Compare commits

..

6 Commits

Author SHA1 Message Date
binary-husky
2f343179a2 logging -> loguru: final stage 2024-09-15 15:51:51 +00:00
binary-husky
bbf9e9f868 logging -> loguru stage 4 2024-09-14 16:00:09 +00:00
binary-husky
aa1f967dd7 support o1-preview and o1-mini 2024-09-13 03:11:53 +00:00
binary-husky
0d082327c8 logging -> loguru: stage 3 2024-09-11 08:49:55 +00:00
binary-husky
80acd9c875 import loguru: stage 2 2024-09-11 08:18:01 +00:00
binary-husky
17cd4f8210 logging sys to loguru: stage 1 complete 2024-09-11 03:30:30 +00:00
31 changed files with 205 additions and 2443 deletions

View File

@@ -1,14 +1,14 @@
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages # https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
name: build-with-latex-arm name: build-with-all-capacity-beta
on: on:
push: push:
branches: branches:
- "master" - 'master'
env: env:
REGISTRY: ghcr.io REGISTRY: ghcr.io
IMAGE_NAME: ${{ github.repository }}_with_latex_arm IMAGE_NAME: ${{ github.repository }}_with_all_capacity_beta
jobs: jobs:
build-and-push-image: build-and-push-image:
@@ -18,17 +18,11 @@ jobs:
packages: write packages: write
steps: steps:
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Checkout repository - name: Checkout repository
uses: actions/checkout@v4 uses: actions/checkout@v3
- name: Log in to the Container registry - name: Log in to the Container registry
uses: docker/login-action@v3 uses: docker/login-action@v2
with: with:
registry: ${{ env.REGISTRY }} registry: ${{ env.REGISTRY }}
username: ${{ github.actor }} username: ${{ github.actor }}
@@ -41,11 +35,10 @@ jobs:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }} images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
- name: Build and push Docker image - name: Build and push Docker image
uses: docker/build-push-action@v6 uses: docker/build-push-action@v4
with: with:
context: . context: .
push: true push: true
platforms: linux/arm64 file: docs/GithubAction+AllCapacityBeta
file: docs/GithubAction+NoLocal+Latex+Arm
tags: ${{ steps.meta.outputs.tags }} tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }} labels: ${{ steps.meta.outputs.labels }}

View File

@@ -0,0 +1,44 @@
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
name: build-with-jittorllms
on:
push:
branches:
- 'master'
env:
REGISTRY: ghcr.io
IMAGE_NAME: ${{ github.repository }}_jittorllms
jobs:
build-and-push-image:
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
steps:
- name: Checkout repository
uses: actions/checkout@v3
- name: Log in to the Container registry
uses: docker/login-action@v2
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Extract metadata (tags, labels) for Docker
id: meta
uses: docker/metadata-action@v4
with:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
- name: Build and push Docker image
uses: docker/build-push-action@v4
with:
context: .
push: true
file: docs/GithubAction+JittorLLMs
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}

View File

@@ -1,6 +1,5 @@
> [!IMPORTANT] > [!IMPORTANT]
> 2024.10.10: 突发停电,紧急恢复了提供[whl包](https://drive.google.com/file/d/19U_hsLoMrjOlQSzYS3pzWX9fTzyusArP/view?usp=sharing)的文件服务器 > 2024.6.1: 版本3.80加入插件二级菜单功能详见wiki
> 2024.10.8: 版本3.90加入对llama-index的初步支持版本3.80加入插件二级菜单功能详见wiki
> 2024.5.1: 加入Doc2x翻译PDF论文的功能[查看详情](https://github.com/binary-husky/gpt_academic/wiki/Doc2x) > 2024.5.1: 加入Doc2x翻译PDF论文的功能[查看详情](https://github.com/binary-husky/gpt_academic/wiki/Doc2x)
> 2024.3.11: 全力支持Qwen、GLM、DeepseekCoder等中文大语言模型 SoVits语音克隆模块[查看详情](https://www.bilibili.com/video/BV1Rp421S7tF/) > 2024.3.11: 全力支持Qwen、GLM、DeepseekCoder等中文大语言模型 SoVits语音克隆模块[查看详情](https://www.bilibili.com/video/BV1Rp421S7tF/)
> 2024.1.17: 安装依赖时,请选择`requirements.txt`中**指定的版本**。 安装命令:`pip install -r requirements.txt`。本项目完全开源免费,您可通过订阅[在线服务](https://github.com/binary-husky/gpt_academic/wiki/online)的方式鼓励本项目的发展。 > 2024.1.17: 安装依赖时,请选择`requirements.txt`中**指定的版本**。 安装命令:`pip install -r requirements.txt`。本项目完全开源免费,您可通过订阅[在线服务](https://github.com/binary-husky/gpt_academic/wiki/online)的方式鼓励本项目的发展。

View File

@@ -57,9 +57,9 @@ EMBEDDING_MODEL = "text-embedding-3-small"
# "yi-34b-chat-0205","yi-34b-chat-200k","yi-large","yi-medium","yi-spark","yi-large-turbo","yi-large-preview", # "yi-34b-chat-0205","yi-34b-chat-200k","yi-large","yi-medium","yi-spark","yi-large-turbo","yi-large-preview",
# ] # ]
# --- --- --- --- # --- --- --- ---
# 此外您还可以在接入one-api/vllm/ollama/Openroute时, # 此外您还可以在接入one-api/vllm/ollama时
# 使用"one-api-*","vllm-*","ollama-*","openrouter-*"前缀直接使用非标准方式接入的模型,例如 # 使用"one-api-*","vllm-*","ollama-*"前缀直接使用非标准方式接入的模型,例如
# AVAIL_LLM_MODELS = ["one-api-claude-3-sonnet-20240229(max_token=100000)", "ollama-phi3(max_token=4096)","openrouter-openai/gpt-4o-mini","openrouter-openai/chatgpt-4o-latest"] # AVAIL_LLM_MODELS = ["one-api-claude-3-sonnet-20240229(max_token=100000)", "ollama-phi3(max_token=4096)"]
# --- --- --- --- # --- --- --- ---

View File

@@ -17,7 +17,7 @@ def get_core_functions():
text_show_english= text_show_english=
r"Below is a paragraph from an academic paper. Polish the writing to meet the academic style, " r"Below is a paragraph from an academic paper. Polish the writing to meet the academic style, "
r"improve the spelling, grammar, clarity, concision and overall readability. When necessary, rewrite the whole sentence. " r"improve the spelling, grammar, clarity, concision and overall readability. When necessary, rewrite the whole sentence. "
r"Firstly, you should provide the polished paragraph (in English). " r"Firstly, you should provide the polished paragraph. "
r"Secondly, you should list all your modification and explain the reasons to do so in markdown table.", r"Secondly, you should list all your modification and explain the reasons to do so in markdown table.",
text_show_chinese= text_show_chinese=
r"作为一名中文学术论文写作改进助理,你的任务是改进所提供文本的拼写、语法、清晰、简洁和整体可读性," r"作为一名中文学术论文写作改进助理,你的任务是改进所提供文本的拼写、语法、清晰、简洁和整体可读性,"

View File

@@ -6,6 +6,7 @@ from loguru import logger
def get_crazy_functions(): def get_crazy_functions():
from crazy_functions.读文章写摘要 import 读文章写摘要 from crazy_functions.读文章写摘要 import 读文章写摘要
from crazy_functions.生成函数注释 import 批量生成函数注释 from crazy_functions.生成函数注释 import 批量生成函数注释
from crazy_functions.Rag_Interface import Rag问答
from crazy_functions.SourceCode_Analyse import 解析项目本身 from crazy_functions.SourceCode_Analyse import 解析项目本身
from crazy_functions.SourceCode_Analyse import 解析一个Python项目 from crazy_functions.SourceCode_Analyse import 解析一个Python项目
from crazy_functions.SourceCode_Analyse import 解析一个Matlab项目 from crazy_functions.SourceCode_Analyse import 解析一个Matlab项目
@@ -51,6 +52,13 @@ def get_crazy_functions():
from crazy_functions.SourceCode_Comment import 注释Python项目 from crazy_functions.SourceCode_Comment import 注释Python项目
function_plugins = { function_plugins = {
"Rag智能召回": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"Info": "将问答数据记录到向量库中,作为长期参考。",
"Function": HotReload(Rag问答),
},
"虚空终端": { "虚空终端": {
"Group": "对话|编程|学术|智能体", "Group": "对话|编程|学术|智能体",
"Color": "stop", "Color": "stop",
@@ -699,31 +707,6 @@ def get_crazy_functions():
logger.error(trimmed_format_exc()) logger.error(trimmed_format_exc())
logger.error("Load function plugin failed") logger.error("Load function plugin failed")
try:
from crazy_functions.Rag_Interface import Rag问答
function_plugins.update(
{
"Rag智能召回": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"Info": "将问答数据记录到向量库中,作为长期参考。",
"Function": HotReload(Rag问答),
},
}
)
except:
logger.error(trimmed_format_exc())
logger.error("Load function plugin failed")
# try: # try:
# from crazy_functions.高级功能函数模板 import 测试图表渲染 # from crazy_functions.高级功能函数模板 import 测试图表渲染
# function_plugins.update({ # function_plugins.update({

View File

@@ -138,43 +138,25 @@ def arxiv_download(chatbot, history, txt, allow_cache=True):
cached_translation_pdf = check_cached_translation_pdf(arxiv_id) cached_translation_pdf = check_cached_translation_pdf(arxiv_id)
if cached_translation_pdf and allow_cache: return cached_translation_pdf, arxiv_id if cached_translation_pdf and allow_cache: return cached_translation_pdf, arxiv_id
extract_dst = pj(ARXIV_CACHE_DIR, arxiv_id, 'extract') url_tar = url_.replace('/abs/', '/e-print/')
translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'e-print') translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'e-print')
dst = pj(translation_dir, arxiv_id + '.tar') extract_dst = pj(ARXIV_CACHE_DIR, arxiv_id, 'extract')
os.makedirs(translation_dir, exist_ok=True) os.makedirs(translation_dir, exist_ok=True)
# <-------------- download arxiv source file -------------> # <-------------- download arxiv source file ------------->
dst = pj(translation_dir, arxiv_id + '.tar')
def fix_url_and_download(): if os.path.exists(dst):
# for url_tar in [url_.replace('/abs/', '/e-print/'), url_.replace('/abs/', '/src/')]: yield from update_ui_lastest_msg("调用缓存", chatbot=chatbot, history=history) # 刷新界面
for url_tar in [url_.replace('/abs/', '/src/'), url_.replace('/abs/', '/e-print/')]:
proxies = get_conf('proxies')
r = requests.get(url_tar, proxies=proxies)
if r.status_code == 200:
with open(dst, 'wb+') as f:
f.write(r.content)
return True
return False
if os.path.exists(dst) and allow_cache:
yield from update_ui_lastest_msg(f"调用缓存 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
success = True
else: else:
yield from update_ui_lastest_msg(f"开始下载 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面 yield from update_ui_lastest_msg("开始下载", chatbot=chatbot, history=history) # 刷新界面
success = fix_url_and_download() proxies = get_conf('proxies')
yield from update_ui_lastest_msg(f"下载完成 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面 r = requests.get(url_tar, proxies=proxies)
with open(dst, 'wb+') as f:
f.write(r.content)
if not success:
yield from update_ui_lastest_msg(f"下载失败 {arxiv_id}", chatbot=chatbot, history=history)
raise tarfile.ReadError(f"论文下载失败 {arxiv_id}")
# <-------------- extract file -------------> # <-------------- extract file ------------->
yield from update_ui_lastest_msg("下载完成", chatbot=chatbot, history=history) # 刷新界面
from toolbox import extract_archive from toolbox import extract_archive
try: extract_archive(file_path=dst, dest_dir=extract_dst)
extract_archive(file_path=dst, dest_dir=extract_dst)
except tarfile.ReadError:
os.remove(dst)
raise tarfile.ReadError(f"论文下载失败")
return extract_dst, arxiv_id return extract_dst, arxiv_id

View File

@@ -2,7 +2,20 @@ from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_
from crazy_functions.crazy_utils import input_clipping from crazy_functions.crazy_utils import input_clipping
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
VECTOR_STORE_TYPE = "Milvus"
if VECTOR_STORE_TYPE == "Milvus":
try:
from crazy_functions.rag_fns.milvus_worker import MilvusRagWorker as LlamaIndexRagWorker
except:
VECTOR_STORE_TYPE = "Simple"
if VECTOR_STORE_TYPE == "Simple":
from crazy_functions.rag_fns.llama_index_worker import LlamaIndexRagWorker
RAG_WORKER_REGISTER = {} RAG_WORKER_REGISTER = {}
MAX_HISTORY_ROUND = 5 MAX_HISTORY_ROUND = 5
MAX_CONTEXT_TOKEN_LIMIT = 4096 MAX_CONTEXT_TOKEN_LIMIT = 4096
REMEMBER_PREVIEW = 1000 REMEMBER_PREVIEW = 1000
@@ -10,16 +23,6 @@ REMEMBER_PREVIEW = 1000
@CatchException @CatchException
def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request): def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
# import vector store lib
VECTOR_STORE_TYPE = "Milvus"
if VECTOR_STORE_TYPE == "Milvus":
try:
from crazy_functions.rag_fns.milvus_worker import MilvusRagWorker as LlamaIndexRagWorker
except:
VECTOR_STORE_TYPE = "Simple"
if VECTOR_STORE_TYPE == "Simple":
from crazy_functions.rag_fns.llama_index_worker import LlamaIndexRagWorker
# 1. we retrieve rag worker from global context # 1. we retrieve rag worker from global context
user_name = chatbot.get_user() user_name = chatbot.get_user()
checkpoint_dir = get_log_folder(user_name, plugin_name='experimental_rag') checkpoint_dir = get_log_folder(user_name, plugin_name='experimental_rag')

View File

@@ -1,13 +1,7 @@
import pickle, os, random
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_lastest_msg from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_lastest_msg
from crazy_functions.crazy_utils import input_clipping from crazy_functions.crazy_utils import input_clipping
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from request_llms.bridge_all import predict_no_ui_long_connection import pickle, os
from crazy_functions.json_fns.select_tool import structure_output, select_tool
from pydantic import BaseModel, Field
from loguru import logger
from typing import List
SOCIAL_NETWOK_WORKER_REGISTER = {} SOCIAL_NETWOK_WORKER_REGISTER = {}
@@ -15,7 +9,7 @@ class SocialNetwork():
def __init__(self): def __init__(self):
self.people = [] self.people = []
class SaveAndLoad(): class SocialNetworkWorker():
def __init__(self, user_name, llm_kwargs, auto_load_checkpoint=True, checkpoint_dir=None) -> None: def __init__(self, user_name, llm_kwargs, auto_load_checkpoint=True, checkpoint_dir=None) -> None:
self.user_name = user_name self.user_name = user_name
self.checkpoint_dir = checkpoint_dir self.checkpoint_dir = checkpoint_dir
@@ -47,105 +41,8 @@ class SaveAndLoad():
return SocialNetwork() return SocialNetwork()
class Friend(BaseModel):
friend_name: str = Field(description="name of a friend")
friend_description: str = Field(description="description of a friend (everything about this friend)")
friend_relationship: str = Field(description="The relationship with a friend (e.g. friend, family, colleague)")
class FriendList(BaseModel):
friends_list: List[Friend] = Field(description="The list of friends")
class SocialNetworkWorker(SaveAndLoad):
def ai_socail_advice(self, prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, run_gpt_fn, intention_type):
pass
def ai_remove_friend(self, prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, run_gpt_fn, intention_type):
pass
def ai_list_friends(self, prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, run_gpt_fn, intention_type):
pass
def ai_add_multi_friends(self, prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, run_gpt_fn, intention_type):
friend, err_msg = structure_output(
txt=prompt,
prompt="根据提示, 解析多个联系人的身份信息\n\n",
err_msg=f"不能理解该联系人",
run_gpt_fn=run_gpt_fn,
pydantic_cls=FriendList
)
if friend.friends_list:
for f in friend.friends_list:
self.add_friend(f)
msg = f"成功添加{len(friend.friends_list)}个联系人: {str(friend.friends_list)}"
yield from update_ui_lastest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=0)
def run(self, txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
prompt = txt
run_gpt_fn = lambda inputs, sys_prompt: predict_no_ui_long_connection(inputs=inputs, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=[])
self.tools_to_select = {
"SocialAdvice":{
"explain_to_llm": "如果用户希望获取社交指导调用SocialAdvice生成一些社交建议",
"callback": self.ai_socail_advice,
},
"AddFriends":{
"explain_to_llm": "如果用户给出了联系人调用AddMultiFriends把联系人添加到数据库",
"callback": self.ai_add_multi_friends,
},
"RemoveFriend":{
"explain_to_llm": "如果用户希望移除某个联系人调用RemoveFriend",
"callback": self.ai_remove_friend,
},
"ListFriends":{
"explain_to_llm": "如果用户列举联系人调用ListFriends",
"callback": self.ai_list_friends,
}
}
try:
Explaination = '\n'.join([f'{k}: {v["explain_to_llm"]}' for k, v in self.tools_to_select.items()])
class UserSociaIntention(BaseModel):
intention_type: str = Field(
description=
f"The type of user intention. You must choose from {self.tools_to_select.keys()}.\n\n"
f"Explaination:\n{Explaination}",
default="SocialAdvice"
)
pydantic_cls_instance, err_msg = select_tool(
prompt=txt,
run_gpt_fn=run_gpt_fn,
pydantic_cls=UserSociaIntention
)
except Exception as e:
yield from update_ui_lastest_msg(
lastmsg=f"无法理解用户意图 {err_msg}",
chatbot=chatbot,
history=history,
delay=0
)
return
intention_type = pydantic_cls_instance.intention_type
intention_callback = self.tools_to_select[pydantic_cls_instance.intention_type]['callback']
yield from intention_callback(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, run_gpt_fn, intention_type)
def add_friend(self, friend):
# check whether the friend is already in the social network
for f in self.social_network.people:
if f.friend_name == friend.friend_name:
f.friend_description = friend.friend_description
f.friend_relationship = friend.friend_relationship
logger.info(f"Repeated friend, update info: {friend}")
return
logger.info(f"Add a new friend: {friend}")
self.social_network.people.append(friend)
return
@CatchException @CatchException
def I人助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request): def I人助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request, num_day=5):
# 1. we retrieve worker from global context # 1. we retrieve worker from global context
user_name = chatbot.get_user() user_name = chatbot.get_user()
@@ -161,7 +58,8 @@ def I人助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt,
) )
# 2. save # 2. save
yield from social_network_worker.run(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request) social_network_worker.social_network.people.append("张三")
social_network_worker.save_to_checkpoint(checkpoint_dir) social_network_worker.save_to_checkpoint(checkpoint_dir)
chatbot.append(["good", "work"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

View File

@@ -1,26 +0,0 @@
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
def structure_output(txt, prompt, err_msg, run_gpt_fn, pydantic_cls):
gpt_json_io = GptJsonIO(pydantic_cls)
analyze_res = run_gpt_fn(
txt,
sys_prompt=prompt + gpt_json_io.format_instructions
)
try:
friend = gpt_json_io.generate_output_auto_repair(analyze_res, run_gpt_fn)
except JsonStringError as e:
return None, err_msg
err_msg = ""
return friend, err_msg
def select_tool(prompt, run_gpt_fn, pydantic_cls):
pydantic_cls_instance, err_msg = structure_output(
txt=prompt,
prompt="根据提示, 分析应该调用哪个工具函数\n\n",
err_msg=f"不能理解该联系人",
run_gpt_fn=run_gpt_fn,
pydantic_cls=pydantic_cls
)
return pydantic_cls_instance, err_msg

View File

@@ -644,213 +644,6 @@ def run_in_subprocess(func):
def _merge_pdfs(pdf1_path, pdf2_path, output_path): def _merge_pdfs(pdf1_path, pdf2_path, output_path):
try:
logger.info("Merging PDFs using _merge_pdfs_ng")
_merge_pdfs_ng(pdf1_path, pdf2_path, output_path)
except:
logger.info("Merging PDFs using _merge_pdfs_legacy")
_merge_pdfs_legacy(pdf1_path, pdf2_path, output_path)
def _merge_pdfs_ng(pdf1_path, pdf2_path, output_path):
import PyPDF2 # PyPDF2这个库有严重的内存泄露问题把它放到子进程中运行从而方便内存的释放
from PyPDF2.generic import NameObject, TextStringObject, ArrayObject, FloatObject, NumberObject
Percent = 1
# raise RuntimeError('PyPDF2 has a serious memory leak problem, please use other tools to merge PDF files.')
# Open the first PDF file
with open(pdf1_path, "rb") as pdf1_file:
pdf1_reader = PyPDF2.PdfFileReader(pdf1_file)
# Open the second PDF file
with open(pdf2_path, "rb") as pdf2_file:
pdf2_reader = PyPDF2.PdfFileReader(pdf2_file)
# Create a new PDF file to store the merged pages
output_writer = PyPDF2.PdfFileWriter()
# Determine the number of pages in each PDF file
num_pages = max(pdf1_reader.numPages, pdf2_reader.numPages)
# Merge the pages from the two PDF files
for page_num in range(num_pages):
# Add the page from the first PDF file
if page_num < pdf1_reader.numPages:
page1 = pdf1_reader.getPage(page_num)
else:
page1 = PyPDF2.PageObject.createBlankPage(pdf1_reader)
# Add the page from the second PDF file
if page_num < pdf2_reader.numPages:
page2 = pdf2_reader.getPage(page_num)
else:
page2 = PyPDF2.PageObject.createBlankPage(pdf1_reader)
# Create a new empty page with double width
new_page = PyPDF2.PageObject.createBlankPage(
width=int(
int(page1.mediaBox.getWidth())
+ int(page2.mediaBox.getWidth()) * Percent
),
height=max(page1.mediaBox.getHeight(), page2.mediaBox.getHeight()),
)
new_page.mergeTranslatedPage(page1, 0, 0)
new_page.mergeTranslatedPage(
page2,
int(
int(page1.mediaBox.getWidth())
- int(page2.mediaBox.getWidth()) * (1 - Percent)
),
0,
)
if "/Annots" in new_page:
annotations = new_page["/Annots"]
for i, annot in enumerate(annotations):
annot_obj = annot.get_object()
# 检查注释类型是否是链接(/Link
if annot_obj.get("/Subtype") == "/Link":
# 检查是否为内部链接跳转(/GoTo或外部URI链接/URI
action = annot_obj.get("/A")
if action:
if "/S" in action and action["/S"] == "/GoTo":
# 内部链接:跳转到文档中的某个页面
dest = action.get("/D") # 目标页或目标位置
# if dest and annot.idnum in page2_annot_id:
if dest in pdf2_reader.named_destinations:
# 获取原始文件中跳转信息,包括跳转页面
destination = pdf2_reader.named_destinations[
dest
]
page_number = (
pdf2_reader.get_destination_page_number(
destination
)
)
# 更新跳转信息,跳转到对应的页面和,指定坐标 (100, 150),缩放比例为 100%
# “/D”:[10,'/XYZ',100,100,0]
if destination.dest_array[1] == "/XYZ":
annot_obj["/A"].update(
{
NameObject("/D"): ArrayObject(
[
NumberObject(page_number),
destination.dest_array[1],
FloatObject(
destination.dest_array[
2
]
+ int(
page1.mediaBox.getWidth()
)
),
destination.dest_array[3],
destination.dest_array[4],
]
) # 确保键和值是 PdfObject
}
)
else:
annot_obj["/A"].update(
{
NameObject("/D"): ArrayObject(
[
NumberObject(page_number),
destination.dest_array[1],
]
) # 确保键和值是 PdfObject
}
)
rect = annot_obj.get("/Rect")
# 更新点击坐标
rect = ArrayObject(
[
FloatObject(
rect[0]
+ int(page1.mediaBox.getWidth())
),
rect[1],
FloatObject(
rect[2]
+ int(page1.mediaBox.getWidth())
),
rect[3],
]
)
annot_obj.update(
{
NameObject(
"/Rect"
): rect # 确保键和值是 PdfObject
}
)
# if dest and annot.idnum in page1_annot_id:
if dest in pdf1_reader.named_destinations:
# 获取原始文件中跳转信息,包括跳转页面
destination = pdf1_reader.named_destinations[
dest
]
page_number = (
pdf1_reader.get_destination_page_number(
destination
)
)
# 更新跳转信息,跳转到对应的页面和,指定坐标 (100, 150),缩放比例为 100%
# “/D”:[10,'/XYZ',100,100,0]
if destination.dest_array[1] == "/XYZ":
annot_obj["/A"].update(
{
NameObject("/D"): ArrayObject(
[
NumberObject(page_number),
destination.dest_array[1],
FloatObject(
destination.dest_array[
2
]
),
destination.dest_array[3],
destination.dest_array[4],
]
) # 确保键和值是 PdfObject
}
)
else:
annot_obj["/A"].update(
{
NameObject("/D"): ArrayObject(
[
NumberObject(page_number),
destination.dest_array[1],
]
) # 确保键和值是 PdfObject
}
)
rect = annot_obj.get("/Rect")
rect = ArrayObject(
[
FloatObject(rect[0]),
rect[1],
FloatObject(rect[2]),
rect[3],
]
)
annot_obj.update(
{
NameObject(
"/Rect"
): rect # 确保键和值是 PdfObject
}
)
elif "/S" in action and action["/S"] == "/URI":
# 外部链接跳转到某个URI
uri = action.get("/URI")
output_writer.addPage(new_page)
# Save the merged PDF file
with open(output_path, "wb") as output_file:
output_writer.write(output_file)
def _merge_pdfs_legacy(pdf1_path, pdf2_path, output_path):
import PyPDF2 # PyPDF2这个库有严重的内存泄露问题把它放到子进程中运行从而方便内存的释放 import PyPDF2 # PyPDF2这个库有严重的内存泄露问题把它放到子进程中运行从而方便内存的释放
Percent = 0.95 Percent = 0.95

View File

@@ -0,0 +1 @@
# 此Dockerfile不再维护请前往docs/GithubAction+JittorLLMs

View File

@@ -0,0 +1,57 @@
# docker build -t gpt-academic-all-capacity -f docs/GithubAction+AllCapacity --network=host --build-arg http_proxy=http://localhost:10881 --build-arg https_proxy=http://localhost:10881 .
# docker build -t gpt-academic-all-capacity -f docs/GithubAction+AllCapacityBeta --network=host .
# docker run -it --net=host gpt-academic-all-capacity bash
# 从NVIDIA源从而支持显卡检查宿主的nvidia-smi中的cuda版本必须>=11.3
FROM fuqingxu/11.3.1-runtime-ubuntu20.04-with-texlive:latest
# edge-tts需要的依赖某些pip包所需的依赖
RUN apt update && apt install ffmpeg build-essential -y
# use python3 as the system default python
WORKDIR /gpt
RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.8
# # 非必要步骤更换pip源 (以下三行,可以删除)
# RUN echo '[global]' > /etc/pip.conf && \
# echo 'index-url = https://mirrors.aliyun.com/pypi/simple/' >> /etc/pip.conf && \
# echo 'trusted-host = mirrors.aliyun.com' >> /etc/pip.conf
# 下载pytorch
RUN python3 -m pip install torch torchvision --extra-index-url https://download.pytorch.org/whl/cu113
# 准备pip依赖
RUN python3 -m pip install openai numpy arxiv rich
RUN python3 -m pip install colorama Markdown pygments pymupdf
RUN python3 -m pip install python-docx moviepy pdfminer
RUN python3 -m pip install zh_langchain==0.2.1 pypinyin
RUN python3 -m pip install rarfile py7zr
RUN python3 -m pip install aliyun-python-sdk-core==2.13.3 pyOpenSSL webrtcvad scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git
# 下载分支
WORKDIR /gpt
RUN git clone --depth=1 https://github.com/binary-husky/gpt_academic.git
WORKDIR /gpt/gpt_academic
RUN git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llms/moss
RUN python3 -m pip install -r requirements.txt
RUN python3 -m pip install -r request_llms/requirements_moss.txt
RUN python3 -m pip install -r request_llms/requirements_qwen.txt
RUN python3 -m pip install -r request_llms/requirements_chatglm.txt
RUN python3 -m pip install -r request_llms/requirements_newbing.txt
RUN python3 -m pip install nougat-ocr
# 预热Tiktoken模块
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
# 安装知识库插件的额外依赖
RUN apt-get update && apt-get install libgl1 -y
RUN pip3 install transformers protobuf langchain sentence-transformers faiss-cpu nltk beautifulsoup4 bitsandbytes tabulate icetk --upgrade
RUN pip3 install unstructured[all-docs] --upgrade
RUN python3 -c 'from check_proxy import warm_up_vectordb; warm_up_vectordb()'
RUN rm -rf /usr/local/lib/python3.8/dist-packages/tests
# COPY .cache /root/.cache
# COPY config_private.py config_private.py
# 启动
CMD ["python3", "-u", "main.py"]

View File

@@ -1,25 +0,0 @@
# 此Dockerfile适用于“无本地模型”的环境构建如果需要使用chatglm等本地模型请参考 docs/Dockerfile+ChatGLM
# - 1 修改 `config.py`
# - 2 构建 docker build -t gpt-academic-nolocal-latex -f docs/GithubAction+NoLocal+Latex .
# - 3 运行 docker run -v /home/fuqingxu/arxiv_cache:/root/arxiv_cache --rm -it --net=host gpt-academic-nolocal-latex
FROM menghuan1918/ubuntu_uv_ctex:latest
ENV DEBIAN_FRONTEND=noninteractive
SHELL ["/bin/bash", "-c"]
WORKDIR /gpt
COPY . .
RUN /root/.cargo/bin/uv venv --seed \
&& source .venv/bin/activate \
&& /root/.cargo/bin/uv pip install openai numpy arxiv rich colorama Markdown pygments pymupdf python-docx pdfminer \
&& /root/.cargo/bin/uv pip install -r requirements.txt \
&& /root/.cargo/bin/uv clean
# 对齐python3
RUN rm -f /usr/bin/python3 && ln -s /gpt/.venv/bin/python /usr/bin/python3
RUN rm -f /usr/bin/python && ln -s /gpt/.venv/bin/python /usr/bin/python
# 可选步骤,用于预热模块
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
# 启动
CMD ["python3", "-u", "main.py"]

View File

@@ -4,7 +4,7 @@ We currently support fastapi in order to solve sub-path deploy issue.
1. change CUSTOM_PATH setting in `config.py` 1. change CUSTOM_PATH setting in `config.py`
```sh ``` sh
nano config.py nano config.py
``` ```
@@ -35,8 +35,9 @@ if __name__ == "__main__":
main() main()
``` ```
3. Go! 3. Go!
```sh ``` sh
python main.py python main.py
``` ```

File diff suppressed because it is too large Load Diff

View File

@@ -108,22 +108,5 @@
"解析PDF_简单拆解": "ParsePDF_simpleDecomposition", "解析PDF_简单拆解": "ParsePDF_simpleDecomposition",
"解析PDF_DOC2X_单文件": "ParsePDF_DOC2X_singleFile", "解析PDF_DOC2X_单文件": "ParsePDF_DOC2X_singleFile",
"注释Python项目": "CommentPythonProject", "注释Python项目": "CommentPythonProject",
"注释源代码": "CommentSourceCode", "注释源代码": "CommentSourceCode"
"log亮黄": "log_yellow",
"log亮绿": "log_green",
"log亮红": "log_red",
"log亮紫": "log_purple",
"log亮蓝": "log_blue",
"Rag问答": "RagQA",
"sprint红": "sprint_red",
"sprint绿": "sprint_green",
"sprint黄": "sprint_yellow",
"sprint蓝": "sprint_blue",
"sprint紫": "sprint_purple",
"sprint靛": "sprint_indigo",
"sprint亮红": "sprint_bright_red",
"sprint亮绿": "sprint_bright_green",
"sprint亮黄": "sprint_bright_yellow",
"sprint亮蓝": "sprint_bright_blue",
"sprint亮紫": "sprint_bright_purple"
} }

View File

@@ -256,8 +256,6 @@ model_info = {
"max_token": 128000, "max_token": 128000,
"tokenizer": tokenizer_gpt4, "tokenizer": tokenizer_gpt4,
"token_cnt": get_token_num_gpt4, "token_cnt": get_token_num_gpt4,
"openai_disable_system_prompt": True,
"openai_disable_stream": True,
}, },
"o1-mini": { "o1-mini": {
"fn_with_ui": chatgpt_ui, "fn_with_ui": chatgpt_ui,
@@ -266,8 +264,6 @@ model_info = {
"max_token": 128000, "max_token": 128000,
"tokenizer": tokenizer_gpt4, "tokenizer": tokenizer_gpt4,
"token_cnt": get_token_num_gpt4, "token_cnt": get_token_num_gpt4,
"openai_disable_system_prompt": True,
"openai_disable_stream": True,
}, },
"gpt-4-turbo": { "gpt-4-turbo": {
@@ -1120,24 +1116,6 @@ if len(AZURE_CFG_ARRAY) > 0:
if azure_model_name not in AVAIL_LLM_MODELS: if azure_model_name not in AVAIL_LLM_MODELS:
AVAIL_LLM_MODELS += [azure_model_name] AVAIL_LLM_MODELS += [azure_model_name]
# -=-=-=-=-=-=- Openrouter模型对齐支持 -=-=-=-=-=-=-
# 为了更灵活地接入Openrouter路由设计了此接口
for model in [m for m in AVAIL_LLM_MODELS if m.startswith("openrouter-")]:
from request_llms.bridge_openrouter import predict_no_ui_long_connection as openrouter_noui
from request_llms.bridge_openrouter import predict as openrouter_ui
model_info.update({
model: {
"fn_with_ui": openrouter_ui,
"fn_without_ui": openrouter_noui,
# 以下参数参考gpt-4o-mini的配置, 请根据实际情况修改
"endpoint": openai_endpoint,
"has_multimodal_capacity": True,
"max_token": 128000,
"tokenizer": tokenizer_gpt4,
"token_cnt": get_token_num_gpt4,
},
})
# -=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=-=-= # -=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=-=-=
# -=-=-=-=-=-=-=-=-=- ☝️ 以上是模型路由 -=-=-=-=-=-=-=-=-= # -=-=-=-=-=-=-=-=-=- ☝️ 以上是模型路由 -=-=-=-=-=-=-=-=-=
@@ -1283,5 +1261,5 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot,
if additional_fn: # 根据基础功能区 ModelOverride 参数调整模型类型 if additional_fn: # 根据基础功能区 ModelOverride 参数调整模型类型
llm_kwargs, additional_fn, method = execute_model_override(llm_kwargs, additional_fn, method) llm_kwargs, additional_fn, method = execute_model_override(llm_kwargs, additional_fn, method)
# 更新一下llm_kwargs的参数否则会出现参数不匹配的问题
yield from method(inputs, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, stream, additional_fn) yield from method(inputs, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, stream, additional_fn)

View File

@@ -134,33 +134,22 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
observe_window = None observe_window = None
用于负责跨越线程传递已经输出的部分大部分时候仅仅为了fancy的视觉效果留空即可。observe_window[0]观测窗。observe_window[1]:看门狗 用于负责跨越线程传递已经输出的部分大部分时候仅仅为了fancy的视觉效果留空即可。observe_window[0]观测窗。observe_window[1]:看门狗
""" """
from request_llms.bridge_all import model_info
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可 watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
if model_info[llm_kwargs['llm_model']].get('openai_disable_stream', False): stream = False
else: stream = True
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=stream)
retry = 0 retry = 0
while True: while True:
try: try:
# make a POST request to the API endpoint, stream=False # make a POST request to the API endpoint, stream=False
from .bridge_all import model_info
endpoint = verify_endpoint(model_info[llm_kwargs['llm_model']]['endpoint']) endpoint = verify_endpoint(model_info[llm_kwargs['llm_model']]['endpoint'])
response = requests.post(endpoint, headers=headers, proxies=proxies, response = requests.post(endpoint, headers=headers, proxies=proxies,
json=payload, stream=stream, timeout=TIMEOUT_SECONDS); break json=payload, stream=True, timeout=TIMEOUT_SECONDS); break
except requests.exceptions.ReadTimeout as e: except requests.exceptions.ReadTimeout as e:
retry += 1 retry += 1
traceback.print_exc() traceback.print_exc()
if retry > MAX_RETRY: raise TimeoutError if retry > MAX_RETRY: raise TimeoutError
if MAX_RETRY!=0: logger.error(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……') if MAX_RETRY!=0: logger.error(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
if not stream:
# 该分支仅适用于不支持stream的o1模型其他情形一律不适用
chunkjson = json.loads(response.content.decode())
gpt_replying_buffer = chunkjson['choices'][0]["message"]["content"]
return gpt_replying_buffer
stream_response = response.iter_lines() stream_response = response.iter_lines()
result = '' result = ''
json_data = None json_data = None
@@ -192,7 +181,7 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
if (not has_content) and (not has_role): continue # raise RuntimeError("发现不标准的第三方接口:"+delta) if (not has_content) and (not has_role): continue # raise RuntimeError("发现不标准的第三方接口:"+delta)
if has_content: # has_role = True/False if has_content: # has_role = True/False
result += delta["content"] result += delta["content"]
if not console_slience: print(delta["content"], end='') if not console_slience: logger.info(delta["content"], end='')
if observe_window is not None: if observe_window is not None:
# 观测窗,把已经获取的数据显示出去 # 观测窗,把已经获取的数据显示出去
if len(observe_window) >= 1: if len(observe_window) >= 1:
@@ -202,13 +191,10 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
if (time.time()-observe_window[1]) > watch_dog_patience: if (time.time()-observe_window[1]) > watch_dog_patience:
raise RuntimeError("用户取消了程序。") raise RuntimeError("用户取消了程序。")
else: raise RuntimeError("意外Json结构"+delta) else: raise RuntimeError("意外Json结构"+delta)
if json_data and json_data['finish_reason'] == 'content_filter':
finish_reason = json_data.get('finish_reason', None) if json_data else None raise RuntimeError("由于提问含不合规内容被Azure过滤。")
if finish_reason == 'content_filter': if json_data and json_data['finish_reason'] == 'length':
raise RuntimeError("由于提问含不合规内容被过滤。")
if finish_reason == 'length':
raise ConnectionAbortedError("正常结束但显示Token不足导致输出不完整请削减单次输入的文本量。") raise ConnectionAbortedError("正常结束但显示Token不足导致输出不完整请削减单次输入的文本量。")
return result return result
@@ -223,7 +209,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
chatbot 为WebUI中显示的对话列表修改它然后yeild出去可以直接修改对话界面内容 chatbot 为WebUI中显示的对话列表修改它然后yeild出去可以直接修改对话界面内容
additional_fn代表点击的哪个按钮按钮见functional.py additional_fn代表点击的哪个按钮按钮见functional.py
""" """
from request_llms.bridge_all import model_info from .bridge_all import model_info
if is_any_api_key(inputs): if is_any_api_key(inputs):
chatbot._cookies['api_key'] = inputs chatbot._cookies['api_key'] = inputs
chatbot.append(("输入已识别为openai的api_key", what_keys(inputs))) chatbot.append(("输入已识别为openai的api_key", what_keys(inputs)))
@@ -252,10 +238,6 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
chatbot.append((_inputs, "")) chatbot.append((_inputs, ""))
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面 yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
# 禁用stream的特殊模型处理
if model_info[llm_kwargs['llm_model']].get('openai_disable_stream', False): stream = False
else: stream = True
# check mis-behavior # check mis-behavior
if is_the_upload_folder(user_input): if is_the_upload_folder(user_input):
chatbot[-1] = (inputs, f"[Local Message] 检测到操作错误!当您上传文档之后,需点击“**函数插件区**”按钮进行处理,请勿点击“提交”按钮或者“基础功能区”按钮。") chatbot[-1] = (inputs, f"[Local Message] 检测到操作错误!当您上传文档之后,需点击“**函数插件区**”按钮进行处理,请勿点击“提交”按钮或者“基础功能区”按钮。")
@@ -289,7 +271,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
try: try:
# make a POST request to the API endpoint, stream=True # make a POST request to the API endpoint, stream=True
response = requests.post(endpoint, headers=headers, proxies=proxies, response = requests.post(endpoint, headers=headers, proxies=proxies,
json=payload, stream=stream, timeout=TIMEOUT_SECONDS);break json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
except: except:
retry += 1 retry += 1
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg)) chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
@@ -297,15 +279,10 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面 yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
if retry > MAX_RETRY: raise TimeoutError if retry > MAX_RETRY: raise TimeoutError
gpt_replying_buffer = ""
if not stream: is_head_of_the_stream = True
# 该分支仅适用于不支持stream的o1模型其他情形一律不适用
yield from handle_o1_model_special(response, inputs, llm_kwargs, chatbot, history)
return
if stream: if stream:
gpt_replying_buffer = ""
is_head_of_the_stream = True
stream_response = response.iter_lines() stream_response = response.iter_lines()
while True: while True:
try: try:
@@ -366,24 +343,12 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
chunk_decoded = chunk.decode() chunk_decoded = chunk.decode()
error_msg = chunk_decoded error_msg = chunk_decoded
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg) chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析异常" + error_msg) # 刷新界面 yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
logger.error(error_msg) logger.error(error_msg)
return return
return # return from stream-branch
def handle_o1_model_special(response, inputs, llm_kwargs, chatbot, history):
try:
chunkjson = json.loads(response.content.decode())
gpt_replying_buffer = chunkjson['choices'][0]["message"]["content"]
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
history[-1] = gpt_replying_buffer
chatbot[-1] = (history[-2], history[-1])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
except Exception as e:
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析异常" + response.text) # 刷新界面
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg): def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):
from request_llms.bridge_all import model_info from .bridge_all import model_info
openai_website = ' 请登录OpenAI查看详情 https://platform.openai.com/signup' openai_website = ' 请登录OpenAI查看详情 https://platform.openai.com/signup'
if "reduce the length" in error_msg: if "reduce the length" in error_msg:
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入history[-2] 是本次输入, history[-1] 是本次输出 if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入history[-2] 是本次输入, history[-1] 是本次输出
@@ -416,8 +381,6 @@ def generate_payload(inputs:str, llm_kwargs:dict, history:list, system_prompt:st
""" """
整合所有信息选择LLM模型生成http请求为发送请求做准备 整合所有信息选择LLM模型生成http请求为发送请求做准备
""" """
from request_llms.bridge_all import model_info
if not is_any_api_key(llm_kwargs['api_key']): if not is_any_api_key(llm_kwargs['api_key']):
raise AssertionError("你提供了错误的API_KEY。\n\n1. 临时解决方案直接在输入区键入api_key然后回车提交。\n\n2. 长效解决方案在config.py中配置。") raise AssertionError("你提供了错误的API_KEY。\n\n1. 临时解决方案直接在输入区键入api_key然后回车提交。\n\n2. 长效解决方案在config.py中配置。")
@@ -446,16 +409,10 @@ def generate_payload(inputs:str, llm_kwargs:dict, history:list, system_prompt:st
else: else:
enable_multimodal_capacity = False enable_multimodal_capacity = False
conversation_cnt = len(history) // 2
openai_disable_system_prompt = model_info[llm_kwargs['llm_model']].get('openai_disable_system_prompt', False)
if openai_disable_system_prompt:
messages = [{"role": "user", "content": system_prompt}]
else:
messages = [{"role": "system", "content": system_prompt}]
if not enable_multimodal_capacity: if not enable_multimodal_capacity:
# 不使用多模态能力 # 不使用多模态能力
conversation_cnt = len(history) // 2
messages = [{"role": "system", "content": system_prompt}]
if conversation_cnt: if conversation_cnt:
for index in range(0, 2*conversation_cnt, 2): for index in range(0, 2*conversation_cnt, 2):
what_i_have_asked = {} what_i_have_asked = {}
@@ -477,6 +434,8 @@ def generate_payload(inputs:str, llm_kwargs:dict, history:list, system_prompt:st
messages.append(what_i_ask_now) messages.append(what_i_ask_now)
else: else:
# 多模态能力 # 多模态能力
conversation_cnt = len(history) // 2
messages = [{"role": "system", "content": system_prompt}]
if conversation_cnt: if conversation_cnt:
for index in range(0, 2*conversation_cnt, 2): for index in range(0, 2*conversation_cnt, 2):
what_i_have_asked = {} what_i_have_asked = {}
@@ -539,3 +498,4 @@ def generate_payload(inputs:str, llm_kwargs:dict, history:list, system_prompt:st
return headers,payload return headers,payload

View File

@@ -111,7 +111,7 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
if chunkjson['event_type'] == 'stream-start': continue if chunkjson['event_type'] == 'stream-start': continue
if chunkjson['event_type'] == 'text-generation': if chunkjson['event_type'] == 'text-generation':
result += chunkjson["text"] result += chunkjson["text"]
if not console_slience: print(chunkjson["text"], end='') if not console_slience: logger.info(chunkjson["text"], end='')
if observe_window is not None: if observe_window is not None:
# 观测窗,把已经获取的数据显示出去 # 观测窗,把已经获取的数据显示出去
if len(observe_window) >= 1: if len(observe_window) >= 1:

View File

@@ -99,7 +99,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
logger.info(f'[response] {result}') logger.info(f'[response] {result}')
break break
result += chunkjson['message']["content"] result += chunkjson['message']["content"]
if not console_slience: print(chunkjson['message']["content"], end='') if not console_slience: logger.info(chunkjson['message']["content"], end='')
if observe_window is not None: if observe_window is not None:
# 观测窗,把已经获取的数据显示出去 # 观测窗,把已经获取的数据显示出去
if len(observe_window) >= 1: if len(observe_window) >= 1:

View File

@@ -1,541 +0,0 @@
"""
该文件中主要包含三个函数
不具备多线程能力的函数:
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
具备多线程调用能力的函数
2. predict_no_ui_long_connection支持多线程
"""
import json
import os
import re
import time
import traceback
import requests
import random
from loguru import logger
# config_private.py放自己的秘密如API和代理网址
# 读取时首先看是否存在私密的config_private配置文件不受git管控如果有则覆盖原config文件
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history
from toolbox import trimmed_format_exc, is_the_upload_folder, read_one_api_model_name, log_chat
from toolbox import ChatBotWithCookies, have_any_recent_upload_image_files, encode_image
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
def get_full_error(chunk, stream_response):
"""
获取完整的从Openai返回的报错
"""
while True:
try:
chunk += next(stream_response)
except:
break
return chunk
def make_multimodal_input(inputs, image_paths):
image_base64_array = []
for image_path in image_paths:
path = os.path.abspath(image_path)
base64 = encode_image(path)
inputs = inputs + f'<br/><br/><div align="center"><img src="file={path}" base64="{base64}"></div>'
image_base64_array.append(base64)
return inputs, image_base64_array
def reverse_base64_from_input(inputs):
# 定义一个正则表达式来匹配 Base64 字符串(假设格式为 base64="<Base64编码>"
# pattern = re.compile(r'base64="([^"]+)"></div>')
pattern = re.compile(r'<br/><br/><div align="center"><img[^<>]+base64="([^"]+)"></div>')
# 使用 findall 方法查找所有匹配的 Base64 字符串
base64_strings = pattern.findall(inputs)
# 返回反转后的 Base64 字符串列表
return base64_strings
def contain_base64(inputs):
base64_strings = reverse_base64_from_input(inputs)
return len(base64_strings) > 0
def append_image_if_contain_base64(inputs):
if not contain_base64(inputs):
return inputs
else:
image_base64_array = reverse_base64_from_input(inputs)
pattern = re.compile(r'<br/><br/><div align="center"><img[^><]+></div>')
inputs = re.sub(pattern, '', inputs)
res = []
res.append({
"type": "text",
"text": inputs
})
for image_base64 in image_base64_array:
res.append({
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_base64}"
}
})
return res
def remove_image_if_contain_base64(inputs):
if not contain_base64(inputs):
return inputs
else:
pattern = re.compile(r'<br/><br/><div align="center"><img[^><]+></div>')
inputs = re.sub(pattern, '', inputs)
return inputs
def decode_chunk(chunk):
# 提前读取一些信息 (用于判断异常)
chunk_decoded = chunk.decode()
chunkjson = None
has_choices = False
choice_valid = False
has_content = False
has_role = False
try:
chunkjson = json.loads(chunk_decoded[6:])
has_choices = 'choices' in chunkjson
if has_choices: choice_valid = (len(chunkjson['choices']) > 0)
if has_choices and choice_valid: has_content = ("content" in chunkjson['choices'][0]["delta"])
if has_content: has_content = (chunkjson['choices'][0]["delta"]["content"] is not None)
if has_choices and choice_valid: has_role = "role" in chunkjson['choices'][0]["delta"]
except:
pass
return chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role
from functools import lru_cache
@lru_cache(maxsize=32)
def verify_endpoint(endpoint):
"""
检查endpoint是否可用
"""
if "你亲手写的api名称" in endpoint:
raise ValueError("Endpoint不正确, 请检查AZURE_ENDPOINT的配置! 当前的Endpoint为:" + endpoint)
return endpoint
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_slience:bool=False):
"""
发送至chatGPT等待回复一次性完成不显示中间过程。但内部用stream的方法避免中途网线被掐。
inputs
是本次问询的输入
sys_prompt:
系统静默prompt
llm_kwargs
chatGPT的内部调优参数
history
是之前的对话列表
observe_window = None
用于负责跨越线程传递已经输出的部分大部分时候仅仅为了fancy的视觉效果留空即可。observe_window[0]观测窗。observe_window[1]:看门狗
"""
from request_llms.bridge_all import model_info
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
if model_info[llm_kwargs['llm_model']].get('openai_disable_stream', False): stream = False
else: stream = True
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=stream)
retry = 0
while True:
try:
# make a POST request to the API endpoint, stream=False
endpoint = verify_endpoint(model_info[llm_kwargs['llm_model']]['endpoint'])
response = requests.post(endpoint, headers=headers, proxies=proxies,
json=payload, stream=stream, timeout=TIMEOUT_SECONDS); break
except requests.exceptions.ReadTimeout as e:
retry += 1
traceback.print_exc()
if retry > MAX_RETRY: raise TimeoutError
if MAX_RETRY!=0: logger.error(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
if not stream:
# 该分支仅适用于不支持stream的o1模型其他情形一律不适用
chunkjson = json.loads(response.content.decode())
gpt_replying_buffer = chunkjson['choices'][0]["message"]["content"]
return gpt_replying_buffer
stream_response = response.iter_lines()
result = ''
json_data = None
while True:
try: chunk = next(stream_response)
except StopIteration:
break
except requests.exceptions.ConnectionError:
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
if len(chunk_decoded)==0: continue
if not chunk_decoded.startswith('data:'):
error_msg = get_full_error(chunk, stream_response).decode()
if "reduce the length" in error_msg:
raise ConnectionAbortedError("OpenAI拒绝了请求:" + error_msg)
elif """type":"upstream_error","param":"307""" in error_msg:
raise ConnectionAbortedError("正常结束但显示Token不足导致输出不完整请削减单次输入的文本量。")
else:
raise RuntimeError("OpenAI拒绝了请求" + error_msg)
if ('data: [DONE]' in chunk_decoded): break # api2d 正常完成
# 提前读取一些信息 (用于判断异常)
if (has_choices and not choice_valid) or ('OPENROUTER PROCESSING' in chunk_decoded):
# 一些垃圾第三方接口的出现这样的错误openrouter的特殊处理
continue
json_data = chunkjson['choices'][0]
delta = json_data["delta"]
if len(delta) == 0: break
if (not has_content) and has_role: continue
if (not has_content) and (not has_role): continue # raise RuntimeError("发现不标准的第三方接口:"+delta)
if has_content: # has_role = True/False
result += delta["content"]
if not console_slience: print(delta["content"], end='')
if observe_window is not None:
# 观测窗,把已经获取的数据显示出去
if len(observe_window) >= 1:
observe_window[0] += delta["content"]
# 看门狗,如果超过期限没有喂狗,则终止
if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience:
raise RuntimeError("用户取消了程序。")
else: raise RuntimeError("意外Json结构"+delta)
if json_data and json_data['finish_reason'] == 'content_filter':
raise RuntimeError("由于提问含不合规内容被Azure过滤。")
if json_data and json_data['finish_reason'] == 'length':
raise ConnectionAbortedError("正常结束但显示Token不足导致输出不完整请削减单次输入的文本量。")
return result
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
"""
发送至chatGPT流式获取输出。
用于基础的对话功能。
inputs 是本次问询的输入
top_p, temperature是chatGPT的内部调优参数
history 是之前的对话列表注意无论是inputs还是history内容太长了都会触发token数量溢出的错误
chatbot 为WebUI中显示的对话列表修改它然后yeild出去可以直接修改对话界面内容
additional_fn代表点击的哪个按钮按钮见functional.py
"""
from request_llms.bridge_all import model_info
if is_any_api_key(inputs):
chatbot._cookies['api_key'] = inputs
chatbot.append(("输入已识别为openai的api_key", what_keys(inputs)))
yield from update_ui(chatbot=chatbot, history=history, msg="api_key已导入") # 刷新界面
return
elif not is_any_api_key(chatbot._cookies['api_key']):
chatbot.append((inputs, "缺少api_key。\n\n1. 临时解决方案直接在输入区键入api_key然后回车提交。\n\n2. 长效解决方案在config.py中配置。"))
yield from update_ui(chatbot=chatbot, history=history, msg="缺少api_key") # 刷新界面
return
user_input = inputs
if additional_fn is not None:
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
# 多模态模型
has_multimodal_capacity = model_info[llm_kwargs['llm_model']].get('has_multimodal_capacity', False)
if has_multimodal_capacity:
has_recent_image_upload, image_paths = have_any_recent_upload_image_files(chatbot, pop=True)
else:
has_recent_image_upload, image_paths = False, []
if has_recent_image_upload:
_inputs, image_base64_array = make_multimodal_input(inputs, image_paths)
else:
_inputs, image_base64_array = inputs, []
chatbot.append((_inputs, ""))
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
# 禁用stream的特殊模型处理
if model_info[llm_kwargs['llm_model']].get('openai_disable_stream', False): stream = False
else: stream = True
# check mis-behavior
if is_the_upload_folder(user_input):
chatbot[-1] = (inputs, f"[Local Message] 检测到操作错误!当您上传文档之后,需点击“**函数插件区**”按钮进行处理,请勿点击“提交”按钮或者“基础功能区”按钮。")
yield from update_ui(chatbot=chatbot, history=history, msg="正常") # 刷新界面
time.sleep(2)
try:
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, image_base64_array, has_multimodal_capacity, stream)
except RuntimeError as e:
chatbot[-1] = (inputs, f"您提供的api-key不满足要求不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
return
# 检查endpoint是否合法
try:
endpoint = verify_endpoint(model_info[llm_kwargs['llm_model']]['endpoint'])
except:
tb_str = '```\n' + trimmed_format_exc() + '```'
chatbot[-1] = (inputs, tb_str)
yield from update_ui(chatbot=chatbot, history=history, msg="Endpoint不满足要求") # 刷新界面
return
# 加入历史
if has_recent_image_upload:
history.extend([_inputs, ""])
else:
history.extend([inputs, ""])
retry = 0
while True:
try:
# make a POST request to the API endpoint, stream=True
response = requests.post(endpoint, headers=headers, proxies=proxies,
json=payload, stream=stream, timeout=TIMEOUT_SECONDS);break
except:
retry += 1
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
if retry > MAX_RETRY: raise TimeoutError
if not stream:
# 该分支仅适用于不支持stream的o1模型其他情形一律不适用
yield from handle_o1_model_special(response, inputs, llm_kwargs, chatbot, history)
return
if stream:
gpt_replying_buffer = ""
is_head_of_the_stream = True
stream_response = response.iter_lines()
while True:
try:
chunk = next(stream_response)
except StopIteration:
# 非OpenAI官方接口的出现这样的报错OpenAI和API2D不会走这里
chunk_decoded = chunk.decode()
error_msg = chunk_decoded
# 首先排除一个one-api没有done数据包的第三方Bug情形
if len(gpt_replying_buffer.strip()) > 0 and len(error_msg) == 0:
yield from update_ui(chatbot=chatbot, history=history, msg="检测到有缺陷的非OpenAI官方接口建议选择更稳定的接口。")
break
# 其他情况,直接返回报错
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
yield from update_ui(chatbot=chatbot, history=history, msg="非OpenAI官方接口返回了错误:" + chunk.decode()) # 刷新界面
return
# 提前读取一些信息 (用于判断异常)
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
if is_head_of_the_stream and (r'"object":"error"' not in chunk_decoded) and (r"content" not in chunk_decoded):
# 数据流的第一帧不携带content
is_head_of_the_stream = False; continue
if chunk:
try:
if (has_choices and not choice_valid) or ('OPENROUTER PROCESSING' in chunk_decoded):
# 一些垃圾第三方接口的出现这样的错误, 或者OPENROUTER的特殊处理,因为OPENROUTER的数据流未连接到模型时会出现OPENROUTER PROCESSING
continue
if ('data: [DONE]' not in chunk_decoded) and len(chunk_decoded) > 0 and (chunkjson is None):
# 传递进来一些奇怪的东西
raise ValueError(f'无法读取以下数据,请检查配置。\n\n{chunk_decoded}')
# 前者是API2D的结束条件后者是OPENAI的结束条件
if ('data: [DONE]' in chunk_decoded) or (len(chunkjson['choices'][0]["delta"]) == 0):
# 判定为数据流的结束gpt_replying_buffer也写完了
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
break
# 处理数据流的主体
status_text = f"finish_reason: {chunkjson['choices'][0].get('finish_reason', 'null')}"
# 如果这里抛出异常一般是文本过长详情见get_full_error的输出
if has_content:
# 正常情况
gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]
elif has_role:
# 一些第三方接口的出现这样的错误,兼容一下吧
continue
else:
# 至此已经超出了正常接口应该进入的范围,一些垃圾第三方接口会出现这样的错误
if chunkjson['choices'][0]["delta"]["content"] is None: continue # 一些垃圾第三方接口出现这样的错误,兼容一下吧
gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]
history[-1] = gpt_replying_buffer
chatbot[-1] = (history[-2], history[-1])
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
except Exception as e:
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
chunk = get_full_error(chunk, stream_response)
chunk_decoded = chunk.decode()
error_msg = chunk_decoded
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析异常" + error_msg) # 刷新界面
logger.error(error_msg)
return
return # return from stream-branch
def handle_o1_model_special(response, inputs, llm_kwargs, chatbot, history):
try:
chunkjson = json.loads(response.content.decode())
gpt_replying_buffer = chunkjson['choices'][0]["message"]["content"]
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
history[-1] = gpt_replying_buffer
chatbot[-1] = (history[-2], history[-1])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
except Exception as e:
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析异常" + response.text) # 刷新界面
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):
from request_llms.bridge_all import model_info
openai_website = ' 请登录OpenAI查看详情 https://platform.openai.com/signup'
if "reduce the length" in error_msg:
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入history[-2] 是本次输入, history[-1] 是本次输出
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
elif "does not exist" in error_msg:
chatbot[-1] = (chatbot[-1][0], f"[Local Message] Model {llm_kwargs['llm_model']} does not exist. 模型不存在, 或者您没有获得体验资格.")
elif "Incorrect API key" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. OpenAI以提供了不正确的API_KEY为由, 拒绝服务. " + openai_website)
elif "exceeded your current quota" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] You exceeded your current quota. OpenAI以账户额度不足为由, 拒绝服务." + openai_website)
elif "account is not active" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] Your account is not active. OpenAI以账户失效为由, 拒绝服务." + openai_website)
elif "associated with a deactivated account" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] You are associated with a deactivated account. OpenAI以账户失效为由, 拒绝服务." + openai_website)
elif "API key has been deactivated" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] API key has been deactivated. OpenAI以账户失效为由, 拒绝服务." + openai_website)
elif "bad forward key" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] Bad forward key. API2D账户额度不足.")
elif "Not enough point" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] Not enough point. API2D账户点数不足.")
else:
from toolbox import regular_txt_to_markdown
tb_str = '```\n' + trimmed_format_exc() + '```'
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}")
return chatbot, history
def generate_payload(inputs:str, llm_kwargs:dict, history:list, system_prompt:str, image_base64_array:list=[], has_multimodal_capacity:bool=False, stream:bool=True):
"""
整合所有信息选择LLM模型生成http请求为发送请求做准备
"""
from request_llms.bridge_all import model_info
if not is_any_api_key(llm_kwargs['api_key']):
raise AssertionError("你提供了错误的API_KEY。\n\n1. 临时解决方案直接在输入区键入api_key然后回车提交。\n\n2. 长效解决方案在config.py中配置。")
if llm_kwargs['llm_model'].startswith('vllm-'):
api_key = 'no-api-key'
else:
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
if API_ORG.startswith('org-'): headers.update({"OpenAI-Organization": API_ORG})
if llm_kwargs['llm_model'].startswith('azure-'):
headers.update({"api-key": api_key})
if llm_kwargs['llm_model'] in AZURE_CFG_ARRAY.keys():
azure_api_key_unshared = AZURE_CFG_ARRAY[llm_kwargs['llm_model']]["AZURE_API_KEY"]
headers.update({"api-key": azure_api_key_unshared})
if has_multimodal_capacity:
# 当以下条件满足时,启用多模态能力:
# 1. 模型本身是多模态模型has_multimodal_capacity
# 2. 输入包含图像len(image_base64_array) > 0
# 3. 历史输入包含图像( any([contain_base64(h) for h in history])
enable_multimodal_capacity = (len(image_base64_array) > 0) or any([contain_base64(h) for h in history])
else:
enable_multimodal_capacity = False
conversation_cnt = len(history) // 2
openai_disable_system_prompt = model_info[llm_kwargs['llm_model']].get('openai_disable_system_prompt', False)
if openai_disable_system_prompt:
messages = [{"role": "user", "content": system_prompt}]
else:
messages = [{"role": "system", "content": system_prompt}]
if not enable_multimodal_capacity:
# 不使用多模态能力
if conversation_cnt:
for index in range(0, 2*conversation_cnt, 2):
what_i_have_asked = {}
what_i_have_asked["role"] = "user"
what_i_have_asked["content"] = remove_image_if_contain_base64(history[index])
what_gpt_answer = {}
what_gpt_answer["role"] = "assistant"
what_gpt_answer["content"] = remove_image_if_contain_base64(history[index+1])
if what_i_have_asked["content"] != "":
if what_gpt_answer["content"] == "": continue
if what_gpt_answer["content"] == timeout_bot_msg: continue
messages.append(what_i_have_asked)
messages.append(what_gpt_answer)
else:
messages[-1]['content'] = what_gpt_answer['content']
what_i_ask_now = {}
what_i_ask_now["role"] = "user"
what_i_ask_now["content"] = inputs
messages.append(what_i_ask_now)
else:
# 多模态能力
if conversation_cnt:
for index in range(0, 2*conversation_cnt, 2):
what_i_have_asked = {}
what_i_have_asked["role"] = "user"
what_i_have_asked["content"] = append_image_if_contain_base64(history[index])
what_gpt_answer = {}
what_gpt_answer["role"] = "assistant"
what_gpt_answer["content"] = append_image_if_contain_base64(history[index+1])
if what_i_have_asked["content"] != "":
if what_gpt_answer["content"] == "": continue
if what_gpt_answer["content"] == timeout_bot_msg: continue
messages.append(what_i_have_asked)
messages.append(what_gpt_answer)
else:
messages[-1]['content'] = what_gpt_answer['content']
what_i_ask_now = {}
what_i_ask_now["role"] = "user"
what_i_ask_now["content"] = []
what_i_ask_now["content"].append({
"type": "text",
"text": inputs
})
for image_base64 in image_base64_array:
what_i_ask_now["content"].append({
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_base64}"
}
})
messages.append(what_i_ask_now)
model = llm_kwargs['llm_model']
if llm_kwargs['llm_model'].startswith('api2d-'):
model = llm_kwargs['llm_model'][len('api2d-'):]
if llm_kwargs['llm_model'].startswith('one-api-'):
model = llm_kwargs['llm_model'][len('one-api-'):]
model, _ = read_one_api_model_name(model)
if llm_kwargs['llm_model'].startswith('vllm-'):
model = llm_kwargs['llm_model'][len('vllm-'):]
model, _ = read_one_api_model_name(model)
if llm_kwargs['llm_model'].startswith('openrouter-'):
model = llm_kwargs['llm_model'][len('openrouter-'):]
model= read_one_api_model_name(model)
if model == "gpt-3.5-random": # 随机选择, 绕过openai访问频率限制
model = random.choice([
"gpt-3.5-turbo",
"gpt-3.5-turbo-16k",
"gpt-3.5-turbo-1106",
"gpt-3.5-turbo-0613",
"gpt-3.5-turbo-16k-0613",
"gpt-3.5-turbo-0301",
])
payload = {
"model": model,
"messages": messages,
"temperature": llm_kwargs['temperature'], # 1.0,
"top_p": llm_kwargs['top_p'], # 1.0,
"n": 1,
"stream": stream,
}
return headers,payload

View File

@@ -224,7 +224,7 @@ def get_predict_function(
try: try:
if finish_reason == "stop": if finish_reason == "stop":
if not console_slience: if not console_slience:
print(f"[response] {result}") logger.info(f"[response] {result}")
break break
result += response_text result += response_text
if observe_window is not None: if observe_window is not None:

View File

@@ -2,15 +2,14 @@ https://public.agent-matrix.com/publish/gradio-3.32.10-py3-none-any.whl
fastapi==0.110 fastapi==0.110
gradio-client==0.8 gradio-client==0.8
pypdf2==2.12.1 pypdf2==2.12.1
httpx<=0.25.2
zhipuai==2.0.1 zhipuai==2.0.1
tiktoken>=0.3.3 tiktoken>=0.3.3
requests[socks] requests[socks]
pydantic==2.9.2 pydantic==2.5.2
llama-index==0.10
protobuf==3.20 protobuf==3.20
transformers>=4.27.1,<4.42 transformers>=4.27.1,<4.42
scipdf_parser>=0.52 scipdf_parser>=0.52
spacy==3.7.4
anthropic>=0.18.1 anthropic>=0.18.1
python-markdown-math python-markdown-math
pymdown-extensions pymdown-extensions
@@ -33,14 +32,3 @@ loguru
arxiv arxiv
numpy numpy
rich rich
llama-index-core==0.10.68
llama-index-legacy==0.9.48
llama-index-readers-file==0.1.33
llama-index-readers-llama-parse==0.1.6
llama-index-embeddings-azure-openai==0.1.10
llama-index-embeddings-openai==0.1.10
llama-parse==0.4.9
mdit-py-plugins>=0.3.3
linkify-it-py==2.0.3

View File

@@ -94,7 +94,7 @@ def read_single_conf_with_lru_cache(arg):
if r is None: if r is None:
log亮红('[PROXY] 网络代理状态未配置。无代理状态下很可能无法访问OpenAI家族的模型。建议检查USE_PROXY选项是否修改。') log亮红('[PROXY] 网络代理状态未配置。无代理状态下很可能无法访问OpenAI家族的模型。建议检查USE_PROXY选项是否修改。')
else: else:
log亮绿('[PROXY] 网络代理状态:已配置。配置信息如下:', str(r)) log亮绿('[PROXY] 网络代理状态:已配置。配置信息如下:', r)
assert isinstance(r, dict), 'proxies格式错误请注意proxies选项的格式不要遗漏括号。' assert isinstance(r, dict), 'proxies格式错误请注意proxies选项的格式不要遗漏括号。'
return r return r

View File

@@ -90,6 +90,23 @@ def make_history_cache():
# """
# with gr.Row():
# txt = gr.Textbox(show_label=False, placeholder="Input question here.", elem_id='user_input_main').style(container=False)
# txtx = gr.Textbox(show_label=False, placeholder="Input question here.", elem_id='user_input_main').style(container=False)
# with gr.Row():
# btn_value = "Test"
# elem_id = "TestCase"
# variant = "primary"
# input_list = [txt, txtx]
# output_list = [txt, txtx]
# input_name_list = ["txt(input)", "txtx(input)"]
# output_name_list = ["txt", "txtx"]
# js_callback = """(txt, txtx)=>{console.log(txt); console.log(txtx);}"""
# def function(txt, txtx):
# return "booo", "goooo"
# create_button_with_javascript_callback(btn_value, elem_id, variant, js_callback, input_list, output_list, function, input_name_list, output_name_list)
# """
def create_button_with_javascript_callback(btn_value, elem_id, variant, js_callback, input_list, output_list, function, input_name_list, output_name_list): def create_button_with_javascript_callback(btn_value, elem_id, variant, js_callback, input_list, output_list, function, input_name_list, output_name_list):
import gradio as gr import gradio as gr
middle_ware_component = gr.Textbox(visible=False, elem_id=elem_id+'_buffer') middle_ware_component = gr.Textbox(visible=False, elem_id=elem_id+'_buffer')

View File

@@ -34,9 +34,6 @@ def is_api2d_key(key):
API_MATCH_API2D = re.match(r"fk[a-zA-Z0-9]{6}-[a-zA-Z0-9]{32}$", key) API_MATCH_API2D = re.match(r"fk[a-zA-Z0-9]{6}-[a-zA-Z0-9]{32}$", key)
return bool(API_MATCH_API2D) return bool(API_MATCH_API2D)
def is_openroute_api_key(key):
API_MATCH_OPENROUTE = re.match(r"sk-or-v1-[a-zA-Z0-9]{64}$", key)
return bool(API_MATCH_OPENROUTE)
def is_cohere_api_key(key): def is_cohere_api_key(key):
API_MATCH_AZURE = re.match(r"[a-zA-Z0-9]{40}$", key) API_MATCH_AZURE = re.match(r"[a-zA-Z0-9]{40}$", key)
@@ -92,10 +89,6 @@ def select_api_key(keys, llm_model):
if llm_model.startswith('cohere-'): if llm_model.startswith('cohere-'):
for k in key_list: for k in key_list:
if is_cohere_api_key(k): avail_key_list.append(k) if is_cohere_api_key(k): avail_key_list.append(k)
if llm_model.startswith('openrouter-'):
for k in key_list:
if is_openroute_api_key(k): avail_key_list.append(k)
if len(avail_key_list) == 0: if len(avail_key_list) == 0:
raise RuntimeError(f"您提供的api-key不满足要求不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源左上角更换模型菜单中可切换openai,azure,claude,cohere等请求源") raise RuntimeError(f"您提供的api-key不满足要求不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源左上角更换模型菜单中可切换openai,azure,claude,cohere等请求源")

View File

@@ -11,7 +11,7 @@ def not_chat_log_filter(record):
def formatter_with_clip(record): def formatter_with_clip(record):
# Note this function returns the string to be formatted, not the actual message to be logged # Note this function returns the string to be formatted, not the actual message to be logged
# record["extra"]["serialized"] = "555555" record["extra"]["serialized"] = "555555"
max_len = 12 max_len = 12
record['function_x'] = record['function'].center(max_len) record['function_x'] = record['function'].center(max_len)
if len(record['function_x']) > max_len: if len(record['function_x']) > max_len:

View File

@@ -1,12 +0,0 @@
"""
对项目中的各个插件进行测试。运行方法:直接运行 python tests/test_plugins.py
"""
import init_test
import os, sys
if __name__ == "__main__":
from test_utils import plugin_test
plugin_test(plugin='crazy_functions.数学动画生成manim->动画生成', main_input="A point moving along function culve y=sin(x), starting from x=0 and stop at x=4*\pi.")

View File

@@ -8,17 +8,4 @@ import os, sys
if __name__ == "__main__": if __name__ == "__main__":
from test_utils import plugin_test from test_utils import plugin_test
plugin_test( plugin_test(plugin='crazy_functions.Social_Helper->I人助手', main_input="|")
plugin='crazy_functions.Social_Helper->I人助手',
main_input="""
添加联系人:
艾德·史塔克:我的养父,他是临冬城的公爵。
凯特琳·史塔克:我的养母,她对我态度冷淡,因为我是私生子。
罗柏·史塔克:我的哥哥,他是北境的继承人。
艾莉亚·史塔克:我的妹妹,她和我关系亲密,性格独立坚强。
珊莎·史塔克:我的妹妹,她梦想成为一位淑女。
布兰·史塔克:我的弟弟,他有预知未来的能力。
瑞肯·史塔克:我的弟弟,他是个天真无邪的小孩。
山姆威尔·塔利:我的朋友,他在守夜人军团中与我并肩作战。
伊格瑞特:我的恋人,她是野人中的一员。
""")

View File

@@ -1,5 +1,5 @@
{ {
"version": 3.90, "version": 3.83,
"show_feature": true, "show_feature": true,
"new_feature": "增加RAG组件 <-> 升级多合一主提交键" "new_feature": "增加欢迎页面 <-> 优化图像生成插件 <-> 添加紫东太初大模型支持 <-> 保留主题选择 <-> 支持更复杂的插件框架 <-> 上传文件时显示进度条"
} }