arr_dict_parse
|
||||||
|
|
||||||
def wrap_code(txt):
|
def wrap_code(txt):
|
||||||
@@ -55,7 +55,7 @@ def execute_plugin(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prom
|
|||||||
plugin_selection: str = Field(description="The most related plugin from one of the PluginEnum.", default="F_0000")
|
plugin_selection: str = Field(description="The most related plugin from one of the PluginEnum.", default="F_0000")
|
||||||
reason_of_selection: str = Field(description="The reason why you should select this plugin.", default="This plugin satisfy user requirement most")
|
reason_of_selection: str = Field(description="The reason why you should select this plugin.", default="This plugin satisfy user requirement most")
|
||||||
# ⭐ ⭐ ⭐ 选择插件
|
# ⭐ ⭐ ⭐ 选择插件
|
||||||
yield from update_ui_lastest_msg(lastmsg=f"正在执行任务: {txt}\n\n查找可用插件中...", chatbot=chatbot, history=history, delay=0)
|
yield from update_ui_latest_msg(lastmsg=f"正在执行任务: {txt}\n\n查找可用插件中...", chatbot=chatbot, history=history, delay=0)
|
||||||
gpt_json_io = GptJsonIO(Plugin)
|
gpt_json_io = GptJsonIO(Plugin)
|
||||||
gpt_json_io.format_instructions = "The format of your output should be a json that can be parsed by json.loads.\n"
|
gpt_json_io.format_instructions = "The format of your output should be a json that can be parsed by json.loads.\n"
|
||||||
gpt_json_io.format_instructions += """Output example: {"plugin_selection":"F_1234", "reason_of_selection":"F_1234 plugin satisfy user requirement most"}\n"""
|
gpt_json_io.format_instructions += """Output example: {"plugin_selection":"F_1234", "reason_of_selection":"F_1234 plugin satisfy user requirement most"}\n"""
|
||||||
@@ -74,13 +74,13 @@ def execute_plugin(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prom
|
|||||||
msg += "请求的Prompt为:\n" + wrap_code(get_inputs_show_user(inputs, plugin_arr_enum_prompt))
|
msg += "请求的Prompt为:\n" + wrap_code(get_inputs_show_user(inputs, plugin_arr_enum_prompt))
|
||||||
msg += "语言模型回复为:\n" + wrap_code(gpt_reply)
|
msg += "语言模型回复为:\n" + wrap_code(gpt_reply)
|
||||||
msg += "\n但您可以尝试再试一次\n"
|
msg += "\n但您可以尝试再试一次\n"
|
||||||
yield from update_ui_lastest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=2)
|
yield from update_ui_latest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=2)
|
||||||
return
|
return
|
||||||
if plugin_sel.plugin_selection not in plugin_arr_dict_parse:
|
if plugin_sel.plugin_selection not in plugin_arr_dict_parse:
|
||||||
msg = f"抱歉, 找不到合适插件执行该任务, 或者{llm_kwargs['llm_model']}无法理解您的需求。"
|
msg = f"抱歉, 找不到合适插件执行该任务, 或者{llm_kwargs['llm_model']}无法理解您的需求。"
|
||||||
msg += f"语言模型{llm_kwargs['llm_model']}选择了不存在的插件:\n" + wrap_code(gpt_reply)
|
msg += f"语言模型{llm_kwargs['llm_model']}选择了不存在的插件:\n" + wrap_code(gpt_reply)
|
||||||
msg += "\n但您可以尝试再试一次\n"
|
msg += "\n但您可以尝试再试一次\n"
|
||||||
yield from update_ui_lastest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=2)
|
yield from update_ui_latest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=2)
|
||||||
return
|
return
|
||||||
|
|
||||||
# ⭐ ⭐ ⭐ 确认插件参数
|
# ⭐ ⭐ ⭐ 确认插件参数
|
||||||
@@ -90,7 +90,7 @@ def execute_plugin(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prom
|
|||||||
appendix_info = get_recent_file_prompt_support(chatbot)
|
appendix_info = get_recent_file_prompt_support(chatbot)
|
||||||
|
|
||||||
plugin = plugin_arr_dict_parse[plugin_sel.plugin_selection]
|
plugin = plugin_arr_dict_parse[plugin_sel.plugin_selection]
|
||||||
yield from update_ui_lastest_msg(lastmsg=f"正在执行任务: {txt}\n\n提取插件参数...", chatbot=chatbot, history=history, delay=0)
|
yield from update_ui_latest_msg(lastmsg=f"正在执行任务: {txt}\n\n提取插件参数...", chatbot=chatbot, history=history, delay=0)
|
||||||
class PluginExplicit(BaseModel):
|
class PluginExplicit(BaseModel):
|
||||||
plugin_selection: str = plugin_sel.plugin_selection
|
plugin_selection: str = plugin_sel.plugin_selection
|
||||||
plugin_arg: str = Field(description="The argument of the plugin.", default="")
|
plugin_arg: str = Field(description="The argument of the plugin.", default="")
|
||||||
@@ -109,6 +109,6 @@ def execute_plugin(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prom
|
|||||||
fn = plugin['Function']
|
fn = plugin['Function']
|
||||||
fn_name = fn.__name__
|
fn_name = fn.__name__
|
||||||
msg = f'{llm_kwargs["llm_model"]}为您选择了插件: `{fn_name}`\n\n插件说明:{plugin["Info"]}\n\n插件参数:{plugin_sel.plugin_arg}\n\n假如偏离了您的要求,按停止键终止。'
|
msg = f'{llm_kwargs["llm_model"]}为您选择了插件: `{fn_name}`\n\n插件说明:{plugin["Info"]}\n\n插件参数:{plugin_sel.plugin_arg}\n\n假如偏离了您的要求,按停止键终止。'
|
||||||
yield from update_ui_lastest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=2)
|
yield from update_ui_latest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=2)
|
||||||
yield from fn(plugin_sel.plugin_arg, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, -1)
|
yield from fn(plugin_sel.plugin_arg, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, -1)
|
||||||
return
|
return
|
||||||
@@ -1,6 +1,6 @@
|
|||||||
from pydantic import BaseModel, Field
|
from pydantic import BaseModel, Field
|
||||||
from typing import List
|
from typing import List
|
||||||
from toolbox import update_ui_lastest_msg, get_conf
|
from toolbox import update_ui_latest_msg, get_conf
|
||||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||||
from crazy_functions.json_fns.pydantic_io import GptJsonIO
|
from crazy_functions.json_fns.pydantic_io import GptJsonIO
|
||||||
import copy, json, pickle, os, sys
|
import copy, json, pickle, os, sys
|
||||||
@@ -9,7 +9,7 @@ import copy, json, pickle, os, sys
|
|||||||
def modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_intention):
|
def modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_intention):
|
||||||
ALLOW_RESET_CONFIG = get_conf('ALLOW_RESET_CONFIG')
|
ALLOW_RESET_CONFIG = get_conf('ALLOW_RESET_CONFIG')
|
||||||
if not ALLOW_RESET_CONFIG:
|
if not ALLOW_RESET_CONFIG:
|
||||||
yield from update_ui_lastest_msg(
|
yield from update_ui_latest_msg(
|
||||||
lastmsg=f"当前配置不允许被修改!如需激活本功能,请在config.py中设置ALLOW_RESET_CONFIG=True后重启软件。",
|
lastmsg=f"当前配置不允许被修改!如需激活本功能,请在config.py中设置ALLOW_RESET_CONFIG=True后重启软件。",
|
||||||
chatbot=chatbot, history=history, delay=2
|
chatbot=chatbot, history=history, delay=2
|
||||||
)
|
)
|
||||||
@@ -30,7 +30,7 @@ def modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
|||||||
new_option_value: str = Field(description="the new value of the option", default=None)
|
new_option_value: str = Field(description="the new value of the option", default=None)
|
||||||
|
|
||||||
# ⭐ ⭐ ⭐ 分析用户意图
|
# ⭐ ⭐ ⭐ 分析用户意图
|
||||||
yield from update_ui_lastest_msg(lastmsg=f"正在执行任务: {txt}\n\n读取新配置中", chatbot=chatbot, history=history, delay=0)
|
yield from update_ui_latest_msg(lastmsg=f"正在执行任务: {txt}\n\n读取新配置中", chatbot=chatbot, history=history, delay=0)
|
||||||
gpt_json_io = GptJsonIO(ModifyConfigurationIntention)
|
gpt_json_io = GptJsonIO(ModifyConfigurationIntention)
|
||||||
inputs = "Analyze how to change configuration according to following user input, answer me with json: \n\n" + \
|
inputs = "Analyze how to change configuration according to following user input, answer me with json: \n\n" + \
|
||||||
">> " + txt.rstrip('\n').replace('\n','\n>> ') + '\n\n' + \
|
">> " + txt.rstrip('\n').replace('\n','\n>> ') + '\n\n' + \
|
||||||
@@ -44,11 +44,11 @@ def modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
|||||||
|
|
||||||
ok = (explicit_conf in txt)
|
ok = (explicit_conf in txt)
|
||||||
if ok:
|
if ok:
|
||||||
yield from update_ui_lastest_msg(
|
yield from update_ui_latest_msg(
|
||||||
lastmsg=f"正在执行任务: {txt}\n\n新配置{explicit_conf}={user_intention.new_option_value}",
|
lastmsg=f"正在执行任务: {txt}\n\n新配置{explicit_conf}={user_intention.new_option_value}",
|
||||||
chatbot=chatbot, history=history, delay=1
|
chatbot=chatbot, history=history, delay=1
|
||||||
)
|
)
|
||||||
yield from update_ui_lastest_msg(
|
yield from update_ui_latest_msg(
|
||||||
lastmsg=f"正在执行任务: {txt}\n\n新配置{explicit_conf}={user_intention.new_option_value}\n\n正在修改配置中",
|
lastmsg=f"正在执行任务: {txt}\n\n新配置{explicit_conf}={user_intention.new_option_value}\n\n正在修改配置中",
|
||||||
chatbot=chatbot, history=history, delay=2
|
chatbot=chatbot, history=history, delay=2
|
||||||
)
|
)
|
||||||
@@ -57,25 +57,25 @@ def modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
|||||||
from toolbox import set_conf
|
from toolbox import set_conf
|
||||||
set_conf(explicit_conf, user_intention.new_option_value)
|
set_conf(explicit_conf, user_intention.new_option_value)
|
||||||
|
|
||||||
yield from update_ui_lastest_msg(
|
yield from update_ui_latest_msg(
|
||||||
lastmsg=f"正在执行任务: {txt}\n\n配置修改完成,重新页面即可生效。", chatbot=chatbot, history=history, delay=1
|
lastmsg=f"正在执行任务: {txt}\n\n配置修改完成,重新页面即可生效。", chatbot=chatbot, history=history, delay=1
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
yield from update_ui_lastest_msg(
|
yield from update_ui_latest_msg(
|
||||||
lastmsg=f"失败,如果需要配置{explicit_conf},您需要明确说明并在指令中提到它。", chatbot=chatbot, history=history, delay=5
|
lastmsg=f"失败,如果需要配置{explicit_conf},您需要明确说明并在指令中提到它。", chatbot=chatbot, history=history, delay=5
|
||||||
)
|
)
|
||||||
|
|
||||||
def modify_configuration_reboot(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_intention):
|
def modify_configuration_reboot(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_intention):
|
||||||
ALLOW_RESET_CONFIG = get_conf('ALLOW_RESET_CONFIG')
|
ALLOW_RESET_CONFIG = get_conf('ALLOW_RESET_CONFIG')
|
||||||
if not ALLOW_RESET_CONFIG:
|
if not ALLOW_RESET_CONFIG:
|
||||||
yield from update_ui_lastest_msg(
|
yield from update_ui_latest_msg(
|
||||||
lastmsg=f"当前配置不允许被修改!如需激活本功能,请在config.py中设置ALLOW_RESET_CONFIG=True后重启软件。",
|
lastmsg=f"当前配置不允许被修改!如需激活本功能,请在config.py中设置ALLOW_RESET_CONFIG=True后重启软件。",
|
||||||
chatbot=chatbot, history=history, delay=2
|
chatbot=chatbot, history=history, delay=2
|
||||||
)
|
)
|
||||||
return
|
return
|
||||||
|
|
||||||
yield from modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_intention)
|
yield from modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_intention)
|
||||||
yield from update_ui_lastest_msg(
|
yield from update_ui_latest_msg(
|
||||||
lastmsg=f"正在执行任务: {txt}\n\n配置修改完成,五秒后即将重启!若出现报错请无视即可。", chatbot=chatbot, history=history, delay=5
|
lastmsg=f"正在执行任务: {txt}\n\n配置修改完成,五秒后即将重启!若出现报错请无视即可。", chatbot=chatbot, history=history, delay=5
|
||||||
)
|
)
|
||||||
os.execl(sys.executable, sys.executable, *sys.argv)
|
os.execl(sys.executable, sys.executable, *sys.argv)
|
||||||
|
|||||||
@@ -5,7 +5,7 @@ class VoidTerminalState():
|
|||||||
self.reset_state()
|
self.reset_state()
|
||||||
|
|
||||||
def reset_state(self):
|
def reset_state(self):
|
||||||
self.has_provided_explaination = False
|
self.has_provided_explanation = False
|
||||||
|
|
||||||
def lock_plugin(self, chatbot):
|
def lock_plugin(self, chatbot):
|
||||||
chatbot._cookies['lock_plugin'] = 'crazy_functions.虚空终端->虚空终端'
|
chatbot._cookies['lock_plugin'] = 'crazy_functions.虚空终端->虚空终端'
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
from toolbox import CatchException, update_ui, update_ui_lastest_msg
|
from toolbox import CatchException, update_ui, update_ui_latest_msg
|
||||||
from crazy_functions.multi_stage.multi_stage_utils import GptAcademicGameBaseState
|
from crazy_functions.multi_stage.multi_stage_utils import GptAcademicGameBaseState
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||||
|
|||||||
@@ -15,7 +15,7 @@ Testing:
|
|||||||
|
|
||||||
|
|
||||||
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, is_the_upload_folder
|
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, is_the_upload_folder
|
||||||
from toolbox import promote_file_to_downloadzone, get_log_folder, update_ui_lastest_msg
|
from toolbox import promote_file_to_downloadzone, get_log_folder, update_ui_latest_msg
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_plugin_arg
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_plugin_arg
|
||||||
from crazy_functions.crazy_utils import input_clipping, try_install_deps
|
from crazy_functions.crazy_utils import input_clipping, try_install_deps
|
||||||
from crazy_functions.gen_fns.gen_fns_shared import is_function_successfully_generated
|
from crazy_functions.gen_fns.gen_fns_shared import is_function_successfully_generated
|
||||||
@@ -27,7 +27,7 @@ import time
|
|||||||
import glob
|
import glob
|
||||||
import multiprocessing
|
import multiprocessing
|
||||||
|
|
||||||
templete = """
|
template = """
|
||||||
```python
|
```python
|
||||||
import ... # Put dependencies here, e.g. import numpy as np.
|
import ... # Put dependencies here, e.g. import numpy as np.
|
||||||
|
|
||||||
@@ -77,10 +77,10 @@ def gpt_interact_multi_step(txt, file_type, llm_kwargs, chatbot, history):
|
|||||||
|
|
||||||
# 第二步
|
# 第二步
|
||||||
prompt_compose = [
|
prompt_compose = [
|
||||||
"If previous stage is successful, rewrite the function you have just written to satisfy following templete: \n",
|
"If previous stage is successful, rewrite the function you have just written to satisfy following template: \n",
|
||||||
templete
|
template
|
||||||
]
|
]
|
||||||
i_say = "".join(prompt_compose); inputs_show_user = "If previous stage is successful, rewrite the function you have just written to satisfy executable templete. "
|
i_say = "".join(prompt_compose); inputs_show_user = "If previous stage is successful, rewrite the function you have just written to satisfy executable template. "
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs=i_say, inputs_show_user=inputs_show_user,
|
inputs=i_say, inputs_show_user=inputs_show_user,
|
||||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||||
@@ -164,18 +164,18 @@ def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
|||||||
if get_plugin_arg(plugin_kwargs, key="file_path_arg", default=False):
|
if get_plugin_arg(plugin_kwargs, key="file_path_arg", default=False):
|
||||||
file_path = get_plugin_arg(plugin_kwargs, key="file_path_arg", default=None)
|
file_path = get_plugin_arg(plugin_kwargs, key="file_path_arg", default=None)
|
||||||
file_list.append(file_path)
|
file_list.append(file_path)
|
||||||
yield from update_ui_lastest_msg(f"当前文件: {file_path}", chatbot, history, 1)
|
yield from update_ui_latest_msg(f"当前文件: {file_path}", chatbot, history, 1)
|
||||||
elif have_any_recent_upload_files(chatbot):
|
elif have_any_recent_upload_files(chatbot):
|
||||||
file_dir = get_recent_file_prompt_support(chatbot)
|
file_dir = get_recent_file_prompt_support(chatbot)
|
||||||
file_list = glob.glob(os.path.join(file_dir, '**/*'), recursive=True)
|
file_list = glob.glob(os.path.join(file_dir, '**/*'), recursive=True)
|
||||||
yield from update_ui_lastest_msg(f"当前文件处理列表: {file_list}", chatbot, history, 1)
|
yield from update_ui_latest_msg(f"当前文件处理列表: {file_list}", chatbot, history, 1)
|
||||||
else:
|
else:
|
||||||
chatbot.append(["文件检索", "没有发现任何近期上传的文件。"])
|
chatbot.append(["文件检索", "没有发现任何近期上传的文件。"])
|
||||||
yield from update_ui_lastest_msg("没有发现任何近期上传的文件。", chatbot, history, 1)
|
yield from update_ui_latest_msg("没有发现任何近期上传的文件。", chatbot, history, 1)
|
||||||
return # 2. 如果没有文件
|
return # 2. 如果没有文件
|
||||||
if len(file_list) == 0:
|
if len(file_list) == 0:
|
||||||
chatbot.append(["文件检索", "没有发现任何近期上传的文件。"])
|
chatbot.append(["文件检索", "没有发现任何近期上传的文件。"])
|
||||||
yield from update_ui_lastest_msg("没有发现任何近期上传的文件。", chatbot, history, 1)
|
yield from update_ui_latest_msg("没有发现任何近期上传的文件。", chatbot, history, 1)
|
||||||
return # 2. 如果没有文件
|
return # 2. 如果没有文件
|
||||||
|
|
||||||
# 读取文件
|
# 读取文件
|
||||||
@@ -183,7 +183,7 @@ def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
|||||||
|
|
||||||
# 粗心检查
|
# 粗心检查
|
||||||
if is_the_upload_folder(txt):
|
if is_the_upload_folder(txt):
|
||||||
yield from update_ui_lastest_msg(f"请在输入框内填写需求, 然后再次点击该插件! 至于您的文件,不用担心, 文件路径 {txt} 已经被记忆. ", chatbot, history, 1)
|
yield from update_ui_latest_msg(f"请在输入框内填写需求, 然后再次点击该插件! 至于您的文件,不用担心, 文件路径 {txt} 已经被记忆. ", chatbot, history, 1)
|
||||||
return
|
return
|
||||||
|
|
||||||
# 开始干正事
|
# 开始干正事
|
||||||
@@ -195,7 +195,7 @@ def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
|||||||
code, installation_advance, txt, file_type, llm_kwargs, chatbot, history = \
|
code, installation_advance, txt, file_type, llm_kwargs, chatbot, history = \
|
||||||
yield from gpt_interact_multi_step(txt, file_type, llm_kwargs, chatbot, history)
|
yield from gpt_interact_multi_step(txt, file_type, llm_kwargs, chatbot, history)
|
||||||
chatbot.append(["代码生成阶段结束", ""])
|
chatbot.append(["代码生成阶段结束", ""])
|
||||||
yield from update_ui_lastest_msg(f"正在验证上述代码的有效性 ...", chatbot, history, 1)
|
yield from update_ui_latest_msg(f"正在验证上述代码的有效性 ...", chatbot, history, 1)
|
||||||
# ⭐ 分离代码块
|
# ⭐ 分离代码块
|
||||||
code = get_code_block(code)
|
code = get_code_block(code)
|
||||||
# ⭐ 检查模块
|
# ⭐ 检查模块
|
||||||
@@ -206,11 +206,11 @@ def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
|||||||
if not traceback: traceback = trimmed_format_exc()
|
if not traceback: traceback = trimmed_format_exc()
|
||||||
# 处理异常
|
# 处理异常
|
||||||
if not traceback: traceback = trimmed_format_exc()
|
if not traceback: traceback = trimmed_format_exc()
|
||||||
yield from update_ui_lastest_msg(f"第 {j+1}/{MAX_TRY} 次代码生成尝试, 失败了~ 别担心, 我们5秒后再试一次... \n\n此次我们的错误追踪是\n```\n{traceback}\n```\n", chatbot, history, 5)
|
yield from update_ui_latest_msg(f"第 {j+1}/{MAX_TRY} 次代码生成尝试, 失败了~ 别担心, 我们5秒后再试一次... \n\n此次我们的错误追踪是\n```\n{traceback}\n```\n", chatbot, history, 5)
|
||||||
|
|
||||||
# 代码生成结束, 开始执行
|
# 代码生成结束, 开始执行
|
||||||
TIME_LIMIT = 15
|
TIME_LIMIT = 15
|
||||||
yield from update_ui_lastest_msg(f"开始创建新进程并执行代码! 时间限制 {TIME_LIMIT} 秒. 请等待任务完成... ", chatbot, history, 1)
|
yield from update_ui_latest_msg(f"开始创建新进程并执行代码! 时间限制 {TIME_LIMIT} 秒. 请等待任务完成... ", chatbot, history, 1)
|
||||||
manager = multiprocessing.Manager()
|
manager = multiprocessing.Manager()
|
||||||
return_dict = manager.dict()
|
return_dict = manager.dict()
|
||||||
|
|
||||||
|
|||||||
@@ -8,7 +8,7 @@
|
|||||||
|
|
||||||
import time
|
import time
|
||||||
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, ProxyNetworkActivate
|
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, ProxyNetworkActivate
|
||||||
from toolbox import get_conf, select_api_key, update_ui_lastest_msg, Singleton
|
from toolbox import get_conf, select_api_key, update_ui_latest_msg, Singleton
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_plugin_arg
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_plugin_arg
|
||||||
from crazy_functions.crazy_utils import input_clipping, try_install_deps
|
from crazy_functions.crazy_utils import input_clipping, try_install_deps
|
||||||
from crazy_functions.agent_fns.persistent import GradioMultiuserManagerForPersistentClasses
|
from crazy_functions.agent_fns.persistent import GradioMultiuserManagerForPersistentClasses
|
||||||
|
|||||||
@@ -1,5 +1,5 @@
|
|||||||
from toolbox import CatchException, report_exception, get_log_folder, gen_time_str
|
from toolbox import CatchException, report_exception, get_log_folder, gen_time_str
|
||||||
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
|
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_latest_msg, disable_auto_promotion
|
||||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
|
|||||||
@@ -166,7 +166,7 @@ class PointWithTrace(Scene):
|
|||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
# do not use get_graph, this funciton is deprecated
|
# do not use get_graph, this function is deprecated
|
||||||
|
|
||||||
class ExampleFunctionGraph(Scene):
|
class ExampleFunctionGraph(Scene):
|
||||||
def construct(self):
|
def construct(self):
|
||||||
|
|||||||
@@ -324,16 +324,16 @@ def 生成多种Mermaid图表(
|
|||||||
if os.path.exists(txt): # 如输入区无内容则直接解析历史记录
|
if os.path.exists(txt): # 如输入区无内容则直接解析历史记录
|
||||||
from crazy_functions.pdf_fns.parse_word import extract_text_from_files
|
from crazy_functions.pdf_fns.parse_word import extract_text_from_files
|
||||||
|
|
||||||
file_exist, final_result, page_one, file_manifest, excption = (
|
file_exist, final_result, page_one, file_manifest, exception = (
|
||||||
extract_text_from_files(txt, chatbot, history)
|
extract_text_from_files(txt, chatbot, history)
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
file_exist = False
|
file_exist = False
|
||||||
excption = ""
|
exception = ""
|
||||||
file_manifest = []
|
file_manifest = []
|
||||||
|
|
||||||
if excption != "":
|
if exception != "":
|
||||||
if excption == "word":
|
if exception == "word":
|
||||||
report_exception(
|
report_exception(
|
||||||
chatbot,
|
chatbot,
|
||||||
history,
|
history,
|
||||||
@@ -341,7 +341,7 @@ def 生成多种Mermaid图表(
|
|||||||
b=f"找到了.doc文件,但是该文件格式不被支持,请先转化为.docx格式。",
|
b=f"找到了.doc文件,但是该文件格式不被支持,请先转化为.docx格式。",
|
||||||
)
|
)
|
||||||
|
|
||||||
elif excption == "pdf":
|
elif exception == "pdf":
|
||||||
report_exception(
|
report_exception(
|
||||||
chatbot,
|
chatbot,
|
||||||
history,
|
history,
|
||||||
@@ -349,7 +349,7 @@ def 生成多种Mermaid图表(
|
|||||||
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。",
|
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。",
|
||||||
)
|
)
|
||||||
|
|
||||||
elif excption == "word_pip":
|
elif exception == "word_pip":
|
||||||
report_exception(
|
report_exception(
|
||||||
chatbot,
|
chatbot,
|
||||||
history,
|
history,
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
from toolbox import CatchException, update_ui, ProxyNetworkActivate, update_ui_lastest_msg, get_log_folder, get_user
|
from toolbox import CatchException, update_ui, ProxyNetworkActivate, update_ui_latest_msg, get_log_folder, get_user
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_files_from_everything
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_files_from_everything
|
||||||
from loguru import logger
|
from loguru import logger
|
||||||
install_msg ="""
|
install_msg ="""
|
||||||
@@ -42,7 +42,7 @@ def 知识库文件注入(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
# from crazy_functions.crazy_utils import try_install_deps
|
# from crazy_functions.crazy_utils import try_install_deps
|
||||||
# try_install_deps(['zh_langchain==0.2.1', 'pypinyin'], reload_m=['pypinyin', 'zh_langchain'])
|
# try_install_deps(['zh_langchain==0.2.1', 'pypinyin'], reload_m=['pypinyin', 'zh_langchain'])
|
||||||
# yield from update_ui_lastest_msg("安装完成,您可以再次重试。", chatbot, history)
|
# yield from update_ui_latest_msg("安装完成,您可以再次重试。", chatbot, history)
|
||||||
return
|
return
|
||||||
|
|
||||||
# < --------------------读取文件--------------- >
|
# < --------------------读取文件--------------- >
|
||||||
@@ -95,7 +95,7 @@ def 读取知识库作答(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
# from crazy_functions.crazy_utils import try_install_deps
|
# from crazy_functions.crazy_utils import try_install_deps
|
||||||
# try_install_deps(['zh_langchain==0.2.1', 'pypinyin'], reload_m=['pypinyin', 'zh_langchain'])
|
# try_install_deps(['zh_langchain==0.2.1', 'pypinyin'], reload_m=['pypinyin', 'zh_langchain'])
|
||||||
# yield from update_ui_lastest_msg("安装完成,您可以再次重试。", chatbot, history)
|
# yield from update_ui_latest_msg("安装完成,您可以再次重试。", chatbot, history)
|
||||||
return
|
return
|
||||||
|
|
||||||
# < ------------------- --------------- >
|
# < ------------------- --------------- >
|
||||||
|
|||||||
@@ -47,7 +47,7 @@ explain_msg = """
|
|||||||
from pydantic import BaseModel, Field
|
from pydantic import BaseModel, Field
|
||||||
from typing import List
|
from typing import List
|
||||||
from toolbox import CatchException, update_ui, is_the_upload_folder
|
from toolbox import CatchException, update_ui, is_the_upload_folder
|
||||||
from toolbox import update_ui_lastest_msg, disable_auto_promotion
|
from toolbox import update_ui_latest_msg, disable_auto_promotion
|
||||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from crazy_functions.crazy_utils import input_clipping
|
from crazy_functions.crazy_utils import input_clipping
|
||||||
@@ -113,19 +113,19 @@ def 虚空终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
|
|||||||
# 用简单的关键词检测用户意图
|
# 用简单的关键词检测用户意图
|
||||||
is_certain, _ = analyze_intention_with_simple_rules(txt)
|
is_certain, _ = analyze_intention_with_simple_rules(txt)
|
||||||
if is_the_upload_folder(txt):
|
if is_the_upload_folder(txt):
|
||||||
state.set_state(chatbot=chatbot, key='has_provided_explaination', value=False)
|
state.set_state(chatbot=chatbot, key='has_provided_explanation', value=False)
|
||||||
appendix_msg = "\n\n**很好,您已经上传了文件**,现在请您描述您的需求。"
|
appendix_msg = "\n\n**很好,您已经上传了文件**,现在请您描述您的需求。"
|
||||||
|
|
||||||
if is_certain or (state.has_provided_explaination):
|
if is_certain or (state.has_provided_explanation):
|
||||||
# 如果意图明确,跳过提示环节
|
# 如果意图明确,跳过提示环节
|
||||||
state.set_state(chatbot=chatbot, key='has_provided_explaination', value=True)
|
state.set_state(chatbot=chatbot, key='has_provided_explanation', value=True)
|
||||||
state.unlock_plugin(chatbot=chatbot)
|
state.unlock_plugin(chatbot=chatbot)
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
yield from 虚空终端主路由(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
yield from 虚空终端主路由(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||||
return
|
return
|
||||||
else:
|
else:
|
||||||
# 如果意图模糊,提示
|
# 如果意图模糊,提示
|
||||||
state.set_state(chatbot=chatbot, key='has_provided_explaination', value=True)
|
state.set_state(chatbot=chatbot, key='has_provided_explanation', value=True)
|
||||||
state.lock_plugin(chatbot=chatbot)
|
state.lock_plugin(chatbot=chatbot)
|
||||||
chatbot.append(("虚空终端状态:", explain_msg+appendix_msg))
|
chatbot.append(("虚空终端状态:", explain_msg+appendix_msg))
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
@@ -141,7 +141,7 @@ def 虚空终端主路由(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
# ⭐ ⭐ ⭐ 分析用户意图
|
# ⭐ ⭐ ⭐ 分析用户意图
|
||||||
is_certain, user_intention = analyze_intention_with_simple_rules(txt)
|
is_certain, user_intention = analyze_intention_with_simple_rules(txt)
|
||||||
if not is_certain:
|
if not is_certain:
|
||||||
yield from update_ui_lastest_msg(
|
yield from update_ui_latest_msg(
|
||||||
lastmsg=f"正在执行任务: {txt}\n\n分析用户意图中", chatbot=chatbot, history=history, delay=0)
|
lastmsg=f"正在执行任务: {txt}\n\n分析用户意图中", chatbot=chatbot, history=history, delay=0)
|
||||||
gpt_json_io = GptJsonIO(UserIntention)
|
gpt_json_io = GptJsonIO(UserIntention)
|
||||||
rf_req = "\nchoose from ['ModifyConfiguration', 'ExecutePlugin', 'Chat']"
|
rf_req = "\nchoose from ['ModifyConfiguration', 'ExecutePlugin', 'Chat']"
|
||||||
@@ -154,13 +154,13 @@ def 虚空终端主路由(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
user_intention = gpt_json_io.generate_output_auto_repair(analyze_res, run_gpt_fn)
|
user_intention = gpt_json_io.generate_output_auto_repair(analyze_res, run_gpt_fn)
|
||||||
lastmsg=f"正在执行任务: {txt}\n\n用户意图理解: 意图={explain_intention_to_user[user_intention.intention_type]}",
|
lastmsg=f"正在执行任务: {txt}\n\n用户意图理解: 意图={explain_intention_to_user[user_intention.intention_type]}",
|
||||||
except JsonStringError as e:
|
except JsonStringError as e:
|
||||||
yield from update_ui_lastest_msg(
|
yield from update_ui_latest_msg(
|
||||||
lastmsg=f"正在执行任务: {txt}\n\n用户意图理解: 失败 当前语言模型({llm_kwargs['llm_model']})不能理解您的意图", chatbot=chatbot, history=history, delay=0)
|
lastmsg=f"正在执行任务: {txt}\n\n用户意图理解: 失败 当前语言模型({llm_kwargs['llm_model']})不能理解您的意图", chatbot=chatbot, history=history, delay=0)
|
||||||
return
|
return
|
||||||
else:
|
else:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
yield from update_ui_lastest_msg(
|
yield from update_ui_latest_msg(
|
||||||
lastmsg=f"正在执行任务: {txt}\n\n用户意图理解: 意图={explain_intention_to_user[user_intention.intention_type]}",
|
lastmsg=f"正在执行任务: {txt}\n\n用户意图理解: 意图={explain_intention_to_user[user_intention.intention_type]}",
|
||||||
chatbot=chatbot, history=history, delay=0)
|
chatbot=chatbot, history=history, delay=0)
|
||||||
|
|
||||||
|
|||||||
@@ -42,7 +42,7 @@ class AsyncGptTask():
|
|||||||
MAX_TOKEN_ALLO = 2560
|
MAX_TOKEN_ALLO = 2560
|
||||||
i_say, history = input_clipping(i_say, history, max_token_limit=MAX_TOKEN_ALLO)
|
i_say, history = input_clipping(i_say, history, max_token_limit=MAX_TOKEN_ALLO)
|
||||||
gpt_say_partial = predict_no_ui_long_connection(inputs=i_say, llm_kwargs=llm_kwargs, history=history, sys_prompt=sys_prompt,
|
gpt_say_partial = predict_no_ui_long_connection(inputs=i_say, llm_kwargs=llm_kwargs, history=history, sys_prompt=sys_prompt,
|
||||||
observe_window=observe_window[index], console_slience=True)
|
observe_window=observe_window[index], console_silence=True)
|
||||||
except ConnectionAbortedError as token_exceed_err:
|
except ConnectionAbortedError as token_exceed_err:
|
||||||
logger.error('至少一个线程任务Token溢出而失败', e)
|
logger.error('至少一个线程任务Token溢出而失败', e)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from toolbox import CatchException, report_exception, promote_file_to_downloadzone
|
from toolbox import CatchException, report_exception, promote_file_to_downloadzone
|
||||||
from toolbox import update_ui, update_ui_lastest_msg, disable_auto_promotion, write_history_to_file
|
from toolbox import update_ui, update_ui_latest_msg, disable_auto_promotion, write_history_to_file
|
||||||
import logging
|
import logging
|
||||||
import requests
|
import requests
|
||||||
import time
|
import time
|
||||||
@@ -156,7 +156,7 @@ def 谷歌检索小助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
history = []
|
history = []
|
||||||
meta_paper_info_list = yield from get_meta_information(txt, chatbot, history)
|
meta_paper_info_list = yield from get_meta_information(txt, chatbot, history)
|
||||||
if len(meta_paper_info_list) == 0:
|
if len(meta_paper_info_list) == 0:
|
||||||
yield from update_ui_lastest_msg(lastmsg='获取文献失败,可能触发了google反爬虫机制。',chatbot=chatbot, history=history, delay=0)
|
yield from update_ui_latest_msg(lastmsg='获取文献失败,可能触发了google反爬虫机制。',chatbot=chatbot, history=history, delay=0)
|
||||||
return
|
return
|
||||||
batchsize = 5
|
batchsize = 5
|
||||||
for batch in range(math.ceil(len(meta_paper_info_list)/batchsize)):
|
for batch in range(math.ceil(len(meta_paper_info_list)/batchsize)):
|
||||||
|
|||||||
@@ -5,6 +5,10 @@ FROM fuqingxu/11.3.1-runtime-ubuntu20.04-with-texlive:latest
|
|||||||
|
|
||||||
# edge-tts需要的依赖,某些pip包所需的依赖
|
# edge-tts需要的依赖,某些pip包所需的依赖
|
||||||
RUN apt update && apt install ffmpeg build-essential -y
|
RUN apt update && apt install ffmpeg build-essential -y
|
||||||
|
RUN apt-get install -y fontconfig
|
||||||
|
RUN ln -s /usr/local/texlive/2023/texmf-dist/fonts/truetype /usr/share/fonts/truetype/texlive
|
||||||
|
RUN fc-cache -fv
|
||||||
|
RUN apt-get clean
|
||||||
|
|
||||||
# use python3 as the system default python
|
# use python3 as the system default python
|
||||||
WORKDIR /gpt
|
WORKDIR /gpt
|
||||||
@@ -30,7 +34,7 @@ RUN python3 -m pip install -r request_llms/requirements_qwen.txt
|
|||||||
RUN python3 -m pip install -r request_llms/requirements_chatglm.txt
|
RUN python3 -m pip install -r request_llms/requirements_chatglm.txt
|
||||||
RUN python3 -m pip install -r request_llms/requirements_newbing.txt
|
RUN python3 -m pip install -r request_llms/requirements_newbing.txt
|
||||||
RUN python3 -m pip install nougat-ocr
|
RUN python3 -m pip install nougat-ocr
|
||||||
|
RUN python3 -m pip cache purge
|
||||||
|
|
||||||
# 预热Tiktoken模块
|
# 预热Tiktoken模块
|
||||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||||
|
|||||||
@@ -7,6 +7,7 @@ RUN apt-get install -y git python python3 python-dev python3-dev --fix-missing
|
|||||||
|
|
||||||
# edge-tts需要的依赖,某些pip包所需的依赖
|
# edge-tts需要的依赖,某些pip包所需的依赖
|
||||||
RUN apt update && apt install ffmpeg build-essential -y
|
RUN apt update && apt install ffmpeg build-essential -y
|
||||||
|
RUN apt-get clean
|
||||||
|
|
||||||
# use python3 as the system default python
|
# use python3 as the system default python
|
||||||
RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.8
|
RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.8
|
||||||
@@ -22,6 +23,7 @@ RUN python3 -m pip install -r request_llms/requirements_moss.txt
|
|||||||
RUN python3 -m pip install -r request_llms/requirements_qwen.txt
|
RUN python3 -m pip install -r request_llms/requirements_qwen.txt
|
||||||
RUN python3 -m pip install -r request_llms/requirements_chatglm.txt
|
RUN python3 -m pip install -r request_llms/requirements_chatglm.txt
|
||||||
RUN python3 -m pip install -r request_llms/requirements_newbing.txt
|
RUN python3 -m pip install -r request_llms/requirements_newbing.txt
|
||||||
|
RUN python3 -m pip cache purge
|
||||||
|
|
||||||
|
|
||||||
# 预热Tiktoken模块
|
# 预热Tiktoken模块
|
||||||
|
|||||||
@@ -18,5 +18,7 @@ RUN apt update && apt install ffmpeg -y
|
|||||||
# 可选步骤,用于预热模块
|
# 可选步骤,用于预热模块
|
||||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||||
|
|
||||||
|
RUN python3 -m pip cache purge && apt-get clean
|
||||||
|
|
||||||
# 启动
|
# 启动
|
||||||
CMD ["python3", "-u", "main.py"]
|
CMD ["python3", "-u", "main.py"]
|
||||||
|
|||||||
@@ -30,5 +30,7 @@ COPY --chown=gptuser:gptuser . .
|
|||||||
# 可选步骤,用于预热模块
|
# 可选步骤,用于预热模块
|
||||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||||
|
|
||||||
|
RUN python3 -m pip cache purge
|
||||||
|
|
||||||
# 启动
|
# 启动
|
||||||
CMD ["python3", "-u", "main.py"]
|
CMD ["python3", "-u", "main.py"]
|
||||||
|
|||||||
@@ -24,6 +24,8 @@ RUN apt update && apt install ffmpeg -y
|
|||||||
|
|
||||||
# 可选步骤,用于预热模块
|
# 可选步骤,用于预热模块
|
||||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||||
|
RUN python3 -m pip cache purge && apt-get clean
|
||||||
|
|
||||||
|
|
||||||
# 启动
|
# 启动
|
||||||
CMD ["python3", "-u", "main.py"]
|
CMD ["python3", "-u", "main.py"]
|
||||||
|
|||||||
26
docs/WindowsRun.bat
Normal file
26
docs/WindowsRun.bat
Normal file
@@ -0,0 +1,26 @@
|
|||||||
|
@echo off
|
||||||
|
setlocal
|
||||||
|
|
||||||
|
:: 设置环境变量
|
||||||
|
set ENV_NAME=gpt
|
||||||
|
set ENV_PATH=%~dp0%ENV_NAME%
|
||||||
|
set SCRIPT_PATH=%~dp0main.py
|
||||||
|
|
||||||
|
:: 判断环境是否已解压
|
||||||
|
if not exist "%ENV_PATH%" (
|
||||||
|
echo Extracting environment...
|
||||||
|
mkdir "%ENV_PATH%"
|
||||||
|
tar -xzf gpt.tar.gz -C "%ENV_PATH%"
|
||||||
|
|
||||||
|
:: 运行conda环境激活脚本
|
||||||
|
call "%ENV_PATH%\Scripts\activate.bat"
|
||||||
|
) else (
|
||||||
|
:: 如果环境已存在,直接激活
|
||||||
|
call "%ENV_PATH%\Scripts\activate.bat"
|
||||||
|
)
|
||||||
|
echo Start to run program:
|
||||||
|
:: 运行Python脚本
|
||||||
|
python "%SCRIPT_PATH%"
|
||||||
|
|
||||||
|
endlocal
|
||||||
|
pause
|
||||||
@@ -1141,7 +1141,7 @@
|
|||||||
"内容太长了都会触发token数量溢出的错误": "An error of token overflow will be triggered if the content is too long",
|
"内容太长了都会触发token数量溢出的错误": "An error of token overflow will be triggered if the content is too long",
|
||||||
"chatbot 为WebUI中显示的对话列表": "chatbot is the conversation list displayed in WebUI",
|
"chatbot 为WebUI中显示的对话列表": "chatbot is the conversation list displayed in WebUI",
|
||||||
"修改它": "Modify it",
|
"修改它": "Modify it",
|
||||||
"然后yeild出去": "Then yield it out",
|
"然后yield出去": "Then yield it out",
|
||||||
"可以直接修改对话界面内容": "You can directly modify the conversation interface content",
|
"可以直接修改对话界面内容": "You can directly modify the conversation interface content",
|
||||||
"additional_fn代表点击的哪个按钮": "additional_fn represents which button is clicked",
|
"additional_fn代表点击的哪个按钮": "additional_fn represents which button is clicked",
|
||||||
"按钮见functional.py": "See functional.py for buttons",
|
"按钮见functional.py": "See functional.py for buttons",
|
||||||
@@ -1732,7 +1732,7 @@
|
|||||||
"或者重启之后再度尝试": "Or try again after restarting",
|
"或者重启之后再度尝试": "Or try again after restarting",
|
||||||
"免费": "Free",
|
"免费": "Free",
|
||||||
"仅在Windows系统进行了测试": "Tested only on Windows system",
|
"仅在Windows系统进行了测试": "Tested only on Windows system",
|
||||||
"欢迎加REAME中的QQ联系开发者": "Feel free to contact the developer via QQ in REAME",
|
"欢迎加README中的QQ联系开发者": "Feel free to contact the developer via QQ in README",
|
||||||
"当前知识库内的有效文件": "Valid files in the current knowledge base",
|
"当前知识库内的有效文件": "Valid files in the current knowledge base",
|
||||||
"您可以到Github Issue区": "You can go to the Github Issue area",
|
"您可以到Github Issue区": "You can go to the Github Issue area",
|
||||||
"刷新Gradio前端界面": "Refresh the Gradio frontend interface",
|
"刷新Gradio前端界面": "Refresh the Gradio frontend interface",
|
||||||
@@ -1759,7 +1759,7 @@
|
|||||||
"报错信息如下. 如果是与网络相关的问题": "Error message as follows. If it is related to network issues",
|
"报错信息如下. 如果是与网络相关的问题": "Error message as follows. If it is related to network issues",
|
||||||
"功能描述": "Function description",
|
"功能描述": "Function description",
|
||||||
"禁止移除或修改此警告": "Removal or modification of this warning is prohibited",
|
"禁止移除或修改此警告": "Removal or modification of this warning is prohibited",
|
||||||
"Arixv翻译": "Arixv translation",
|
"ArXiv翻译": "ArXiv translation",
|
||||||
"读取优先级": "Read priority",
|
"读取优先级": "Read priority",
|
||||||
"包含documentclass关键字": "Contains the documentclass keyword",
|
"包含documentclass关键字": "Contains the documentclass keyword",
|
||||||
"根据文本使用GPT模型生成相应的图像": "Generate corresponding images using GPT model based on the text",
|
"根据文本使用GPT模型生成相应的图像": "Generate corresponding images using GPT model based on the text",
|
||||||
@@ -1998,7 +1998,7 @@
|
|||||||
"开始最终总结": "Start final summary",
|
"开始最终总结": "Start final summary",
|
||||||
"openai的官方KEY需要伴随组织编码": "Openai's official KEY needs to be accompanied by organizational code",
|
"openai的官方KEY需要伴随组织编码": "Openai's official KEY needs to be accompanied by organizational code",
|
||||||
"将子线程的gpt结果写入chatbot": "Write the GPT result of the sub-thread into the chatbot",
|
"将子线程的gpt结果写入chatbot": "Write the GPT result of the sub-thread into the chatbot",
|
||||||
"Arixv论文精细翻译": "Fine translation of Arixv paper",
|
"ArXiv论文精细翻译": "Fine translation of ArXiv paper",
|
||||||
"开始接收chatglmft的回复": "Start receiving replies from chatglmft",
|
"开始接收chatglmft的回复": "Start receiving replies from chatglmft",
|
||||||
"请先将.doc文档转换为.docx文档": "Please convert .doc documents to .docx documents first",
|
"请先将.doc文档转换为.docx文档": "Please convert .doc documents to .docx documents first",
|
||||||
"避免多用户干扰": "Avoid multiple user interference",
|
"避免多用户干扰": "Avoid multiple user interference",
|
||||||
@@ -2360,7 +2360,7 @@
|
|||||||
"请在config.py中设置ALLOW_RESET_CONFIG=True后重启软件": "Please set ALLOW_RESET_CONFIG=True in config.py and restart the software",
|
"请在config.py中设置ALLOW_RESET_CONFIG=True后重启软件": "Please set ALLOW_RESET_CONFIG=True in config.py and restart the software",
|
||||||
"按照自然语言描述生成一个动画 | 输入参数是一段话": "Generate an animation based on natural language description | Input parameter is a sentence",
|
"按照自然语言描述生成一个动画 | 输入参数是一段话": "Generate an animation based on natural language description | Input parameter is a sentence",
|
||||||
"你的hf用户名如qingxu98": "Your hf username is qingxu98",
|
"你的hf用户名如qingxu98": "Your hf username is qingxu98",
|
||||||
"Arixv论文精细翻译 | 输入参数arxiv论文的ID": "Fine translation of Arixv paper | Input parameter is the ID of arxiv paper",
|
"ArXiv论文精细翻译 | 输入参数arxiv论文的ID": "Fine translation of ArXiv paper | Input parameter is the ID of arxiv paper",
|
||||||
"无法获取 abstract": "Unable to retrieve abstract",
|
"无法获取 abstract": "Unable to retrieve abstract",
|
||||||
"尽可能地仅用一行命令解决我的要求": "Try to solve my request using only one command",
|
"尽可能地仅用一行命令解决我的要求": "Try to solve my request using only one command",
|
||||||
"提取插件参数": "Extract plugin parameters",
|
"提取插件参数": "Extract plugin parameters",
|
||||||
|
|||||||
@@ -753,7 +753,7 @@
|
|||||||
"手动指定和筛选源代码文件类型": "ソースコードファイルタイプを手動で指定およびフィルタリングする",
|
"手动指定和筛选源代码文件类型": "ソースコードファイルタイプを手動で指定およびフィルタリングする",
|
||||||
"更多函数插件": "その他の関数プラグイン",
|
"更多函数插件": "その他の関数プラグイン",
|
||||||
"看门狗的耐心": "監視犬の忍耐力",
|
"看门狗的耐心": "監視犬の忍耐力",
|
||||||
"然后yeild出去": "そして出力する",
|
"然后yield出去": "そして出力する",
|
||||||
"拆分过长的IPynb文件": "長すぎるIPynbファイルを分割する",
|
"拆分过长的IPynb文件": "長すぎるIPynbファイルを分割する",
|
||||||
"1. 把input的余量留出来": "1. 入力の余裕を残す",
|
"1. 把input的余量留出来": "1. 入力の余裕を残す",
|
||||||
"请求超时": "リクエストがタイムアウトしました",
|
"请求超时": "リクエストがタイムアウトしました",
|
||||||
@@ -1803,7 +1803,7 @@
|
|||||||
"默认值为1000": "デフォルト値は1000です",
|
"默认值为1000": "デフォルト値は1000です",
|
||||||
"写出文件": "ファイルに書き出す",
|
"写出文件": "ファイルに書き出す",
|
||||||
"生成的视频文件路径": "生成されたビデオファイルのパス",
|
"生成的视频文件路径": "生成されたビデオファイルのパス",
|
||||||
"Arixv论文精细翻译": "Arixv論文の詳細な翻訳",
|
"ArXiv论文精细翻译": "ArXiv論文の詳細な翻訳",
|
||||||
"用latex编译为PDF对修正处做高亮": "LaTeXでコンパイルしてPDFに修正をハイライトする",
|
"用latex编译为PDF对修正处做高亮": "LaTeXでコンパイルしてPDFに修正をハイライトする",
|
||||||
"点击“停止”键可终止程序": "「停止」ボタンをクリックしてプログラムを終了できます",
|
"点击“停止”键可终止程序": "「停止」ボタンをクリックしてプログラムを終了できます",
|
||||||
"否则将导致每个人的Claude问询历史互相渗透": "さもないと、各人のClaudeの問い合わせ履歴が相互に侵入します",
|
"否则将导致每个人的Claude问询历史互相渗透": "さもないと、各人のClaudeの問い合わせ履歴が相互に侵入します",
|
||||||
@@ -1987,7 +1987,7 @@
|
|||||||
"前面是中文逗号": "前面是中文逗号",
|
"前面是中文逗号": "前面是中文逗号",
|
||||||
"的依赖": "的依赖",
|
"的依赖": "的依赖",
|
||||||
"材料如下": "材料如下",
|
"材料如下": "材料如下",
|
||||||
"欢迎加REAME中的QQ联系开发者": "欢迎加REAME中的QQ联系开发者",
|
"欢迎加README中的QQ联系开发者": "欢迎加README中的QQ联系开发者",
|
||||||
"开始下载": "開始ダウンロード",
|
"开始下载": "開始ダウンロード",
|
||||||
"100字以内": "100文字以内",
|
"100字以内": "100文字以内",
|
||||||
"创建request": "リクエストの作成",
|
"创建request": "リクエストの作成",
|
||||||
|
|||||||
@@ -771,7 +771,7 @@
|
|||||||
"查询代理的地理位置": "查詢代理的地理位置",
|
"查询代理的地理位置": "查詢代理的地理位置",
|
||||||
"是否在输入过长时": "是否在輸入過長時",
|
"是否在输入过长时": "是否在輸入過長時",
|
||||||
"chatGPT分析报告": "chatGPT分析報告",
|
"chatGPT分析报告": "chatGPT分析報告",
|
||||||
"然后yeild出去": "然後yield出去",
|
"然后yield出去": "然後yield出去",
|
||||||
"用户取消了程序": "使用者取消了程式",
|
"用户取消了程序": "使用者取消了程式",
|
||||||
"琥珀色": "琥珀色",
|
"琥珀色": "琥珀色",
|
||||||
"这里是特殊函数插件的高级参数输入区": "這裡是特殊函數插件的高級參數輸入區",
|
"这里是特殊函数插件的高级参数输入区": "這裡是特殊函數插件的高級參數輸入區",
|
||||||
@@ -1587,7 +1587,7 @@
|
|||||||
"否则将导致每个人的Claude问询历史互相渗透": "否則將導致每個人的Claude問詢歷史互相滲透",
|
"否则将导致每个人的Claude问询历史互相渗透": "否則將導致每個人的Claude問詢歷史互相滲透",
|
||||||
"提问吧! 但注意": "提問吧!但注意",
|
"提问吧! 但注意": "提問吧!但注意",
|
||||||
"待处理的word文档路径": "待處理的word文檔路徑",
|
"待处理的word文档路径": "待處理的word文檔路徑",
|
||||||
"欢迎加REAME中的QQ联系开发者": "歡迎加REAME中的QQ聯繫開發者",
|
"欢迎加README中的QQ联系开发者": "歡迎加README中的QQ聯繫開發者",
|
||||||
"建议暂时不要使用": "建議暫時不要使用",
|
"建议暂时不要使用": "建議暫時不要使用",
|
||||||
"Latex没有安装": "Latex沒有安裝",
|
"Latex没有安装": "Latex沒有安裝",
|
||||||
"在这里放一些网上搜集的demo": "在這裡放一些網上搜集的demo",
|
"在这里放一些网上搜集的demo": "在這裡放一些網上搜集的demo",
|
||||||
@@ -1989,7 +1989,7 @@
|
|||||||
"请耐心等待": "請耐心等待",
|
"请耐心等待": "請耐心等待",
|
||||||
"在执行完成之后": "在執行完成之後",
|
"在执行完成之后": "在執行完成之後",
|
||||||
"参数简单": "參數簡單",
|
"参数简单": "參數簡單",
|
||||||
"Arixv论文精细翻译": "Arixv論文精細翻譯",
|
"ArXiv论文精细翻译": "ArXiv論文精細翻譯",
|
||||||
"备份和下载": "備份和下載",
|
"备份和下载": "備份和下載",
|
||||||
"当前报错的latex代码处于第": "當前報錯的latex代碼處於第",
|
"当前报错的latex代码处于第": "當前報錯的latex代碼處於第",
|
||||||
"Markdown翻译": "Markdown翻譯",
|
"Markdown翻译": "Markdown翻譯",
|
||||||
|
|||||||
34
main.py
34
main.py
@@ -1,10 +1,7 @@
|
|||||||
import os, json; os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
|
import os; os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
|
||||||
|
|
||||||
help_menu_description = \
|
help_menu_description = \
|
||||||
"""Github源代码开源和更新[地址🚀](https://github.com/binary-husky/gpt_academic),
|
"""
|
||||||
感谢热情的[开发者们❤️](https://github.com/binary-husky/gpt_academic/graphs/contributors).
|
|
||||||
</br></br>常见问题请查阅[项目Wiki](https://github.com/binary-husky/gpt_academic/wiki),
|
|
||||||
如遇到Bug请前往[Bug反馈](https://github.com/binary-husky/gpt_academic/issues).
|
|
||||||
</br></br>普通对话使用说明: 1. 输入问题; 2. 点击提交
|
</br></br>普通对话使用说明: 1. 输入问题; 2. 点击提交
|
||||||
</br></br>基础功能区使用说明: 1. 输入文本; 2. 点击任意基础功能区按钮
|
</br></br>基础功能区使用说明: 1. 输入文本; 2. 点击任意基础功能区按钮
|
||||||
</br></br>函数插件区使用说明: 1. 输入路径/问题, 或者上传文件; 2. 点击任意函数插件区按钮
|
</br></br>函数插件区使用说明: 1. 输入路径/问题, 或者上传文件; 2. 点击任意函数插件区按钮
|
||||||
@@ -34,7 +31,7 @@ def encode_plugin_info(k, plugin)->str:
|
|||||||
|
|
||||||
def main():
|
def main():
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
if gr.__version__ not in ['3.32.9', '3.32.10', '3.32.11']:
|
if gr.__version__ not in ['3.32.12']:
|
||||||
raise ModuleNotFoundError("使用项目内置Gradio获取最优体验! 请运行 `pip install -r requirements.txt` 指令安装内置Gradio及其他依赖, 详情信息见requirements.txt.")
|
raise ModuleNotFoundError("使用项目内置Gradio获取最优体验! 请运行 `pip install -r requirements.txt` 指令安装内置Gradio及其他依赖, 详情信息见requirements.txt.")
|
||||||
|
|
||||||
# 一些基础工具
|
# 一些基础工具
|
||||||
@@ -49,7 +46,7 @@ def main():
|
|||||||
# 读取配置
|
# 读取配置
|
||||||
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION = get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION')
|
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION = get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION')
|
||||||
CHATBOT_HEIGHT, LAYOUT, AVAIL_LLM_MODELS, AUTO_CLEAR_TXT = get_conf('CHATBOT_HEIGHT', 'LAYOUT', 'AVAIL_LLM_MODELS', 'AUTO_CLEAR_TXT')
|
CHATBOT_HEIGHT, LAYOUT, AVAIL_LLM_MODELS, AUTO_CLEAR_TXT = get_conf('CHATBOT_HEIGHT', 'LAYOUT', 'AVAIL_LLM_MODELS', 'AUTO_CLEAR_TXT')
|
||||||
ENABLE_AUDIO, AUTO_CLEAR_TXT, PATH_LOGGING, AVAIL_THEMES, THEME, ADD_WAIFU = get_conf('ENABLE_AUDIO', 'AUTO_CLEAR_TXT', 'PATH_LOGGING', 'AVAIL_THEMES', 'THEME', 'ADD_WAIFU')
|
ENABLE_AUDIO, AUTO_CLEAR_TXT, AVAIL_FONTS, AVAIL_THEMES, THEME, ADD_WAIFU = get_conf('ENABLE_AUDIO', 'AUTO_CLEAR_TXT', 'AVAIL_FONTS', 'AVAIL_THEMES', 'THEME', 'ADD_WAIFU')
|
||||||
NUM_CUSTOM_BASIC_BTN, SSL_KEYFILE, SSL_CERTFILE = get_conf('NUM_CUSTOM_BASIC_BTN', 'SSL_KEYFILE', 'SSL_CERTFILE')
|
NUM_CUSTOM_BASIC_BTN, SSL_KEYFILE, SSL_CERTFILE = get_conf('NUM_CUSTOM_BASIC_BTN', 'SSL_KEYFILE', 'SSL_CERTFILE')
|
||||||
DARK_MODE, INIT_SYS_PROMPT, ADD_WAIFU, TTS_TYPE = get_conf('DARK_MODE', 'INIT_SYS_PROMPT', 'ADD_WAIFU', 'TTS_TYPE')
|
DARK_MODE, INIT_SYS_PROMPT, ADD_WAIFU, TTS_TYPE = get_conf('DARK_MODE', 'INIT_SYS_PROMPT', 'ADD_WAIFU', 'TTS_TYPE')
|
||||||
if LLM_MODEL not in AVAIL_LLM_MODELS: AVAIL_LLM_MODELS += [LLM_MODEL]
|
if LLM_MODEL not in AVAIL_LLM_MODELS: AVAIL_LLM_MODELS += [LLM_MODEL]
|
||||||
@@ -57,8 +54,8 @@ def main():
|
|||||||
# 如果WEB_PORT是-1, 则随机选取WEB端口
|
# 如果WEB_PORT是-1, 则随机选取WEB端口
|
||||||
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
|
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
|
||||||
from check_proxy import get_current_version
|
from check_proxy import get_current_version
|
||||||
from themes.theme import adjust_theme, advanced_css, theme_declaration, js_code_clear, js_code_reset, js_code_show_or_hide, js_code_show_or_hide_group2
|
from themes.theme import adjust_theme, advanced_css, theme_declaration, js_code_clear, js_code_show_or_hide
|
||||||
from themes.theme import js_code_for_toggle_darkmode, js_code_for_persistent_cookie_init
|
from themes.theme import js_code_for_toggle_darkmode
|
||||||
from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, assign_user_uuid
|
from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, assign_user_uuid
|
||||||
title_html = f"<h1 align=\"center\">GPT 学术优化 {get_current_version()}</h1>{theme_declaration}"
|
title_html = f"<h1 align=\"center\">GPT 学术优化 {get_current_version()}</h1>{theme_declaration}"
|
||||||
|
|
||||||
@@ -106,7 +103,7 @@ def main():
|
|||||||
with gr_L2(scale=2, elem_id="gpt-chat"):
|
with gr_L2(scale=2, elem_id="gpt-chat"):
|
||||||
chatbot = gr.Chatbot(label=f"当前模型:{LLM_MODEL}", elem_id="gpt-chatbot")
|
chatbot = gr.Chatbot(label=f"当前模型:{LLM_MODEL}", elem_id="gpt-chatbot")
|
||||||
if LAYOUT == "TOP-DOWN": chatbot.style(height=CHATBOT_HEIGHT)
|
if LAYOUT == "TOP-DOWN": chatbot.style(height=CHATBOT_HEIGHT)
|
||||||
history, history_cache, history_cache_update = make_history_cache() # 定义 后端state(history)、前端(history_cache)、后端setter(history_cache_update)三兄弟
|
history, _, _ = make_history_cache() # 定义 后端state(history)、前端(history_cache)、后端setter(history_cache_update)三兄弟
|
||||||
with gr_L2(scale=1, elem_id="gpt-panel"):
|
with gr_L2(scale=1, elem_id="gpt-panel"):
|
||||||
with gr.Accordion("输入区", open=True, elem_id="input-panel") as area_input_primary:
|
with gr.Accordion("输入区", open=True, elem_id="input-panel") as area_input_primary:
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
@@ -174,16 +171,20 @@ def main():
|
|||||||
with gr.Accordion("点击展开“文件下载区”。", open=False) as area_file_up:
|
with gr.Accordion("点击展开“文件下载区”。", open=False) as area_file_up:
|
||||||
file_upload = gr.Files(label="任何文件, 推荐上传压缩文件(zip, tar)", file_count="multiple", elem_id="elem_upload")
|
file_upload = gr.Files(label="任何文件, 推荐上传压缩文件(zip, tar)", file_count="multiple", elem_id="elem_upload")
|
||||||
|
|
||||||
|
|
||||||
# 左上角工具栏定义
|
# 左上角工具栏定义
|
||||||
from themes.gui_toolbar import define_gui_toolbar
|
from themes.gui_toolbar import define_gui_toolbar
|
||||||
checkboxes, checkboxes_2, max_length_sl, theme_dropdown, system_prompt, file_upload_2, md_dropdown, top_p, temperature = \
|
checkboxes, checkboxes_2, max_length_sl, theme_dropdown, system_prompt, file_upload_2, md_dropdown, top_p, temperature = \
|
||||||
define_gui_toolbar(AVAIL_LLM_MODELS, LLM_MODEL, INIT_SYS_PROMPT, THEME, AVAIL_THEMES, ADD_WAIFU, help_menu_description, js_code_for_toggle_darkmode)
|
define_gui_toolbar(AVAIL_LLM_MODELS, LLM_MODEL, INIT_SYS_PROMPT, THEME, AVAIL_THEMES, AVAIL_FONTS, ADD_WAIFU, help_menu_description, js_code_for_toggle_darkmode)
|
||||||
|
|
||||||
# 浮动菜单定义
|
# 浮动菜单定义
|
||||||
from themes.gui_floating_menu import define_gui_floating_menu
|
from themes.gui_floating_menu import define_gui_floating_menu
|
||||||
area_input_secondary, txt2, area_customize, _, resetBtn2, clearBtn2, stopBtn2 = \
|
area_input_secondary, txt2, area_customize, _, resetBtn2, clearBtn2, stopBtn2 = \
|
||||||
define_gui_floating_menu(customize_btns, functional, predefined_btns, cookies, web_cookie_cache)
|
define_gui_floating_menu(customize_btns, functional, predefined_btns, cookies, web_cookie_cache)
|
||||||
|
|
||||||
|
# 浮动时间线定义
|
||||||
|
gr.Spark()
|
||||||
|
|
||||||
# 插件二级菜单的实现
|
# 插件二级菜单的实现
|
||||||
from themes.gui_advanced_plugin_class import define_gui_advanced_plugin_class
|
from themes.gui_advanced_plugin_class import define_gui_advanced_plugin_class
|
||||||
new_plugin_callback, route_switchy_bt_with_arg, usr_confirmed_arg = \
|
new_plugin_callback, route_switchy_bt_with_arg, usr_confirmed_arg = \
|
||||||
@@ -206,7 +207,7 @@ def main():
|
|||||||
ret.update({area_customize: gr.update(visible=("自定义菜单" in a))})
|
ret.update({area_customize: gr.update(visible=("自定义菜单" in a))})
|
||||||
return ret
|
return ret
|
||||||
checkboxes_2.select(fn_area_visibility_2, [checkboxes_2], [area_customize] )
|
checkboxes_2.select(fn_area_visibility_2, [checkboxes_2], [area_customize] )
|
||||||
checkboxes_2.select(None, [checkboxes_2], None, _js=js_code_show_or_hide_group2)
|
checkboxes_2.select(None, [checkboxes_2], None, _js="""apply_checkbox_change_for_group2""")
|
||||||
|
|
||||||
# 整理反复出现的控件句柄组合
|
# 整理反复出现的控件句柄组合
|
||||||
input_combo = [cookies, max_length_sl, md_dropdown, txt, txt2, top_p, temperature, chatbot, history, system_prompt, plugin_advanced_arg]
|
input_combo = [cookies, max_length_sl, md_dropdown, txt, txt2, top_p, temperature, chatbot, history, system_prompt, plugin_advanced_arg]
|
||||||
@@ -222,11 +223,8 @@ def main():
|
|||||||
multiplex_sel.select(
|
multiplex_sel.select(
|
||||||
None, [multiplex_sel], None, _js=f"""(multiplex_sel)=>run_multiplex_shift(multiplex_sel)""")
|
None, [multiplex_sel], None, _js=f"""(multiplex_sel)=>run_multiplex_shift(multiplex_sel)""")
|
||||||
cancel_handles.append(submit_btn.click(**predict_args))
|
cancel_handles.append(submit_btn.click(**predict_args))
|
||||||
resetBtn.click(None, None, [chatbot, history, status], _js=js_code_reset) # 先在前端快速清除chatbot&status
|
resetBtn.click(None, None, [chatbot, history, status], _js= """clear_conversation""") # 先在前端快速清除chatbot&status
|
||||||
resetBtn2.click(None, None, [chatbot, history, status], _js=js_code_reset) # 先在前端快速清除chatbot&status
|
resetBtn2.click(None, None, [chatbot, history, status], _js="""clear_conversation""") # 先在前端快速清除chatbot&status
|
||||||
reset_server_side_args = (lambda history: ([], [], "已重置", json.dumps(history)), [history], [chatbot, history, status, history_cache])
|
|
||||||
resetBtn.click(*reset_server_side_args) # 再在后端清除history,把history转存history_cache备用
|
|
||||||
resetBtn2.click(*reset_server_side_args) # 再在后端清除history,把history转存history_cache备用
|
|
||||||
clearBtn.click(None, None, [txt, txt2], _js=js_code_clear)
|
clearBtn.click(None, None, [txt, txt2], _js=js_code_clear)
|
||||||
clearBtn2.click(None, None, [txt, txt2], _js=js_code_clear)
|
clearBtn2.click(None, None, [txt, txt2], _js=js_code_clear)
|
||||||
if AUTO_CLEAR_TXT:
|
if AUTO_CLEAR_TXT:
|
||||||
@@ -326,7 +324,7 @@ def main():
|
|||||||
from shared_utils.cookie_manager import load_web_cookie_cache__fn_builder
|
from shared_utils.cookie_manager import load_web_cookie_cache__fn_builder
|
||||||
load_web_cookie_cache = load_web_cookie_cache__fn_builder(customize_btns, cookies, predefined_btns)
|
load_web_cookie_cache = load_web_cookie_cache__fn_builder(customize_btns, cookies, predefined_btns)
|
||||||
app_block.load(load_web_cookie_cache, inputs = [web_cookie_cache, cookies],
|
app_block.load(load_web_cookie_cache, inputs = [web_cookie_cache, cookies],
|
||||||
outputs = [web_cookie_cache, cookies, *customize_btns.values(), *predefined_btns.values()], _js=js_code_for_persistent_cookie_init)
|
outputs = [web_cookie_cache, cookies, *customize_btns.values(), *predefined_btns.values()], _js="""persistent_cookie_init""")
|
||||||
app_block.load(None, inputs=[], outputs=None, _js=f"""()=>GptAcademicJavaScriptInit("{DARK_MODE}","{INIT_SYS_PROMPT}","{ADD_WAIFU}","{LAYOUT}","{TTS_TYPE}")""") # 配置暗色主题或亮色主题
|
app_block.load(None, inputs=[], outputs=None, _js=f"""()=>GptAcademicJavaScriptInit("{DARK_MODE}","{INIT_SYS_PROMPT}","{ADD_WAIFU}","{LAYOUT}","{TTS_TYPE}")""") # 配置暗色主题或亮色主题
|
||||||
app_block.load(None, inputs=[], outputs=None, _js="""()=>{REP}""".replace("REP", register_advanced_plugin_init_arr))
|
app_block.load(None, inputs=[], outputs=None, _js="""()=>{REP}""".replace("REP", register_advanced_plugin_init_arr))
|
||||||
|
|
||||||
|
|||||||
@@ -26,6 +26,9 @@ from .bridge_chatglm import predict as chatglm_ui
|
|||||||
from .bridge_chatglm3 import predict_no_ui_long_connection as chatglm3_noui
|
from .bridge_chatglm3 import predict_no_ui_long_connection as chatglm3_noui
|
||||||
from .bridge_chatglm3 import predict as chatglm3_ui
|
from .bridge_chatglm3 import predict as chatglm3_ui
|
||||||
|
|
||||||
|
from .bridge_chatglm4 import predict_no_ui_long_connection as chatglm4_noui
|
||||||
|
from .bridge_chatglm4 import predict as chatglm4_ui
|
||||||
|
|
||||||
from .bridge_qianfan import predict_no_ui_long_connection as qianfan_noui
|
from .bridge_qianfan import predict_no_ui_long_connection as qianfan_noui
|
||||||
from .bridge_qianfan import predict as qianfan_ui
|
from .bridge_qianfan import predict as qianfan_ui
|
||||||
|
|
||||||
@@ -76,6 +79,7 @@ cohere_endpoint = "https://api.cohere.ai/v1/chat"
|
|||||||
ollama_endpoint = "http://localhost:11434/api/chat"
|
ollama_endpoint = "http://localhost:11434/api/chat"
|
||||||
yimodel_endpoint = "https://api.lingyiwanwu.com/v1/chat/completions"
|
yimodel_endpoint = "https://api.lingyiwanwu.com/v1/chat/completions"
|
||||||
deepseekapi_endpoint = "https://api.deepseek.com/v1/chat/completions"
|
deepseekapi_endpoint = "https://api.deepseek.com/v1/chat/completions"
|
||||||
|
grok_model_endpoint = "https://api.x.ai/v1/chat/completions"
|
||||||
|
|
||||||
if not AZURE_ENDPOINT.endswith('/'): AZURE_ENDPOINT += '/'
|
if not AZURE_ENDPOINT.endswith('/'): AZURE_ENDPOINT += '/'
|
||||||
azure_endpoint = AZURE_ENDPOINT + f'openai/deployments/{AZURE_ENGINE}/chat/completions?api-version=2023-05-15'
|
azure_endpoint = AZURE_ENDPOINT + f'openai/deployments/{AZURE_ENGINE}/chat/completions?api-version=2023-05-15'
|
||||||
@@ -97,6 +101,7 @@ if cohere_endpoint in API_URL_REDIRECT: cohere_endpoint = API_URL_REDIRECT[coher
|
|||||||
if ollama_endpoint in API_URL_REDIRECT: ollama_endpoint = API_URL_REDIRECT[ollama_endpoint]
|
if ollama_endpoint in API_URL_REDIRECT: ollama_endpoint = API_URL_REDIRECT[ollama_endpoint]
|
||||||
if yimodel_endpoint in API_URL_REDIRECT: yimodel_endpoint = API_URL_REDIRECT[yimodel_endpoint]
|
if yimodel_endpoint in API_URL_REDIRECT: yimodel_endpoint = API_URL_REDIRECT[yimodel_endpoint]
|
||||||
if deepseekapi_endpoint in API_URL_REDIRECT: deepseekapi_endpoint = API_URL_REDIRECT[deepseekapi_endpoint]
|
if deepseekapi_endpoint in API_URL_REDIRECT: deepseekapi_endpoint = API_URL_REDIRECT[deepseekapi_endpoint]
|
||||||
|
if grok_model_endpoint in API_URL_REDIRECT: grok_model_endpoint = API_URL_REDIRECT[grok_model_endpoint]
|
||||||
|
|
||||||
# 获取tokenizer
|
# 获取tokenizer
|
||||||
tokenizer_gpt35 = LazyloadTiktoken("gpt-3.5-turbo")
|
tokenizer_gpt35 = LazyloadTiktoken("gpt-3.5-turbo")
|
||||||
@@ -268,7 +273,9 @@ model_info = {
|
|||||||
"token_cnt": get_token_num_gpt4,
|
"token_cnt": get_token_num_gpt4,
|
||||||
"openai_disable_system_prompt": True,
|
"openai_disable_system_prompt": True,
|
||||||
"openai_disable_stream": True,
|
"openai_disable_stream": True,
|
||||||
|
"openai_force_temperature_one": True,
|
||||||
},
|
},
|
||||||
|
|
||||||
"o1-mini": {
|
"o1-mini": {
|
||||||
"fn_with_ui": chatgpt_ui,
|
"fn_with_ui": chatgpt_ui,
|
||||||
"fn_without_ui": chatgpt_noui,
|
"fn_without_ui": chatgpt_noui,
|
||||||
@@ -278,6 +285,31 @@ model_info = {
|
|||||||
"token_cnt": get_token_num_gpt4,
|
"token_cnt": get_token_num_gpt4,
|
||||||
"openai_disable_system_prompt": True,
|
"openai_disable_system_prompt": True,
|
||||||
"openai_disable_stream": True,
|
"openai_disable_stream": True,
|
||||||
|
"openai_force_temperature_one": True,
|
||||||
|
},
|
||||||
|
|
||||||
|
"o1-2024-12-17": {
|
||||||
|
"fn_with_ui": chatgpt_ui,
|
||||||
|
"fn_without_ui": chatgpt_noui,
|
||||||
|
"endpoint": openai_endpoint,
|
||||||
|
"max_token": 200000,
|
||||||
|
"tokenizer": tokenizer_gpt4,
|
||||||
|
"token_cnt": get_token_num_gpt4,
|
||||||
|
"openai_disable_system_prompt": True,
|
||||||
|
"openai_disable_stream": True,
|
||||||
|
"openai_force_temperature_one": True,
|
||||||
|
},
|
||||||
|
|
||||||
|
"o1": {
|
||||||
|
"fn_with_ui": chatgpt_ui,
|
||||||
|
"fn_without_ui": chatgpt_noui,
|
||||||
|
"endpoint": openai_endpoint,
|
||||||
|
"max_token": 200000,
|
||||||
|
"tokenizer": tokenizer_gpt4,
|
||||||
|
"token_cnt": get_token_num_gpt4,
|
||||||
|
"openai_disable_system_prompt": True,
|
||||||
|
"openai_disable_stream": True,
|
||||||
|
"openai_force_temperature_one": True,
|
||||||
},
|
},
|
||||||
|
|
||||||
"gpt-4-turbo": {
|
"gpt-4-turbo": {
|
||||||
@@ -414,6 +446,7 @@ model_info = {
|
|||||||
"token_cnt": get_token_num_gpt4,
|
"token_cnt": get_token_num_gpt4,
|
||||||
},
|
},
|
||||||
|
|
||||||
|
# ChatGLM本地模型
|
||||||
# 将 chatglm 直接对齐到 chatglm2
|
# 将 chatglm 直接对齐到 chatglm2
|
||||||
"chatglm": {
|
"chatglm": {
|
||||||
"fn_with_ui": chatglm_ui,
|
"fn_with_ui": chatglm_ui,
|
||||||
@@ -439,6 +472,14 @@ model_info = {
|
|||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
"token_cnt": get_token_num_gpt35,
|
"token_cnt": get_token_num_gpt35,
|
||||||
},
|
},
|
||||||
|
"chatglm4": {
|
||||||
|
"fn_with_ui": chatglm4_ui,
|
||||||
|
"fn_without_ui": chatglm4_noui,
|
||||||
|
"endpoint": None,
|
||||||
|
"max_token": 8192,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
"qianfan": {
|
"qianfan": {
|
||||||
"fn_with_ui": qianfan_ui,
|
"fn_with_ui": qianfan_ui,
|
||||||
"fn_without_ui": qianfan_noui,
|
"fn_without_ui": qianfan_noui,
|
||||||
@@ -771,7 +812,8 @@ if "qwen-local" in AVAIL_LLM_MODELS:
|
|||||||
except:
|
except:
|
||||||
logger.error(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
# -=-=-=-=-=-=- 通义-在线模型 -=-=-=-=-=-=-
|
# -=-=-=-=-=-=- 通义-在线模型 -=-=-=-=-=-=-
|
||||||
if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-max" in AVAIL_LLM_MODELS: # zhipuai
|
qwen_models = ["qwen-max-latest", "qwen-max-2025-01-25","qwen-max","qwen-turbo","qwen-plus"]
|
||||||
|
if any(item in qwen_models for item in AVAIL_LLM_MODELS):
|
||||||
try:
|
try:
|
||||||
from .bridge_qwen import predict_no_ui_long_connection as qwen_noui
|
from .bridge_qwen import predict_no_ui_long_connection as qwen_noui
|
||||||
from .bridge_qwen import predict as qwen_ui
|
from .bridge_qwen import predict as qwen_ui
|
||||||
@@ -781,7 +823,7 @@ if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-
|
|||||||
"fn_without_ui": qwen_noui,
|
"fn_without_ui": qwen_noui,
|
||||||
"can_multi_thread": True,
|
"can_multi_thread": True,
|
||||||
"endpoint": None,
|
"endpoint": None,
|
||||||
"max_token": 6144,
|
"max_token": 100000,
|
||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
"token_cnt": get_token_num_gpt35,
|
"token_cnt": get_token_num_gpt35,
|
||||||
},
|
},
|
||||||
@@ -790,7 +832,7 @@ if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-
|
|||||||
"fn_without_ui": qwen_noui,
|
"fn_without_ui": qwen_noui,
|
||||||
"can_multi_thread": True,
|
"can_multi_thread": True,
|
||||||
"endpoint": None,
|
"endpoint": None,
|
||||||
"max_token": 30720,
|
"max_token": 129024,
|
||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
"token_cnt": get_token_num_gpt35,
|
"token_cnt": get_token_num_gpt35,
|
||||||
},
|
},
|
||||||
@@ -799,7 +841,25 @@ if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-
|
|||||||
"fn_without_ui": qwen_noui,
|
"fn_without_ui": qwen_noui,
|
||||||
"can_multi_thread": True,
|
"can_multi_thread": True,
|
||||||
"endpoint": None,
|
"endpoint": None,
|
||||||
"max_token": 28672,
|
"max_token": 30720,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
"qwen-max-latest": {
|
||||||
|
"fn_with_ui": qwen_ui,
|
||||||
|
"fn_without_ui": qwen_noui,
|
||||||
|
"can_multi_thread": True,
|
||||||
|
"endpoint": None,
|
||||||
|
"max_token": 30720,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
"qwen-max-2025-01-25": {
|
||||||
|
"fn_with_ui": qwen_ui,
|
||||||
|
"fn_without_ui": qwen_noui,
|
||||||
|
"can_multi_thread": True,
|
||||||
|
"endpoint": None,
|
||||||
|
"max_token": 30720,
|
||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
"token_cnt": get_token_num_gpt35,
|
"token_cnt": get_token_num_gpt35,
|
||||||
}
|
}
|
||||||
@@ -886,6 +946,31 @@ if any(item in yi_models for item in AVAIL_LLM_MODELS):
|
|||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
logger.error(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
|
|
||||||
|
|
||||||
|
# -=-=-=-=-=-=- Grok model from x.ai -=-=-=-=-=-=-
|
||||||
|
grok_models = ["grok-beta"]
|
||||||
|
if any(item in grok_models for item in AVAIL_LLM_MODELS):
|
||||||
|
try:
|
||||||
|
grok_beta_128k_noui, grok_beta_128k_ui = get_predict_function(
|
||||||
|
api_key_conf_name="GROK_API_KEY", max_output_token=8192, disable_proxy=False
|
||||||
|
)
|
||||||
|
|
||||||
|
model_info.update({
|
||||||
|
"grok-beta": {
|
||||||
|
"fn_with_ui": grok_beta_128k_ui,
|
||||||
|
"fn_without_ui": grok_beta_128k_noui,
|
||||||
|
"can_multi_thread": True,
|
||||||
|
"endpoint": grok_model_endpoint,
|
||||||
|
"max_token": 128000,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
|
||||||
|
})
|
||||||
|
except:
|
||||||
|
logger.error(trimmed_format_exc())
|
||||||
|
|
||||||
# -=-=-=-=-=-=- 讯飞星火认知大模型 -=-=-=-=-=-=-
|
# -=-=-=-=-=-=- 讯飞星火认知大模型 -=-=-=-=-=-=-
|
||||||
if "spark" in AVAIL_LLM_MODELS:
|
if "spark" in AVAIL_LLM_MODELS:
|
||||||
try:
|
try:
|
||||||
@@ -987,7 +1072,7 @@ if "zhipuai" in AVAIL_LLM_MODELS: # zhipuai 是glm-4的别名,向后兼容
|
|||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
logger.error(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
# -=-=-=-=-=-=- 幻方-深度求索大模型 -=-=-=-=-=-=-
|
# -=-=-=-=-=-=- 幻方-深度求索本地大模型 -=-=-=-=-=-=-
|
||||||
if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
|
if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
|
||||||
try:
|
try:
|
||||||
from .bridge_deepseekcoder import predict_no_ui_long_connection as deepseekcoder_noui
|
from .bridge_deepseekcoder import predict_no_ui_long_connection as deepseekcoder_noui
|
||||||
@@ -1005,18 +1090,18 @@ if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
|
|||||||
except:
|
except:
|
||||||
logger.error(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
# -=-=-=-=-=-=- 幻方-深度求索大模型在线API -=-=-=-=-=-=-
|
# -=-=-=-=-=-=- 幻方-深度求索大模型在线API -=-=-=-=-=-=-
|
||||||
if "deepseek-chat" in AVAIL_LLM_MODELS or "deepseek-coder" in AVAIL_LLM_MODELS:
|
if "deepseek-chat" in AVAIL_LLM_MODELS or "deepseek-coder" in AVAIL_LLM_MODELS or "deepseek-reasoner" in AVAIL_LLM_MODELS:
|
||||||
try:
|
try:
|
||||||
deepseekapi_noui, deepseekapi_ui = get_predict_function(
|
deepseekapi_noui, deepseekapi_ui = get_predict_function(
|
||||||
api_key_conf_name="DEEPSEEK_API_KEY", max_output_token=4096, disable_proxy=False
|
api_key_conf_name="DEEPSEEK_API_KEY", max_output_token=4096, disable_proxy=False
|
||||||
)
|
)
|
||||||
model_info.update({
|
model_info.update({
|
||||||
"deepseek-chat":{
|
"deepseek-chat":{
|
||||||
"fn_with_ui": deepseekapi_ui,
|
"fn_with_ui": deepseekapi_ui,
|
||||||
"fn_without_ui": deepseekapi_noui,
|
"fn_without_ui": deepseekapi_noui,
|
||||||
"endpoint": deepseekapi_endpoint,
|
"endpoint": deepseekapi_endpoint,
|
||||||
"can_multi_thread": True,
|
"can_multi_thread": True,
|
||||||
"max_token": 32000,
|
"max_token": 64000,
|
||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
"token_cnt": get_token_num_gpt35,
|
"token_cnt": get_token_num_gpt35,
|
||||||
},
|
},
|
||||||
@@ -1029,6 +1114,16 @@ if "deepseek-chat" in AVAIL_LLM_MODELS or "deepseek-coder" in AVAIL_LLM_MODELS:
|
|||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
"token_cnt": get_token_num_gpt35,
|
"token_cnt": get_token_num_gpt35,
|
||||||
},
|
},
|
||||||
|
"deepseek-reasoner":{
|
||||||
|
"fn_with_ui": deepseekapi_ui,
|
||||||
|
"fn_without_ui": deepseekapi_noui,
|
||||||
|
"endpoint": deepseekapi_endpoint,
|
||||||
|
"can_multi_thread": True,
|
||||||
|
"max_token": 64000,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
"enable_reasoning": True
|
||||||
|
},
|
||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
logger.error(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
@@ -1170,9 +1265,9 @@ def LLM_CATCH_EXCEPTION(f):
|
|||||||
"""
|
"""
|
||||||
装饰器函数,将错误显示出来
|
装饰器函数,将错误显示出来
|
||||||
"""
|
"""
|
||||||
def decorated(inputs:str, llm_kwargs:dict, history:list, sys_prompt:str, observe_window:list, console_slience:bool):
|
def decorated(inputs:str, llm_kwargs:dict, history:list, sys_prompt:str, observe_window:list, console_silence:bool):
|
||||||
try:
|
try:
|
||||||
return f(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience)
|
return f(inputs, llm_kwargs, history, sys_prompt, observe_window, console_silence)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
tb_str = '\n```\n' + trimmed_format_exc() + '\n```\n'
|
tb_str = '\n```\n' + trimmed_format_exc() + '\n```\n'
|
||||||
observe_window[0] = tb_str
|
observe_window[0] = tb_str
|
||||||
@@ -1180,7 +1275,7 @@ def LLM_CATCH_EXCEPTION(f):
|
|||||||
return decorated
|
return decorated
|
||||||
|
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list, sys_prompt:str, observe_window:list=[], console_slience:bool=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list, sys_prompt:str, observe_window:list=[], console_silence:bool=False):
|
||||||
"""
|
"""
|
||||||
发送至LLM,等待回复,一次性完成,不显示中间过程。但内部(尽可能地)用stream的方法避免中途网线被掐。
|
发送至LLM,等待回复,一次性完成,不显示中间过程。但内部(尽可能地)用stream的方法避免中途网线被掐。
|
||||||
inputs:
|
inputs:
|
||||||
@@ -1202,7 +1297,7 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list, sys
|
|||||||
if '&' not in model:
|
if '&' not in model:
|
||||||
# 如果只询问“一个”大语言模型(多数情况):
|
# 如果只询问“一个”大语言模型(多数情况):
|
||||||
method = model_info[model]["fn_without_ui"]
|
method = model_info[model]["fn_without_ui"]
|
||||||
return method(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience)
|
return method(inputs, llm_kwargs, history, sys_prompt, observe_window, console_silence)
|
||||||
else:
|
else:
|
||||||
# 如果同时询问“多个”大语言模型,这个稍微啰嗦一点,但思路相同,您不必读这个else分支
|
# 如果同时询问“多个”大语言模型,这个稍微啰嗦一点,但思路相同,您不必读这个else分支
|
||||||
executor = ThreadPoolExecutor(max_workers=4)
|
executor = ThreadPoolExecutor(max_workers=4)
|
||||||
@@ -1219,7 +1314,7 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list, sys
|
|||||||
method = model_info[model]["fn_without_ui"]
|
method = model_info[model]["fn_without_ui"]
|
||||||
llm_kwargs_feedin = copy.deepcopy(llm_kwargs)
|
llm_kwargs_feedin = copy.deepcopy(llm_kwargs)
|
||||||
llm_kwargs_feedin['llm_model'] = model
|
llm_kwargs_feedin['llm_model'] = model
|
||||||
future = executor.submit(LLM_CATCH_EXCEPTION(method), inputs, llm_kwargs_feedin, history, sys_prompt, window_mutex[i], console_slience)
|
future = executor.submit(LLM_CATCH_EXCEPTION(method), inputs, llm_kwargs_feedin, history, sys_prompt, window_mutex[i], console_silence)
|
||||||
futures.append(future)
|
futures.append(future)
|
||||||
|
|
||||||
def mutex_manager(window_mutex, observe_window):
|
def mutex_manager(window_mutex, observe_window):
|
||||||
@@ -1296,6 +1391,11 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot,
|
|||||||
|
|
||||||
inputs = apply_gpt_academic_string_mask(inputs, mode="show_llm")
|
inputs = apply_gpt_academic_string_mask(inputs, mode="show_llm")
|
||||||
|
|
||||||
|
if llm_kwargs['llm_model'] not in model_info:
|
||||||
|
from toolbox import update_ui
|
||||||
|
chatbot.append([inputs, f"很抱歉,模型 '{llm_kwargs['llm_model']}' 暂不支持<br/>(1) 检查config中的AVAIL_LLM_MODELS选项<br/>(2) 检查request_llms/bridge_all.py中的模型路由"])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
method = model_info[llm_kwargs['llm_model']]["fn_with_ui"] # 如果这里报错,检查config中的AVAIL_LLM_MODELS选项
|
method = model_info[llm_kwargs['llm_model']]["fn_with_ui"] # 如果这里报错,检查config中的AVAIL_LLM_MODELS选项
|
||||||
|
|
||||||
if additional_fn: # 根据基础功能区 ModelOverride 参数调整模型类型
|
if additional_fn: # 根据基础功能区 ModelOverride 参数调整模型类型
|
||||||
|
|||||||
@@ -23,39 +23,33 @@ class GetGLM3Handle(LocalLLMHandle):
|
|||||||
import os
|
import os
|
||||||
import platform
|
import platform
|
||||||
|
|
||||||
LOCAL_MODEL_QUANT, device = get_conf("LOCAL_MODEL_QUANT", "LOCAL_MODEL_DEVICE")
|
LOCAL_MODEL_PATH, LOCAL_MODEL_QUANT, device = get_conf("CHATGLM_LOCAL_MODEL_PATH", "LOCAL_MODEL_QUANT", "LOCAL_MODEL_DEVICE")
|
||||||
_model_name_ = "THUDM/chatglm3-6b"
|
model_path = LOCAL_MODEL_PATH
|
||||||
# if LOCAL_MODEL_QUANT == "INT4": # INT4
|
|
||||||
# _model_name_ = "THUDM/chatglm3-6b-int4"
|
|
||||||
# elif LOCAL_MODEL_QUANT == "INT8": # INT8
|
|
||||||
# _model_name_ = "THUDM/chatglm3-6b-int8"
|
|
||||||
# else:
|
|
||||||
# _model_name_ = "THUDM/chatglm3-6b" # FP16
|
|
||||||
with ProxyNetworkActivate("Download_LLM"):
|
with ProxyNetworkActivate("Download_LLM"):
|
||||||
chatglm_tokenizer = AutoTokenizer.from_pretrained(
|
chatglm_tokenizer = AutoTokenizer.from_pretrained(
|
||||||
_model_name_, trust_remote_code=True
|
model_path, trust_remote_code=True
|
||||||
)
|
)
|
||||||
if device == "cpu":
|
if device == "cpu":
|
||||||
chatglm_model = AutoModel.from_pretrained(
|
chatglm_model = AutoModel.from_pretrained(
|
||||||
_model_name_,
|
model_path,
|
||||||
trust_remote_code=True,
|
trust_remote_code=True,
|
||||||
device="cpu",
|
device="cpu",
|
||||||
).float()
|
).float()
|
||||||
elif LOCAL_MODEL_QUANT == "INT4": # INT4
|
elif LOCAL_MODEL_QUANT == "INT4": # INT4
|
||||||
chatglm_model = AutoModel.from_pretrained(
|
chatglm_model = AutoModel.from_pretrained(
|
||||||
pretrained_model_name_or_path=_model_name_,
|
pretrained_model_name_or_path=model_path,
|
||||||
trust_remote_code=True,
|
trust_remote_code=True,
|
||||||
quantization_config=BitsAndBytesConfig(load_in_4bit=True),
|
quantization_config=BitsAndBytesConfig(load_in_4bit=True),
|
||||||
)
|
)
|
||||||
elif LOCAL_MODEL_QUANT == "INT8": # INT8
|
elif LOCAL_MODEL_QUANT == "INT8": # INT8
|
||||||
chatglm_model = AutoModel.from_pretrained(
|
chatglm_model = AutoModel.from_pretrained(
|
||||||
pretrained_model_name_or_path=_model_name_,
|
pretrained_model_name_or_path=model_path,
|
||||||
trust_remote_code=True,
|
trust_remote_code=True,
|
||||||
quantization_config=BitsAndBytesConfig(load_in_8bit=True),
|
quantization_config=BitsAndBytesConfig(load_in_8bit=True),
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
chatglm_model = AutoModel.from_pretrained(
|
chatglm_model = AutoModel.from_pretrained(
|
||||||
pretrained_model_name_or_path=_model_name_,
|
pretrained_model_name_or_path=model_path,
|
||||||
trust_remote_code=True,
|
trust_remote_code=True,
|
||||||
device="cuda",
|
device="cuda",
|
||||||
)
|
)
|
||||||
|
|||||||
81
request_llms/bridge_chatglm4.py
Normal file
81
request_llms/bridge_chatglm4.py
Normal file
@@ -0,0 +1,81 @@
|
|||||||
|
model_name = "ChatGLM4"
|
||||||
|
cmd_to_install = """
|
||||||
|
`pip install -r request_llms/requirements_chatglm4.txt`
|
||||||
|
`pip install modelscope`
|
||||||
|
`modelscope download --model ZhipuAI/glm-4-9b-chat --local_dir ./THUDM/glm-4-9b-chat`
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
from toolbox import get_conf, ProxyNetworkActivate
|
||||||
|
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
|
||||||
|
|
||||||
|
|
||||||
|
# ------------------------------------------------------------------------------------------------------------------------
|
||||||
|
# 🔌💻 Local Model
|
||||||
|
# ------------------------------------------------------------------------------------------------------------------------
|
||||||
|
class GetGLM4Handle(LocalLLMHandle):
|
||||||
|
|
||||||
|
def load_model_info(self):
|
||||||
|
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||||
|
self.model_name = model_name
|
||||||
|
self.cmd_to_install = cmd_to_install
|
||||||
|
|
||||||
|
def load_model_and_tokenizer(self):
|
||||||
|
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||||
|
import torch
|
||||||
|
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer
|
||||||
|
import os
|
||||||
|
|
||||||
|
LOCAL_MODEL_PATH, device = get_conf("CHATGLM_LOCAL_MODEL_PATH", "LOCAL_MODEL_DEVICE")
|
||||||
|
model_path = LOCAL_MODEL_PATH
|
||||||
|
chatglm_tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
|
chatglm_model = AutoModelForCausalLM.from_pretrained(
|
||||||
|
model_path,
|
||||||
|
torch_dtype=torch.bfloat16,
|
||||||
|
low_cpu_mem_usage=True,
|
||||||
|
trust_remote_code=True,
|
||||||
|
device=device
|
||||||
|
).eval().to(device)
|
||||||
|
self._model = chatglm_model
|
||||||
|
self._tokenizer = chatglm_tokenizer
|
||||||
|
return self._model, self._tokenizer
|
||||||
|
|
||||||
|
|
||||||
|
def llm_stream_generator(self, **kwargs):
|
||||||
|
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||||
|
def adaptor(kwargs):
|
||||||
|
query = kwargs["query"]
|
||||||
|
max_length = kwargs["max_length"]
|
||||||
|
top_p = kwargs["top_p"]
|
||||||
|
temperature = kwargs["temperature"]
|
||||||
|
history = kwargs["history"]
|
||||||
|
return query, max_length, top_p, temperature, history
|
||||||
|
|
||||||
|
query, max_length, top_p, temperature, history = adaptor(kwargs)
|
||||||
|
inputs = self._tokenizer.apply_chat_template([{"role": "user", "content": query}],
|
||||||
|
add_generation_prompt=True,
|
||||||
|
tokenize=True,
|
||||||
|
return_tensors="pt",
|
||||||
|
return_dict=True
|
||||||
|
).to(self._model.device)
|
||||||
|
gen_kwargs = {"max_length": max_length, "do_sample": True, "top_k": top_p}
|
||||||
|
|
||||||
|
outputs = self._model.generate(**inputs, **gen_kwargs)
|
||||||
|
outputs = outputs[:, inputs['input_ids'].shape[1]:]
|
||||||
|
response = self._tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||||
|
yield response
|
||||||
|
|
||||||
|
def try_to_import_special_deps(self, **kwargs):
|
||||||
|
# import something that will raise error if the user does not install requirement_*.txt
|
||||||
|
# 🏃♂️🏃♂️🏃♂️ 主进程执行
|
||||||
|
import importlib
|
||||||
|
|
||||||
|
# importlib.import_module('modelscope')
|
||||||
|
|
||||||
|
|
||||||
|
# ------------------------------------------------------------------------------------------------------------------------
|
||||||
|
# 🔌💻 GPT-Academic Interface
|
||||||
|
# ------------------------------------------------------------------------------------------------------------------------
|
||||||
|
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(
|
||||||
|
GetGLM4Handle, model_name, history_format="chatglm3"
|
||||||
|
)
|
||||||
@@ -139,7 +139,7 @@ global glmft_handle
|
|||||||
glmft_handle = None
|
glmft_handle = None
|
||||||
#################################################################################
|
#################################################################################
|
||||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
observe_window:list=[], console_slience:bool=False):
|
observe_window:list=[], console_silence:bool=False):
|
||||||
"""
|
"""
|
||||||
多线程方法
|
多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
|
|||||||
@@ -23,8 +23,13 @@ from loguru import logger
|
|||||||
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history
|
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history
|
||||||
from toolbox import trimmed_format_exc, is_the_upload_folder, read_one_api_model_name, log_chat
|
from toolbox import trimmed_format_exc, is_the_upload_folder, read_one_api_model_name, log_chat
|
||||||
from toolbox import ChatBotWithCookies, have_any_recent_upload_image_files, encode_image
|
from toolbox import ChatBotWithCookies, have_any_recent_upload_image_files, encode_image
|
||||||
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
|
proxies, WHEN_TO_USE_PROXY, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
|
||||||
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')
|
get_conf('proxies', 'WHEN_TO_USE_PROXY', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')
|
||||||
|
|
||||||
|
if "Connect_OpenAI" not in WHEN_TO_USE_PROXY:
|
||||||
|
if proxies is not None:
|
||||||
|
logger.error("虽然您配置了代理设置,但不会在连接OpenAI的过程中起作用,请检查WHEN_TO_USE_PROXY配置。")
|
||||||
|
proxies = None
|
||||||
|
|
||||||
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
||||||
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
|
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
|
||||||
@@ -120,7 +125,7 @@ def verify_endpoint(endpoint):
|
|||||||
raise ValueError("Endpoint不正确, 请检查AZURE_ENDPOINT的配置! 当前的Endpoint为:" + endpoint)
|
raise ValueError("Endpoint不正确, 请检查AZURE_ENDPOINT的配置! 当前的Endpoint为:" + endpoint)
|
||||||
return endpoint
|
return endpoint
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_slience:bool=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_silence:bool=False):
|
||||||
"""
|
"""
|
||||||
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||||
inputs:
|
inputs:
|
||||||
@@ -180,19 +185,25 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
|
|||||||
raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。")
|
raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。")
|
||||||
else:
|
else:
|
||||||
raise RuntimeError("OpenAI拒绝了请求:" + error_msg)
|
raise RuntimeError("OpenAI拒绝了请求:" + error_msg)
|
||||||
if ('data: [DONE]' in chunk_decoded): break # api2d 正常完成
|
if ('data: [DONE]' in chunk_decoded): break # api2d & one-api 正常完成
|
||||||
# 提前读取一些信息 (用于判断异常)
|
# 提前读取一些信息 (用于判断异常)
|
||||||
if has_choices and not choice_valid:
|
if has_choices and not choice_valid:
|
||||||
# 一些垃圾第三方接口的出现这样的错误
|
# 一些垃圾第三方接口的出现这样的错误
|
||||||
continue
|
continue
|
||||||
json_data = chunkjson['choices'][0]
|
json_data = chunkjson['choices'][0]
|
||||||
delta = json_data["delta"]
|
delta = json_data["delta"]
|
||||||
if len(delta) == 0: break
|
|
||||||
|
if len(delta) == 0:
|
||||||
|
is_termination_certain = False
|
||||||
|
if (has_choices) and (chunkjson['choices'][0].get('finish_reason', 'null') == 'stop'): is_termination_certain = True
|
||||||
|
if is_termination_certain: break
|
||||||
|
else: continue # 对于不符合规范的狗屎接口,这里需要继续
|
||||||
|
|
||||||
if (not has_content) and has_role: continue
|
if (not has_content) and has_role: continue
|
||||||
if (not has_content) and (not has_role): continue # raise RuntimeError("发现不标准的第三方接口:"+delta)
|
if (not has_content) and (not has_role): continue # raise RuntimeError("发现不标准的第三方接口:"+delta)
|
||||||
if has_content: # has_role = True/False
|
if has_content: # has_role = True/False
|
||||||
result += delta["content"]
|
result += delta["content"]
|
||||||
if not console_slience: print(delta["content"], end='')
|
if not console_silence: print(delta["content"], end='')
|
||||||
if observe_window is not None:
|
if observe_window is not None:
|
||||||
# 观测窗,把已经获取的数据显示出去
|
# 观测窗,把已经获取的数据显示出去
|
||||||
if len(observe_window) >= 1:
|
if len(observe_window) >= 1:
|
||||||
@@ -220,7 +231,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
|||||||
inputs 是本次问询的输入
|
inputs 是本次问询的输入
|
||||||
top_p, temperature是chatGPT的内部调优参数
|
top_p, temperature是chatGPT的内部调优参数
|
||||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
chatbot 为WebUI中显示的对话列表,修改它,然后yield出去,可以直接修改对话界面内容
|
||||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||||
"""
|
"""
|
||||||
from request_llms.bridge_all import model_info
|
from request_llms.bridge_all import model_info
|
||||||
@@ -285,6 +296,8 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
|||||||
history.extend([inputs, ""])
|
history.extend([inputs, ""])
|
||||||
|
|
||||||
retry = 0
|
retry = 0
|
||||||
|
previous_ui_reflesh_time = 0
|
||||||
|
ui_reflesh_min_interval = 0.0
|
||||||
while True:
|
while True:
|
||||||
try:
|
try:
|
||||||
# make a POST request to the API endpoint, stream=True
|
# make a POST request to the API endpoint, stream=True
|
||||||
@@ -297,13 +310,13 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
|||||||
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
|
||||||
if retry > MAX_RETRY: raise TimeoutError
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
|
|
||||||
|
|
||||||
if not stream:
|
if not stream:
|
||||||
# 该分支仅适用于不支持stream的o1模型,其他情形一律不适用
|
# 该分支仅适用于不支持stream的o1模型,其他情形一律不适用
|
||||||
yield from handle_o1_model_special(response, inputs, llm_kwargs, chatbot, history)
|
yield from handle_o1_model_special(response, inputs, llm_kwargs, chatbot, history)
|
||||||
return
|
return
|
||||||
|
|
||||||
if stream:
|
if stream:
|
||||||
|
reach_termination = False # 处理一些 new-api 的奇葩异常
|
||||||
gpt_replying_buffer = ""
|
gpt_replying_buffer = ""
|
||||||
is_head_of_the_stream = True
|
is_head_of_the_stream = True
|
||||||
stream_response = response.iter_lines()
|
stream_response = response.iter_lines()
|
||||||
@@ -316,11 +329,14 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
|||||||
error_msg = chunk_decoded
|
error_msg = chunk_decoded
|
||||||
# 首先排除一个one-api没有done数据包的第三方Bug情形
|
# 首先排除一个one-api没有done数据包的第三方Bug情形
|
||||||
if len(gpt_replying_buffer.strip()) > 0 and len(error_msg) == 0:
|
if len(gpt_replying_buffer.strip()) > 0 and len(error_msg) == 0:
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="检测到有缺陷的非OpenAI官方接口,建议选择更稳定的接口。")
|
yield from update_ui(chatbot=chatbot, history=history, msg="检测到有缺陷的接口,建议选择更稳定的接口。")
|
||||||
|
if not reach_termination:
|
||||||
|
reach_termination = True
|
||||||
|
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
||||||
break
|
break
|
||||||
# 其他情况,直接返回报错
|
# 其他情况,直接返回报错
|
||||||
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="非OpenAI官方接口返回了错误:" + chunk.decode()) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg="接口返回了错误:" + chunk.decode()) # 刷新界面
|
||||||
return
|
return
|
||||||
|
|
||||||
# 提前读取一些信息 (用于判断异常)
|
# 提前读取一些信息 (用于判断异常)
|
||||||
@@ -330,6 +346,8 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
|||||||
# 数据流的第一帧不携带content
|
# 数据流的第一帧不携带content
|
||||||
is_head_of_the_stream = False; continue
|
is_head_of_the_stream = False; continue
|
||||||
|
|
||||||
|
if "error" in chunk_decoded: logger.error(f"接口返回了未知错误: {chunk_decoded}")
|
||||||
|
|
||||||
if chunk:
|
if chunk:
|
||||||
try:
|
try:
|
||||||
if has_choices and not choice_valid:
|
if has_choices and not choice_valid:
|
||||||
@@ -338,14 +356,25 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
|||||||
if ('data: [DONE]' not in chunk_decoded) and len(chunk_decoded) > 0 and (chunkjson is None):
|
if ('data: [DONE]' not in chunk_decoded) and len(chunk_decoded) > 0 and (chunkjson is None):
|
||||||
# 传递进来一些奇怪的东西
|
# 传递进来一些奇怪的东西
|
||||||
raise ValueError(f'无法读取以下数据,请检查配置。\n\n{chunk_decoded}')
|
raise ValueError(f'无法读取以下数据,请检查配置。\n\n{chunk_decoded}')
|
||||||
# 前者是API2D的结束条件,后者是OPENAI的结束条件
|
# 前者是API2D & One-API的结束条件,后者是OPENAI的结束条件
|
||||||
if ('data: [DONE]' in chunk_decoded) or (len(chunkjson['choices'][0]["delta"]) == 0):
|
one_api_terminate = ('data: [DONE]' in chunk_decoded)
|
||||||
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
openai_terminate = (has_choices) and (len(chunkjson['choices'][0]["delta"]) == 0)
|
||||||
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
if one_api_terminate or openai_terminate:
|
||||||
break
|
is_termination_certain = False
|
||||||
|
if one_api_terminate: is_termination_certain = True # 抓取符合规范的结束条件
|
||||||
|
elif (has_choices) and (chunkjson['choices'][0].get('finish_reason', 'null') == 'stop'): is_termination_certain = True # 抓取符合规范的结束条件
|
||||||
|
if is_termination_certain:
|
||||||
|
reach_termination = True
|
||||||
|
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
||||||
|
break # 对于符合规范的接口,这里可以break
|
||||||
|
else:
|
||||||
|
continue # 对于不符合规范的狗屎接口,这里需要继续
|
||||||
|
# 到这里,我们已经可以假定必须包含choice了
|
||||||
|
try:
|
||||||
|
status_text = f"finish_reason: {chunkjson['choices'][0].get('finish_reason', 'null')}"
|
||||||
|
except:
|
||||||
|
logger.error(f"一些垃圾第三方接口出现这样的错误,兼容一下吧: {chunk_decoded}")
|
||||||
# 处理数据流的主体
|
# 处理数据流的主体
|
||||||
status_text = f"finish_reason: {chunkjson['choices'][0].get('finish_reason', 'null')}"
|
|
||||||
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
|
|
||||||
if has_content:
|
if has_content:
|
||||||
# 正常情况
|
# 正常情况
|
||||||
gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]
|
gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]
|
||||||
@@ -354,21 +383,26 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
|||||||
continue
|
continue
|
||||||
else:
|
else:
|
||||||
# 至此已经超出了正常接口应该进入的范围,一些垃圾第三方接口会出现这样的错误
|
# 至此已经超出了正常接口应该进入的范围,一些垃圾第三方接口会出现这样的错误
|
||||||
if chunkjson['choices'][0]["delta"]["content"] is None: continue # 一些垃圾第三方接口出现这样的错误,兼容一下吧
|
if chunkjson['choices'][0]["delta"].get("content", None) is None:
|
||||||
|
logger.error(f"一些垃圾第三方接口出现这样的错误,兼容一下吧: {chunk_decoded}")
|
||||||
|
continue
|
||||||
gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]
|
gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]
|
||||||
|
|
||||||
history[-1] = gpt_replying_buffer
|
history[-1] = gpt_replying_buffer
|
||||||
chatbot[-1] = (history[-2], history[-1])
|
chatbot[-1] = (history[-2], history[-1])
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
|
if time.time() - previous_ui_reflesh_time > ui_reflesh_min_interval:
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
|
||||||
|
previous_ui_reflesh_time = time.time()
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
|
||||||
chunk = get_full_error(chunk, stream_response)
|
chunk = get_full_error(chunk, stream_response)
|
||||||
chunk_decoded = chunk.decode()
|
chunk_decoded = chunk.decode()
|
||||||
error_msg = chunk_decoded
|
error_msg = chunk_decoded
|
||||||
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析异常" + error_msg) # 刷新界面
|
|
||||||
logger.error(error_msg)
|
logger.error(error_msg)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析异常" + error_msg) # 刷新界面
|
||||||
return
|
return
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="完成") # 刷新界面
|
||||||
return # return from stream-branch
|
return # return from stream-branch
|
||||||
|
|
||||||
def handle_o1_model_special(response, inputs, llm_kwargs, chatbot, history):
|
def handle_o1_model_special(response, inputs, llm_kwargs, chatbot, history):
|
||||||
@@ -536,6 +570,8 @@ def generate_payload(inputs:str, llm_kwargs:dict, history:list, system_prompt:st
|
|||||||
"n": 1,
|
"n": 1,
|
||||||
"stream": stream,
|
"stream": stream,
|
||||||
}
|
}
|
||||||
|
openai_force_temperature_one = model_info[llm_kwargs['llm_model']].get('openai_force_temperature_one', False)
|
||||||
|
if openai_force_temperature_one:
|
||||||
|
payload.pop('temperature')
|
||||||
return headers,payload
|
return headers,payload
|
||||||
|
|
||||||
|
|||||||
@@ -16,7 +16,7 @@ import base64
|
|||||||
import glob
|
import glob
|
||||||
from loguru import logger
|
from loguru import logger
|
||||||
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc, is_the_upload_folder, \
|
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc, is_the_upload_folder, \
|
||||||
update_ui_lastest_msg, get_max_token, encode_image, have_any_recent_upload_image_files, log_chat
|
update_ui_latest_msg, get_max_token, encode_image, have_any_recent_upload_image_files, log_chat
|
||||||
|
|
||||||
|
|
||||||
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
|
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
|
||||||
@@ -67,7 +67,7 @@ def verify_endpoint(endpoint):
|
|||||||
"""
|
"""
|
||||||
return endpoint
|
return endpoint
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_silence=False):
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
||||||
|
|
||||||
@@ -183,7 +183,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
if ('data: [DONE]' in chunk_decoded) or (len(chunkjson['choices'][0]["delta"]) == 0):
|
if ('data: [DONE]' in chunk_decoded) or (len(chunkjson['choices'][0]["delta"]) == 0):
|
||||||
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
||||||
lastmsg = chatbot[-1][-1] + f"\n\n\n\n「{llm_kwargs['llm_model']}调用结束,该模型不具备上下文对话能力,如需追问,请及时切换模型。」"
|
lastmsg = chatbot[-1][-1] + f"\n\n\n\n「{llm_kwargs['llm_model']}调用结束,该模型不具备上下文对话能力,如需追问,请及时切换模型。」"
|
||||||
yield from update_ui_lastest_msg(lastmsg, chatbot, history, delay=1)
|
yield from update_ui_latest_msg(lastmsg, chatbot, history, delay=1)
|
||||||
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
||||||
break
|
break
|
||||||
# 处理数据流的主体
|
# 处理数据流的主体
|
||||||
|
|||||||
@@ -69,7 +69,7 @@ def decode_chunk(chunk):
|
|||||||
return need_to_pass, chunkjson, is_last_chunk
|
return need_to_pass, chunkjson, is_last_chunk
|
||||||
|
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_silence=False):
|
||||||
"""
|
"""
|
||||||
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||||
inputs:
|
inputs:
|
||||||
@@ -151,7 +151,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
inputs 是本次问询的输入
|
inputs 是本次问询的输入
|
||||||
top_p, temperature是chatGPT的内部调优参数
|
top_p, temperature是chatGPT的内部调优参数
|
||||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
chatbot 为WebUI中显示的对话列表,修改它,然后yield出去,可以直接修改对话界面内容
|
||||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||||
"""
|
"""
|
||||||
if inputs == "": inputs = "空空如也的输入栏"
|
if inputs == "": inputs = "空空如也的输入栏"
|
||||||
|
|||||||
@@ -68,7 +68,7 @@ def verify_endpoint(endpoint):
|
|||||||
raise ValueError("Endpoint不正确, 请检查AZURE_ENDPOINT的配置! 当前的Endpoint为:" + endpoint)
|
raise ValueError("Endpoint不正确, 请检查AZURE_ENDPOINT的配置! 当前的Endpoint为:" + endpoint)
|
||||||
return endpoint
|
return endpoint
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_slience:bool=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_silence:bool=False):
|
||||||
"""
|
"""
|
||||||
发送,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
发送,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||||
inputs:
|
inputs:
|
||||||
@@ -111,7 +111,7 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
|
|||||||
if chunkjson['event_type'] == 'stream-start': continue
|
if chunkjson['event_type'] == 'stream-start': continue
|
||||||
if chunkjson['event_type'] == 'text-generation':
|
if chunkjson['event_type'] == 'text-generation':
|
||||||
result += chunkjson["text"]
|
result += chunkjson["text"]
|
||||||
if not console_slience: print(chunkjson["text"], end='')
|
if not console_silence: print(chunkjson["text"], end='')
|
||||||
if observe_window is not None:
|
if observe_window is not None:
|
||||||
# 观测窗,把已经获取的数据显示出去
|
# 观测窗,把已经获取的数据显示出去
|
||||||
if len(observe_window) >= 1:
|
if len(observe_window) >= 1:
|
||||||
@@ -132,7 +132,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
|||||||
inputs 是本次问询的输入
|
inputs 是本次问询的输入
|
||||||
top_p, temperature是chatGPT的内部调优参数
|
top_p, temperature是chatGPT的内部调优参数
|
||||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
chatbot 为WebUI中显示的对话列表,修改它,然后yield出去,可以直接修改对话界面内容
|
||||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||||
"""
|
"""
|
||||||
# if is_any_api_key(inputs):
|
# if is_any_api_key(inputs):
|
||||||
|
|||||||
@@ -6,7 +6,6 @@ from toolbox import get_conf
|
|||||||
from request_llms.local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
|
from request_llms.local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
|
||||||
from threading import Thread
|
from threading import Thread
|
||||||
from loguru import logger
|
from loguru import logger
|
||||||
import torch
|
|
||||||
import os
|
import os
|
||||||
|
|
||||||
def download_huggingface_model(model_name, max_retry, local_dir):
|
def download_huggingface_model(model_name, max_retry, local_dir):
|
||||||
@@ -29,6 +28,7 @@ class GetCoderLMHandle(LocalLLMHandle):
|
|||||||
self.cmd_to_install = cmd_to_install
|
self.cmd_to_install = cmd_to_install
|
||||||
|
|
||||||
def load_model_and_tokenizer(self):
|
def load_model_and_tokenizer(self):
|
||||||
|
import torch
|
||||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||||
with ProxyNetworkActivate('Download_LLM'):
|
with ProxyNetworkActivate('Download_LLM'):
|
||||||
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
||||||
|
|||||||
@@ -8,7 +8,7 @@ import os
|
|||||||
import time
|
import time
|
||||||
from request_llms.com_google import GoogleChatInit
|
from request_llms.com_google import GoogleChatInit
|
||||||
from toolbox import ChatBotWithCookies
|
from toolbox import ChatBotWithCookies
|
||||||
from toolbox import get_conf, update_ui, update_ui_lastest_msg, have_any_recent_upload_image_files, trimmed_format_exc, log_chat, encode_image
|
from toolbox import get_conf, update_ui, update_ui_latest_msg, have_any_recent_upload_image_files, trimmed_format_exc, log_chat, encode_image
|
||||||
|
|
||||||
proxies, TIMEOUT_SECONDS, MAX_RETRY = get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY')
|
proxies, TIMEOUT_SECONDS, MAX_RETRY = get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY')
|
||||||
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
||||||
@@ -16,7 +16,7 @@ timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check
|
|||||||
|
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=[],
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=[],
|
||||||
console_slience:bool=False):
|
console_silence:bool=False):
|
||||||
# 检查API_KEY
|
# 检查API_KEY
|
||||||
if get_conf("GEMINI_API_KEY") == "":
|
if get_conf("GEMINI_API_KEY") == "":
|
||||||
raise ValueError(f"请配置 GEMINI_API_KEY。")
|
raise ValueError(f"请配置 GEMINI_API_KEY。")
|
||||||
@@ -60,7 +60,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
|||||||
|
|
||||||
# 检查API_KEY
|
# 检查API_KEY
|
||||||
if get_conf("GEMINI_API_KEY") == "":
|
if get_conf("GEMINI_API_KEY") == "":
|
||||||
yield from update_ui_lastest_msg(f"请配置 GEMINI_API_KEY。", chatbot=chatbot, history=history, delay=0)
|
yield from update_ui_latest_msg(f"请配置 GEMINI_API_KEY。", chatbot=chatbot, history=history, delay=0)
|
||||||
return
|
return
|
||||||
|
|
||||||
# 适配润色区域
|
# 适配润色区域
|
||||||
|
|||||||
@@ -55,7 +55,7 @@ class GetGLMHandle(Process):
|
|||||||
if self.jittorllms_model is None:
|
if self.jittorllms_model is None:
|
||||||
device = get_conf('LOCAL_MODEL_DEVICE')
|
device = get_conf('LOCAL_MODEL_DEVICE')
|
||||||
from .jittorllms.models import get_model
|
from .jittorllms.models import get_model
|
||||||
# availabel_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
|
# available_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
|
||||||
args_dict = {'model': 'llama'}
|
args_dict = {'model': 'llama'}
|
||||||
print('self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))')
|
print('self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))')
|
||||||
self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))
|
self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))
|
||||||
@@ -107,7 +107,7 @@ global llama_glm_handle
|
|||||||
llama_glm_handle = None
|
llama_glm_handle = None
|
||||||
#################################################################################
|
#################################################################################
|
||||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
observe_window:list=[], console_slience:bool=False):
|
observe_window:list=[], console_silence:bool=False):
|
||||||
"""
|
"""
|
||||||
多线程方法
|
多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
|
|||||||
@@ -55,7 +55,7 @@ class GetGLMHandle(Process):
|
|||||||
if self.jittorllms_model is None:
|
if self.jittorllms_model is None:
|
||||||
device = get_conf('LOCAL_MODEL_DEVICE')
|
device = get_conf('LOCAL_MODEL_DEVICE')
|
||||||
from .jittorllms.models import get_model
|
from .jittorllms.models import get_model
|
||||||
# availabel_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
|
# available_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
|
||||||
args_dict = {'model': 'pangualpha'}
|
args_dict = {'model': 'pangualpha'}
|
||||||
print('self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))')
|
print('self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))')
|
||||||
self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))
|
self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))
|
||||||
@@ -107,7 +107,7 @@ global pangu_glm_handle
|
|||||||
pangu_glm_handle = None
|
pangu_glm_handle = None
|
||||||
#################################################################################
|
#################################################################################
|
||||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
observe_window:list=[], console_slience:bool=False):
|
observe_window:list=[], console_silence:bool=False):
|
||||||
"""
|
"""
|
||||||
多线程方法
|
多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
|
|||||||
@@ -55,7 +55,7 @@ class GetGLMHandle(Process):
|
|||||||
if self.jittorllms_model is None:
|
if self.jittorllms_model is None:
|
||||||
device = get_conf('LOCAL_MODEL_DEVICE')
|
device = get_conf('LOCAL_MODEL_DEVICE')
|
||||||
from .jittorllms.models import get_model
|
from .jittorllms.models import get_model
|
||||||
# availabel_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
|
# available_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
|
||||||
args_dict = {'model': 'chatrwkv'}
|
args_dict = {'model': 'chatrwkv'}
|
||||||
print('self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))')
|
print('self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))')
|
||||||
self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))
|
self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))
|
||||||
@@ -107,7 +107,7 @@ global rwkv_glm_handle
|
|||||||
rwkv_glm_handle = None
|
rwkv_glm_handle = None
|
||||||
#################################################################################
|
#################################################################################
|
||||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
observe_window:list=[], console_slience:bool=False):
|
observe_window:list=[], console_silence:bool=False):
|
||||||
"""
|
"""
|
||||||
多线程方法
|
多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
|
|||||||
@@ -46,8 +46,8 @@ class GetLlamaHandle(LocalLLMHandle):
|
|||||||
top_p = kwargs['top_p']
|
top_p = kwargs['top_p']
|
||||||
temperature = kwargs['temperature']
|
temperature = kwargs['temperature']
|
||||||
history = kwargs['history']
|
history = kwargs['history']
|
||||||
console_slience = kwargs.get('console_slience', True)
|
console_silence = kwargs.get('console_silence', True)
|
||||||
return query, max_length, top_p, temperature, history, console_slience
|
return query, max_length, top_p, temperature, history, console_silence
|
||||||
|
|
||||||
def convert_messages_to_prompt(query, history):
|
def convert_messages_to_prompt(query, history):
|
||||||
prompt = ""
|
prompt = ""
|
||||||
@@ -57,7 +57,7 @@ class GetLlamaHandle(LocalLLMHandle):
|
|||||||
prompt += f"\n[INST]{query}[/INST]"
|
prompt += f"\n[INST]{query}[/INST]"
|
||||||
return prompt
|
return prompt
|
||||||
|
|
||||||
query, max_length, top_p, temperature, history, console_slience = adaptor(kwargs)
|
query, max_length, top_p, temperature, history, console_silence = adaptor(kwargs)
|
||||||
prompt = convert_messages_to_prompt(query, history)
|
prompt = convert_messages_to_prompt(query, history)
|
||||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-
|
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-
|
||||||
# code from transformers.llama
|
# code from transformers.llama
|
||||||
@@ -72,9 +72,9 @@ class GetLlamaHandle(LocalLLMHandle):
|
|||||||
generated_text = ""
|
generated_text = ""
|
||||||
for new_text in streamer:
|
for new_text in streamer:
|
||||||
generated_text += new_text
|
generated_text += new_text
|
||||||
if not console_slience: print(new_text, end='')
|
if not console_silence: print(new_text, end='')
|
||||||
yield generated_text.lstrip(prompt_tk_back).rstrip("</s>")
|
yield generated_text.lstrip(prompt_tk_back).rstrip("</s>")
|
||||||
if not console_slience: print()
|
if not console_silence: print()
|
||||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-
|
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-
|
||||||
|
|
||||||
def try_to_import_special_deps(self, **kwargs):
|
def try_to_import_special_deps(self, **kwargs):
|
||||||
|
|||||||
@@ -169,7 +169,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
|||||||
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_bro_result)
|
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_bro_result)
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None,
|
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None,
|
||||||
console_slience=False):
|
console_silence=False):
|
||||||
gpt_bro_init = MoonShotInit()
|
gpt_bro_init = MoonShotInit()
|
||||||
watch_dog_patience = 60 # 看门狗的耐心, 设置10秒即可
|
watch_dog_patience = 60 # 看门狗的耐心, 设置10秒即可
|
||||||
stream_response = gpt_bro_init.generate_messages(inputs, llm_kwargs, history, sys_prompt, True)
|
stream_response = gpt_bro_init.generate_messages(inputs, llm_kwargs, history, sys_prompt, True)
|
||||||
|
|||||||
@@ -95,7 +95,7 @@ class GetGLMHandle(Process):
|
|||||||
- Its responses must not be vague, accusatory, rude, controversial, off-topic, or defensive.
|
- Its responses must not be vague, accusatory, rude, controversial, off-topic, or defensive.
|
||||||
- It should avoid giving subjective opinions but rely on objective facts or phrases like \"in this context a human might say...\", \"some people might think...\", etc.
|
- It should avoid giving subjective opinions but rely on objective facts or phrases like \"in this context a human might say...\", \"some people might think...\", etc.
|
||||||
- Its responses must also be positive, polite, interesting, entertaining, and engaging.
|
- Its responses must also be positive, polite, interesting, entertaining, and engaging.
|
||||||
- It can provide additional relevant details to answer in-depth and comprehensively covering mutiple aspects.
|
- It can provide additional relevant details to answer in-depth and comprehensively covering multiple aspects.
|
||||||
- It apologizes and accepts the user's suggestion if the user corrects the incorrect answer generated by MOSS.
|
- It apologizes and accepts the user's suggestion if the user corrects the incorrect answer generated by MOSS.
|
||||||
Capabilities and tools that MOSS can possess.
|
Capabilities and tools that MOSS can possess.
|
||||||
"""
|
"""
|
||||||
@@ -172,7 +172,7 @@ global moss_handle
|
|||||||
moss_handle = None
|
moss_handle = None
|
||||||
#################################################################################
|
#################################################################################
|
||||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
observe_window:list=[], console_slience:bool=False):
|
observe_window:list=[], console_silence:bool=False):
|
||||||
"""
|
"""
|
||||||
多线程方法
|
多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
|
|||||||
@@ -209,7 +209,7 @@ def predict_no_ui_long_connection(
|
|||||||
history=[],
|
history=[],
|
||||||
sys_prompt="",
|
sys_prompt="",
|
||||||
observe_window=[],
|
observe_window=[],
|
||||||
console_slience=False,
|
console_silence=False,
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
多线程方法
|
多线程方法
|
||||||
|
|||||||
@@ -52,7 +52,7 @@ def decode_chunk(chunk):
|
|||||||
pass
|
pass
|
||||||
return chunk_decoded, chunkjson, is_last_chunk
|
return chunk_decoded, chunkjson, is_last_chunk
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_silence=False):
|
||||||
"""
|
"""
|
||||||
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||||
inputs:
|
inputs:
|
||||||
@@ -75,7 +75,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
# make a POST request to the API endpoint, stream=False
|
# make a POST request to the API endpoint, stream=False
|
||||||
from .bridge_all import model_info
|
from .bridge_all import model_info
|
||||||
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||||
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
response = requests.post(endpoint, headers=headers, proxies=None,
|
||||||
json=payload, stream=True, timeout=TIMEOUT_SECONDS); break
|
json=payload, stream=True, timeout=TIMEOUT_SECONDS); break
|
||||||
except requests.exceptions.ReadTimeout as e:
|
except requests.exceptions.ReadTimeout as e:
|
||||||
retry += 1
|
retry += 1
|
||||||
@@ -99,7 +99,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
logger.info(f'[response] {result}')
|
logger.info(f'[response] {result}')
|
||||||
break
|
break
|
||||||
result += chunkjson['message']["content"]
|
result += chunkjson['message']["content"]
|
||||||
if not console_slience: print(chunkjson['message']["content"], end='')
|
if not console_silence: print(chunkjson['message']["content"], end='')
|
||||||
if observe_window is not None:
|
if observe_window is not None:
|
||||||
# 观测窗,把已经获取的数据显示出去
|
# 观测窗,把已经获取的数据显示出去
|
||||||
if len(observe_window) >= 1:
|
if len(observe_window) >= 1:
|
||||||
@@ -124,7 +124,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
inputs 是本次问询的输入
|
inputs 是本次问询的输入
|
||||||
top_p, temperature是chatGPT的内部调优参数
|
top_p, temperature是chatGPT的内部调优参数
|
||||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
chatbot 为WebUI中显示的对话列表,修改它,然后yield出去,可以直接修改对话界面内容
|
||||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||||
"""
|
"""
|
||||||
if inputs == "": inputs = "空空如也的输入栏"
|
if inputs == "": inputs = "空空如也的输入栏"
|
||||||
@@ -152,10 +152,12 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
history.append(inputs); history.append("")
|
history.append(inputs); history.append("")
|
||||||
|
|
||||||
retry = 0
|
retry = 0
|
||||||
|
if proxies is not None:
|
||||||
|
logger.error("Ollama不会使用代理服务器, 忽略了proxies的设置。")
|
||||||
while True:
|
while True:
|
||||||
try:
|
try:
|
||||||
# make a POST request to the API endpoint, stream=True
|
# make a POST request to the API endpoint, stream=True
|
||||||
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
response = requests.post(endpoint, headers=headers, proxies=None,
|
||||||
json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
|
json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
|
||||||
except:
|
except:
|
||||||
retry += 1
|
retry += 1
|
||||||
|
|||||||
@@ -119,7 +119,7 @@ def verify_endpoint(endpoint):
|
|||||||
raise ValueError("Endpoint不正确, 请检查AZURE_ENDPOINT的配置! 当前的Endpoint为:" + endpoint)
|
raise ValueError("Endpoint不正确, 请检查AZURE_ENDPOINT的配置! 当前的Endpoint为:" + endpoint)
|
||||||
return endpoint
|
return endpoint
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_slience:bool=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_silence:bool=False):
|
||||||
"""
|
"""
|
||||||
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||||
inputs:
|
inputs:
|
||||||
@@ -170,7 +170,7 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
|
|||||||
except requests.exceptions.ConnectionError:
|
except requests.exceptions.ConnectionError:
|
||||||
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||||
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
|
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
|
||||||
if len(chunk_decoded)==0: continue
|
if len(chunk_decoded)==0 or chunk_decoded.startswith(':'): continue
|
||||||
if not chunk_decoded.startswith('data:'):
|
if not chunk_decoded.startswith('data:'):
|
||||||
error_msg = get_full_error(chunk, stream_response).decode()
|
error_msg = get_full_error(chunk, stream_response).decode()
|
||||||
if "reduce the length" in error_msg:
|
if "reduce the length" in error_msg:
|
||||||
@@ -181,9 +181,6 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
|
|||||||
raise RuntimeError("OpenAI拒绝了请求:" + error_msg)
|
raise RuntimeError("OpenAI拒绝了请求:" + error_msg)
|
||||||
if ('data: [DONE]' in chunk_decoded): break # api2d 正常完成
|
if ('data: [DONE]' in chunk_decoded): break # api2d 正常完成
|
||||||
# 提前读取一些信息 (用于判断异常)
|
# 提前读取一些信息 (用于判断异常)
|
||||||
if (has_choices and not choice_valid) or ('OPENROUTER PROCESSING' in chunk_decoded):
|
|
||||||
# 一些垃圾第三方接口的出现这样的错误,openrouter的特殊处理
|
|
||||||
continue
|
|
||||||
json_data = chunkjson['choices'][0]
|
json_data = chunkjson['choices'][0]
|
||||||
delta = json_data["delta"]
|
delta = json_data["delta"]
|
||||||
if len(delta) == 0: break
|
if len(delta) == 0: break
|
||||||
@@ -191,7 +188,7 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
|
|||||||
if (not has_content) and (not has_role): continue # raise RuntimeError("发现不标准的第三方接口:"+delta)
|
if (not has_content) and (not has_role): continue # raise RuntimeError("发现不标准的第三方接口:"+delta)
|
||||||
if has_content: # has_role = True/False
|
if has_content: # has_role = True/False
|
||||||
result += delta["content"]
|
result += delta["content"]
|
||||||
if not console_slience: print(delta["content"], end='')
|
if not console_silence: print(delta["content"], end='')
|
||||||
if observe_window is not None:
|
if observe_window is not None:
|
||||||
# 观测窗,把已经获取的数据显示出去
|
# 观测窗,把已经获取的数据显示出去
|
||||||
if len(observe_window) >= 1:
|
if len(observe_window) >= 1:
|
||||||
@@ -216,7 +213,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
|||||||
inputs 是本次问询的输入
|
inputs 是本次问询的输入
|
||||||
top_p, temperature是chatGPT的内部调优参数
|
top_p, temperature是chatGPT的内部调优参数
|
||||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
chatbot 为WebUI中显示的对话列表,修改它,然后yield出去,可以直接修改对话界面内容
|
||||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||||
"""
|
"""
|
||||||
from request_llms.bridge_all import model_info
|
from request_llms.bridge_all import model_info
|
||||||
@@ -328,8 +325,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
|||||||
|
|
||||||
if chunk:
|
if chunk:
|
||||||
try:
|
try:
|
||||||
if (has_choices and not choice_valid) or ('OPENROUTER PROCESSING' in chunk_decoded):
|
if (has_choices and not choice_valid) or chunk_decoded.startswith(':'):
|
||||||
# 一些垃圾第三方接口的出现这样的错误, 或者OPENROUTER的特殊处理,因为OPENROUTER的数据流未连接到模型时会出现OPENROUTER PROCESSING
|
|
||||||
continue
|
continue
|
||||||
if ('data: [DONE]' not in chunk_decoded) and len(chunk_decoded) > 0 and (chunkjson is None):
|
if ('data: [DONE]' not in chunk_decoded) and len(chunk_decoded) > 0 and (chunkjson is None):
|
||||||
# 传递进来一些奇怪的东西
|
# 传递进来一些奇怪的东西
|
||||||
@@ -516,7 +512,7 @@ def generate_payload(inputs:str, llm_kwargs:dict, history:list, system_prompt:st
|
|||||||
model, _ = read_one_api_model_name(model)
|
model, _ = read_one_api_model_name(model)
|
||||||
if llm_kwargs['llm_model'].startswith('openrouter-'):
|
if llm_kwargs['llm_model'].startswith('openrouter-'):
|
||||||
model = llm_kwargs['llm_model'][len('openrouter-'):]
|
model = llm_kwargs['llm_model'][len('openrouter-'):]
|
||||||
model= read_one_api_model_name(model)
|
model, _= read_one_api_model_name(model)
|
||||||
if model == "gpt-3.5-random": # 随机选择, 绕过openai访问频率限制
|
if model == "gpt-3.5-random": # 随机选择, 绕过openai访问频率限制
|
||||||
model = random.choice([
|
model = random.choice([
|
||||||
"gpt-3.5-turbo",
|
"gpt-3.5-turbo",
|
||||||
|
|||||||
@@ -121,7 +121,7 @@ def generate_from_baidu_qianfan(inputs, llm_kwargs, history, system_prompt):
|
|||||||
|
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
observe_window:list=[], console_slience:bool=False):
|
observe_window:list=[], console_silence:bool=False):
|
||||||
"""
|
"""
|
||||||
⭐多线程方法
|
⭐多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
|
|||||||
@@ -1,12 +1,12 @@
|
|||||||
import time
|
import time
|
||||||
import os
|
import os
|
||||||
from toolbox import update_ui, get_conf, update_ui_lastest_msg
|
from toolbox import update_ui, get_conf, update_ui_latest_msg
|
||||||
from toolbox import check_packages, report_exception, log_chat
|
from toolbox import check_packages, report_exception, log_chat
|
||||||
|
|
||||||
model_name = 'Qwen'
|
model_name = 'Qwen'
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
observe_window:list=[], console_slience:bool=False):
|
observe_window:list=[], console_silence:bool=False):
|
||||||
"""
|
"""
|
||||||
⭐多线程方法
|
⭐多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
@@ -35,13 +35,13 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
try:
|
try:
|
||||||
check_packages(["dashscope"])
|
check_packages(["dashscope"])
|
||||||
except:
|
except:
|
||||||
yield from update_ui_lastest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install --upgrade dashscope```。",
|
yield from update_ui_latest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install --upgrade dashscope```。",
|
||||||
chatbot=chatbot, history=history, delay=0)
|
chatbot=chatbot, history=history, delay=0)
|
||||||
return
|
return
|
||||||
|
|
||||||
# 检查DASHSCOPE_API_KEY
|
# 检查DASHSCOPE_API_KEY
|
||||||
if get_conf("DASHSCOPE_API_KEY") == "":
|
if get_conf("DASHSCOPE_API_KEY") == "":
|
||||||
yield from update_ui_lastest_msg(f"请配置 DASHSCOPE_API_KEY。",
|
yield from update_ui_latest_msg(f"请配置 DASHSCOPE_API_KEY。",
|
||||||
chatbot=chatbot, history=history, delay=0)
|
chatbot=chatbot, history=history, delay=0)
|
||||||
return
|
return
|
||||||
|
|
||||||
|
|||||||
@@ -1,5 +1,5 @@
|
|||||||
import time
|
import time
|
||||||
from toolbox import update_ui, get_conf, update_ui_lastest_msg
|
from toolbox import update_ui, get_conf, update_ui_latest_msg
|
||||||
from toolbox import check_packages, report_exception
|
from toolbox import check_packages, report_exception
|
||||||
|
|
||||||
model_name = '云雀大模型'
|
model_name = '云雀大模型'
|
||||||
@@ -10,7 +10,7 @@ def validate_key():
|
|||||||
return True
|
return True
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
observe_window:list=[], console_slience:bool=False):
|
observe_window:list=[], console_silence:bool=False):
|
||||||
"""
|
"""
|
||||||
⭐ 多线程方法
|
⭐ 多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
@@ -42,12 +42,12 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
try:
|
try:
|
||||||
check_packages(["zhipuai"])
|
check_packages(["zhipuai"])
|
||||||
except:
|
except:
|
||||||
yield from update_ui_lastest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install --upgrade zhipuai```。",
|
yield from update_ui_latest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install --upgrade zhipuai```。",
|
||||||
chatbot=chatbot, history=history, delay=0)
|
chatbot=chatbot, history=history, delay=0)
|
||||||
return
|
return
|
||||||
|
|
||||||
if validate_key() is False:
|
if validate_key() is False:
|
||||||
yield from update_ui_lastest_msg(lastmsg="[Local Message] 请配置HUOSHAN_API_KEY", chatbot=chatbot, history=history, delay=0)
|
yield from update_ui_latest_msg(lastmsg="[Local Message] 请配置HUOSHAN_API_KEY", chatbot=chatbot, history=history, delay=0)
|
||||||
return
|
return
|
||||||
|
|
||||||
if additional_fn is not None:
|
if additional_fn is not None:
|
||||||
|
|||||||
@@ -2,7 +2,7 @@
|
|||||||
import time
|
import time
|
||||||
import threading
|
import threading
|
||||||
import importlib
|
import importlib
|
||||||
from toolbox import update_ui, get_conf, update_ui_lastest_msg
|
from toolbox import update_ui, get_conf, update_ui_latest_msg
|
||||||
from multiprocessing import Process, Pipe
|
from multiprocessing import Process, Pipe
|
||||||
|
|
||||||
model_name = '星火认知大模型'
|
model_name = '星火认知大模型'
|
||||||
@@ -14,7 +14,7 @@ def validate_key():
|
|||||||
return True
|
return True
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
observe_window:list=[], console_slience:bool=False):
|
observe_window:list=[], console_silence:bool=False):
|
||||||
"""
|
"""
|
||||||
⭐多线程方法
|
⭐多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
@@ -43,7 +43,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
yield from update_ui(chatbot=chatbot, history=history)
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
|
||||||
if validate_key() is False:
|
if validate_key() is False:
|
||||||
yield from update_ui_lastest_msg(lastmsg="[Local Message] 请配置讯飞星火大模型的XFYUN_APPID, XFYUN_API_KEY, XFYUN_API_SECRET", chatbot=chatbot, history=history, delay=0)
|
yield from update_ui_latest_msg(lastmsg="[Local Message] 请配置讯飞星火大模型的XFYUN_APPID, XFYUN_API_KEY, XFYUN_API_SECRET", chatbot=chatbot, history=history, delay=0)
|
||||||
return
|
return
|
||||||
|
|
||||||
if additional_fn is not None:
|
if additional_fn is not None:
|
||||||
|
|||||||
@@ -225,7 +225,7 @@ def predict_no_ui_long_connection(
|
|||||||
history=[],
|
history=[],
|
||||||
sys_prompt="",
|
sys_prompt="",
|
||||||
observe_window=None,
|
observe_window=None,
|
||||||
console_slience=False,
|
console_silence=False,
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
多线程方法
|
多线程方法
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
import time
|
import time
|
||||||
import os
|
import os
|
||||||
from toolbox import update_ui, get_conf, update_ui_lastest_msg, log_chat
|
from toolbox import update_ui, get_conf, update_ui_latest_msg, log_chat
|
||||||
from toolbox import check_packages, report_exception, have_any_recent_upload_image_files
|
from toolbox import check_packages, report_exception, have_any_recent_upload_image_files
|
||||||
from toolbox import ChatBotWithCookies
|
from toolbox import ChatBotWithCookies
|
||||||
|
|
||||||
@@ -13,7 +13,7 @@ def validate_key():
|
|||||||
return True
|
return True
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
observe_window:list=[], console_slience:bool=False):
|
observe_window:list=[], console_silence:bool=False):
|
||||||
"""
|
"""
|
||||||
⭐多线程方法
|
⭐多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
@@ -49,7 +49,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
|||||||
yield from update_ui(chatbot=chatbot, history=history)
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
|
||||||
if validate_key() is False:
|
if validate_key() is False:
|
||||||
yield from update_ui_lastest_msg(lastmsg="[Local Message] 请配置ZHIPUAI_API_KEY", chatbot=chatbot, history=history, delay=0)
|
yield from update_ui_latest_msg(lastmsg="[Local Message] 请配置ZHIPUAI_API_KEY", chatbot=chatbot, history=history, delay=0)
|
||||||
return
|
return
|
||||||
|
|
||||||
if additional_fn is not None:
|
if additional_fn is not None:
|
||||||
|
|||||||
@@ -91,7 +91,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
inputs 是本次问询的输入
|
inputs 是本次问询的输入
|
||||||
top_p, temperature是chatGPT的内部调优参数
|
top_p, temperature是chatGPT的内部调优参数
|
||||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
chatbot 为WebUI中显示的对话列表,修改它,然后yield出去,可以直接修改对话界面内容
|
||||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||||
"""
|
"""
|
||||||
if additional_fn is not None:
|
if additional_fn is not None:
|
||||||
@@ -112,7 +112,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
|
|
||||||
|
|
||||||
mutable = ["", time.time()]
|
mutable = ["", time.time()]
|
||||||
def run_coorotine(mutable):
|
def run_coroutine(mutable):
|
||||||
async def get_result(mutable):
|
async def get_result(mutable):
|
||||||
# "tgui:galactica-1.3b@localhost:7860"
|
# "tgui:galactica-1.3b@localhost:7860"
|
||||||
|
|
||||||
@@ -126,7 +126,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
break
|
break
|
||||||
asyncio.run(get_result(mutable))
|
asyncio.run(get_result(mutable))
|
||||||
|
|
||||||
thread_listen = threading.Thread(target=run_coorotine, args=(mutable,), daemon=True)
|
thread_listen = threading.Thread(target=run_coroutine, args=(mutable,), daemon=True)
|
||||||
thread_listen.start()
|
thread_listen.start()
|
||||||
|
|
||||||
while thread_listen.is_alive():
|
while thread_listen.is_alive():
|
||||||
@@ -142,7 +142,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience=False):
|
def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, observe_window, console_silence=False):
|
||||||
raw_input = "What I would like to say is the following: " + inputs
|
raw_input = "What I would like to say is the following: " + inputs
|
||||||
prompt = raw_input
|
prompt = raw_input
|
||||||
tgui_say = ""
|
tgui_say = ""
|
||||||
@@ -151,7 +151,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
|
|||||||
addr, port = addr_port.split(':')
|
addr, port = addr_port.split(':')
|
||||||
|
|
||||||
|
|
||||||
def run_coorotine(observe_window):
|
def run_coroutine(observe_window):
|
||||||
async def get_result(observe_window):
|
async def get_result(observe_window):
|
||||||
async for response in run(context=prompt, max_token=llm_kwargs['max_length'],
|
async for response in run(context=prompt, max_token=llm_kwargs['max_length'],
|
||||||
temperature=llm_kwargs['temperature'],
|
temperature=llm_kwargs['temperature'],
|
||||||
@@ -162,6 +162,6 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
|
|||||||
print('exit when no listener')
|
print('exit when no listener')
|
||||||
break
|
break
|
||||||
asyncio.run(get_result(observe_window))
|
asyncio.run(get_result(observe_window))
|
||||||
thread_listen = threading.Thread(target=run_coorotine, args=(observe_window,))
|
thread_listen = threading.Thread(target=run_coroutine, args=(observe_window,))
|
||||||
thread_listen.start()
|
thread_listen.start()
|
||||||
return observe_window[0]
|
return observe_window[0]
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
import time
|
import time
|
||||||
import os
|
import os
|
||||||
from toolbox import update_ui, get_conf, update_ui_lastest_msg, log_chat
|
from toolbox import update_ui, get_conf, update_ui_latest_msg, log_chat
|
||||||
from toolbox import check_packages, report_exception, have_any_recent_upload_image_files
|
from toolbox import check_packages, report_exception, have_any_recent_upload_image_files
|
||||||
from toolbox import ChatBotWithCookies
|
from toolbox import ChatBotWithCookies
|
||||||
|
|
||||||
@@ -18,7 +18,7 @@ def make_media_input(inputs, image_paths):
|
|||||||
return inputs
|
return inputs
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
observe_window:list=[], console_slience:bool=False):
|
observe_window:list=[], console_silence:bool=False):
|
||||||
"""
|
"""
|
||||||
⭐多线程方法
|
⭐多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
@@ -57,12 +57,12 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
|||||||
try:
|
try:
|
||||||
check_packages(["zhipuai"])
|
check_packages(["zhipuai"])
|
||||||
except:
|
except:
|
||||||
yield from update_ui_lastest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install --upgrade zhipuai```。",
|
yield from update_ui_latest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install --upgrade zhipuai```。",
|
||||||
chatbot=chatbot, history=history, delay=0)
|
chatbot=chatbot, history=history, delay=0)
|
||||||
return
|
return
|
||||||
|
|
||||||
if validate_key() is False:
|
if validate_key() is False:
|
||||||
yield from update_ui_lastest_msg(lastmsg="[Local Message] 请配置ZHIPUAI_API_KEY", chatbot=chatbot, history=history, delay=0)
|
yield from update_ui_latest_msg(lastmsg="[Local Message] 请配置ZHIPUAI_API_KEY", chatbot=chatbot, history=history, delay=0)
|
||||||
return
|
return
|
||||||
|
|
||||||
if additional_fn is not None:
|
if additional_fn is not None:
|
||||||
|
|||||||
@@ -202,16 +202,29 @@ class GoogleChatInit:
|
|||||||
) # 处理 history
|
) # 处理 history
|
||||||
|
|
||||||
messages.append(self.__conversation_user(inputs, llm_kwargs, enable_multimodal_capacity)) # 处理用户对话
|
messages.append(self.__conversation_user(inputs, llm_kwargs, enable_multimodal_capacity)) # 处理用户对话
|
||||||
payload = {
|
stop_sequences = str(llm_kwargs.get("stop", "")).split(" ")
|
||||||
"contents": messages,
|
# 过滤空字符串并确保至少有一个停止序列
|
||||||
"generationConfig": {
|
stop_sequences = [s for s in stop_sequences if s]
|
||||||
# "maxOutputTokens": llm_kwargs.get("max_token", 1024),
|
if not stop_sequences:
|
||||||
"stopSequences": str(llm_kwargs.get("stop", "")).split(" "),
|
payload = {
|
||||||
"temperature": llm_kwargs.get("temperature", 1),
|
"contents": messages,
|
||||||
"topP": llm_kwargs.get("top_p", 0.8),
|
"generationConfig": {
|
||||||
"topK": 10,
|
"temperature": llm_kwargs.get("temperature", 1),
|
||||||
},
|
"topP": llm_kwargs.get("top_p", 0.8),
|
||||||
}
|
"topK": 10,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
payload = {
|
||||||
|
"contents": messages,
|
||||||
|
"generationConfig": {
|
||||||
|
# "maxOutputTokens": llm_kwargs.get("max_token", 1024),
|
||||||
|
"stopSequences": stop_sequences,
|
||||||
|
"temperature": llm_kwargs.get("temperature", 1),
|
||||||
|
"topP": llm_kwargs.get("top_p", 0.8),
|
||||||
|
"topK": 10,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
return header, payload
|
return header, payload
|
||||||
|
|
||||||
|
|||||||
@@ -24,18 +24,13 @@ class QwenRequestInstance():
|
|||||||
def generate(self, inputs, llm_kwargs, history, system_prompt):
|
def generate(self, inputs, llm_kwargs, history, system_prompt):
|
||||||
# import _thread as thread
|
# import _thread as thread
|
||||||
from dashscope import Generation
|
from dashscope import Generation
|
||||||
QWEN_MODEL = {
|
|
||||||
'qwen-turbo': Generation.Models.qwen_turbo,
|
|
||||||
'qwen-plus': Generation.Models.qwen_plus,
|
|
||||||
'qwen-max': Generation.Models.qwen_max,
|
|
||||||
}[llm_kwargs['llm_model']]
|
|
||||||
top_p = llm_kwargs.get('top_p', 0.8)
|
top_p = llm_kwargs.get('top_p', 0.8)
|
||||||
if top_p == 0: top_p += 1e-5
|
if top_p == 0: top_p += 1e-5
|
||||||
if top_p == 1: top_p -= 1e-5
|
if top_p == 1: top_p -= 1e-5
|
||||||
|
|
||||||
self.result_buf = ""
|
self.result_buf = ""
|
||||||
responses = Generation.call(
|
responses = Generation.call(
|
||||||
model=QWEN_MODEL,
|
model=llm_kwargs['llm_model'],
|
||||||
messages=generate_message_payload(inputs, llm_kwargs, history, system_prompt),
|
messages=generate_message_payload(inputs, llm_kwargs, history, system_prompt),
|
||||||
top_p=top_p,
|
top_p=top_p,
|
||||||
temperature=llm_kwargs.get('temperature', 1.0),
|
temperature=llm_kwargs.get('temperature', 1.0),
|
||||||
|
|||||||
@@ -216,7 +216,7 @@ class LocalLLMHandle(Process):
|
|||||||
def get_local_llm_predict_fns(LLMSingletonClass, model_name, history_format='classic'):
|
def get_local_llm_predict_fns(LLMSingletonClass, model_name, history_format='classic'):
|
||||||
load_message = f"{model_name}尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,{model_name}消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
load_message = f"{model_name}尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,{model_name}消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=[], console_slience:bool=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=[], console_silence:bool=False):
|
||||||
"""
|
"""
|
||||||
refer to request_llms/bridge_all.py
|
refer to request_llms/bridge_all.py
|
||||||
"""
|
"""
|
||||||
|
|||||||
@@ -2,15 +2,9 @@ import json
|
|||||||
import time
|
import time
|
||||||
import traceback
|
import traceback
|
||||||
import requests
|
import requests
|
||||||
from loguru import logger
|
|
||||||
|
|
||||||
# config_private.py放自己的秘密如API和代理网址
|
from loguru import logger
|
||||||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
from toolbox import get_conf, is_the_upload_folder, update_ui, update_ui_latest_msg
|
||||||
from toolbox import (
|
|
||||||
get_conf,
|
|
||||||
update_ui,
|
|
||||||
is_the_upload_folder,
|
|
||||||
)
|
|
||||||
|
|
||||||
proxies, TIMEOUT_SECONDS, MAX_RETRY = get_conf(
|
proxies, TIMEOUT_SECONDS, MAX_RETRY = get_conf(
|
||||||
"proxies", "TIMEOUT_SECONDS", "MAX_RETRY"
|
"proxies", "TIMEOUT_SECONDS", "MAX_RETRY"
|
||||||
@@ -36,35 +30,50 @@ def get_full_error(chunk, stream_response):
|
|||||||
|
|
||||||
def decode_chunk(chunk):
|
def decode_chunk(chunk):
|
||||||
"""
|
"""
|
||||||
用于解读"content"和"finish_reason"的内容
|
用于解读"content"和"finish_reason"的内容(如果支持思维链也会返回"reasoning_content"内容)
|
||||||
"""
|
"""
|
||||||
chunk = chunk.decode()
|
chunk = chunk.decode()
|
||||||
respose = ""
|
response = ""
|
||||||
|
reasoning_content = ""
|
||||||
finish_reason = "False"
|
finish_reason = "False"
|
||||||
|
|
||||||
|
# 考虑返回类型是 text/json 和 text/event-stream 两种
|
||||||
|
if chunk.startswith("data: "):
|
||||||
|
chunk = chunk[6:]
|
||||||
|
else:
|
||||||
|
chunk = chunk
|
||||||
|
|
||||||
try:
|
try:
|
||||||
chunk = json.loads(chunk[6:])
|
chunk = json.loads(chunk)
|
||||||
except:
|
except:
|
||||||
respose = ""
|
response = ""
|
||||||
finish_reason = chunk
|
finish_reason = chunk
|
||||||
|
|
||||||
# 错误处理部分
|
# 错误处理部分
|
||||||
if "error" in chunk:
|
if "error" in chunk:
|
||||||
respose = "API_ERROR"
|
response = "API_ERROR"
|
||||||
try:
|
try:
|
||||||
chunk = json.loads(chunk)
|
chunk = json.loads(chunk)
|
||||||
finish_reason = chunk["error"]["code"]
|
finish_reason = chunk["error"]["code"]
|
||||||
except:
|
except:
|
||||||
finish_reason = "API_ERROR"
|
finish_reason = "API_ERROR"
|
||||||
return respose, finish_reason
|
return response, reasoning_content, finish_reason
|
||||||
|
|
||||||
try:
|
try:
|
||||||
respose = chunk["choices"][0]["delta"]["content"]
|
if chunk["choices"][0]["delta"]["content"] is not None:
|
||||||
|
response = chunk["choices"][0]["delta"]["content"]
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
try:
|
||||||
|
if chunk["choices"][0]["delta"]["reasoning_content"] is not None:
|
||||||
|
reasoning_content = chunk["choices"][0]["delta"]["reasoning_content"]
|
||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
try:
|
try:
|
||||||
finish_reason = chunk["choices"][0]["finish_reason"]
|
finish_reason = chunk["choices"][0]["finish_reason"]
|
||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
return respose, finish_reason
|
return response, reasoning_content, finish_reason, str(chunk)
|
||||||
|
|
||||||
|
|
||||||
def generate_message(input, model, key, history, max_output_token, system_prompt, temperature):
|
def generate_message(input, model, key, history, max_output_token, system_prompt, temperature):
|
||||||
@@ -99,7 +108,7 @@ def generate_message(input, model, key, history, max_output_token, system_prompt
|
|||||||
what_i_ask_now["role"] = "user"
|
what_i_ask_now["role"] = "user"
|
||||||
what_i_ask_now["content"] = input
|
what_i_ask_now["content"] = input
|
||||||
messages.append(what_i_ask_now)
|
messages.append(what_i_ask_now)
|
||||||
playload = {
|
payload = {
|
||||||
"model": model,
|
"model": model,
|
||||||
"messages": messages,
|
"messages": messages,
|
||||||
"temperature": temperature,
|
"temperature": temperature,
|
||||||
@@ -107,7 +116,7 @@ def generate_message(input, model, key, history, max_output_token, system_prompt
|
|||||||
"max_tokens": max_output_token,
|
"max_tokens": max_output_token,
|
||||||
}
|
}
|
||||||
|
|
||||||
return headers, playload
|
return headers, payload
|
||||||
|
|
||||||
|
|
||||||
def get_predict_function(
|
def get_predict_function(
|
||||||
@@ -134,7 +143,7 @@ def get_predict_function(
|
|||||||
history=[],
|
history=[],
|
||||||
sys_prompt="",
|
sys_prompt="",
|
||||||
observe_window=None,
|
observe_window=None,
|
||||||
console_slience=False,
|
console_silence=False,
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||||
@@ -149,12 +158,13 @@ def get_predict_function(
|
|||||||
observe_window = None:
|
observe_window = None:
|
||||||
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
||||||
"""
|
"""
|
||||||
watch_dog_patience = 5 # 看门狗的耐心,设置5秒不准咬人(咬的也不是人
|
from .bridge_all import model_info
|
||||||
|
watch_dog_patience = 5 # 看门狗的耐心,设置5秒不准咬人 (咬的也不是人)
|
||||||
if len(APIKEY) == 0:
|
if len(APIKEY) == 0:
|
||||||
raise RuntimeError(f"APIKEY为空,请检查配置文件的{APIKEY}")
|
raise RuntimeError(f"APIKEY为空,请检查配置文件的{APIKEY}")
|
||||||
if inputs == "":
|
if inputs == "":
|
||||||
inputs = "你好👋"
|
inputs = "你好👋"
|
||||||
headers, playload = generate_message(
|
headers, payload = generate_message(
|
||||||
input=inputs,
|
input=inputs,
|
||||||
model=llm_kwargs["llm_model"],
|
model=llm_kwargs["llm_model"],
|
||||||
key=APIKEY,
|
key=APIKEY,
|
||||||
@@ -163,29 +173,21 @@ def get_predict_function(
|
|||||||
system_prompt=sys_prompt,
|
system_prompt=sys_prompt,
|
||||||
temperature=llm_kwargs["temperature"],
|
temperature=llm_kwargs["temperature"],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
reasoning = model_info[llm_kwargs['llm_model']].get('enable_reasoning', False)
|
||||||
|
|
||||||
retry = 0
|
retry = 0
|
||||||
while True:
|
while True:
|
||||||
try:
|
try:
|
||||||
from .bridge_all import model_info
|
|
||||||
|
|
||||||
endpoint = model_info[llm_kwargs["llm_model"]]["endpoint"]
|
endpoint = model_info[llm_kwargs["llm_model"]]["endpoint"]
|
||||||
if not disable_proxy:
|
response = requests.post(
|
||||||
response = requests.post(
|
endpoint,
|
||||||
endpoint,
|
headers=headers,
|
||||||
headers=headers,
|
proxies=None if disable_proxy else proxies,
|
||||||
proxies=proxies,
|
json=payload,
|
||||||
json=playload,
|
stream=True,
|
||||||
stream=True,
|
timeout=TIMEOUT_SECONDS,
|
||||||
timeout=TIMEOUT_SECONDS,
|
)
|
||||||
)
|
|
||||||
else:
|
|
||||||
response = requests.post(
|
|
||||||
endpoint,
|
|
||||||
headers=headers,
|
|
||||||
json=playload,
|
|
||||||
stream=True,
|
|
||||||
timeout=TIMEOUT_SECONDS,
|
|
||||||
)
|
|
||||||
break
|
break
|
||||||
except:
|
except:
|
||||||
retry += 1
|
retry += 1
|
||||||
@@ -195,9 +197,12 @@ def get_predict_function(
|
|||||||
if MAX_RETRY != 0:
|
if MAX_RETRY != 0:
|
||||||
logger.error(f"请求超时,正在重试 ({retry}/{MAX_RETRY}) ……")
|
logger.error(f"请求超时,正在重试 ({retry}/{MAX_RETRY}) ……")
|
||||||
|
|
||||||
stream_response = response.iter_lines()
|
|
||||||
result = ""
|
result = ""
|
||||||
finish_reason = ""
|
finish_reason = ""
|
||||||
|
if reasoning:
|
||||||
|
reasoning_buffer = ""
|
||||||
|
|
||||||
|
stream_response = response.iter_lines()
|
||||||
while True:
|
while True:
|
||||||
try:
|
try:
|
||||||
chunk = next(stream_response)
|
chunk = next(stream_response)
|
||||||
@@ -207,9 +212,9 @@ def get_predict_function(
|
|||||||
break
|
break
|
||||||
except requests.exceptions.ConnectionError:
|
except requests.exceptions.ConnectionError:
|
||||||
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||||
response_text, finish_reason = decode_chunk(chunk)
|
response_text, reasoning_content, finish_reason, decoded_chunk = decode_chunk(chunk)
|
||||||
# 返回的数据流第一次为空,继续等待
|
# 返回的数据流第一次为空,继续等待
|
||||||
if response_text == "" and finish_reason != "False":
|
if response_text == "" and (reasoning == False or reasoning_content == "") and finish_reason != "False":
|
||||||
continue
|
continue
|
||||||
if response_text == "API_ERROR" and (
|
if response_text == "API_ERROR" and (
|
||||||
finish_reason != "False" or finish_reason != "stop"
|
finish_reason != "False" or finish_reason != "stop"
|
||||||
@@ -223,10 +228,12 @@ def get_predict_function(
|
|||||||
if chunk:
|
if chunk:
|
||||||
try:
|
try:
|
||||||
if finish_reason == "stop":
|
if finish_reason == "stop":
|
||||||
if not console_slience:
|
if not console_silence:
|
||||||
print(f"[response] {result}")
|
print(f"[response] {result}")
|
||||||
break
|
break
|
||||||
result += response_text
|
result += response_text
|
||||||
|
if reasoning:
|
||||||
|
reasoning_buffer += reasoning_content
|
||||||
if observe_window is not None:
|
if observe_window is not None:
|
||||||
# 观测窗,把已经获取的数据显示出去
|
# 观测窗,把已经获取的数据显示出去
|
||||||
if len(observe_window) >= 1:
|
if len(observe_window) >= 1:
|
||||||
@@ -241,6 +248,9 @@ def get_predict_function(
|
|||||||
error_msg = chunk_decoded
|
error_msg = chunk_decoded
|
||||||
logger.error(error_msg)
|
logger.error(error_msg)
|
||||||
raise RuntimeError("Json解析不合常规")
|
raise RuntimeError("Json解析不合常规")
|
||||||
|
if reasoning:
|
||||||
|
paragraphs = ''.join([f'<p style="margin: 1.25em 0;">{line}</p>' for line in reasoning_buffer.split('\n')])
|
||||||
|
return f'''<div class="reasoning_process" >{paragraphs}</div>\n\n''' + result
|
||||||
return result
|
return result
|
||||||
|
|
||||||
def predict(
|
def predict(
|
||||||
@@ -259,9 +269,10 @@ def get_predict_function(
|
|||||||
inputs 是本次问询的输入
|
inputs 是本次问询的输入
|
||||||
top_p, temperature是chatGPT的内部调优参数
|
top_p, temperature是chatGPT的内部调优参数
|
||||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
chatbot 为WebUI中显示的对话列表,修改它,然后yield出去,可以直接修改对话界面内容
|
||||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||||
"""
|
"""
|
||||||
|
from .bridge_all import model_info
|
||||||
if len(APIKEY) == 0:
|
if len(APIKEY) == 0:
|
||||||
raise RuntimeError(f"APIKEY为空,请检查配置文件的{APIKEY}")
|
raise RuntimeError(f"APIKEY为空,请检查配置文件的{APIKEY}")
|
||||||
if inputs == "":
|
if inputs == "":
|
||||||
@@ -289,7 +300,7 @@ def get_predict_function(
|
|||||||
) # 刷新界面
|
) # 刷新界面
|
||||||
time.sleep(2)
|
time.sleep(2)
|
||||||
|
|
||||||
headers, playload = generate_message(
|
headers, payload = generate_message(
|
||||||
input=inputs,
|
input=inputs,
|
||||||
model=llm_kwargs["llm_model"],
|
model=llm_kwargs["llm_model"],
|
||||||
key=APIKEY,
|
key=APIKEY,
|
||||||
@@ -299,31 +310,22 @@ def get_predict_function(
|
|||||||
temperature=llm_kwargs["temperature"],
|
temperature=llm_kwargs["temperature"],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
reasoning = model_info[llm_kwargs['llm_model']].get('enable_reasoning', False)
|
||||||
|
|
||||||
history.append(inputs)
|
history.append(inputs)
|
||||||
history.append("")
|
history.append("")
|
||||||
retry = 0
|
retry = 0
|
||||||
while True:
|
while True:
|
||||||
try:
|
try:
|
||||||
from .bridge_all import model_info
|
|
||||||
|
|
||||||
endpoint = model_info[llm_kwargs["llm_model"]]["endpoint"]
|
endpoint = model_info[llm_kwargs["llm_model"]]["endpoint"]
|
||||||
if not disable_proxy:
|
response = requests.post(
|
||||||
response = requests.post(
|
endpoint,
|
||||||
endpoint,
|
headers=headers,
|
||||||
headers=headers,
|
proxies=None if disable_proxy else proxies,
|
||||||
proxies=proxies,
|
json=payload,
|
||||||
json=playload,
|
stream=True,
|
||||||
stream=True,
|
timeout=TIMEOUT_SECONDS,
|
||||||
timeout=TIMEOUT_SECONDS,
|
)
|
||||||
)
|
|
||||||
else:
|
|
||||||
response = requests.post(
|
|
||||||
endpoint,
|
|
||||||
headers=headers,
|
|
||||||
json=playload,
|
|
||||||
stream=True,
|
|
||||||
timeout=TIMEOUT_SECONDS,
|
|
||||||
)
|
|
||||||
break
|
break
|
||||||
except:
|
except:
|
||||||
retry += 1
|
retry += 1
|
||||||
@@ -338,18 +340,27 @@ def get_predict_function(
|
|||||||
raise TimeoutError
|
raise TimeoutError
|
||||||
|
|
||||||
gpt_replying_buffer = ""
|
gpt_replying_buffer = ""
|
||||||
|
if reasoning:
|
||||||
|
gpt_reasoning_buffer = ""
|
||||||
|
|
||||||
stream_response = response.iter_lines()
|
stream_response = response.iter_lines()
|
||||||
|
wait_counter = 0
|
||||||
while True:
|
while True:
|
||||||
try:
|
try:
|
||||||
chunk = next(stream_response)
|
chunk = next(stream_response)
|
||||||
except StopIteration:
|
except StopIteration:
|
||||||
|
if wait_counter != 0 and gpt_replying_buffer == "":
|
||||||
|
yield from update_ui_latest_msg(lastmsg="模型调用失败 ...", chatbot=chatbot, history=history, msg="failed")
|
||||||
break
|
break
|
||||||
except requests.exceptions.ConnectionError:
|
except requests.exceptions.ConnectionError:
|
||||||
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||||
response_text, finish_reason = decode_chunk(chunk)
|
response_text, reasoning_content, finish_reason, decoded_chunk = decode_chunk(chunk)
|
||||||
|
if decoded_chunk == ': keep-alive':
|
||||||
|
wait_counter += 1
|
||||||
|
yield from update_ui_latest_msg(lastmsg="等待中 " + "".join(["."] * (wait_counter%10)), chatbot=chatbot, history=history, msg="waiting ...")
|
||||||
|
continue
|
||||||
# 返回的数据流第一次为空,继续等待
|
# 返回的数据流第一次为空,继续等待
|
||||||
if response_text == "" and finish_reason != "False":
|
if response_text == "" and (reasoning == False or reasoning_content == "") and finish_reason != "False":
|
||||||
status_text = f"finish_reason: {finish_reason}"
|
status_text = f"finish_reason: {finish_reason}"
|
||||||
yield from update_ui(
|
yield from update_ui(
|
||||||
chatbot=chatbot, history=history, msg=status_text
|
chatbot=chatbot, history=history, msg=status_text
|
||||||
@@ -364,7 +375,7 @@ def get_predict_function(
|
|||||||
chunk_decoded = chunk.decode()
|
chunk_decoded = chunk.decode()
|
||||||
chatbot[-1] = (
|
chatbot[-1] = (
|
||||||
chatbot[-1][0],
|
chatbot[-1][0],
|
||||||
"[Local Message] {finish_reason},获得以下报错信息:\n"
|
f"[Local Message] {finish_reason}, 获得以下报错信息:\n"
|
||||||
+ chunk_decoded,
|
+ chunk_decoded,
|
||||||
)
|
)
|
||||||
yield from update_ui(
|
yield from update_ui(
|
||||||
@@ -379,9 +390,15 @@ def get_predict_function(
|
|||||||
logger.info(f"[response] {gpt_replying_buffer}")
|
logger.info(f"[response] {gpt_replying_buffer}")
|
||||||
break
|
break
|
||||||
status_text = f"finish_reason: {finish_reason}"
|
status_text = f"finish_reason: {finish_reason}"
|
||||||
gpt_replying_buffer += response_text
|
if reasoning:
|
||||||
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
|
gpt_replying_buffer += response_text
|
||||||
history[-1] = gpt_replying_buffer
|
gpt_reasoning_buffer += reasoning_content
|
||||||
|
paragraphs = ''.join([f'<p style="margin: 1.25em 0;">{line}</p>' for line in gpt_reasoning_buffer.split('\n')])
|
||||||
|
history[-1] = f'<div class="reasoning_process">{paragraphs}</div>\n\n---\n\n' + gpt_replying_buffer
|
||||||
|
else:
|
||||||
|
gpt_replying_buffer += response_text
|
||||||
|
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
|
||||||
|
history[-1] = gpt_replying_buffer
|
||||||
chatbot[-1] = (history[-2], history[-1])
|
chatbot[-1] = (history[-2], history[-1])
|
||||||
yield from update_ui(
|
yield from update_ui(
|
||||||
chatbot=chatbot, history=history, msg=status_text
|
chatbot=chatbot, history=history, msg=status_text
|
||||||
|
|||||||
7
request_llms/requirements_chatglm4.txt
Normal file
7
request_llms/requirements_chatglm4.txt
Normal file
@@ -0,0 +1,7 @@
|
|||||||
|
protobuf
|
||||||
|
cpm_kernels
|
||||||
|
torch>=1.10
|
||||||
|
transformers>=4.44
|
||||||
|
mdtex2html
|
||||||
|
sentencepiece
|
||||||
|
accelerate
|
||||||
@@ -1,4 +1,4 @@
|
|||||||
https://public.agent-matrix.com/publish/gradio-3.32.10-py3-none-any.whl
|
https://public.agent-matrix.com/publish/gradio-3.32.12-py3-none-any.whl
|
||||||
fastapi==0.110
|
fastapi==0.110
|
||||||
gradio-client==0.8
|
gradio-client==0.8
|
||||||
pypdf2==2.12.1
|
pypdf2==2.12.1
|
||||||
@@ -13,7 +13,7 @@ scipdf_parser>=0.52
|
|||||||
spacy==3.7.4
|
spacy==3.7.4
|
||||||
anthropic>=0.18.1
|
anthropic>=0.18.1
|
||||||
python-markdown-math
|
python-markdown-math
|
||||||
pymdown-extensions
|
pymdown-extensions>=10.14
|
||||||
websocket-client
|
websocket-client
|
||||||
beautifulsoup4
|
beautifulsoup4
|
||||||
prompt_toolkit
|
prompt_toolkit
|
||||||
@@ -25,7 +25,7 @@ pyautogen
|
|||||||
colorama
|
colorama
|
||||||
Markdown
|
Markdown
|
||||||
pygments
|
pygments
|
||||||
edge-tts
|
edge-tts>=7.0.0
|
||||||
pymupdf
|
pymupdf
|
||||||
openai
|
openai
|
||||||
rjsmin
|
rjsmin
|
||||||
|
|||||||
@@ -2,6 +2,7 @@ import markdown
|
|||||||
import re
|
import re
|
||||||
import os
|
import os
|
||||||
import math
|
import math
|
||||||
|
import html
|
||||||
|
|
||||||
from loguru import logger
|
from loguru import logger
|
||||||
from textwrap import dedent
|
from textwrap import dedent
|
||||||
@@ -384,6 +385,24 @@ def markdown_convertion(txt):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def code_block_title_replace_format(match):
|
||||||
|
lang = match.group(1)
|
||||||
|
filename = match.group(2)
|
||||||
|
return f"```{lang} {{title=\"{filename}\"}}\n"
|
||||||
|
|
||||||
|
|
||||||
|
def get_last_backticks_indent(text):
|
||||||
|
# 从后向前查找最后一个 ```
|
||||||
|
lines = text.splitlines()
|
||||||
|
for line in reversed(lines):
|
||||||
|
if '```' in line:
|
||||||
|
# 计算前面的空格数量
|
||||||
|
indent = len(line) - len(line.lstrip())
|
||||||
|
return indent
|
||||||
|
return 0 # 如果没找到返回0
|
||||||
|
|
||||||
|
|
||||||
|
@lru_cache(maxsize=16) # 使用lru缓存
|
||||||
def close_up_code_segment_during_stream(gpt_reply):
|
def close_up_code_segment_during_stream(gpt_reply):
|
||||||
"""
|
"""
|
||||||
在gpt输出代码的中途(输出了前面的```,但还没输出完后面的```),补上后面的```
|
在gpt输出代码的中途(输出了前面的```,但还没输出完后面的```),补上后面的```
|
||||||
@@ -397,6 +416,12 @@ def close_up_code_segment_during_stream(gpt_reply):
|
|||||||
"""
|
"""
|
||||||
if "```" not in gpt_reply:
|
if "```" not in gpt_reply:
|
||||||
return gpt_reply
|
return gpt_reply
|
||||||
|
|
||||||
|
# replace [```python:warp.py] to [```python {title="warp.py"}]
|
||||||
|
pattern = re.compile(r"```([a-z]{1,12}):([^:\n]{1,35}\.([a-zA-Z^:\n]{1,3}))\n")
|
||||||
|
if pattern.search(gpt_reply):
|
||||||
|
gpt_reply = pattern.sub(code_block_title_replace_format, gpt_reply)
|
||||||
|
|
||||||
if gpt_reply.endswith("```"):
|
if gpt_reply.endswith("```"):
|
||||||
return gpt_reply
|
return gpt_reply
|
||||||
|
|
||||||
@@ -404,7 +429,11 @@ def close_up_code_segment_during_stream(gpt_reply):
|
|||||||
segments = gpt_reply.split("```")
|
segments = gpt_reply.split("```")
|
||||||
n_mark = len(segments) - 1
|
n_mark = len(segments) - 1
|
||||||
if n_mark % 2 == 1:
|
if n_mark % 2 == 1:
|
||||||
return gpt_reply + "\n```" # 输出代码片段中!
|
try:
|
||||||
|
num_padding = get_last_backticks_indent(gpt_reply)
|
||||||
|
except:
|
||||||
|
num_padding = 0
|
||||||
|
return gpt_reply + "\n" + " "*num_padding + "```" # 输出代码片段中!
|
||||||
else:
|
else:
|
||||||
return gpt_reply
|
return gpt_reply
|
||||||
|
|
||||||
@@ -421,6 +450,19 @@ def special_render_issues_for_mermaid(text):
|
|||||||
return text
|
return text
|
||||||
|
|
||||||
|
|
||||||
|
def contain_html_tag(text):
|
||||||
|
"""
|
||||||
|
判断文本中是否包含HTML标签。
|
||||||
|
"""
|
||||||
|
pattern = r'</?([a-zA-Z0-9_]{3,16})>|<script\s+[^>]*src=["\']([^"\']+)["\'][^>]*>'
|
||||||
|
return re.search(pattern, text) is not None
|
||||||
|
|
||||||
|
|
||||||
|
def contain_image(text):
|
||||||
|
pattern = r'<br/><br/><div align="center"><img src="file=(.*?)" base64="(.*?)"></div>'
|
||||||
|
return re.search(pattern, text) is not None
|
||||||
|
|
||||||
|
|
||||||
def compat_non_markdown_input(text):
|
def compat_non_markdown_input(text):
|
||||||
"""
|
"""
|
||||||
改善非markdown输入的显示效果,例如将空格转换为 ,将换行符转换为</br>等。
|
改善非markdown输入的显示效果,例如将空格转换为 ,将换行符转换为</br>等。
|
||||||
@@ -429,9 +471,13 @@ def compat_non_markdown_input(text):
|
|||||||
# careful input:markdown输入
|
# careful input:markdown输入
|
||||||
text = special_render_issues_for_mermaid(text) # 处理特殊的渲染问题
|
text = special_render_issues_for_mermaid(text) # 处理特殊的渲染问题
|
||||||
return text
|
return text
|
||||||
elif "</div>" in text:
|
elif ("<" in text) and (">" in text) and contain_html_tag(text):
|
||||||
# careful input:html输入
|
# careful input:html输入
|
||||||
return text
|
if contain_image(text):
|
||||||
|
return text
|
||||||
|
else:
|
||||||
|
escaped_text = html.escape(text)
|
||||||
|
return escaped_text
|
||||||
else:
|
else:
|
||||||
# whatever input:非markdown输入
|
# whatever input:非markdown输入
|
||||||
lines = text.split("\n")
|
lines = text.split("\n")
|
||||||
|
|||||||
@@ -8,7 +8,7 @@ def is_full_width_char(ch):
|
|||||||
return True # CJK标点符号
|
return True # CJK标点符号
|
||||||
return False
|
return False
|
||||||
|
|
||||||
def scolling_visual_effect(text, scroller_max_len):
|
def scrolling_visual_effect(text, scroller_max_len):
|
||||||
text = text.\
|
text = text.\
|
||||||
replace('\n', '').replace('`', '.').replace(' ', '.').replace('<br/>', '.....').replace('$', '.')
|
replace('\n', '').replace('`', '.').replace(' ', '.').replace('<br/>', '.....').replace('$', '.')
|
||||||
place_take_cnt = 0
|
place_take_cnt = 0
|
||||||
|
|||||||
@@ -85,7 +85,7 @@ def get_chat_default_kwargs():
|
|||||||
"history": [],
|
"history": [],
|
||||||
"sys_prompt": "You are AI assistant",
|
"sys_prompt": "You are AI assistant",
|
||||||
"observe_window": None,
|
"observe_window": None,
|
||||||
"console_slience": False,
|
"console_silence": False,
|
||||||
}
|
}
|
||||||
|
|
||||||
return default_chat_kwargs
|
return default_chat_kwargs
|
||||||
|
|||||||
@@ -77,16 +77,28 @@ def make_history_cache():
|
|||||||
# 定义 后端state(history)、前端(history_cache)、后端setter(history_cache_update)三兄弟
|
# 定义 后端state(history)、前端(history_cache)、后端setter(history_cache_update)三兄弟
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
# 定义history的后端state
|
# 定义history的后端state
|
||||||
history = gr.State([])
|
# history = gr.State([])
|
||||||
# 定义history的一个孪生的前端存储区(隐藏)
|
history = gr.Textbox(visible=False, elem_id="history-ng")
|
||||||
history_cache = gr.Textbox(visible=False, elem_id="history_cache")
|
# # 定义history的一个孪生的前端存储区(隐藏)
|
||||||
# 定义history_cache->history的更新方法(隐藏)。在触发这个按钮时,会先执行js代码更新history_cache,然后再执行python代码更新history
|
# history_cache = gr.Textbox(visible=False, elem_id="history_cache")
|
||||||
def process_history_cache(history_cache):
|
# # 定义history_cache->history的更新方法(隐藏)。在触发这个按钮时,会先执行js代码更新history_cache,然后再执行python代码更新history
|
||||||
return json.loads(history_cache)
|
# def process_history_cache(history_cache):
|
||||||
# 另一种更简单的setter方法
|
# return json.loads(history_cache)
|
||||||
history_cache_update = gr.Button("", elem_id="elem_update_history", visible=False).click(
|
# # 另一种更简单的setter方法
|
||||||
process_history_cache, inputs=[history_cache], outputs=[history])
|
# history_cache_update = gr.Button("", elem_id="elem_update_history", visible=False).click(
|
||||||
return history, history_cache, history_cache_update
|
# process_history_cache, inputs=[history_cache], outputs=[history])
|
||||||
|
# # save history to history_cache
|
||||||
|
# def process_history_cache(history_cache):
|
||||||
|
# return json.dumps(history_cache)
|
||||||
|
# # 定义history->history_cache的更新方法(隐藏)
|
||||||
|
# def sync_history_cache(history):
|
||||||
|
# print("sync_history_cache", history)
|
||||||
|
# return json.dumps(history)
|
||||||
|
# # history.change(sync_history_cache, inputs=[history], outputs=[history_cache])
|
||||||
|
|
||||||
|
# # history_cache_sync = gr.Button("", elem_id="elem_sync_history", visible=False).click(
|
||||||
|
# # lambda history: (json.dumps(history)), inputs=[history_cache], outputs=[history])
|
||||||
|
return history, None, None
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -88,6 +88,32 @@ def zip_extract_member_new(self, member, targetpath, pwd):
|
|||||||
return targetpath
|
return targetpath
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def safe_extract_rar(file_path, dest_dir):
|
||||||
|
import rarfile
|
||||||
|
import posixpath
|
||||||
|
with rarfile.RarFile(file_path) as rf:
|
||||||
|
os.makedirs(dest_dir, exist_ok=True)
|
||||||
|
base_path = os.path.abspath(dest_dir)
|
||||||
|
for file_info in rf.infolist():
|
||||||
|
orig_filename = file_info.filename
|
||||||
|
filename = posixpath.normpath(orig_filename).lstrip('/')
|
||||||
|
# 路径遍历防护
|
||||||
|
if '..' in filename or filename.startswith('../'):
|
||||||
|
raise Exception(f"Attempted Path Traversal in {orig_filename}")
|
||||||
|
# 符号链接防护
|
||||||
|
if hasattr(file_info, 'is_symlink') and file_info.is_symlink():
|
||||||
|
raise Exception(f"Attempted Symlink in {orig_filename}")
|
||||||
|
# 构造完整目标路径
|
||||||
|
target_path = os.path.join(base_path, filename)
|
||||||
|
final_path = os.path.normpath(target_path)
|
||||||
|
# 最终路径校验
|
||||||
|
if not final_path.startswith(base_path):
|
||||||
|
raise Exception(f"Attempted Path Traversal in {orig_filename}")
|
||||||
|
rf.extractall(dest_dir)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def extract_archive(file_path, dest_dir):
|
def extract_archive(file_path, dest_dir):
|
||||||
import zipfile
|
import zipfile
|
||||||
import tarfile
|
import tarfile
|
||||||
@@ -111,6 +137,8 @@ def extract_archive(file_path, dest_dir):
|
|||||||
member_path = os.path.normpath(member.name)
|
member_path = os.path.normpath(member.name)
|
||||||
full_path = os.path.join(dest_dir, member_path)
|
full_path = os.path.join(dest_dir, member_path)
|
||||||
full_path = os.path.abspath(full_path)
|
full_path = os.path.abspath(full_path)
|
||||||
|
if member.islnk() or member.issym():
|
||||||
|
raise Exception(f"Attempted Symlink in {member.name}")
|
||||||
if not full_path.startswith(os.path.abspath(dest_dir) + os.sep):
|
if not full_path.startswith(os.path.abspath(dest_dir) + os.sep):
|
||||||
raise Exception(f"Attempted Path Traversal in {member.name}")
|
raise Exception(f"Attempted Path Traversal in {member.name}")
|
||||||
|
|
||||||
@@ -130,14 +158,11 @@ def extract_archive(file_path, dest_dir):
|
|||||||
# 此外,Windows上还需要安装winrar软件,配置其Path环境变量,如"C:\Program Files\WinRAR"才可以
|
# 此外,Windows上还需要安装winrar软件,配置其Path环境变量,如"C:\Program Files\WinRAR"才可以
|
||||||
elif file_extension == ".rar":
|
elif file_extension == ".rar":
|
||||||
try:
|
try:
|
||||||
import rarfile
|
import rarfile # 用来检查rarfile是否安装,不要删除
|
||||||
|
safe_extract_rar(file_path, dest_dir)
|
||||||
with rarfile.RarFile(file_path) as rf:
|
|
||||||
rf.extractall(path=dest_dir)
|
|
||||||
logger.info("Successfully extracted rar archive to {}".format(dest_dir))
|
|
||||||
except:
|
except:
|
||||||
logger.info("Rar format requires additional dependencies to install")
|
logger.info("Rar format requires additional dependencies to install")
|
||||||
return "\n\n解压失败! 需要安装pip install rarfile来解压rar文件。建议:使用zip压缩格式。"
|
return "<br/><br/>解压失败! 需要安装pip install rarfile来解压rar文件。建议:使用zip压缩格式。"
|
||||||
|
|
||||||
# 第三方库,需要预先pip install py7zr
|
# 第三方库,需要预先pip install py7zr
|
||||||
elif file_extension == ".7z":
|
elif file_extension == ".7z":
|
||||||
@@ -149,7 +174,7 @@ def extract_archive(file_path, dest_dir):
|
|||||||
logger.info("Successfully extracted 7z archive to {}".format(dest_dir))
|
logger.info("Successfully extracted 7z archive to {}".format(dest_dir))
|
||||||
except:
|
except:
|
||||||
logger.info("7z format requires additional dependencies to install")
|
logger.info("7z format requires additional dependencies to install")
|
||||||
return "\n\n解压失败! 需要安装pip install py7zr来解压7z文件"
|
return "<br/><br/>解压失败! 需要安装pip install py7zr来解压7z文件"
|
||||||
else:
|
else:
|
||||||
return ""
|
return ""
|
||||||
return ""
|
return ""
|
||||||
|
|||||||
@@ -45,6 +45,13 @@ def is_cohere_api_key(key):
|
|||||||
|
|
||||||
|
|
||||||
def is_any_api_key(key):
|
def is_any_api_key(key):
|
||||||
|
# key 一般只包含字母、数字、下划线、逗号、中划线
|
||||||
|
if not re.match(r"^[a-zA-Z0-9_\-,]+$", key):
|
||||||
|
# 如果配置了 CUSTOM_API_KEY_PATTERN,再检查以下以免误杀
|
||||||
|
if CUSTOM_API_KEY_PATTERN := get_conf('CUSTOM_API_KEY_PATTERN'):
|
||||||
|
return bool(re.match(CUSTOM_API_KEY_PATTERN, key))
|
||||||
|
return False
|
||||||
|
|
||||||
if ',' in key:
|
if ',' in key:
|
||||||
keys = key.split(',')
|
keys = key.split(',')
|
||||||
for k in keys:
|
for k in keys:
|
||||||
@@ -79,7 +86,7 @@ def select_api_key(keys, llm_model):
|
|||||||
key_list = keys.split(',')
|
key_list = keys.split(',')
|
||||||
|
|
||||||
if llm_model.startswith('gpt-') or llm_model.startswith('chatgpt-') or \
|
if llm_model.startswith('gpt-') or llm_model.startswith('chatgpt-') or \
|
||||||
llm_model.startswith('one-api-') or llm_model.startswith('o1-'):
|
llm_model.startswith('one-api-') or llm_model == 'o1' or llm_model.startswith('o1-'):
|
||||||
for k in key_list:
|
for k in key_list:
|
||||||
if is_openai_api_key(k): avail_key_list.append(k)
|
if is_openai_api_key(k): avail_key_list.append(k)
|
||||||
|
|
||||||
|
|||||||
11
start.sh
Normal file
11
start.sh
Normal file
@@ -0,0 +1,11 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
GPT_COMMAND="/home/van/.env/python3.12-venv/bin/python main.py"
|
||||||
|
LOG_FILE="/home/van/project/gpt/gpt.log"
|
||||||
|
GPT_PROCESS=$(ps aux | grep "$/home/van/.env/python3.12-venv/bin/python main.py" | grep -v grep)
|
||||||
|
if [ -n "$GPT_PROCESS" ]; then
|
||||||
|
echo "gpt is running..."
|
||||||
|
else
|
||||||
|
cd /home/van/project/gpt/
|
||||||
|
$GPT_COMMAND > "$LOG_FILE" 2>&1 &
|
||||||
|
echo "gpt start successfully. Log file: $LOG_FILE"
|
||||||
|
fi
|
||||||
@@ -20,7 +20,7 @@ Replace 'Tex/' with the actual directory path where your files are located befor
|
|||||||
md = """
|
md = """
|
||||||
Following code including wrapper
|
Following code including wrapper
|
||||||
|
|
||||||
```mermaid
|
```python:wrapper.py
|
||||||
graph TD
|
graph TD
|
||||||
A[Enter Chart Definition] --> B(Preview)
|
A[Enter Chart Definition] --> B(Preview)
|
||||||
B --> C{decide}
|
B --> C{decide}
|
||||||
@@ -29,8 +29,178 @@ graph TD
|
|||||||
E --> B
|
E --> B
|
||||||
D --> F[Save Image and Code]
|
D --> F[Save Image and Code]
|
||||||
F --> B
|
F --> B
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary><b>My section header in bold</b></summary>
|
||||||
|
|
||||||
|
Any folded content here. It requires an empty line just above it.
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
md ="""
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>第0份搜索结果 [源自google搜索] (汤姆·赫兰德):</summary>
|
||||||
|
<div class="search_result">https://baike.baidu.com/item/%E6%B1%A4%E5%A7%86%C2%B7%E8%B5%AB%E5%85%B0%E5%BE%B7/3687216</div>
|
||||||
|
<div class="search_result">Title: 汤姆·赫兰德
|
||||||
|
|
||||||
|
URL Source: https://baike.baidu.com/item/%E6%B1%A4%E5%A7%86%C2%B7%E8%B5%AB%E5%85%B0%E5%BE%B7/3687216
|
||||||
|
|
||||||
|
Markdown Content:
|
||||||
|
网页新闻贴吧知道网盘图片视频地图文库资讯采购百科
|
||||||
|
百度首页
|
||||||
|
登录
|
||||||
|
注册
|
||||||
|
进入词条
|
||||||
|
全站搜索
|
||||||
|
帮助
|
||||||
|
首页
|
||||||
|
秒懂百科
|
||||||
|
特色百科
|
||||||
|
知识专题
|
||||||
|
加入百科
|
||||||
|
百科团队
|
||||||
|
权威合作
|
||||||
|
个人中心
|
||||||
|
汤姆·赫兰德
|
||||||
|
播报
|
||||||
|
讨论
|
||||||
|
上传视频
|
||||||
|
英国男演员
|
||||||
|
汤姆·赫兰德(Tom Holland),1996年6月1日出生于英国英格兰泰晤士河畔金斯顿,英国男演员。2008年,出演音乐剧《跳出我天地》而崭露头角。2010年,作为主演参加音乐剧《跳出我天地》的五周年特别演出。2012年10月11日,主演的个人首部电影《海啸奇迹》上映,并凭该电影获得第84届美国国家评论协会奖最具突破男演员奖。2016年10月15日,与查理·汉纳姆、西耶娜·米勒合作出演的电影《 ... >>>
|
||||||
|
|
||||||
|
目录
|
||||||
|
1早年经历
|
||||||
|
2演艺经历
|
||||||
|
▪影坛新星
|
||||||
|
▪角色多变
|
||||||
|
▪跨界翘楚
|
||||||
|
3个人生活
|
||||||
|
▪家庭
|
||||||
|
▪恋情
|
||||||
|
▪社交
|
||||||
|
4主要作品
|
||||||
|
▪参演电影
|
||||||
|
▪参演电视剧
|
||||||
|
▪配音作品
|
||||||
|
▪导演作品
|
||||||
|
▪杂志写真
|
||||||
|
5社会活动
|
||||||
|
6获奖记录
|
||||||
|
7人物评价
|
||||||
|
基本信息
|
||||||
|
汤姆·赫兰德(Tom Holland),1996年6月1日出生于英国英格兰泰晤士河畔金斯顿,英国男演员。 [67]
|
||||||
|
2008年,出演音乐剧《跳出我天地》而崭露头角 [1]。2010年,作为主演参加音乐剧《跳出我天地》的五周年特别演出 [2]。2012年10月11日,主演的个人首部电影《海啸奇迹》上映,并凭该电影获得第84届美国国家评论协会奖最具突破男演员奖 [3]。2016年10月15日,与查理·汉纳姆、西耶娜·米勒合作出演的电影《迷失Z城》在纽约电影节首映 [17];2017年,主演的《蜘蛛侠:英雄归来》上映,他凭该电影获得第19届青少年选择奖最佳暑期电影男演员奖,以及第70届英国电影和电视艺术学院奖最佳新星奖。 [72]2019年,主演的电影《蜘蛛侠:英雄远征》上映 [5];同年,凭借该电影获得第21届青少年选择奖最佳夏日电影男演员奖 [6]。2024年4月,汤姆·霍兰德主演的伦敦西区新版舞台剧《罗密欧与朱丽叶》公布演员名单。 [66]
|
||||||
|
2024年,......</div>
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>第1份搜索结果 [源自google搜索] (汤姆·霍兰德):</summary>
|
||||||
|
<div class="search_result">https://zh.wikipedia.org/zh-hans/%E6%B1%A4%E5%A7%86%C2%B7%E8%B5%AB%E5%85%B0%E5%BE%B7</div>
|
||||||
|
<div class="search_result">Title: 汤姆·赫兰德
|
||||||
|
|
||||||
|
URL Source: https://zh.wikipedia.org/zh-hans/%E6%B1%A4%E5%A7%86%C2%B7%E8%B5%AB%E5%85%B0%E5%BE%B7
|
||||||
|
|
||||||
|
Published Time: 2015-06-24T01:08:01Z
|
||||||
|
|
||||||
|
Markdown Content:
|
||||||
|
| 汤姆·霍兰德
|
||||||
|
Tom Holland |
|
||||||
|
| --- |
|
||||||
|
| [](https://zh.wikipedia.org/wiki/File:Tom_Holland_by_Gage_Skidmore.jpg)
|
||||||
|
|
||||||
|
2016年在[圣地牙哥国际漫画展](https://zh.wikipedia.org/wiki/%E8%81%96%E5%9C%B0%E7%89%99%E5%93%A5%E5%9C%8B%E9%9A%9B%E6%BC%AB%E7%95%AB%E5%B1%95 "圣地牙哥国际漫画展")的霍兰德
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
||||||
|
| 男演员 |
|
||||||
|
| 昵称 | 荷兰弟[\[1\]](https://zh.wikipedia.org/zh-hans/%E6%B1%A4%E5%A7%86%C2%B7%E8%B5%AB%E5%85%B0%E5%BE%B7#cite_note-1) |
|
||||||
|
| 出生 | 汤玛斯·史丹利·霍兰德
|
||||||
|
(Thomas Stanley Holland)[\[2\]](https://zh.wikipedia.org/zh-hans/%E6%B1%A4%E5%A7%86%C2%B7%E8%B5%AB%E5%85%B0%E5%BE%B7#cite_note-2)
|
||||||
|
|
||||||
|
|
||||||
|
1996年6月1日(28岁)
|
||||||
|
|
||||||
|
英国[英格兰](https://zh.wikipedia.org/wiki/%E8%8B%B1%E6%A0%BC%E8%98%AD "英格兰")[泰晤士河畔金斯顿](https://zh.wikipedia.org/wiki/%E6%B3%B0%E6%99%A4......</div>
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>第2份搜索结果 [源自google搜索] (为什么汤姆赫兰德被称为荷兰弟?):</summary>
|
||||||
|
<div class="search_result">https://www.zhihu.com/question/363988307</div>
|
||||||
|
<div class="search_result">Title: 为什么汤姆赫兰德被称为荷兰弟? - 知乎
|
||||||
|
|
||||||
|
URL Source: https://www.zhihu.com/question/363988307
|
||||||
|
|
||||||
|
Markdown Content:
|
||||||
|
要说漫威演员里面,谁是最牛的存在,不好说,各有各的看法,但要说谁是最能剧透的,毫无疑问,是我们的汤姆赫兰德荷兰弟,可以说,他算得上是把剧透给玩明白了,先后剧透了不少的电影桥段,以至于漫威后面像防贼一样防着人家荷兰弟,可大家知道吗?你永远想象不到荷兰弟的嘴巴到底有多能漏风?
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
故事要回到《侏罗纪世界2》的筹备期间,当时,荷兰弟也参与了面试,计划在剧中饰演一个角色,原本,这也没啥,这都是好莱坞的传统了,可是,当时的导演胡安根本不知道荷兰弟的“风光伟绩”,于是乎,人家便屁颠屁颠把侏罗纪世界2的资料拿过来给荷兰弟,虽然,后面没有让荷兰弟出演这部电影,但导演似乎忘了他的嘴巴是开过光的。
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
荷兰弟把剧情刻在了脑子
|
||||||
|
......</div>
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>第3份搜索结果 [源自google搜索] (爱戴名表被喷配不上赞达亚,荷兰弟曝近照气质大变,2):</summary>
|
||||||
|
<div class="search_result">https://www.sohu.com/a/580380519_120702487</div>
|
||||||
|
<div class="search_result">Title: 爱戴名表被喷配不上赞达亚,荷兰弟曝近照气质大变,26岁资产惊人_蜘蛛侠_手表_罗伯特·唐尼
|
||||||
|
|
||||||
|
URL Source: https://www.sohu.com/a/580380519_120702487
|
||||||
|
|
||||||
|
Markdown Content:
|
||||||
|
2022-08-27 19:00 来源: [BEGEEL宾爵表](https://www.sohu.com/a/580380519_120702487?spm=smpc.content-abroad.content.1.1739375950559fBhgNpP)
|
||||||
|
|
||||||
|
发布于:广东省
|
||||||
|
|
||||||
|
近日,大家熟悉的荷兰弟,也就演漫威超级英雄“蜘蛛侠”而走红的英国男星汤姆·赫兰德(Tom Holland),最近在没有任何预警的情况下宣布自己暂停使用社交媒体,原因网络暴力已经严重影响到他的心理健康了。虽然自出演蜘蛛侠以来,对荷兰弟的骂声就没停过,但不可否认他确实是一位才貌双全的好演员,同时也是一位拥有高雅品味的地道英伦绅士,从他近年名表收藏的趋势也能略知一二。
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
2016年,《美国队长3:内战》上映,汤姆·赫兰德扮演的“史上最嫩”蜘蛛侠也正式登场。这个美国普通学生,由于意外被一只受过放射性感染的蜘蛛咬到,并因此获得超能力,化身邻居英雄蜘蛛侠警恶惩奸。和蜘蛛侠彼得·帕克一样,当时年仅20岁的荷兰弟无论戏里戏外的穿搭都是少年感十足,走的阳光邻家大男孩路线,手上戴的最多的就是来自卡西欧的电子表,还有来自Nixon sentry的手表,千元级别甚至是百元级。
|
||||||
|
|
||||||
|
20岁的荷兰弟走的是邻家大男孩路线
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
随着荷兰弟主演的《蜘蛛侠:英雄归来》上演,第三代蜘蛛侠的话痨性格和年轻活力的形象瞬间圈粉无数。荷兰弟的知名度和演艺收入都大幅度增长,他的穿衣品味也渐渐从稚嫩少年风转变成轻熟绅士风。从简单的T恤短袖搭配牛仔裤,开始向更加丰富的造型发展,其中变化最明显的就是他手腕上的表。
|
||||||
|
|
||||||
|
荷兰弟的衣品日......</div>
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>第4份搜索结果 [源自google搜索] (荷兰弟居然要休息一年,因演戏演到精神分裂…):</summary>
|
||||||
|
<div class="search_result">https://www.sohu.com/a/683718058_544020</div>
|
||||||
|
<div class="search_result">Title: 荷兰弟居然要休息一年,因演戏演到精神分裂…_Holland_Tom_工作
|
||||||
|
|
||||||
|
URL Source: https://www.sohu.com/a/683718058_544020
|
||||||
|
|
||||||
|
Markdown Content:
|
||||||
|
荷兰弟居然要休息一年,因演戏演到精神分裂…\_Holland\_Tom\_工作
|
||||||
|
===============
|
||||||
|
|
||||||
|
* [](http://www.sohu.com/?spm=smpc.content-abroad.nav.1.1739375954055TcEvWsY)
|
||||||
|
* [新闻](http://news.sohu.com/?spm=smpc.content-abroad.nav.2.1739375954055TcEvWsY)
|
||||||
|
* [体育](http://sports.sohu.com/?spm=smpc.content-abroad.nav.3.1739375954055TcEvWsY)
|
||||||
|
* [汽车](http://auto.sohu.com/?spm=smpc.content-abroad.nav.4.1739375954055TcEvWsY)
|
||||||
|
* [房产](http://www.focus.cn/?spm=smpc.content-abroad.nav.5.1739375954055TcEvWsY)
|
||||||
|
* [旅游](http://travel.sohu.com/?spm=smpc.content-abroad.nav.6.1739375954055TcEvWsY)
|
||||||
|
* [教育](http://learning.sohu.com/?spm=smpc.content-abroad.nav.7.1739375954055TcEvWsY)
|
||||||
|
* [时尚](http://fashion.sohu.com/?spm=smpc.content-abroad.nav.8.1739375954055TcEvWsY)
|
||||||
|
* [科技](http://it.sohu.com/?spm=smpc.content-abroad.nav.9.1739375954055TcEvWsY)
|
||||||
|
* [财经](http://business.sohu.com/?spm=smpc.content-abroad.nav.10.17393759......</div>
|
||||||
|
</details>
|
||||||
|
|
||||||
"""
|
"""
|
||||||
def validate_path():
|
def validate_path():
|
||||||
import os, sys
|
import os, sys
|
||||||
@@ -43,10 +213,12 @@ def validate_path():
|
|||||||
|
|
||||||
validate_path() # validate path so you can run from base directory
|
validate_path() # validate path so you can run from base directory
|
||||||
from toolbox import markdown_convertion
|
from toolbox import markdown_convertion
|
||||||
from shared_utils.advanced_markdown_format import markdown_convertion_for_file
|
# from shared_utils.advanced_markdown_format import markdown_convertion_for_file
|
||||||
with open("gpt_log/default_user/shared/2024-04-22-01-27-43.zip.extract/translated_markdown.md", "r", encoding="utf-8") as f:
|
from shared_utils.advanced_markdown_format import close_up_code_segment_during_stream
|
||||||
md = f.read()
|
# with open("gpt_log/default_user/shared/2024-04-22-01-27-43.zip.extract/translated_markdown.md", "r", encoding="utf-8") as f:
|
||||||
html = markdown_convertion_for_file(md)
|
# md = f.read()
|
||||||
|
md = close_up_code_segment_during_stream(md)
|
||||||
|
html = markdown_convertion(md)
|
||||||
# print(html)
|
# print(html)
|
||||||
with open("test.html", "w", encoding="utf-8") as f:
|
with open("test.html", "w", encoding="utf-8") as f:
|
||||||
f.write(html)
|
f.write(html)
|
||||||
|
|||||||
65
tests/test_media.py
Normal file
65
tests/test_media.py
Normal file
@@ -0,0 +1,65 @@
|
|||||||
|
"""
|
||||||
|
对项目中的各个插件进行测试。运行方法:直接运行 python tests/test_plugins.py
|
||||||
|
"""
|
||||||
|
|
||||||
|
import init_test
|
||||||
|
import os, sys
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
from test_utils import plugin_test
|
||||||
|
|
||||||
|
plugin_test(plugin='crazy_functions.VideoResource_GPT->多媒体任务', main_input="我想找一首歌,里面有句歌词是“turn your face towards the sun”")
|
||||||
|
|
||||||
|
# plugin_test(plugin='crazy_functions.Internet_GPT->连接网络回答问题', main_input="谁是应急食品?")
|
||||||
|
|
||||||
|
# plugin_test(plugin='crazy_functions.函数动态生成->函数动态生成', main_input='交换图像的蓝色通道和红色通道', advanced_arg={"file_path_arg": "./build/ants.jpg"})
|
||||||
|
|
||||||
|
# plugin_test(plugin='crazy_functions.Latex_Function->Latex翻译中文并重新编译PDF', main_input="2307.07522")
|
||||||
|
|
||||||
|
# plugin_test(plugin='crazy_functions.PDF_Translate->批量翻译PDF文档', main_input='build/pdf/t1.pdf')
|
||||||
|
|
||||||
|
# plugin_test(
|
||||||
|
# plugin="crazy_functions.Latex_Function->Latex翻译中文并重新编译PDF",
|
||||||
|
# main_input="G:/SEAFILE_LOCAL/50503047/我的资料库/学位/paperlatex/aaai/Fu_8368_with_appendix",
|
||||||
|
# )
|
||||||
|
|
||||||
|
# plugin_test(plugin='crazy_functions.虚空终端->虚空终端', main_input='修改api-key为sk-jhoejriotherjep')
|
||||||
|
|
||||||
|
# plugin_test(plugin='crazy_functions.批量翻译PDF文档_NOUGAT->批量翻译PDF文档', main_input='crazy_functions/test_project/pdf_and_word/aaai.pdf')
|
||||||
|
|
||||||
|
# plugin_test(plugin='crazy_functions.虚空终端->虚空终端', main_input='调用插件,对C:/Users/fuqingxu/Desktop/旧文件/gpt/chatgpt_academic/crazy_functions/latex_fns中的python文件进行解析')
|
||||||
|
|
||||||
|
# plugin_test(plugin='crazy_functions.命令行助手->命令行助手', main_input='查看当前的docker容器列表')
|
||||||
|
|
||||||
|
# plugin_test(plugin='crazy_functions.SourceCode_Analyse->解析一个Python项目', main_input="crazy_functions/test_project/python/dqn")
|
||||||
|
|
||||||
|
# plugin_test(plugin='crazy_functions.SourceCode_Analyse->解析一个C项目', main_input="crazy_functions/test_project/cpp/cppipc")
|
||||||
|
|
||||||
|
# plugin_test(plugin='crazy_functions.Latex_Project_Polish->Latex英文润色', main_input="crazy_functions/test_project/latex/attention")
|
||||||
|
|
||||||
|
# plugin_test(plugin='crazy_functions.Markdown_Translate->Markdown中译英', main_input="README.md")
|
||||||
|
|
||||||
|
# plugin_test(plugin='crazy_functions.PDF_Translate->批量翻译PDF文档', main_input='crazy_functions/test_project/pdf_and_word/aaai.pdf')
|
||||||
|
|
||||||
|
# plugin_test(plugin='crazy_functions.谷歌检索小助手->谷歌检索小助手', main_input="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=auto+reinforcement+learning&btnG=")
|
||||||
|
|
||||||
|
# plugin_test(plugin='crazy_functions.总结word文档->总结word文档', main_input="crazy_functions/test_project/pdf_and_word")
|
||||||
|
|
||||||
|
# plugin_test(plugin='crazy_functions.下载arxiv论文翻译摘要->下载arxiv论文并翻译摘要', main_input="1812.10695")
|
||||||
|
|
||||||
|
# plugin_test(plugin='crazy_functions.解析JupyterNotebook->解析ipynb文件', main_input="crazy_functions/test_samples")
|
||||||
|
|
||||||
|
# plugin_test(plugin='crazy_functions.数学动画生成manim->动画生成', main_input="A ball split into 2, and then split into 4, and finally split into 8.")
|
||||||
|
|
||||||
|
# for lang in ["English", "French", "Japanese", "Korean", "Russian", "Italian", "German", "Portuguese", "Arabic"]:
|
||||||
|
# plugin_test(plugin='crazy_functions.Markdown_Translate->Markdown翻译指定语言', main_input="README.md", advanced_arg={"advanced_arg": lang})
|
||||||
|
|
||||||
|
# plugin_test(plugin='crazy_functions.知识库文件注入->知识库文件注入', main_input="./")
|
||||||
|
|
||||||
|
# plugin_test(plugin='crazy_functions.知识库文件注入->读取知识库作答', main_input="What is the installation method?")
|
||||||
|
|
||||||
|
# plugin_test(plugin='crazy_functions.知识库文件注入->读取知识库作答', main_input="远程云服务器部署?")
|
||||||
|
|
||||||
|
# plugin_test(plugin='crazy_functions.Latex_Function->Latex翻译中文并重新编译PDF', main_input="2210.03629")
|
||||||
|
|
||||||
@@ -48,8 +48,6 @@ if __name__ == "__main__":
|
|||||||
|
|
||||||
# plugin_test(plugin='crazy_functions.下载arxiv论文翻译摘要->下载arxiv论文并翻译摘要', main_input="1812.10695")
|
# plugin_test(plugin='crazy_functions.下载arxiv论文翻译摘要->下载arxiv论文并翻译摘要', main_input="1812.10695")
|
||||||
|
|
||||||
# plugin_test(plugin='crazy_functions.联网的ChatGPT->连接网络回答问题', main_input="谁是应急食品?")
|
|
||||||
|
|
||||||
# plugin_test(plugin='crazy_functions.解析JupyterNotebook->解析ipynb文件', main_input="crazy_functions/test_samples")
|
# plugin_test(plugin='crazy_functions.解析JupyterNotebook->解析ipynb文件', main_input="crazy_functions/test_samples")
|
||||||
|
|
||||||
# plugin_test(plugin='crazy_functions.数学动画生成manim->动画生成', main_input="A ball split into 2, and then split into 4, and finally split into 8.")
|
# plugin_test(plugin='crazy_functions.数学动画生成manim->动画生成', main_input="A ball split into 2, and then split into 4, and finally split into 8.")
|
||||||
|
|||||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user