Compare commits
125 Commits
hongyi-zha
...
GHSA-3jrq-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
47cedde954 | ||
|
|
12aebf9707 | ||
|
|
0b5385e5e5 | ||
|
|
2ff1a1fb0b | ||
|
|
48e10fb10a | ||
|
|
ca64a592f5 | ||
|
|
cb96ca132a | ||
|
|
46428b7c7a | ||
|
|
66a50c8019 | ||
|
|
814dc943ac | ||
|
|
96cd1f0b25 | ||
|
|
4fc17f4add | ||
|
|
b3665d8fec | ||
|
|
80c4281888 | ||
|
|
beda56abb0 | ||
|
|
cb16941d01 | ||
|
|
5cf9ac7849 | ||
|
|
51ddb88ceb | ||
|
|
69dfe5d514 | ||
|
|
6819f87512 | ||
|
|
3d51b9d5bb | ||
|
|
bff87ada92 | ||
|
|
a938412b6f | ||
|
|
a48acf6fec | ||
|
|
c6b9ab5214 | ||
|
|
aa3332de69 | ||
|
|
d43175d46d | ||
|
|
8ca9232db2 | ||
|
|
1339aa0e1a | ||
|
|
f41419e767 | ||
|
|
d88c585305 | ||
|
|
0a88d18c7a | ||
|
|
0d0edc2216 | ||
|
|
5e0875fcf4 | ||
|
|
c508b84db8 | ||
|
|
f2b67602bb | ||
|
|
29daba5d2f | ||
|
|
9477824ac1 | ||
|
|
459c5b2d24 | ||
|
|
abf9b5aee5 | ||
|
|
2ce4482146 | ||
|
|
4282b83035 | ||
|
|
537be57c9b | ||
|
|
3aa92d6c80 | ||
|
|
b7eb9aba49 | ||
|
|
881a596a30 | ||
|
|
1b3c331d01 | ||
|
|
70d5f2a7df | ||
|
|
fd2f8b9090 | ||
|
|
225a2de011 | ||
|
|
6aea6d8e2b | ||
|
|
8d85616c27 | ||
|
|
e4533dd24d | ||
|
|
43ed8cb8a8 | ||
|
|
3eff964424 | ||
|
|
ebde98b34b | ||
|
|
6f883031c0 | ||
|
|
fa15059f07 | ||
|
|
685c573619 | ||
|
|
5fcd02506c | ||
|
|
bd5280df1b | ||
|
|
744759704d | ||
|
|
81df0aa210 | ||
|
|
cadaa81030 | ||
|
|
3b6cbbdcb0 | ||
|
|
52e49c48b8 | ||
|
|
6ad15a6129 | ||
|
|
09990d44d3 | ||
|
|
eac5191815 | ||
|
|
ae4407135d | ||
|
|
f0e15bd710 | ||
|
|
5c5f442649 | ||
|
|
160552cc5f | ||
|
|
c131ec0b20 | ||
|
|
2f3aeb7976 | ||
|
|
eff5b89b98 | ||
|
|
f77ab27bc9 | ||
|
|
ba0a8b7072 | ||
|
|
2406022c2a | ||
|
|
02b6f26b05 | ||
|
|
2a003e8d49 | ||
|
|
21891b0f6d | ||
|
|
163f12c533 | ||
|
|
bdd46c5dd1 | ||
|
|
ae51a0e686 | ||
|
|
f2582ea137 | ||
|
|
ddd2fd84da | ||
|
|
6c90ff80ea | ||
|
|
cb7c0703be | ||
|
|
5181cd441d | ||
|
|
216d4374e7 | ||
|
|
8af6c0cab6 | ||
|
|
67ad041372 | ||
|
|
725c72229c | ||
|
|
e42ede512b | ||
|
|
84ccc9e64c | ||
|
|
c172847e19 | ||
|
|
d166d25eb4 | ||
|
|
516bbb1331 | ||
|
|
c3140ce344 | ||
|
|
cd18663800 | ||
|
|
dbf1322836 | ||
|
|
98dd3ae1c0 | ||
|
|
3036709496 | ||
|
|
8e9c07644f | ||
|
|
90d96b77e6 | ||
|
|
66c876a9ca | ||
|
|
0665eb75ed | ||
|
|
6b784035fa | ||
|
|
8bb3d84912 | ||
|
|
a0193cf227 | ||
|
|
b72289bfb0 | ||
|
|
bdfe3862eb | ||
|
|
dae180b9ea | ||
|
|
e359fff040 | ||
|
|
2e9b4a5770 | ||
|
|
e0c5859cf9 | ||
|
|
b9b1e12dc9 | ||
|
|
8814026ec3 | ||
|
|
3025d5be45 | ||
|
|
6c13bb7b46 | ||
|
|
c27e559f10 | ||
|
|
cdb5288f49 | ||
|
|
49c6fcfe97 | ||
|
|
45fa0404eb |
3
.gitignore
vendored
3
.gitignore
vendored
@@ -153,3 +153,6 @@ media
|
|||||||
flagged
|
flagged
|
||||||
request_llms/ChatGLM-6b-onnx-u8s8
|
request_llms/ChatGLM-6b-onnx-u8s8
|
||||||
.pre-commit-config.yaml
|
.pre-commit-config.yaml
|
||||||
|
themes/common.js.min.*.js
|
||||||
|
test*
|
||||||
|
objdump*
|
||||||
@@ -12,11 +12,16 @@ RUN echo '[global]' > /etc/pip.conf && \
|
|||||||
echo 'trusted-host = mirrors.aliyun.com' >> /etc/pip.conf
|
echo 'trusted-host = mirrors.aliyun.com' >> /etc/pip.conf
|
||||||
|
|
||||||
|
|
||||||
|
# 语音输出功能(以下两行,第一行更换阿里源,第二行安装ffmpeg,都可以删除)
|
||||||
|
RUN UBUNTU_VERSION=$(awk -F= '/^VERSION_CODENAME=/{print $2}' /etc/os-release); echo "deb https://mirrors.aliyun.com/debian/ $UBUNTU_VERSION main non-free contrib" > /etc/apt/sources.list; apt-get update
|
||||||
|
RUN apt-get install ffmpeg -y
|
||||||
|
|
||||||
|
|
||||||
# 进入工作路径(必要)
|
# 进入工作路径(必要)
|
||||||
WORKDIR /gpt
|
WORKDIR /gpt
|
||||||
|
|
||||||
|
|
||||||
# 安装大部分依赖,利用Docker缓存加速以后的构建 (以下三行,可以删除)
|
# 安装大部分依赖,利用Docker缓存加速以后的构建 (以下两行,可以删除)
|
||||||
COPY requirements.txt ./
|
COPY requirements.txt ./
|
||||||
RUN pip3 install -r requirements.txt
|
RUN pip3 install -r requirements.txt
|
||||||
|
|
||||||
|
|||||||
15
README.md
15
README.md
@@ -1,7 +1,7 @@
|
|||||||
> [!IMPORTANT]
|
> [!IMPORTANT]
|
||||||
> 2024.1.18: 更新3.70版本,支持Mermaid绘图库(让大模型绘制脑图)
|
> 2024.6.1: 版本3.80加入插件二级菜单功能(详见wiki)
|
||||||
> 2024.1.17: 恭迎GLM4,全力支持Qwen、GLM、DeepseekCoder等国内中文大语言基座模型!
|
> 2024.5.1: 加入Doc2x翻译PDF论文的功能,[查看详情](https://github.com/binary-husky/gpt_academic/wiki/Doc2x)
|
||||||
> 2024.1.17: 某些依赖包尚不兼容python 3.12,推荐python 3.11。
|
> 2024.3.11: 全力支持Qwen、GLM、DeepseekCoder等中文大语言模型! SoVits语音克隆模块,[查看详情](https://www.bilibili.com/video/BV1Rp421S7tF/)
|
||||||
> 2024.1.17: 安装依赖时,请选择`requirements.txt`中**指定的版本**。 安装命令:`pip install -r requirements.txt`。本项目完全开源免费,您可通过订阅[在线服务](https://github.com/binary-husky/gpt_academic/wiki/online)的方式鼓励本项目的发展。
|
> 2024.1.17: 安装依赖时,请选择`requirements.txt`中**指定的版本**。 安装命令:`pip install -r requirements.txt`。本项目完全开源免费,您可通过订阅[在线服务](https://github.com/binary-husky/gpt_academic/wiki/online)的方式鼓励本项目的发展。
|
||||||
|
|
||||||
<br>
|
<br>
|
||||||
@@ -67,7 +67,7 @@ Read this in [English](docs/README.English.md) | [日本語](docs/README.Japanes
|
|||||||
读论文、[翻译](https://www.bilibili.com/video/BV1KT411x7Wn)论文 | [插件] 一键解读latex/pdf论文全文并生成摘要
|
读论文、[翻译](https://www.bilibili.com/video/BV1KT411x7Wn)论文 | [插件] 一键解读latex/pdf论文全文并生成摘要
|
||||||
Latex全文[翻译](https://www.bilibili.com/video/BV1nk4y1Y7Js/)、[润色](https://www.bilibili.com/video/BV1FT411H7c5/) | [插件] 一键翻译或润色latex论文
|
Latex全文[翻译](https://www.bilibili.com/video/BV1nk4y1Y7Js/)、[润色](https://www.bilibili.com/video/BV1FT411H7c5/) | [插件] 一键翻译或润色latex论文
|
||||||
批量注释生成 | [插件] 一键批量生成函数注释
|
批量注释生成 | [插件] 一键批量生成函数注释
|
||||||
Markdown[中英互译](https://www.bilibili.com/video/BV1yo4y157jV/) | [插件] 看到上面5种语言的[README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md)了吗?就是出自他的手笔
|
Markdown[中英互译](https://www.bilibili.com/video/BV1yo4y157jV/) | [插件] 看到上面5种语言的[README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README.English.md)了吗?就是出自他的手笔
|
||||||
[PDF论文全文翻译功能](https://www.bilibili.com/video/BV1KT411x7Wn) | [插件] PDF论文提取题目&摘要+翻译全文(多线程)
|
[PDF论文全文翻译功能](https://www.bilibili.com/video/BV1KT411x7Wn) | [插件] PDF论文提取题目&摘要+翻译全文(多线程)
|
||||||
[Arxiv小助手](https://www.bilibili.com/video/BV1LM4y1279X) | [插件] 输入arxiv文章url即可一键翻译摘要+下载PDF
|
[Arxiv小助手](https://www.bilibili.com/video/BV1LM4y1279X) | [插件] 输入arxiv文章url即可一键翻译摘要+下载PDF
|
||||||
Latex论文一键校对 | [插件] 仿Grammarly对Latex文章进行语法、拼写纠错+输出对照PDF
|
Latex论文一键校对 | [插件] 仿Grammarly对Latex文章进行语法、拼写纠错+输出对照PDF
|
||||||
@@ -87,6 +87,10 @@ Latex论文一键校对 | [插件] 仿Grammarly对Latex文章进行语法、拼
|
|||||||
<img src="https://user-images.githubusercontent.com/96192199/279702205-d81137c3-affd-4cd1-bb5e-b15610389762.gif" width="700" >
|
<img src="https://user-images.githubusercontent.com/96192199/279702205-d81137c3-affd-4cd1-bb5e-b15610389762.gif" width="700" >
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
|
<div align="center">
|
||||||
|
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/70ff1ec5-e589-4561-a29e-b831079b37fb.gif" width="700" >
|
||||||
|
</div>
|
||||||
|
|
||||||
|
|
||||||
- 所有按钮都通过读取functional.py动态生成,可随意加自定义功能,解放剪贴板
|
- 所有按钮都通过读取functional.py动态生成,可随意加自定义功能,解放剪贴板
|
||||||
<div align="center">
|
<div align="center">
|
||||||
@@ -253,8 +257,7 @@ P.S. 如果需要依赖Latex的插件功能,请见Wiki。另外,您也可以
|
|||||||
# Advanced Usage
|
# Advanced Usage
|
||||||
### I:自定义新的便捷按钮(学术快捷键)
|
### I:自定义新的便捷按钮(学术快捷键)
|
||||||
|
|
||||||
任意文本编辑器打开`core_functional.py`,添加如下条目,然后重启程序。(如果按钮已存在,那么可以直接修改(前缀、后缀都已支持热修改),无需重启程序即可生效。)
|
现在已可以通过UI中的`界面外观`菜单中的`自定义菜单`添加新的便捷按钮。如果需要在代码中定义,请使用任意文本编辑器打开`core_functional.py`,添加如下条目即可:
|
||||||
例如
|
|
||||||
|
|
||||||
```python
|
```python
|
||||||
"超级英译中": {
|
"超级英译中": {
|
||||||
|
|||||||
@@ -47,7 +47,7 @@ def backup_and_download(current_version, remote_version):
|
|||||||
shutil.copytree('./', backup_dir, ignore=lambda x, y: ['history'])
|
shutil.copytree('./', backup_dir, ignore=lambda x, y: ['history'])
|
||||||
proxies = get_conf('proxies')
|
proxies = get_conf('proxies')
|
||||||
try: r = requests.get('https://github.com/binary-husky/chatgpt_academic/archive/refs/heads/master.zip', proxies=proxies, stream=True)
|
try: r = requests.get('https://github.com/binary-husky/chatgpt_academic/archive/refs/heads/master.zip', proxies=proxies, stream=True)
|
||||||
except: r = requests.get('https://public.gpt-academic.top/publish/master.zip', proxies=proxies, stream=True)
|
except: r = requests.get('https://public.agent-matrix.com/publish/master.zip', proxies=proxies, stream=True)
|
||||||
zip_file_path = backup_dir+'/master.zip'
|
zip_file_path = backup_dir+'/master.zip'
|
||||||
with open(zip_file_path, 'wb+') as f:
|
with open(zip_file_path, 'wb+') as f:
|
||||||
f.write(r.content)
|
f.write(r.content)
|
||||||
@@ -71,7 +71,7 @@ def patch_and_restart(path):
|
|||||||
import sys
|
import sys
|
||||||
import time
|
import time
|
||||||
import glob
|
import glob
|
||||||
from colorful import print亮黄, print亮绿, print亮红
|
from shared_utils.colorful import print亮黄, print亮绿, print亮红
|
||||||
# if not using config_private, move origin config.py as config_private.py
|
# if not using config_private, move origin config.py as config_private.py
|
||||||
if not os.path.exists('config_private.py'):
|
if not os.path.exists('config_private.py'):
|
||||||
print亮黄('由于您没有设置config_private.py私密配置,现将您的现有配置移动至config_private.py以防止配置丢失,',
|
print亮黄('由于您没有设置config_private.py私密配置,现将您的现有配置移动至config_private.py以防止配置丢失,',
|
||||||
@@ -113,7 +113,7 @@ def auto_update(raise_error=False):
|
|||||||
import json
|
import json
|
||||||
proxies = get_conf('proxies')
|
proxies = get_conf('proxies')
|
||||||
try: response = requests.get("https://raw.githubusercontent.com/binary-husky/chatgpt_academic/master/version", proxies=proxies, timeout=5)
|
try: response = requests.get("https://raw.githubusercontent.com/binary-husky/chatgpt_academic/master/version", proxies=proxies, timeout=5)
|
||||||
except: response = requests.get("https://public.gpt-academic.top/publish/version", proxies=proxies, timeout=5)
|
except: response = requests.get("https://public.agent-matrix.com/publish/version", proxies=proxies, timeout=5)
|
||||||
remote_json_data = json.loads(response.text)
|
remote_json_data = json.loads(response.text)
|
||||||
remote_version = remote_json_data['version']
|
remote_version = remote_json_data['version']
|
||||||
if remote_json_data["show_feature"]:
|
if remote_json_data["show_feature"]:
|
||||||
@@ -124,7 +124,7 @@ def auto_update(raise_error=False):
|
|||||||
current_version = f.read()
|
current_version = f.read()
|
||||||
current_version = json.loads(current_version)['version']
|
current_version = json.loads(current_version)['version']
|
||||||
if (remote_version - current_version) >= 0.01-1e-5:
|
if (remote_version - current_version) >= 0.01-1e-5:
|
||||||
from colorful import print亮黄
|
from shared_utils.colorful import print亮黄
|
||||||
print亮黄(f'\n新版本可用。新版本:{remote_version},当前版本:{current_version}。{new_feature}')
|
print亮黄(f'\n新版本可用。新版本:{remote_version},当前版本:{current_version}。{new_feature}')
|
||||||
print('(1)Github更新地址:\nhttps://github.com/binary-husky/chatgpt_academic\n')
|
print('(1)Github更新地址:\nhttps://github.com/binary-husky/chatgpt_academic\n')
|
||||||
user_instruction = input('(2)是否一键更新代码(Y+回车=确认,输入其他/无输入+回车=不更新)?')
|
user_instruction = input('(2)是否一键更新代码(Y+回车=确认,输入其他/无输入+回车=不更新)?')
|
||||||
|
|||||||
126
config.py
126
config.py
@@ -30,11 +30,40 @@ if USE_PROXY:
|
|||||||
else:
|
else:
|
||||||
proxies = None
|
proxies = None
|
||||||
|
|
||||||
# ------------------------------------ 以下配置可以优化体验, 但大部分场合下并不需要修改 ------------------------------------
|
# [step 3]>> 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
|
||||||
|
LLM_MODEL = "gpt-3.5-turbo-16k" # 可选 ↓↓↓
|
||||||
|
AVAIL_LLM_MODELS = ["gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-preview",
|
||||||
|
"gpt-4o", "gpt-4-turbo", "gpt-4-turbo-2024-04-09",
|
||||||
|
"gpt-3.5-turbo-1106", "gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
|
||||||
|
"gpt-4", "gpt-4-32k", "azure-gpt-4", "glm-4", "glm-4v", "glm-3-turbo",
|
||||||
|
"gemini-pro", "chatglm3"
|
||||||
|
]
|
||||||
|
# --- --- --- ---
|
||||||
|
# P.S. 其他可用的模型还包括
|
||||||
|
# AVAIL_LLM_MODELS = [
|
||||||
|
# "glm-4-0520", "glm-4-air", "glm-4-airx", "glm-4-flash",
|
||||||
|
# "qianfan", "deepseekcoder",
|
||||||
|
# "spark", "sparkv2", "sparkv3", "sparkv3.5",
|
||||||
|
# "qwen-turbo", "qwen-plus", "qwen-max", "qwen-local",
|
||||||
|
# "moonshot-v1-128k", "moonshot-v1-32k", "moonshot-v1-8k",
|
||||||
|
# "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-turbo-0125", "gpt-4o-2024-05-13"
|
||||||
|
# "claude-3-haiku-20240307","claude-3-sonnet-20240229","claude-3-opus-20240229", "claude-2.1", "claude-instant-1.2",
|
||||||
|
# "moss", "llama2", "chatglm_onnx", "internlm", "jittorllms_pangualpha", "jittorllms_llama",
|
||||||
|
# "deepseek-chat" ,"deepseek-coder",
|
||||||
|
# "yi-34b-chat-0205","yi-34b-chat-200k","yi-large","yi-medium","yi-spark","yi-large-turbo","yi-large-preview",
|
||||||
|
# ]
|
||||||
|
# --- --- --- ---
|
||||||
|
# 此外,您还可以在接入one-api/vllm/ollama时,
|
||||||
|
# 使用"one-api-*","vllm-*","ollama-*"前缀直接使用非标准方式接入的模型,例如
|
||||||
|
# AVAIL_LLM_MODELS = ["one-api-claude-3-sonnet-20240229(max_token=100000)", "ollama-phi3(max_token=4096)"]
|
||||||
|
# --- --- --- ---
|
||||||
|
|
||||||
|
|
||||||
|
# --------------- 以下配置可以优化体验 ---------------
|
||||||
|
|
||||||
# 重新URL重新定向,实现更换API_URL的作用(高危设置! 常规情况下不要修改! 通过修改此设置,您将把您的API-KEY和对话隐私完全暴露给您设定的中间人!)
|
# 重新URL重新定向,实现更换API_URL的作用(高危设置! 常规情况下不要修改! 通过修改此设置,您将把您的API-KEY和对话隐私完全暴露给您设定的中间人!)
|
||||||
# 格式: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "在这里填写重定向的api.openai.com的URL"}
|
# 格式: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "在这里填写重定向的api.openai.com的URL"}
|
||||||
# 举例: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "https://reverse-proxy-url/v1/chat/completions"}
|
# 举例: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "https://reverse-proxy-url/v1/chat/completions", "http://localhost:11434/api/chat": "在这里填写您ollama的URL"}
|
||||||
API_URL_REDIRECT = {}
|
API_URL_REDIRECT = {}
|
||||||
|
|
||||||
|
|
||||||
@@ -77,6 +106,10 @@ TIMEOUT_SECONDS = 30
|
|||||||
WEB_PORT = -1
|
WEB_PORT = -1
|
||||||
|
|
||||||
|
|
||||||
|
# 是否自动打开浏览器页面
|
||||||
|
AUTO_OPEN_BROWSER = True
|
||||||
|
|
||||||
|
|
||||||
# 如果OpenAI不响应(网络卡顿、代理失败、KEY失效),重试的次数限制
|
# 如果OpenAI不响应(网络卡顿、代理失败、KEY失效),重试的次数限制
|
||||||
MAX_RETRY = 2
|
MAX_RETRY = 2
|
||||||
|
|
||||||
@@ -85,20 +118,6 @@ MAX_RETRY = 2
|
|||||||
DEFAULT_FN_GROUPS = ['对话', '编程', '学术', '智能体']
|
DEFAULT_FN_GROUPS = ['对话', '编程', '学术', '智能体']
|
||||||
|
|
||||||
|
|
||||||
# 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
|
|
||||||
LLM_MODEL = "gpt-3.5-turbo" # 可选 ↓↓↓
|
|
||||||
AVAIL_LLM_MODELS = ["gpt-3.5-turbo-1106","gpt-4-1106-preview","gpt-4-vision-preview",
|
|
||||||
"gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
|
|
||||||
"gpt-4", "gpt-4-32k", "azure-gpt-4", "api2d-gpt-4",
|
|
||||||
"gemini-pro", "chatglm3", "claude-2", "zhipuai"]
|
|
||||||
# P.S. 其他可用的模型还包括 [
|
|
||||||
# "moss", "qwen-turbo", "qwen-plus", "qwen-max"
|
|
||||||
# "zhipuai", "qianfan", "deepseekcoder", "llama2", "qwen-local", "gpt-3.5-turbo-0613",
|
|
||||||
# "gpt-3.5-turbo-16k-0613", "gpt-3.5-random", "api2d-gpt-3.5-turbo", 'api2d-gpt-3.5-turbo-16k',
|
|
||||||
# "spark", "sparkv2", "sparkv3", "chatglm_onnx", "claude-1-100k", "claude-2", "internlm", "jittorllms_pangualpha", "jittorllms_llama"
|
|
||||||
# ]
|
|
||||||
|
|
||||||
|
|
||||||
# 定义界面上“询问多个GPT模型”插件应该使用哪些模型,请从AVAIL_LLM_MODELS中选择,并在不同模型之间用`&`间隔,例如"gpt-3.5-turbo&chatglm3&azure-gpt-4"
|
# 定义界面上“询问多个GPT模型”插件应该使用哪些模型,请从AVAIL_LLM_MODELS中选择,并在不同模型之间用`&`间隔,例如"gpt-3.5-turbo&chatglm3&azure-gpt-4"
|
||||||
MULTI_QUERY_LLM_MODELS = "gpt-3.5-turbo&chatglm3"
|
MULTI_QUERY_LLM_MODELS = "gpt-3.5-turbo&chatglm3"
|
||||||
|
|
||||||
@@ -116,7 +135,7 @@ DASHSCOPE_API_KEY = "" # 阿里灵积云API_KEY
|
|||||||
# 百度千帆(LLM_MODEL="qianfan")
|
# 百度千帆(LLM_MODEL="qianfan")
|
||||||
BAIDU_CLOUD_API_KEY = ''
|
BAIDU_CLOUD_API_KEY = ''
|
||||||
BAIDU_CLOUD_SECRET_KEY = ''
|
BAIDU_CLOUD_SECRET_KEY = ''
|
||||||
BAIDU_CLOUD_QIANFAN_MODEL = 'ERNIE-Bot' # 可选 "ERNIE-Bot-4"(文心大模型4.0), "ERNIE-Bot"(文心一言), "ERNIE-Bot-turbo", "BLOOMZ-7B", "Llama-2-70B-Chat", "Llama-2-13B-Chat", "Llama-2-7B-Chat"
|
BAIDU_CLOUD_QIANFAN_MODEL = 'ERNIE-Bot' # 可选 "ERNIE-Bot-4"(文心大模型4.0), "ERNIE-Bot"(文心一言), "ERNIE-Bot-turbo", "BLOOMZ-7B", "Llama-2-70B-Chat", "Llama-2-13B-Chat", "Llama-2-7B-Chat", "ERNIE-Speed-128K", "ERNIE-Speed-8K", "ERNIE-Lite-8K"
|
||||||
|
|
||||||
|
|
||||||
# 如果使用ChatGLM2微调模型,请把 LLM_MODEL="chatglmft",并在此处指定模型路径
|
# 如果使用ChatGLM2微调模型,请把 LLM_MODEL="chatglmft",并在此处指定模型路径
|
||||||
@@ -127,6 +146,7 @@ CHATGLM_PTUNING_CHECKPOINT = "" # 例如"/home/hmp/ChatGLM2-6B/ptuning/output/6b
|
|||||||
LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
|
LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
|
||||||
LOCAL_MODEL_QUANT = "FP16" # 默认 "FP16" "INT4" 启用量化INT4版本 "INT8" 启用量化INT8版本
|
LOCAL_MODEL_QUANT = "FP16" # 默认 "FP16" "INT4" 启用量化INT4版本 "INT8" 启用量化INT8版本
|
||||||
|
|
||||||
|
|
||||||
# 设置gradio的并行线程数(不需要修改)
|
# 设置gradio的并行线程数(不需要修改)
|
||||||
CONCURRENT_COUNT = 100
|
CONCURRENT_COUNT = 100
|
||||||
|
|
||||||
@@ -144,7 +164,8 @@ ADD_WAIFU = False
|
|||||||
AUTHENTICATION = []
|
AUTHENTICATION = []
|
||||||
|
|
||||||
|
|
||||||
# 如果需要在二级路径下运行(常规情况下,不要修改!!)(需要配合修改main.py才能生效!)
|
# 如果需要在二级路径下运行(常规情况下,不要修改!!)
|
||||||
|
# (举例 CUSTOM_PATH = "/gpt_academic",可以让软件运行在 http://ip:port/gpt_academic/ 下。)
|
||||||
CUSTOM_PATH = "/"
|
CUSTOM_PATH = "/"
|
||||||
|
|
||||||
|
|
||||||
@@ -172,14 +193,8 @@ AZURE_ENGINE = "填入你亲手写的部署名" # 读 docs\use_azure.
|
|||||||
AZURE_CFG_ARRAY = {}
|
AZURE_CFG_ARRAY = {}
|
||||||
|
|
||||||
|
|
||||||
# 使用Newbing (不推荐使用,未来将删除)
|
# 阿里云实时语音识别 配置难度较高
|
||||||
NEWBING_STYLE = "creative" # ["creative", "balanced", "precise"]
|
# 参考 https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md
|
||||||
NEWBING_COOKIES = """
|
|
||||||
put your new bing cookies here
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
|
||||||
# 阿里云实时语音识别 配置难度较高 仅建议高手用户使用 参考 https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md
|
|
||||||
ENABLE_AUDIO = False
|
ENABLE_AUDIO = False
|
||||||
ALIYUN_TOKEN="" # 例如 f37f30e0f9934c34a992f6f64f7eba4f
|
ALIYUN_TOKEN="" # 例如 f37f30e0f9934c34a992f6f64f7eba4f
|
||||||
ALIYUN_APPKEY="" # 例如 RoPlZrM88DnAFkZK
|
ALIYUN_APPKEY="" # 例如 RoPlZrM88DnAFkZK
|
||||||
@@ -187,6 +202,12 @@ ALIYUN_ACCESSKEY="" # (无需填写)
|
|||||||
ALIYUN_SECRET="" # (无需填写)
|
ALIYUN_SECRET="" # (无需填写)
|
||||||
|
|
||||||
|
|
||||||
|
# GPT-SOVITS 文本转语音服务的运行地址(将语言模型的生成文本朗读出来)
|
||||||
|
TTS_TYPE = "EDGE_TTS" # EDGE_TTS / LOCAL_SOVITS_API / DISABLE
|
||||||
|
GPT_SOVITS_URL = ""
|
||||||
|
EDGE_TTS_VOICE = "zh-CN-XiaoxiaoNeural"
|
||||||
|
|
||||||
|
|
||||||
# 接入讯飞星火大模型 https://console.xfyun.cn/services/iat
|
# 接入讯飞星火大模型 https://console.xfyun.cn/services/iat
|
||||||
XFYUN_APPID = "00000000"
|
XFYUN_APPID = "00000000"
|
||||||
XFYUN_API_SECRET = "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"
|
XFYUN_API_SECRET = "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"
|
||||||
@@ -195,19 +216,32 @@ XFYUN_API_KEY = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
|
|||||||
|
|
||||||
# 接入智谱大模型
|
# 接入智谱大模型
|
||||||
ZHIPUAI_API_KEY = ""
|
ZHIPUAI_API_KEY = ""
|
||||||
ZHIPUAI_MODEL = "glm-4" # 可选 "glm-3-turbo" "glm-4"
|
ZHIPUAI_MODEL = "" # 此选项已废弃,不再需要填写
|
||||||
|
|
||||||
|
|
||||||
# # 火山引擎YUNQUE大模型
|
|
||||||
# YUNQUE_SECRET_KEY = ""
|
|
||||||
# YUNQUE_ACCESS_KEY = ""
|
|
||||||
# YUNQUE_MODEL = ""
|
|
||||||
|
|
||||||
|
|
||||||
# Claude API KEY
|
# Claude API KEY
|
||||||
ANTHROPIC_API_KEY = ""
|
ANTHROPIC_API_KEY = ""
|
||||||
|
|
||||||
|
|
||||||
|
# 月之暗面 API KEY
|
||||||
|
MOONSHOT_API_KEY = ""
|
||||||
|
|
||||||
|
|
||||||
|
# 零一万物(Yi Model) API KEY
|
||||||
|
YIMODEL_API_KEY = ""
|
||||||
|
|
||||||
|
# 深度求索(DeepSeek) API KEY,默认请求地址为"https://api.deepseek.com/v1/chat/completions"
|
||||||
|
DEEPSEEK_API_KEY = ""
|
||||||
|
|
||||||
|
# Mathpix 拥有执行PDF的OCR功能,但是需要注册账号
|
||||||
|
MATHPIX_APPID = ""
|
||||||
|
MATHPIX_APPKEY = ""
|
||||||
|
|
||||||
|
|
||||||
|
# DOC2X的PDF解析服务,注册账号并获取API KEY: https://doc2x.noedgeai.com/login
|
||||||
|
DOC2X_API_KEY = ""
|
||||||
|
|
||||||
|
|
||||||
# 自定义API KEY格式
|
# 自定义API KEY格式
|
||||||
CUSTOM_API_KEY_PATTERN = ""
|
CUSTOM_API_KEY_PATTERN = ""
|
||||||
|
|
||||||
@@ -261,7 +295,11 @@ PLUGIN_HOT_RELOAD = False
|
|||||||
# 自定义按钮的最大数量限制
|
# 自定义按钮的最大数量限制
|
||||||
NUM_CUSTOM_BASIC_BTN = 4
|
NUM_CUSTOM_BASIC_BTN = 4
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
--------------- 配置关联关系说明 ---------------
|
||||||
|
|
||||||
在线大模型配置关联关系示意图
|
在线大模型配置关联关系示意图
|
||||||
│
|
│
|
||||||
├── "gpt-3.5-turbo" 等openai模型
|
├── "gpt-3.5-turbo" 等openai模型
|
||||||
@@ -285,7 +323,7 @@ NUM_CUSTOM_BASIC_BTN = 4
|
|||||||
│ ├── XFYUN_API_SECRET
|
│ ├── XFYUN_API_SECRET
|
||||||
│ └── XFYUN_API_KEY
|
│ └── XFYUN_API_KEY
|
||||||
│
|
│
|
||||||
├── "claude-1-100k" 等claude模型
|
├── "claude-3-opus-20240229" 等claude模型
|
||||||
│ └── ANTHROPIC_API_KEY
|
│ └── ANTHROPIC_API_KEY
|
||||||
│
|
│
|
||||||
├── "stack-claude"
|
├── "stack-claude"
|
||||||
@@ -297,9 +335,11 @@ NUM_CUSTOM_BASIC_BTN = 4
|
|||||||
│ ├── BAIDU_CLOUD_API_KEY
|
│ ├── BAIDU_CLOUD_API_KEY
|
||||||
│ └── BAIDU_CLOUD_SECRET_KEY
|
│ └── BAIDU_CLOUD_SECRET_KEY
|
||||||
│
|
│
|
||||||
├── "zhipuai" 智谱AI大模型chatglm_turbo
|
├── "glm-4", "glm-3-turbo", "zhipuai" 智谱AI大模型
|
||||||
│ ├── ZHIPUAI_API_KEY
|
│ └── ZHIPUAI_API_KEY
|
||||||
│ └── ZHIPUAI_MODEL
|
│
|
||||||
|
├── "yi-34b-chat-0205", "yi-34b-chat-200k" 等零一万物(Yi Model)大模型
|
||||||
|
│ └── YIMODEL_API_KEY
|
||||||
│
|
│
|
||||||
├── "qwen-turbo" 等通义千问大模型
|
├── "qwen-turbo" 等通义千问大模型
|
||||||
│ └── DASHSCOPE_API_KEY
|
│ └── DASHSCOPE_API_KEY
|
||||||
@@ -307,9 +347,10 @@ NUM_CUSTOM_BASIC_BTN = 4
|
|||||||
├── "Gemini"
|
├── "Gemini"
|
||||||
│ └── GEMINI_API_KEY
|
│ └── GEMINI_API_KEY
|
||||||
│
|
│
|
||||||
└── "newbing" Newbing接口不再稳定,不推荐使用
|
└── "one-api-...(max_token=...)" 用一种更方便的方式接入one-api多模型管理界面
|
||||||
├── NEWBING_STYLE
|
├── AVAIL_LLM_MODELS
|
||||||
└── NEWBING_COOKIES
|
├── API_KEY
|
||||||
|
└── API_URL_REDIRECT
|
||||||
|
|
||||||
|
|
||||||
本地大模型示意图
|
本地大模型示意图
|
||||||
@@ -351,6 +392,9 @@ NUM_CUSTOM_BASIC_BTN = 4
|
|||||||
│ └── ALIYUN_SECRET
|
│ └── ALIYUN_SECRET
|
||||||
│
|
│
|
||||||
└── PDF文档精准解析
|
└── PDF文档精准解析
|
||||||
└── GROBID_URLS
|
├── GROBID_URLS
|
||||||
|
├── MATHPIX_APPID
|
||||||
|
└── MATHPIX_APPKEY
|
||||||
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|||||||
@@ -33,17 +33,19 @@ def get_core_functions():
|
|||||||
"AutoClearHistory": False,
|
"AutoClearHistory": False,
|
||||||
# [6] 文本预处理 (可选参数,默认 None,举例:写个函数移除所有的换行符)
|
# [6] 文本预处理 (可选参数,默认 None,举例:写个函数移除所有的换行符)
|
||||||
"PreProcess": None,
|
"PreProcess": None,
|
||||||
|
# [7] 模型选择 (可选参数。如不设置,则使用当前全局模型;如设置,则用指定模型覆盖全局模型。)
|
||||||
|
# "ModelOverride": "gpt-3.5-turbo", # 主要用途:强制点击此基础功能按钮时,使用指定的模型。
|
||||||
},
|
},
|
||||||
|
|
||||||
|
|
||||||
"总结绘制脑图": {
|
"总结绘制脑图": {
|
||||||
# 前缀,会被加在你的输入之前。例如,用来描述你的要求,例如翻译、解释代码、润色等等
|
# 前缀,会被加在你的输入之前。例如,用来描述你的要求,例如翻译、解释代码、润色等等
|
||||||
"Prefix": r"",
|
"Prefix": '''"""\n\n''',
|
||||||
# 后缀,会被加在你的输入之后。例如,配合前缀可以把你的输入内容用引号圈起来
|
# 后缀,会被加在你的输入之后。例如,配合前缀可以把你的输入内容用引号圈起来
|
||||||
"Suffix":
|
"Suffix":
|
||||||
# dedent() 函数用于去除多行字符串的缩进
|
# dedent() 函数用于去除多行字符串的缩进
|
||||||
dedent("\n"+r'''
|
dedent("\n\n"+r'''
|
||||||
==============================
|
"""
|
||||||
|
|
||||||
使用mermaid flowchart对以上文本进行总结,概括上述段落的内容以及内在逻辑关系,例如:
|
使用mermaid flowchart对以上文本进行总结,概括上述段落的内容以及内在逻辑关系,例如:
|
||||||
|
|
||||||
@@ -57,7 +59,7 @@ def get_core_functions():
|
|||||||
C --> |"箭头名2"| F["节点名6"]
|
C --> |"箭头名2"| F["节点名6"]
|
||||||
```
|
```
|
||||||
|
|
||||||
警告:
|
注意:
|
||||||
(1)使用中文
|
(1)使用中文
|
||||||
(2)节点名字使用引号包裹,如["Laptop"]
|
(2)节点名字使用引号包裹,如["Laptop"]
|
||||||
(3)`|` 和 `"`之间不要存在空格
|
(3)`|` 和 `"`之间不要存在空格
|
||||||
|
|||||||
@@ -15,26 +15,35 @@ def get_crazy_functions():
|
|||||||
from crazy_functions.解析项目源代码 import 解析一个Java项目
|
from crazy_functions.解析项目源代码 import 解析一个Java项目
|
||||||
from crazy_functions.解析项目源代码 import 解析一个前端项目
|
from crazy_functions.解析项目源代码 import 解析一个前端项目
|
||||||
from crazy_functions.高级功能函数模板 import 高阶功能模板函数
|
from crazy_functions.高级功能函数模板 import 高阶功能模板函数
|
||||||
|
from crazy_functions.高级功能函数模板 import Demo_Wrap
|
||||||
from crazy_functions.Latex全文润色 import Latex英文润色
|
from crazy_functions.Latex全文润色 import Latex英文润色
|
||||||
from crazy_functions.询问多个大语言模型 import 同时问询
|
from crazy_functions.询问多个大语言模型 import 同时问询
|
||||||
from crazy_functions.解析项目源代码 import 解析一个Lua项目
|
from crazy_functions.解析项目源代码 import 解析一个Lua项目
|
||||||
from crazy_functions.解析项目源代码 import 解析一个CSharp项目
|
from crazy_functions.解析项目源代码 import 解析一个CSharp项目
|
||||||
from crazy_functions.总结word文档 import 总结word文档
|
from crazy_functions.总结word文档 import 总结word文档
|
||||||
from crazy_functions.解析JupyterNotebook import 解析ipynb文件
|
from crazy_functions.解析JupyterNotebook import 解析ipynb文件
|
||||||
from crazy_functions.对话历史存档 import 对话历史存档
|
from crazy_functions.Conversation_To_File import 载入对话历史存档
|
||||||
from crazy_functions.对话历史存档 import 载入对话历史存档
|
from crazy_functions.Conversation_To_File import 对话历史存档
|
||||||
from crazy_functions.对话历史存档 import 删除所有本地对话历史记录
|
from crazy_functions.Conversation_To_File import Conversation_To_File_Wrap
|
||||||
|
from crazy_functions.Conversation_To_File import 删除所有本地对话历史记录
|
||||||
from crazy_functions.辅助功能 import 清除缓存
|
from crazy_functions.辅助功能 import 清除缓存
|
||||||
from crazy_functions.批量Markdown翻译 import Markdown英译中
|
from crazy_functions.Markdown_Translate import Markdown英译中
|
||||||
from crazy_functions.批量总结PDF文档 import 批量总结PDF文档
|
from crazy_functions.批量总结PDF文档 import 批量总结PDF文档
|
||||||
from crazy_functions.批量翻译PDF文档_多线程 import 批量翻译PDF文档
|
from crazy_functions.PDF_Translate import 批量翻译PDF文档
|
||||||
from crazy_functions.谷歌检索小助手 import 谷歌检索小助手
|
from crazy_functions.谷歌检索小助手 import 谷歌检索小助手
|
||||||
from crazy_functions.理解PDF文档内容 import 理解PDF文档内容标准文件输入
|
from crazy_functions.理解PDF文档内容 import 理解PDF文档内容标准文件输入
|
||||||
from crazy_functions.Latex全文润色 import Latex中文润色
|
from crazy_functions.Latex全文润色 import Latex中文润色
|
||||||
from crazy_functions.Latex全文润色 import Latex英文纠错
|
from crazy_functions.Latex全文润色 import Latex英文纠错
|
||||||
from crazy_functions.批量Markdown翻译 import Markdown中译英
|
from crazy_functions.Markdown_Translate import Markdown中译英
|
||||||
from crazy_functions.虚空终端 import 虚空终端
|
from crazy_functions.虚空终端 import 虚空终端
|
||||||
from crazy_functions.生成多种Mermaid图表 import 生成多种Mermaid图表
|
from crazy_functions.生成多种Mermaid图表 import Mermaid_Gen
|
||||||
|
from crazy_functions.PDF_Translate_Wrap import PDF_Tran
|
||||||
|
from crazy_functions.Latex_Function import Latex英文纠错加PDF对比
|
||||||
|
from crazy_functions.Latex_Function import Latex翻译中文并重新编译PDF
|
||||||
|
from crazy_functions.Latex_Function import PDF翻译中文并重新编译PDF
|
||||||
|
from crazy_functions.Latex_Function_Wrap import Arxiv_Localize
|
||||||
|
from crazy_functions.Latex_Function_Wrap import PDF_Localize
|
||||||
|
|
||||||
|
|
||||||
function_plugins = {
|
function_plugins = {
|
||||||
"虚空终端": {
|
"虚空终端": {
|
||||||
@@ -70,14 +79,13 @@ def get_crazy_functions():
|
|||||||
"Info": "清除所有缓存文件,谨慎操作 | 不需要输入参数",
|
"Info": "清除所有缓存文件,谨慎操作 | 不需要输入参数",
|
||||||
"Function": HotReload(清除缓存),
|
"Function": HotReload(清除缓存),
|
||||||
},
|
},
|
||||||
"生成多种Mermaid图表(从当前对话或文件(.pdf/.md)中生产图表)": {
|
"生成多种Mermaid图表(从当前对话或路径(.pdf/.md/.docx)中生产图表)": {
|
||||||
"Group": "对话",
|
"Group": "对话",
|
||||||
"Color": "stop",
|
"Color": "stop",
|
||||||
"AsButton": False,
|
"AsButton": False,
|
||||||
"Info" : "基于当前对话或PDF生成多种Mermaid图表,图表类型由模型判断",
|
"Info" : "基于当前对话或文件生成多种Mermaid图表,图表类型由模型判断",
|
||||||
"Function": HotReload(生成多种Mermaid图表),
|
"Function": None,
|
||||||
"AdvancedArgs": True,
|
"Class": Mermaid_Gen
|
||||||
"ArgsReminder": "请输入图类型对应的数字,不输入则为模型自行判断:1-流程图,2-序列图,3-类图,4-饼图,5-甘特图,6-状态图,7-实体关系图,8-象限提示图,9-思维导图",
|
|
||||||
},
|
},
|
||||||
"批量总结Word文档": {
|
"批量总结Word文档": {
|
||||||
"Group": "学术",
|
"Group": "学术",
|
||||||
@@ -190,7 +198,8 @@ def get_crazy_functions():
|
|||||||
"Group": "对话",
|
"Group": "对话",
|
||||||
"AsButton": True,
|
"AsButton": True,
|
||||||
"Info": "保存当前的对话 | 不需要输入参数",
|
"Info": "保存当前的对话 | 不需要输入参数",
|
||||||
"Function": HotReload(对话历史存档),
|
"Function": HotReload(对话历史存档), # 当注册Class后,Function旧接口仅会在“虚空终端”中起作用
|
||||||
|
"Class": Conversation_To_File_Wrap # 新一代插件需要注册Class
|
||||||
},
|
},
|
||||||
"[多线程Demo]解析此项目本身(源码自译解)": {
|
"[多线程Demo]解析此项目本身(源码自译解)": {
|
||||||
"Group": "对话|编程",
|
"Group": "对话|编程",
|
||||||
@@ -202,14 +211,16 @@ def get_crazy_functions():
|
|||||||
"Group": "对话",
|
"Group": "对话",
|
||||||
"AsButton": True,
|
"AsButton": True,
|
||||||
"Info": "查看历史上的今天事件 (这是一个面向开发者的插件Demo) | 不需要输入参数",
|
"Info": "查看历史上的今天事件 (这是一个面向开发者的插件Demo) | 不需要输入参数",
|
||||||
"Function": HotReload(高阶功能模板函数),
|
"Function": None,
|
||||||
|
"Class": Demo_Wrap, # 新一代插件需要注册Class
|
||||||
},
|
},
|
||||||
"精准翻译PDF论文": {
|
"精准翻译PDF论文": {
|
||||||
"Group": "学术",
|
"Group": "学术",
|
||||||
"Color": "stop",
|
"Color": "stop",
|
||||||
"AsButton": True,
|
"AsButton": True,
|
||||||
"Info": "精准翻译PDF论文为中文 | 输入参数为路径",
|
"Info": "精准翻译PDF论文为中文 | 输入参数为路径",
|
||||||
"Function": HotReload(批量翻译PDF文档),
|
"Function": HotReload(批量翻译PDF文档), # 当注册Class后,Function旧接口仅会在“虚空终端”中起作用
|
||||||
|
"Class": PDF_Tran, # 新一代插件需要注册Class
|
||||||
},
|
},
|
||||||
"询问多个GPT模型": {
|
"询问多个GPT模型": {
|
||||||
"Group": "对话",
|
"Group": "对话",
|
||||||
@@ -284,7 +295,51 @@ def get_crazy_functions():
|
|||||||
"Info": "批量将Markdown文件中文翻译为英文 | 输入参数为路径或上传压缩包",
|
"Info": "批量将Markdown文件中文翻译为英文 | 输入参数为路径或上传压缩包",
|
||||||
"Function": HotReload(Markdown中译英),
|
"Function": HotReload(Markdown中译英),
|
||||||
},
|
},
|
||||||
|
"Latex英文纠错+高亮修正位置 [需Latex]": {
|
||||||
|
"Group": "学术",
|
||||||
|
"Color": "stop",
|
||||||
|
"AsButton": False,
|
||||||
|
"AdvancedArgs": True,
|
||||||
|
"ArgsReminder": "如果有必要, 请在此处追加更细致的矫错指令(使用英文)。",
|
||||||
|
"Function": HotReload(Latex英文纠错加PDF对比),
|
||||||
|
},
|
||||||
|
"Arxiv论文精细翻译(输入arxivID)[需Latex]": {
|
||||||
|
"Group": "学术",
|
||||||
|
"Color": "stop",
|
||||||
|
"AsButton": False,
|
||||||
|
"AdvancedArgs": True,
|
||||||
|
"ArgsReminder": r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
|
||||||
|
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
|
||||||
|
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
||||||
|
"Info": "Arixv论文精细翻译 | 输入参数arxiv论文的ID,比如1812.10695",
|
||||||
|
"Function": HotReload(Latex翻译中文并重新编译PDF), # 当注册Class后,Function旧接口仅会在“虚空终端”中起作用
|
||||||
|
"Class": Arxiv_Localize, # 新一代插件需要注册Class
|
||||||
|
},
|
||||||
|
"本地Latex论文精细翻译(上传Latex项目)[需Latex]": {
|
||||||
|
"Group": "学术",
|
||||||
|
"Color": "stop",
|
||||||
|
"AsButton": False,
|
||||||
|
"AdvancedArgs": True,
|
||||||
|
"ArgsReminder": r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
|
||||||
|
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
|
||||||
|
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
||||||
|
"Info": "本地Latex论文精细翻译 | 输入参数是路径",
|
||||||
|
"Function": HotReload(Latex翻译中文并重新编译PDF),
|
||||||
|
},
|
||||||
|
"PDF翻译中文并重新编译PDF(上传PDF)[需Latex]": {
|
||||||
|
"Group": "学术",
|
||||||
|
"Color": "stop",
|
||||||
|
"AsButton": False,
|
||||||
|
"AdvancedArgs": True,
|
||||||
|
"ArgsReminder": r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
|
||||||
|
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
|
||||||
|
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
||||||
|
"Info": "PDF翻译中文,并重新编译PDF | 输入参数为路径",
|
||||||
|
"Function": HotReload(PDF翻译中文并重新编译PDF), # 当注册Class后,Function旧接口仅会在“虚空终端”中起作用
|
||||||
|
"Class": PDF_Localize # 新一代插件需要注册Class
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
# -=--=- 尚未充分测试的实验性插件 & 需要额外依赖的插件 -=--=-
|
# -=--=- 尚未充分测试的实验性插件 & 需要额外依赖的插件 -=--=-
|
||||||
try:
|
try:
|
||||||
@@ -458,7 +513,7 @@ def get_crazy_functions():
|
|||||||
print("Load function plugin failed")
|
print("Load function plugin failed")
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from crazy_functions.批量Markdown翻译 import Markdown翻译指定语言
|
from crazy_functions.Markdown_Translate import Markdown翻译指定语言
|
||||||
|
|
||||||
function_plugins.update(
|
function_plugins.update(
|
||||||
{
|
{
|
||||||
@@ -531,47 +586,6 @@ def get_crazy_functions():
|
|||||||
print(trimmed_format_exc())
|
print(trimmed_format_exc())
|
||||||
print("Load function plugin failed")
|
print("Load function plugin failed")
|
||||||
|
|
||||||
try:
|
|
||||||
from crazy_functions.Latex输出PDF结果 import Latex英文纠错加PDF对比
|
|
||||||
from crazy_functions.Latex输出PDF结果 import Latex翻译中文并重新编译PDF
|
|
||||||
|
|
||||||
function_plugins.update(
|
|
||||||
{
|
|
||||||
"Latex英文纠错+高亮修正位置 [需Latex]": {
|
|
||||||
"Group": "学术",
|
|
||||||
"Color": "stop",
|
|
||||||
"AsButton": False,
|
|
||||||
"AdvancedArgs": True,
|
|
||||||
"ArgsReminder": "如果有必要, 请在此处追加更细致的矫错指令(使用英文)。",
|
|
||||||
"Function": HotReload(Latex英文纠错加PDF对比),
|
|
||||||
},
|
|
||||||
"Arxiv论文精细翻译(输入arxivID)[需Latex]": {
|
|
||||||
"Group": "学术",
|
|
||||||
"Color": "stop",
|
|
||||||
"AsButton": False,
|
|
||||||
"AdvancedArgs": True,
|
|
||||||
"ArgsReminder": "如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
|
|
||||||
+ "例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
|
|
||||||
+ 'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
|
||||||
"Info": "Arixv论文精细翻译 | 输入参数arxiv论文的ID,比如1812.10695",
|
|
||||||
"Function": HotReload(Latex翻译中文并重新编译PDF),
|
|
||||||
},
|
|
||||||
"本地Latex论文精细翻译(上传Latex项目)[需Latex]": {
|
|
||||||
"Group": "学术",
|
|
||||||
"Color": "stop",
|
|
||||||
"AsButton": False,
|
|
||||||
"AdvancedArgs": True,
|
|
||||||
"ArgsReminder": "如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
|
|
||||||
+ "例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
|
|
||||||
+ 'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
|
||||||
"Info": "本地Latex论文精细翻译 | 输入参数是路径",
|
|
||||||
"Function": HotReload(Latex翻译中文并重新编译PDF),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
)
|
|
||||||
except:
|
|
||||||
print(trimmed_format_exc())
|
|
||||||
print("Load function plugin failed")
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from toolbox import get_conf
|
from toolbox import get_conf
|
||||||
|
|||||||
@@ -1,232 +0,0 @@
|
|||||||
from collections.abc import Callable, Iterable, Mapping
|
|
||||||
from typing import Any
|
|
||||||
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc
|
|
||||||
from toolbox import promote_file_to_downloadzone, get_log_folder
|
|
||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
|
||||||
from .crazy_utils import input_clipping, try_install_deps
|
|
||||||
from multiprocessing import Process, Pipe
|
|
||||||
import os
|
|
||||||
import time
|
|
||||||
|
|
||||||
templete = """
|
|
||||||
```python
|
|
||||||
import ... # Put dependencies here, e.g. import numpy as np
|
|
||||||
|
|
||||||
class TerminalFunction(object): # Do not change the name of the class, The name of the class must be `TerminalFunction`
|
|
||||||
|
|
||||||
def run(self, path): # The name of the function must be `run`, it takes only a positional argument.
|
|
||||||
# rewrite the function you have just written here
|
|
||||||
...
|
|
||||||
return generated_file_path
|
|
||||||
```
|
|
||||||
"""
|
|
||||||
|
|
||||||
def inspect_dependency(chatbot, history):
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
return True
|
|
||||||
|
|
||||||
def get_code_block(reply):
|
|
||||||
import re
|
|
||||||
pattern = r"```([\s\S]*?)```" # regex pattern to match code blocks
|
|
||||||
matches = re.findall(pattern, reply) # find all code blocks in text
|
|
||||||
if len(matches) == 1:
|
|
||||||
return matches[0].strip('python') # code block
|
|
||||||
for match in matches:
|
|
||||||
if 'class TerminalFunction' in match:
|
|
||||||
return match.strip('python') # code block
|
|
||||||
raise RuntimeError("GPT is not generating proper code.")
|
|
||||||
|
|
||||||
def gpt_interact_multi_step(txt, file_type, llm_kwargs, chatbot, history):
|
|
||||||
# 输入
|
|
||||||
prompt_compose = [
|
|
||||||
f'Your job:\n'
|
|
||||||
f'1. write a single Python function, which takes a path of a `{file_type}` file as the only argument and returns a `string` containing the result of analysis or the path of generated files. \n',
|
|
||||||
f"2. You should write this function to perform following task: " + txt + "\n",
|
|
||||||
f"3. Wrap the output python function with markdown codeblock."
|
|
||||||
]
|
|
||||||
i_say = "".join(prompt_compose)
|
|
||||||
demo = []
|
|
||||||
|
|
||||||
# 第一步
|
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
|
||||||
inputs=i_say, inputs_show_user=i_say,
|
|
||||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=demo,
|
|
||||||
sys_prompt= r"You are a programmer."
|
|
||||||
)
|
|
||||||
history.extend([i_say, gpt_say])
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
|
||||||
|
|
||||||
# 第二步
|
|
||||||
prompt_compose = [
|
|
||||||
"If previous stage is successful, rewrite the function you have just written to satisfy following templete: \n",
|
|
||||||
templete
|
|
||||||
]
|
|
||||||
i_say = "".join(prompt_compose); inputs_show_user = "If previous stage is successful, rewrite the function you have just written to satisfy executable templete. "
|
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
|
||||||
inputs=i_say, inputs_show_user=inputs_show_user,
|
|
||||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
|
||||||
sys_prompt= r"You are a programmer."
|
|
||||||
)
|
|
||||||
code_to_return = gpt_say
|
|
||||||
history.extend([i_say, gpt_say])
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
|
||||||
|
|
||||||
# # 第三步
|
|
||||||
# i_say = "Please list to packages to install to run the code above. Then show me how to use `try_install_deps` function to install them."
|
|
||||||
# i_say += 'For instance. `try_install_deps(["opencv-python", "scipy", "numpy"])`'
|
|
||||||
# installation_advance = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
|
||||||
# inputs=i_say, inputs_show_user=inputs_show_user,
|
|
||||||
# llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
|
||||||
# sys_prompt= r"You are a programmer."
|
|
||||||
# )
|
|
||||||
# # # 第三步
|
|
||||||
# i_say = "Show me how to use `pip` to install packages to run the code above. "
|
|
||||||
# i_say += 'For instance. `pip install -r opencv-python scipy numpy`'
|
|
||||||
# installation_advance = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
|
||||||
# inputs=i_say, inputs_show_user=i_say,
|
|
||||||
# llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
|
||||||
# sys_prompt= r"You are a programmer."
|
|
||||||
# )
|
|
||||||
installation_advance = ""
|
|
||||||
|
|
||||||
return code_to_return, installation_advance, txt, file_type, llm_kwargs, chatbot, history
|
|
||||||
|
|
||||||
def make_module(code):
|
|
||||||
module_file = 'gpt_fn_' + gen_time_str().replace('-','_')
|
|
||||||
with open(f'{get_log_folder()}/{module_file}.py', 'w', encoding='utf8') as f:
|
|
||||||
f.write(code)
|
|
||||||
|
|
||||||
def get_class_name(class_string):
|
|
||||||
import re
|
|
||||||
# Use regex to extract the class name
|
|
||||||
class_name = re.search(r'class (\w+)\(', class_string).group(1)
|
|
||||||
return class_name
|
|
||||||
|
|
||||||
class_name = get_class_name(code)
|
|
||||||
return f"{get_log_folder().replace('/', '.')}.{module_file}->{class_name}"
|
|
||||||
|
|
||||||
def init_module_instance(module):
|
|
||||||
import importlib
|
|
||||||
module_, class_ = module.split('->')
|
|
||||||
init_f = getattr(importlib.import_module(module_), class_)
|
|
||||||
return init_f()
|
|
||||||
|
|
||||||
def for_immediate_show_off_when_possible(file_type, fp, chatbot):
|
|
||||||
if file_type in ['png', 'jpg']:
|
|
||||||
image_path = os.path.abspath(fp)
|
|
||||||
chatbot.append(['这是一张图片, 展示如下:',
|
|
||||||
f'本地文件地址: <br/>`{image_path}`<br/>'+
|
|
||||||
f'本地文件预览: <br/><div align="center"><img src="file={image_path}"></div>'
|
|
||||||
])
|
|
||||||
return chatbot
|
|
||||||
|
|
||||||
def subprocess_worker(instance, file_path, return_dict):
|
|
||||||
return_dict['result'] = instance.run(file_path)
|
|
||||||
|
|
||||||
def have_any_recent_upload_files(chatbot):
|
|
||||||
_5min = 5 * 60
|
|
||||||
if not chatbot: return False # chatbot is None
|
|
||||||
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
|
|
||||||
if not most_recent_uploaded: return False # most_recent_uploaded is None
|
|
||||||
if time.time() - most_recent_uploaded["time"] < _5min: return True # most_recent_uploaded is new
|
|
||||||
else: return False # most_recent_uploaded is too old
|
|
||||||
|
|
||||||
def get_recent_file_prompt_support(chatbot):
|
|
||||||
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
|
|
||||||
path = most_recent_uploaded['path']
|
|
||||||
return path
|
|
||||||
|
|
||||||
@CatchException
|
|
||||||
def 虚空终端CodeInterpreter(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
|
||||||
"""
|
|
||||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
|
||||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
|
||||||
plugin_kwargs 插件模型的参数,暂时没有用武之地
|
|
||||||
chatbot 聊天显示框的句柄,用于显示给用户
|
|
||||||
history 聊天历史,前情提要
|
|
||||||
system_prompt 给gpt的静默提醒
|
|
||||||
user_request 当前用户的请求信息(IP地址等)
|
|
||||||
"""
|
|
||||||
raise NotImplementedError
|
|
||||||
|
|
||||||
# 清空历史,以免输入溢出
|
|
||||||
history = []; clear_file_downloadzone(chatbot)
|
|
||||||
|
|
||||||
# 基本信息:功能、贡献者
|
|
||||||
chatbot.append([
|
|
||||||
"函数插件功能?",
|
|
||||||
"CodeInterpreter开源版, 此插件处于开发阶段, 建议暂时不要使用, 插件初始化中 ..."
|
|
||||||
])
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
|
|
||||||
if have_any_recent_upload_files(chatbot):
|
|
||||||
file_path = get_recent_file_prompt_support(chatbot)
|
|
||||||
else:
|
|
||||||
chatbot.append(["文件检索", "没有发现任何近期上传的文件。"])
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
|
|
||||||
# 读取文件
|
|
||||||
if ("recently_uploaded_files" in plugin_kwargs) and (plugin_kwargs["recently_uploaded_files"] == ""): plugin_kwargs.pop("recently_uploaded_files")
|
|
||||||
recently_uploaded_files = plugin_kwargs.get("recently_uploaded_files", None)
|
|
||||||
file_path = recently_uploaded_files[-1]
|
|
||||||
file_type = file_path.split('.')[-1]
|
|
||||||
|
|
||||||
# 粗心检查
|
|
||||||
if is_the_upload_folder(txt):
|
|
||||||
chatbot.append([
|
|
||||||
"...",
|
|
||||||
f"请在输入框内填写需求,然后再次点击该插件(文件路径 {file_path} 已经被记忆)"
|
|
||||||
])
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
return
|
|
||||||
|
|
||||||
# 开始干正事
|
|
||||||
for j in range(5): # 最多重试5次
|
|
||||||
try:
|
|
||||||
code, installation_advance, txt, file_type, llm_kwargs, chatbot, history = \
|
|
||||||
yield from gpt_interact_multi_step(txt, file_type, llm_kwargs, chatbot, history)
|
|
||||||
code = get_code_block(code)
|
|
||||||
res = make_module(code)
|
|
||||||
instance = init_module_instance(res)
|
|
||||||
break
|
|
||||||
except Exception as e:
|
|
||||||
chatbot.append([f"第{j}次代码生成尝试,失败了", f"错误追踪\n```\n{trimmed_format_exc()}\n```\n"])
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
|
|
||||||
# 代码生成结束, 开始执行
|
|
||||||
try:
|
|
||||||
import multiprocessing
|
|
||||||
manager = multiprocessing.Manager()
|
|
||||||
return_dict = manager.dict()
|
|
||||||
|
|
||||||
p = multiprocessing.Process(target=subprocess_worker, args=(instance, file_path, return_dict))
|
|
||||||
# only has 10 seconds to run
|
|
||||||
p.start(); p.join(timeout=10)
|
|
||||||
if p.is_alive(): p.terminate(); p.join()
|
|
||||||
p.close()
|
|
||||||
res = return_dict['result']
|
|
||||||
# res = instance.run(file_path)
|
|
||||||
except Exception as e:
|
|
||||||
chatbot.append(["执行失败了", f"错误追踪\n```\n{trimmed_format_exc()}\n```\n"])
|
|
||||||
# chatbot.append(["如果是缺乏依赖,请参考以下建议", installation_advance])
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
return
|
|
||||||
|
|
||||||
# 顺利完成,收尾
|
|
||||||
res = str(res)
|
|
||||||
if os.path.exists(res):
|
|
||||||
chatbot.append(["执行成功了,结果是一个有效文件", "结果:" + res])
|
|
||||||
new_file_path = promote_file_to_downloadzone(res, chatbot=chatbot)
|
|
||||||
chatbot = for_immediate_show_off_when_possible(file_type, new_file_path, chatbot)
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
|
||||||
else:
|
|
||||||
chatbot.append(["执行成功了,结果是一个字符串", "结果:" + res])
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
|
||||||
|
|
||||||
"""
|
|
||||||
测试:
|
|
||||||
裁剪图像,保留下半部分
|
|
||||||
交换图像的蓝色通道和红色通道
|
|
||||||
将图像转为灰度图像
|
|
||||||
将csv文件转excel表格
|
|
||||||
"""
|
|
||||||
@@ -1,4 +1,5 @@
|
|||||||
from toolbox import CatchException, update_ui, promote_file_to_downloadzone, get_log_folder, get_user
|
from toolbox import CatchException, update_ui, promote_file_to_downloadzone, get_log_folder, get_user
|
||||||
|
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
|
||||||
import re
|
import re
|
||||||
|
|
||||||
f_prefix = 'GPT-Academic对话存档'
|
f_prefix = 'GPT-Academic对话存档'
|
||||||
@@ -9,27 +10,61 @@ def write_chat_to_file(chatbot, history=None, file_name=None):
|
|||||||
"""
|
"""
|
||||||
import os
|
import os
|
||||||
import time
|
import time
|
||||||
|
from themes.theme import advanced_css
|
||||||
|
|
||||||
if file_name is None:
|
if file_name is None:
|
||||||
file_name = f_prefix + time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + '.html'
|
file_name = f_prefix + time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + '.html'
|
||||||
fp = os.path.join(get_log_folder(get_user(chatbot), plugin_name='chat_history'), file_name)
|
fp = os.path.join(get_log_folder(get_user(chatbot), plugin_name='chat_history'), file_name)
|
||||||
|
|
||||||
with open(fp, 'w', encoding='utf8') as f:
|
with open(fp, 'w', encoding='utf8') as f:
|
||||||
from themes.theme import advanced_css
|
from textwrap import dedent
|
||||||
f.write(f'<!DOCTYPE html><head><meta charset="utf-8"><title>对话历史</title><style>{advanced_css}</style></head>')
|
form = dedent("""
|
||||||
|
<!DOCTYPE html><head><meta charset="utf-8"><title>对话存档</title><style>{CSS}</style></head>
|
||||||
|
<body>
|
||||||
|
<div class="test_temp1" style="width:10%; height: 500px; float:left;"></div>
|
||||||
|
<div class="test_temp2" style="width:80%;padding: 40px;float:left;padding-left: 20px;padding-right: 20px;box-shadow: rgba(0, 0, 0, 0.2) 0px 0px 8px 8px;border-radius: 10px;">
|
||||||
|
<div class="chat-body" style="display: flex;justify-content: center;flex-direction: column;align-items: center;flex-wrap: nowrap;">
|
||||||
|
{CHAT_PREVIEW}
|
||||||
|
<div></div>
|
||||||
|
<div></div>
|
||||||
|
<div style="text-align: center;width:80%;padding: 0px;float:left;padding-left:20px;padding-right:20px;box-shadow: rgba(0, 0, 0, 0.05) 0px 0px 1px 2px;border-radius: 1px;">对话(原始数据)</div>
|
||||||
|
{HISTORY_PREVIEW}
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
<div class="test_temp3" style="width:10%; height: 500px; float:left;"></div>
|
||||||
|
</body>
|
||||||
|
""")
|
||||||
|
|
||||||
|
qa_from = dedent("""
|
||||||
|
<div class="QaBox" style="width:80%;padding: 20px;margin-bottom: 20px;box-shadow: rgb(0 255 159 / 50%) 0px 0px 1px 2px;border-radius: 4px;">
|
||||||
|
<div class="Question" style="border-radius: 2px;">{QUESTION}</div>
|
||||||
|
<hr color="blue" style="border-top: dotted 2px #ccc;">
|
||||||
|
<div class="Answer" style="border-radius: 2px;">{ANSWER}</div>
|
||||||
|
</div>
|
||||||
|
""")
|
||||||
|
|
||||||
|
history_from = dedent("""
|
||||||
|
<div class="historyBox" style="width:80%;padding: 0px;float:left;padding-left:20px;padding-right:20px;box-shadow: rgba(0, 0, 0, 0.05) 0px 0px 1px 2px;border-radius: 1px;">
|
||||||
|
<div class="entry" style="border-radius: 2px;">{ENTRY}</div>
|
||||||
|
</div>
|
||||||
|
""")
|
||||||
|
CHAT_PREVIEW_BUF = ""
|
||||||
for i, contents in enumerate(chatbot):
|
for i, contents in enumerate(chatbot):
|
||||||
for j, content in enumerate(contents):
|
question, answer = contents[0], contents[1]
|
||||||
try: # 这个bug没找到触发条件,暂时先这样顶一下
|
if question is None: question = ""
|
||||||
if type(content) != str: content = str(content)
|
try: question = str(question)
|
||||||
except:
|
except: question = ""
|
||||||
continue
|
if answer is None: answer = ""
|
||||||
f.write(content)
|
try: answer = str(answer)
|
||||||
if j == 0:
|
except: answer = ""
|
||||||
f.write('<hr style="border-top: dotted 3px #ccc;">')
|
CHAT_PREVIEW_BUF += qa_from.format(QUESTION=question, ANSWER=answer)
|
||||||
f.write('<hr color="red"> \n\n')
|
|
||||||
f.write('<hr color="blue"> \n\n raw chat context:\n')
|
HISTORY_PREVIEW_BUF = ""
|
||||||
f.write('<code>')
|
|
||||||
for h in history:
|
for h in history:
|
||||||
f.write("\n>>>" + h)
|
HISTORY_PREVIEW_BUF += history_from.format(ENTRY=h)
|
||||||
f.write('</code>')
|
html_content = form.format(CHAT_PREVIEW=CHAT_PREVIEW_BUF, HISTORY_PREVIEW=HISTORY_PREVIEW_BUF, CSS=advanced_css)
|
||||||
|
f.write(html_content)
|
||||||
|
|
||||||
promote_file_to_downloadzone(fp, rename_file=file_name, chatbot=chatbot)
|
promote_file_to_downloadzone(fp, rename_file=file_name, chatbot=chatbot)
|
||||||
return '对话历史写入:' + fp
|
return '对话历史写入:' + fp
|
||||||
|
|
||||||
@@ -40,7 +75,7 @@ def gen_file_preview(file_name):
|
|||||||
# pattern to match the text between <head> and </head>
|
# pattern to match the text between <head> and </head>
|
||||||
pattern = re.compile(r'<head>.*?</head>', flags=re.DOTALL)
|
pattern = re.compile(r'<head>.*?</head>', flags=re.DOTALL)
|
||||||
file_content = re.sub(pattern, '', file_content)
|
file_content = re.sub(pattern, '', file_content)
|
||||||
html, history = file_content.split('<hr color="blue"> \n\n raw chat context:\n')
|
html, history = file_content.split('<hr color="blue"> \n\n 对话数据 (无渲染):\n')
|
||||||
history = history.strip('<code>')
|
history = history.strip('<code>')
|
||||||
history = history.strip('</code>')
|
history = history.strip('</code>')
|
||||||
history = history.split("\n>>>")
|
history = history.split("\n>>>")
|
||||||
@@ -51,21 +86,25 @@ def gen_file_preview(file_name):
|
|||||||
def read_file_to_chat(chatbot, history, file_name):
|
def read_file_to_chat(chatbot, history, file_name):
|
||||||
with open(file_name, 'r', encoding='utf8') as f:
|
with open(file_name, 'r', encoding='utf8') as f:
|
||||||
file_content = f.read()
|
file_content = f.read()
|
||||||
# pattern to match the text between <head> and </head>
|
from bs4 import BeautifulSoup
|
||||||
pattern = re.compile(r'<head>.*?</head>', flags=re.DOTALL)
|
soup = BeautifulSoup(file_content, 'lxml')
|
||||||
file_content = re.sub(pattern, '', file_content)
|
# 提取QaBox信息
|
||||||
html, history = file_content.split('<hr color="blue"> \n\n raw chat context:\n')
|
|
||||||
history = history.strip('<code>')
|
|
||||||
history = history.strip('</code>')
|
|
||||||
history = history.split("\n>>>")
|
|
||||||
history = list(filter(lambda x:x!="", history))
|
|
||||||
html = html.split('<hr color="red"> \n\n')
|
|
||||||
html = list(filter(lambda x:x!="", html))
|
|
||||||
chatbot.clear()
|
chatbot.clear()
|
||||||
for i, h in enumerate(html):
|
qa_box_list = []
|
||||||
i_say, gpt_say = h.split('<hr style="border-top: dotted 3px #ccc;">')
|
qa_boxes = soup.find_all("div", class_="QaBox")
|
||||||
chatbot.append([i_say, gpt_say])
|
for box in qa_boxes:
|
||||||
chatbot.append([f"存档文件详情?", f"[Local Message] 载入对话{len(html)}条,上下文{len(history)}条。"])
|
question = box.find("div", class_="Question").get_text(strip=False)
|
||||||
|
answer = box.find("div", class_="Answer").get_text(strip=False)
|
||||||
|
qa_box_list.append({"Question": question, "Answer": answer})
|
||||||
|
chatbot.append([question, answer])
|
||||||
|
# 提取historyBox信息
|
||||||
|
history_box_list = []
|
||||||
|
history_boxes = soup.find_all("div", class_="historyBox")
|
||||||
|
for box in history_boxes:
|
||||||
|
entry = box.find("div", class_="entry").get_text(strip=False)
|
||||||
|
history_box_list.append(entry)
|
||||||
|
history = history_box_list
|
||||||
|
chatbot.append([None, f"[Local Message] 载入对话{len(qa_box_list)}条,上下文{len(history)}条。"])
|
||||||
return chatbot, history
|
return chatbot, history
|
||||||
|
|
||||||
@CatchException
|
@CatchException
|
||||||
@@ -79,11 +118,42 @@ def 对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
|||||||
system_prompt 给gpt的静默提醒
|
system_prompt 给gpt的静默提醒
|
||||||
user_request 当前用户的请求信息(IP地址等)
|
user_request 当前用户的请求信息(IP地址等)
|
||||||
"""
|
"""
|
||||||
|
file_name = plugin_kwargs.get("file_name", None)
|
||||||
|
if (file_name is not None) and (file_name != "") and (not file_name.endswith('.html')): file_name += '.html'
|
||||||
|
else: file_name = None
|
||||||
|
|
||||||
chatbot.append(("保存当前对话",
|
chatbot.append((None, f"[Local Message] {write_chat_to_file(chatbot, history, file_name)},您可以调用下拉菜单中的“载入对话历史存档”还原当下的对话。"))
|
||||||
f"[Local Message] {write_chat_to_file(chatbot, history)},您可以调用下拉菜单中的“载入对话历史存档”还原当下的对话。"))
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||||
|
|
||||||
|
|
||||||
|
class Conversation_To_File_Wrap(GptAcademicPluginTemplate):
|
||||||
|
def __init__(self):
|
||||||
|
"""
|
||||||
|
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
|
||||||
|
"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
def define_arg_selection_menu(self):
|
||||||
|
"""
|
||||||
|
定义插件的二级选项菜单
|
||||||
|
|
||||||
|
第一个参数,名称`file_name`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
|
||||||
|
"""
|
||||||
|
gui_definition = {
|
||||||
|
"file_name": ArgProperty(title="保存文件名", description="输入对话存档文件名,留空则使用时间作为文件名", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
|
||||||
|
}
|
||||||
|
return gui_definition
|
||||||
|
|
||||||
|
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||||
|
"""
|
||||||
|
执行插件
|
||||||
|
"""
|
||||||
|
yield from 对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def hide_cwd(str):
|
def hide_cwd(str):
|
||||||
import os
|
import os
|
||||||
current_path = os.getcwd()
|
current_path = os.getcwd()
|
||||||
122
crazy_functions/Internet_GPT.py
Normal file
122
crazy_functions/Internet_GPT.py
Normal file
@@ -0,0 +1,122 @@
|
|||||||
|
from toolbox import CatchException, update_ui
|
||||||
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
|
||||||
|
import requests
|
||||||
|
from bs4 import BeautifulSoup
|
||||||
|
from request_llms.bridge_all import model_info
|
||||||
|
import urllib.request
|
||||||
|
from functools import lru_cache
|
||||||
|
|
||||||
|
|
||||||
|
@lru_cache
|
||||||
|
def get_auth_ip():
|
||||||
|
try:
|
||||||
|
external_ip = urllib.request.urlopen('https://v4.ident.me/').read().decode('utf8')
|
||||||
|
return external_ip
|
||||||
|
except:
|
||||||
|
return '114.114.114.114'
|
||||||
|
|
||||||
|
def searxng_request(query, proxies):
|
||||||
|
url = 'https://cloud-1.agent-matrix.com/' # 请替换为实际的API URL
|
||||||
|
params = {
|
||||||
|
'q': query, # 搜索查询
|
||||||
|
'format': 'json', # 输出格式为JSON
|
||||||
|
'language': 'zh', # 搜索语言
|
||||||
|
}
|
||||||
|
headers = {
|
||||||
|
'Accept-Language': 'zh-CN,zh;q=0.9',
|
||||||
|
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36',
|
||||||
|
'X-Forwarded-For': get_auth_ip(),
|
||||||
|
'X-Real-IP': get_auth_ip()
|
||||||
|
}
|
||||||
|
results = []
|
||||||
|
response = requests.post(url, params=params, headers=headers, proxies=proxies)
|
||||||
|
if response.status_code == 200:
|
||||||
|
json_result = response.json()
|
||||||
|
for result in json_result['results']:
|
||||||
|
item = {
|
||||||
|
"title": result["title"],
|
||||||
|
"content": result["content"],
|
||||||
|
"link": result["url"],
|
||||||
|
}
|
||||||
|
results.append(item)
|
||||||
|
return results
|
||||||
|
else:
|
||||||
|
raise ValueError("搜索失败,状态码: " + str(response.status_code) + '\t' + response.content.decode('utf-8'))
|
||||||
|
|
||||||
|
def scrape_text(url, proxies) -> str:
|
||||||
|
"""Scrape text from a webpage
|
||||||
|
|
||||||
|
Args:
|
||||||
|
url (str): The URL to scrape text from
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: The scraped text
|
||||||
|
"""
|
||||||
|
headers = {
|
||||||
|
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36',
|
||||||
|
'Content-Type': 'text/plain',
|
||||||
|
}
|
||||||
|
try:
|
||||||
|
response = requests.get(url, headers=headers, proxies=proxies, timeout=8)
|
||||||
|
if response.encoding == "ISO-8859-1": response.encoding = response.apparent_encoding
|
||||||
|
except:
|
||||||
|
return "无法连接到该网页"
|
||||||
|
soup = BeautifulSoup(response.text, "html.parser")
|
||||||
|
for script in soup(["script", "style"]):
|
||||||
|
script.extract()
|
||||||
|
text = soup.get_text()
|
||||||
|
lines = (line.strip() for line in text.splitlines())
|
||||||
|
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
|
||||||
|
text = "\n".join(chunk for chunk in chunks if chunk)
|
||||||
|
return text
|
||||||
|
|
||||||
|
@CatchException
|
||||||
|
def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||||
|
"""
|
||||||
|
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||||
|
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||||
|
plugin_kwargs 插件模型的参数,暂时没有用武之地
|
||||||
|
chatbot 聊天显示框的句柄,用于显示给用户
|
||||||
|
history 聊天历史,前情提要
|
||||||
|
system_prompt 给gpt的静默提醒
|
||||||
|
user_request 当前用户的请求信息(IP地址等)
|
||||||
|
"""
|
||||||
|
history = [] # 清空历史,以免输入溢出
|
||||||
|
chatbot.append((f"请结合互联网信息回答以下问题:{txt}",
|
||||||
|
"[Local Message] 请注意,您正在调用一个[函数插件]的模板,该模板可以实现ChatGPT联网信息综合。该函数面向希望实现更多有趣功能的开发者,它可以作为创建新功能函数的模板。您若希望分享新的功能模组,请不吝PR!"))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||||
|
|
||||||
|
# ------------- < 第1步:爬取搜索引擎的结果 > -------------
|
||||||
|
from toolbox import get_conf
|
||||||
|
proxies = get_conf('proxies')
|
||||||
|
urls = searxng_request(txt, proxies)
|
||||||
|
history = []
|
||||||
|
if len(urls) == 0:
|
||||||
|
chatbot.append((f"结论:{txt}",
|
||||||
|
"[Local Message] 受到google限制,无法从google获取信息!"))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||||
|
return
|
||||||
|
# ------------- < 第2步:依次访问网页 > -------------
|
||||||
|
max_search_result = 5 # 最多收纳多少个网页的结果
|
||||||
|
for index, url in enumerate(urls[:max_search_result]):
|
||||||
|
res = scrape_text(url['link'], proxies)
|
||||||
|
history.extend([f"第{index}份搜索结果:", res])
|
||||||
|
chatbot.append([f"第{index}份搜索结果:", res[:500]+"......"])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||||
|
|
||||||
|
# ------------- < 第3步:ChatGPT综合 > -------------
|
||||||
|
i_say = f"从以上搜索结果中抽取信息,然后回答问题:{txt}"
|
||||||
|
i_say, history = input_clipping( # 裁剪输入,从最长的条目开始裁剪,防止爆token
|
||||||
|
inputs=i_say,
|
||||||
|
history=history,
|
||||||
|
max_token_limit=model_info[llm_kwargs['llm_model']]['max_token']*3//4
|
||||||
|
)
|
||||||
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
|
inputs=i_say, inputs_show_user=i_say,
|
||||||
|
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||||
|
sys_prompt="请从给定的若干条搜索结果中抽取信息,对最相关的两个搜索结果进行总结,然后回答问题。"
|
||||||
|
)
|
||||||
|
chatbot[-1] = (i_say, gpt_say)
|
||||||
|
history.append(i_say);history.append(gpt_say)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||||
|
|
||||||
548
crazy_functions/Latex_Function.py
Normal file
548
crazy_functions/Latex_Function.py
Normal file
@@ -0,0 +1,548 @@
|
|||||||
|
from toolbox import update_ui, trimmed_format_exc, get_conf, get_log_folder, promote_file_to_downloadzone, check_repeat_upload, map_file_to_sha256
|
||||||
|
from toolbox import CatchException, report_exception, update_ui_lastest_msg, zip_result, gen_time_str
|
||||||
|
from functools import partial
|
||||||
|
import glob, os, requests, time, json, tarfile
|
||||||
|
|
||||||
|
pj = os.path.join
|
||||||
|
ARXIV_CACHE_DIR = os.path.expanduser(f"~/arxiv_cache/")
|
||||||
|
|
||||||
|
|
||||||
|
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- 工具函数 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||||
|
# 专业词汇声明 = 'If the term "agent" is used in this section, it should be translated to "智能体". '
|
||||||
|
def switch_prompt(pfg, mode, more_requirement):
|
||||||
|
"""
|
||||||
|
Generate prompts and system prompts based on the mode for proofreading or translating.
|
||||||
|
Args:
|
||||||
|
- pfg: Proofreader or Translator instance.
|
||||||
|
- mode: A string specifying the mode, either 'proofread' or 'translate_zh'.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
- inputs_array: A list of strings containing prompts for users to respond to.
|
||||||
|
- sys_prompt_array: A list of strings containing prompts for system prompts.
|
||||||
|
"""
|
||||||
|
n_split = len(pfg.sp_file_contents)
|
||||||
|
if mode == 'proofread_en':
|
||||||
|
inputs_array = [r"Below is a section from an academic paper, proofread this section." +
|
||||||
|
r"Do not modify any latex command such as \section, \cite, \begin, \item and equations. " + more_requirement +
|
||||||
|
r"Answer me only with the revised text:" +
|
||||||
|
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||||
|
sys_prompt_array = ["You are a professional academic paper writer." for _ in range(n_split)]
|
||||||
|
elif mode == 'translate_zh':
|
||||||
|
inputs_array = [
|
||||||
|
r"Below is a section from an English academic paper, translate it into Chinese. " + more_requirement +
|
||||||
|
r"Do not modify any latex command such as \section, \cite, \begin, \item and equations. " +
|
||||||
|
r"Answer me only with the translated text:" +
|
||||||
|
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||||
|
sys_prompt_array = ["You are a professional translator." for _ in range(n_split)]
|
||||||
|
else:
|
||||||
|
assert False, "未知指令"
|
||||||
|
return inputs_array, sys_prompt_array
|
||||||
|
|
||||||
|
|
||||||
|
def desend_to_extracted_folder_if_exist(project_folder):
|
||||||
|
"""
|
||||||
|
Descend into the extracted folder if it exists, otherwise return the original folder.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
- project_folder: A string specifying the folder path.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
- A string specifying the path to the extracted folder, or the original folder if there is no extracted folder.
|
||||||
|
"""
|
||||||
|
maybe_dir = [f for f in glob.glob(f'{project_folder}/*') if os.path.isdir(f)]
|
||||||
|
if len(maybe_dir) == 0: return project_folder
|
||||||
|
if maybe_dir[0].endswith('.extract'): return maybe_dir[0]
|
||||||
|
return project_folder
|
||||||
|
|
||||||
|
|
||||||
|
def move_project(project_folder, arxiv_id=None):
|
||||||
|
"""
|
||||||
|
Create a new work folder and copy the project folder to it.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
- project_folder: A string specifying the folder path of the project.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
- A string specifying the path to the new work folder.
|
||||||
|
"""
|
||||||
|
import shutil, time
|
||||||
|
time.sleep(2) # avoid time string conflict
|
||||||
|
if arxiv_id is not None:
|
||||||
|
new_workfolder = pj(ARXIV_CACHE_DIR, arxiv_id, 'workfolder')
|
||||||
|
else:
|
||||||
|
new_workfolder = f'{get_log_folder()}/{gen_time_str()}'
|
||||||
|
try:
|
||||||
|
shutil.rmtree(new_workfolder)
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
|
||||||
|
# align subfolder if there is a folder wrapper
|
||||||
|
items = glob.glob(pj(project_folder, '*'))
|
||||||
|
items = [item for item in items if os.path.basename(item) != '__MACOSX']
|
||||||
|
if len(glob.glob(pj(project_folder, '*.tex'))) == 0 and len(items) == 1:
|
||||||
|
if os.path.isdir(items[0]): project_folder = items[0]
|
||||||
|
|
||||||
|
shutil.copytree(src=project_folder, dst=new_workfolder)
|
||||||
|
return new_workfolder
|
||||||
|
|
||||||
|
|
||||||
|
def arxiv_download(chatbot, history, txt, allow_cache=True):
|
||||||
|
def check_cached_translation_pdf(arxiv_id):
|
||||||
|
translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'translation')
|
||||||
|
if not os.path.exists(translation_dir):
|
||||||
|
os.makedirs(translation_dir)
|
||||||
|
target_file = pj(translation_dir, 'translate_zh.pdf')
|
||||||
|
if os.path.exists(target_file):
|
||||||
|
promote_file_to_downloadzone(target_file, rename_file=None, chatbot=chatbot)
|
||||||
|
target_file_compare = pj(translation_dir, 'comparison.pdf')
|
||||||
|
if os.path.exists(target_file_compare):
|
||||||
|
promote_file_to_downloadzone(target_file_compare, rename_file=None, chatbot=chatbot)
|
||||||
|
return target_file
|
||||||
|
return False
|
||||||
|
|
||||||
|
def is_float(s):
|
||||||
|
try:
|
||||||
|
float(s)
|
||||||
|
return True
|
||||||
|
except ValueError:
|
||||||
|
return False
|
||||||
|
|
||||||
|
if txt.startswith('https://arxiv.org/pdf/'):
|
||||||
|
arxiv_id = txt.split('/')[-1] # 2402.14207v2.pdf
|
||||||
|
txt = arxiv_id.split('v')[0] # 2402.14207
|
||||||
|
|
||||||
|
if ('.' in txt) and ('/' not in txt) and is_float(txt): # is arxiv ID
|
||||||
|
txt = 'https://arxiv.org/abs/' + txt.strip()
|
||||||
|
if ('.' in txt) and ('/' not in txt) and is_float(txt[:10]): # is arxiv ID
|
||||||
|
txt = 'https://arxiv.org/abs/' + txt[:10]
|
||||||
|
|
||||||
|
if not txt.startswith('https://arxiv.org'):
|
||||||
|
return txt, None # 是本地文件,跳过下载
|
||||||
|
|
||||||
|
# <-------------- inspect format ------------->
|
||||||
|
chatbot.append([f"检测到arxiv文档连接", '尝试下载 ...'])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
time.sleep(1) # 刷新界面
|
||||||
|
|
||||||
|
url_ = txt # https://arxiv.org/abs/1707.06690
|
||||||
|
|
||||||
|
if not txt.startswith('https://arxiv.org/abs/'):
|
||||||
|
msg = f"解析arxiv网址失败, 期望格式例如: https://arxiv.org/abs/1707.06690。实际得到格式: {url_}。"
|
||||||
|
yield from update_ui_lastest_msg(msg, chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
return msg, None
|
||||||
|
# <-------------- set format ------------->
|
||||||
|
arxiv_id = url_.split('/abs/')[-1]
|
||||||
|
if 'v' in arxiv_id: arxiv_id = arxiv_id[:10]
|
||||||
|
cached_translation_pdf = check_cached_translation_pdf(arxiv_id)
|
||||||
|
if cached_translation_pdf and allow_cache: return cached_translation_pdf, arxiv_id
|
||||||
|
|
||||||
|
url_tar = url_.replace('/abs/', '/e-print/')
|
||||||
|
translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'e-print')
|
||||||
|
extract_dst = pj(ARXIV_CACHE_DIR, arxiv_id, 'extract')
|
||||||
|
os.makedirs(translation_dir, exist_ok=True)
|
||||||
|
|
||||||
|
# <-------------- download arxiv source file ------------->
|
||||||
|
dst = pj(translation_dir, arxiv_id + '.tar')
|
||||||
|
if os.path.exists(dst):
|
||||||
|
yield from update_ui_lastest_msg("调用缓存", chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
else:
|
||||||
|
yield from update_ui_lastest_msg("开始下载", chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
proxies = get_conf('proxies')
|
||||||
|
r = requests.get(url_tar, proxies=proxies)
|
||||||
|
with open(dst, 'wb+') as f:
|
||||||
|
f.write(r.content)
|
||||||
|
# <-------------- extract file ------------->
|
||||||
|
yield from update_ui_lastest_msg("下载完成", chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
from toolbox import extract_archive
|
||||||
|
extract_archive(file_path=dst, dest_dir=extract_dst)
|
||||||
|
return extract_dst, arxiv_id
|
||||||
|
|
||||||
|
|
||||||
|
def pdf2tex_project(pdf_file_path, plugin_kwargs):
|
||||||
|
if plugin_kwargs["method"] == "MATHPIX":
|
||||||
|
# Mathpix API credentials
|
||||||
|
app_id, app_key = get_conf('MATHPIX_APPID', 'MATHPIX_APPKEY')
|
||||||
|
headers = {"app_id": app_id, "app_key": app_key}
|
||||||
|
|
||||||
|
# Step 1: Send PDF file for processing
|
||||||
|
options = {
|
||||||
|
"conversion_formats": {"tex.zip": True},
|
||||||
|
"math_inline_delimiters": ["$", "$"],
|
||||||
|
"rm_spaces": True
|
||||||
|
}
|
||||||
|
|
||||||
|
response = requests.post(url="https://api.mathpix.com/v3/pdf",
|
||||||
|
headers=headers,
|
||||||
|
data={"options_json": json.dumps(options)},
|
||||||
|
files={"file": open(pdf_file_path, "rb")})
|
||||||
|
|
||||||
|
if response.ok:
|
||||||
|
pdf_id = response.json()["pdf_id"]
|
||||||
|
print(f"PDF processing initiated. PDF ID: {pdf_id}")
|
||||||
|
|
||||||
|
# Step 2: Check processing status
|
||||||
|
while True:
|
||||||
|
conversion_response = requests.get(f"https://api.mathpix.com/v3/pdf/{pdf_id}", headers=headers)
|
||||||
|
conversion_data = conversion_response.json()
|
||||||
|
|
||||||
|
if conversion_data["status"] == "completed":
|
||||||
|
print("PDF processing completed.")
|
||||||
|
break
|
||||||
|
elif conversion_data["status"] == "error":
|
||||||
|
print("Error occurred during processing.")
|
||||||
|
else:
|
||||||
|
print(f"Processing status: {conversion_data['status']}")
|
||||||
|
time.sleep(5) # wait for a few seconds before checking again
|
||||||
|
|
||||||
|
# Step 3: Save results to local files
|
||||||
|
output_dir = os.path.join(os.path.dirname(pdf_file_path), 'mathpix_output')
|
||||||
|
if not os.path.exists(output_dir):
|
||||||
|
os.makedirs(output_dir)
|
||||||
|
|
||||||
|
url = f"https://api.mathpix.com/v3/pdf/{pdf_id}.tex"
|
||||||
|
response = requests.get(url, headers=headers)
|
||||||
|
file_name_wo_dot = '_'.join(os.path.basename(pdf_file_path).split('.')[:-1])
|
||||||
|
output_name = f"{file_name_wo_dot}.tex.zip"
|
||||||
|
output_path = os.path.join(output_dir, output_name)
|
||||||
|
with open(output_path, "wb") as output_file:
|
||||||
|
output_file.write(response.content)
|
||||||
|
print(f"tex.zip file saved at: {output_path}")
|
||||||
|
|
||||||
|
import zipfile
|
||||||
|
unzip_dir = os.path.join(output_dir, file_name_wo_dot)
|
||||||
|
with zipfile.ZipFile(output_path, 'r') as zip_ref:
|
||||||
|
zip_ref.extractall(unzip_dir)
|
||||||
|
|
||||||
|
return unzip_dir
|
||||||
|
|
||||||
|
else:
|
||||||
|
print(f"Error sending PDF for processing. Status code: {response.status_code}")
|
||||||
|
return None
|
||||||
|
else:
|
||||||
|
from crazy_functions.pdf_fns.parse_pdf_via_doc2x import 解析PDF_DOC2X_转Latex
|
||||||
|
unzip_dir = 解析PDF_DOC2X_转Latex(pdf_file_path)
|
||||||
|
return unzip_dir
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 插件主程序1 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||||
|
|
||||||
|
|
||||||
|
@CatchException
|
||||||
|
def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||||
|
# <-------------- information about this plugin ------------->
|
||||||
|
chatbot.append(["函数插件功能?",
|
||||||
|
"对整个Latex项目进行纠错, 用latex编译为PDF对修正处做高亮。函数插件贡献者: Binary-Husky。注意事项: 目前仅支持GPT3.5/GPT4,其他模型转化效果未知。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。仅在Windows系统进行了测试,其他操作系统表现未知。"])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
|
# <-------------- more requirements ------------->
|
||||||
|
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||||
|
more_req = plugin_kwargs.get("advanced_arg", "")
|
||||||
|
_switch_prompt_ = partial(switch_prompt, more_requirement=more_req)
|
||||||
|
|
||||||
|
# <-------------- check deps ------------->
|
||||||
|
try:
|
||||||
|
import glob, os, time, subprocess
|
||||||
|
subprocess.Popen(['pdflatex', '-version'])
|
||||||
|
from .latex_fns.latex_actions import Latex精细分解与转化, 编译Latex
|
||||||
|
except Exception as e:
|
||||||
|
chatbot.append([f"解析项目: {txt}",
|
||||||
|
f"尝试执行Latex指令失败。Latex没有安装, 或者不在环境变量PATH中。安装方法https://tug.org/texlive/。报错信息\n\n```\n\n{trimmed_format_exc()}\n\n```\n\n"])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
# <-------------- clear history and read input ------------->
|
||||||
|
history = []
|
||||||
|
if os.path.exists(txt):
|
||||||
|
project_folder = txt
|
||||||
|
else:
|
||||||
|
if txt == "": txt = '空空如也的输入栏'
|
||||||
|
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
return
|
||||||
|
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
|
||||||
|
if len(file_manifest) == 0:
|
||||||
|
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex文件: {txt}")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
# <-------------- if is a zip/tar file ------------->
|
||||||
|
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
||||||
|
|
||||||
|
# <-------------- move latex project away from temp folder ------------->
|
||||||
|
from shared_utils.fastapi_server import validate_path_safety
|
||||||
|
validate_path_safety(project_folder, chatbot.get_user())
|
||||||
|
project_folder = move_project(project_folder, arxiv_id=None)
|
||||||
|
|
||||||
|
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
|
||||||
|
if not os.path.exists(project_folder + '/merge_proofread_en.tex'):
|
||||||
|
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
||||||
|
chatbot, history, system_prompt, mode='proofread_en',
|
||||||
|
switch_prompt=_switch_prompt_)
|
||||||
|
|
||||||
|
# <-------------- compile PDF ------------->
|
||||||
|
success = yield from 编译Latex(chatbot, history, main_file_original='merge',
|
||||||
|
main_file_modified='merge_proofread_en',
|
||||||
|
work_folder_original=project_folder, work_folder_modified=project_folder,
|
||||||
|
work_folder=project_folder)
|
||||||
|
|
||||||
|
# <-------------- zip PDF ------------->
|
||||||
|
zip_res = zip_result(project_folder)
|
||||||
|
if success:
|
||||||
|
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history);
|
||||||
|
time.sleep(1) # 刷新界面
|
||||||
|
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||||
|
else:
|
||||||
|
chatbot.append((f"失败了",
|
||||||
|
'虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 也是可读的, 您可以到Github Issue区, 用该压缩包+Conversation_To_File进行反馈 ...'))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history);
|
||||||
|
time.sleep(1) # 刷新界面
|
||||||
|
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||||
|
|
||||||
|
# <-------------- we are done ------------->
|
||||||
|
return success
|
||||||
|
|
||||||
|
|
||||||
|
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 插件主程序2 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||||
|
|
||||||
|
@CatchException
|
||||||
|
def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||||
|
# <-------------- information about this plugin ------------->
|
||||||
|
chatbot.append([
|
||||||
|
"函数插件功能?",
|
||||||
|
"对整个Latex项目进行翻译, 生成中文PDF。函数插件贡献者: Binary-Husky。注意事项: 此插件Windows支持最佳,Linux下必须使用Docker安装,详见项目主README.md。目前仅支持GPT3.5/GPT4,其他模型转化效果未知。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。"])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
|
# <-------------- more requirements ------------->
|
||||||
|
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||||
|
more_req = plugin_kwargs.get("advanced_arg", "")
|
||||||
|
no_cache = more_req.startswith("--no-cache")
|
||||||
|
if no_cache: more_req.lstrip("--no-cache")
|
||||||
|
allow_cache = not no_cache
|
||||||
|
_switch_prompt_ = partial(switch_prompt, more_requirement=more_req)
|
||||||
|
|
||||||
|
# <-------------- check deps ------------->
|
||||||
|
try:
|
||||||
|
import glob, os, time, subprocess
|
||||||
|
subprocess.Popen(['pdflatex', '-version'])
|
||||||
|
from .latex_fns.latex_actions import Latex精细分解与转化, 编译Latex
|
||||||
|
except Exception as e:
|
||||||
|
chatbot.append([f"解析项目: {txt}",
|
||||||
|
f"尝试执行Latex指令失败。Latex没有安装, 或者不在环境变量PATH中。安装方法https://tug.org/texlive/。报错信息\n\n```\n\n{trimmed_format_exc()}\n\n```\n\n"])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
# <-------------- clear history and read input ------------->
|
||||||
|
history = []
|
||||||
|
try:
|
||||||
|
txt, arxiv_id = yield from arxiv_download(chatbot, history, txt, allow_cache)
|
||||||
|
except tarfile.ReadError as e:
|
||||||
|
yield from update_ui_lastest_msg(
|
||||||
|
"无法自动下载该论文的Latex源码,请前往arxiv打开此论文下载页面,点other Formats,然后download source手动下载latex源码包。接下来调用本地Latex翻译插件即可。",
|
||||||
|
chatbot=chatbot, history=history)
|
||||||
|
return
|
||||||
|
|
||||||
|
if txt.endswith('.pdf'):
|
||||||
|
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"发现已经存在翻译好的PDF文档")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
if os.path.exists(txt):
|
||||||
|
project_folder = txt
|
||||||
|
else:
|
||||||
|
if txt == "": txt = '空空如也的输入栏'
|
||||||
|
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无法处理: {txt}")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
|
||||||
|
if len(file_manifest) == 0:
|
||||||
|
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex文件: {txt}")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
# <-------------- if is a zip/tar file ------------->
|
||||||
|
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
||||||
|
|
||||||
|
# <-------------- move latex project away from temp folder ------------->
|
||||||
|
from shared_utils.fastapi_server import validate_path_safety
|
||||||
|
validate_path_safety(project_folder, chatbot.get_user())
|
||||||
|
project_folder = move_project(project_folder, arxiv_id)
|
||||||
|
|
||||||
|
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
|
||||||
|
if not os.path.exists(project_folder + '/merge_translate_zh.tex'):
|
||||||
|
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
||||||
|
chatbot, history, system_prompt, mode='translate_zh',
|
||||||
|
switch_prompt=_switch_prompt_)
|
||||||
|
|
||||||
|
# <-------------- compile PDF ------------->
|
||||||
|
success = yield from 编译Latex(chatbot, history, main_file_original='merge',
|
||||||
|
main_file_modified='merge_translate_zh', mode='translate_zh',
|
||||||
|
work_folder_original=project_folder, work_folder_modified=project_folder,
|
||||||
|
work_folder=project_folder)
|
||||||
|
|
||||||
|
# <-------------- zip PDF ------------->
|
||||||
|
zip_res = zip_result(project_folder)
|
||||||
|
if success:
|
||||||
|
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history);
|
||||||
|
time.sleep(1) # 刷新界面
|
||||||
|
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||||
|
else:
|
||||||
|
chatbot.append((f"失败了",
|
||||||
|
'虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 您可以到Github Issue区, 用该压缩包进行反馈。如系统是Linux,请检查系统字体(见Github wiki) ...'))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history);
|
||||||
|
time.sleep(1) # 刷新界面
|
||||||
|
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||||
|
|
||||||
|
# <-------------- we are done ------------->
|
||||||
|
return success
|
||||||
|
|
||||||
|
|
||||||
|
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- 插件主程序3 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||||
|
|
||||||
|
@CatchException
|
||||||
|
def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||||
|
# <-------------- information about this plugin ------------->
|
||||||
|
chatbot.append([
|
||||||
|
"函数插件功能?",
|
||||||
|
"将PDF转换为Latex项目,翻译为中文后重新编译为PDF。函数插件贡献者: Marroh。注意事项: 此插件Windows支持最佳,Linux下必须使用Docker安装,详见项目主README.md。目前仅支持GPT3.5/GPT4,其他模型转化效果未知。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。"])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
|
# <-------------- more requirements ------------->
|
||||||
|
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||||
|
more_req = plugin_kwargs.get("advanced_arg", "")
|
||||||
|
no_cache = more_req.startswith("--no-cache")
|
||||||
|
if no_cache: more_req.lstrip("--no-cache")
|
||||||
|
allow_cache = not no_cache
|
||||||
|
_switch_prompt_ = partial(switch_prompt, more_requirement=more_req)
|
||||||
|
|
||||||
|
# <-------------- check deps ------------->
|
||||||
|
try:
|
||||||
|
import glob, os, time, subprocess
|
||||||
|
subprocess.Popen(['pdflatex', '-version'])
|
||||||
|
from .latex_fns.latex_actions import Latex精细分解与转化, 编译Latex
|
||||||
|
except Exception as e:
|
||||||
|
chatbot.append([f"解析项目: {txt}",
|
||||||
|
f"尝试执行Latex指令失败。Latex没有安装, 或者不在环境变量PATH中。安装方法https://tug.org/texlive/。报错信息\n\n```\n\n{trimmed_format_exc()}\n\n```\n\n"])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
# <-------------- clear history and read input ------------->
|
||||||
|
if os.path.exists(txt):
|
||||||
|
project_folder = txt
|
||||||
|
else:
|
||||||
|
if txt == "": txt = '空空如也的输入栏'
|
||||||
|
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无法处理: {txt}")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.pdf', recursive=True)]
|
||||||
|
if len(file_manifest) == 0:
|
||||||
|
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.pdf文件: {txt}")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
return
|
||||||
|
if len(file_manifest) != 1:
|
||||||
|
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"不支持同时处理多个pdf文件: {txt}")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
if plugin_kwargs.get("method", "") == 'MATHPIX':
|
||||||
|
app_id, app_key = get_conf('MATHPIX_APPID', 'MATHPIX_APPKEY')
|
||||||
|
if len(app_id) == 0 or len(app_key) == 0:
|
||||||
|
report_exception(chatbot, history, a="缺失 MATHPIX_APPID 和 MATHPIX_APPKEY。", b=f"请配置 MATHPIX_APPID 和 MATHPIX_APPKEY")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
return
|
||||||
|
if plugin_kwargs.get("method", "") == 'DOC2X':
|
||||||
|
app_id, app_key = "", ""
|
||||||
|
DOC2X_API_KEY = get_conf('DOC2X_API_KEY')
|
||||||
|
if len(DOC2X_API_KEY) == 0:
|
||||||
|
report_exception(chatbot, history, a="缺失 DOC2X_API_KEY。", b=f"请配置 DOC2X_API_KEY")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
hash_tag = map_file_to_sha256(file_manifest[0])
|
||||||
|
|
||||||
|
# # <-------------- check repeated pdf ------------->
|
||||||
|
# chatbot.append([f"检查PDF是否被重复上传", "正在检查..."])
|
||||||
|
# yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
# repeat, project_folder = check_repeat_upload(file_manifest[0], hash_tag)
|
||||||
|
|
||||||
|
# if repeat:
|
||||||
|
# yield from update_ui_lastest_msg(f"发现重复上传,请查收结果(压缩包)...", chatbot=chatbot, history=history)
|
||||||
|
# try:
|
||||||
|
# translate_pdf = [f for f in glob.glob(f'{project_folder}/**/merge_translate_zh.pdf', recursive=True)][0]
|
||||||
|
# promote_file_to_downloadzone(translate_pdf, rename_file=None, chatbot=chatbot)
|
||||||
|
# comparison_pdf = [f for f in glob.glob(f'{project_folder}/**/comparison.pdf', recursive=True)][0]
|
||||||
|
# promote_file_to_downloadzone(comparison_pdf, rename_file=None, chatbot=chatbot)
|
||||||
|
# zip_res = zip_result(project_folder)
|
||||||
|
# promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||||
|
# return
|
||||||
|
# except:
|
||||||
|
# report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"发现重复上传,但是无法找到相关文件")
|
||||||
|
# yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
# else:
|
||||||
|
# yield from update_ui_lastest_msg(f"未发现重复上传", chatbot=chatbot, history=history)
|
||||||
|
|
||||||
|
# <-------------- convert pdf into tex ------------->
|
||||||
|
chatbot.append([f"解析项目: {txt}", "正在将PDF转换为tex项目,请耐心等待..."])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
project_folder = pdf2tex_project(file_manifest[0], plugin_kwargs)
|
||||||
|
if project_folder is None:
|
||||||
|
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"PDF转换为tex项目失败")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
return False
|
||||||
|
|
||||||
|
# <-------------- translate latex file into Chinese ------------->
|
||||||
|
yield from update_ui_lastest_msg("正在tex项目将翻译为中文...", chatbot=chatbot, history=history)
|
||||||
|
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
|
||||||
|
if len(file_manifest) == 0:
|
||||||
|
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex文件: {txt}")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
# <-------------- if is a zip/tar file ------------->
|
||||||
|
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
||||||
|
|
||||||
|
# <-------------- move latex project away from temp folder ------------->
|
||||||
|
from shared_utils.fastapi_server import validate_path_safety
|
||||||
|
validate_path_safety(project_folder, chatbot.get_user())
|
||||||
|
project_folder = move_project(project_folder)
|
||||||
|
|
||||||
|
# <-------------- set a hash tag for repeat-checking ------------->
|
||||||
|
with open(pj(project_folder, hash_tag + '.tag'), 'w') as f:
|
||||||
|
f.write(hash_tag)
|
||||||
|
f.close()
|
||||||
|
|
||||||
|
|
||||||
|
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
|
||||||
|
if not os.path.exists(project_folder + '/merge_translate_zh.tex'):
|
||||||
|
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
||||||
|
chatbot, history, system_prompt, mode='translate_zh',
|
||||||
|
switch_prompt=_switch_prompt_)
|
||||||
|
|
||||||
|
# <-------------- compile PDF ------------->
|
||||||
|
yield from update_ui_lastest_msg("正在将翻译好的项目tex项目编译为PDF...", chatbot=chatbot, history=history)
|
||||||
|
success = yield from 编译Latex(chatbot, history, main_file_original='merge',
|
||||||
|
main_file_modified='merge_translate_zh', mode='translate_zh',
|
||||||
|
work_folder_original=project_folder, work_folder_modified=project_folder,
|
||||||
|
work_folder=project_folder)
|
||||||
|
|
||||||
|
# <-------------- zip PDF ------------->
|
||||||
|
zip_res = zip_result(project_folder)
|
||||||
|
if success:
|
||||||
|
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history);
|
||||||
|
time.sleep(1) # 刷新界面
|
||||||
|
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||||
|
else:
|
||||||
|
chatbot.append((f"失败了",
|
||||||
|
'虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 您可以到Github Issue区, 用该压缩包进行反馈。如系统是Linux,请检查系统字体(见Github wiki) ...'))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history);
|
||||||
|
time.sleep(1) # 刷新界面
|
||||||
|
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||||
|
|
||||||
|
# <-------------- we are done ------------->
|
||||||
|
return success
|
||||||
78
crazy_functions/Latex_Function_Wrap.py
Normal file
78
crazy_functions/Latex_Function_Wrap.py
Normal file
@@ -0,0 +1,78 @@
|
|||||||
|
|
||||||
|
from crazy_functions.Latex_Function import Latex翻译中文并重新编译PDF, PDF翻译中文并重新编译PDF
|
||||||
|
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
|
||||||
|
|
||||||
|
|
||||||
|
class Arxiv_Localize(GptAcademicPluginTemplate):
|
||||||
|
def __init__(self):
|
||||||
|
"""
|
||||||
|
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
|
||||||
|
"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
def define_arg_selection_menu(self):
|
||||||
|
"""
|
||||||
|
定义插件的二级选项菜单
|
||||||
|
|
||||||
|
第一个参数,名称`main_input`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
|
||||||
|
第二个参数,名称`advanced_arg`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
|
||||||
|
第三个参数,名称`allow_cache`,参数`type`声明这是一个下拉菜单,下拉菜单上方显示`title`+`description`,下拉菜单的选项为`options`,`default_value`为下拉菜单默认值;
|
||||||
|
|
||||||
|
"""
|
||||||
|
gui_definition = {
|
||||||
|
"main_input":
|
||||||
|
ArgProperty(title="ArxivID", description="输入Arxiv的ID或者网址", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
|
||||||
|
"advanced_arg":
|
||||||
|
ArgProperty(title="额外的翻译提示词",
|
||||||
|
description=r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
|
||||||
|
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
|
||||||
|
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
||||||
|
default_value="", type="string").model_dump_json(), # 高级参数输入区,自动同步
|
||||||
|
"allow_cache":
|
||||||
|
ArgProperty(title="是否允许从缓存中调取结果", options=["允许缓存", "从头执行"], default_value="允许缓存", description="无", type="dropdown").model_dump_json(),
|
||||||
|
}
|
||||||
|
return gui_definition
|
||||||
|
|
||||||
|
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||||
|
"""
|
||||||
|
执行插件
|
||||||
|
"""
|
||||||
|
allow_cache = plugin_kwargs["allow_cache"]
|
||||||
|
advanced_arg = plugin_kwargs["advanced_arg"]
|
||||||
|
|
||||||
|
if allow_cache == "从头执行": plugin_kwargs["advanced_arg"] = "--no-cache " + plugin_kwargs["advanced_arg"]
|
||||||
|
yield from Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class PDF_Localize(GptAcademicPluginTemplate):
|
||||||
|
def __init__(self):
|
||||||
|
"""
|
||||||
|
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
|
||||||
|
"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
def define_arg_selection_menu(self):
|
||||||
|
"""
|
||||||
|
定义插件的二级选项菜单
|
||||||
|
"""
|
||||||
|
gui_definition = {
|
||||||
|
"main_input":
|
||||||
|
ArgProperty(title="PDF文件路径", description="未指定路径,请上传文件后,再点击该插件", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
|
||||||
|
"advanced_arg":
|
||||||
|
ArgProperty(title="额外的翻译提示词",
|
||||||
|
description=r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
|
||||||
|
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
|
||||||
|
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
||||||
|
default_value="", type="string").model_dump_json(), # 高级参数输入区,自动同步
|
||||||
|
"method":
|
||||||
|
ArgProperty(title="采用哪种方法执行转换", options=["MATHPIX", "DOC2X"], default_value="DOC2X", description="无", type="dropdown").model_dump_json(),
|
||||||
|
|
||||||
|
}
|
||||||
|
return gui_definition
|
||||||
|
|
||||||
|
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||||
|
"""
|
||||||
|
执行插件
|
||||||
|
"""
|
||||||
|
yield from PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||||
@@ -81,8 +81,8 @@ def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
|||||||
# <-------- 多线程润色开始 ---------->
|
# <-------- 多线程润色开始 ---------->
|
||||||
if language == 'en':
|
if language == 'en':
|
||||||
if mode == 'polish':
|
if mode == 'polish':
|
||||||
inputs_array = ["Below is a section from an academic paper, polish this section to meet the academic standard, " +
|
inputs_array = [r"Below is a section from an academic paper, polish this section to meet the academic standard, " +
|
||||||
"improve the grammar, clarity and overall readability, do not modify any latex command such as \section, \cite and equations:" +
|
r"improve the grammar, clarity and overall readability, do not modify any latex command such as \section, \cite and equations:" +
|
||||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||||
else:
|
else:
|
||||||
inputs_array = [r"Below is a section from an academic paper, proofread this section." +
|
inputs_array = [r"Below is a section from an academic paper, proofread this section." +
|
||||||
@@ -93,10 +93,10 @@ def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
|||||||
sys_prompt_array = ["You are a professional academic paper writer." for _ in range(n_split)]
|
sys_prompt_array = ["You are a professional academic paper writer." for _ in range(n_split)]
|
||||||
elif language == 'zh':
|
elif language == 'zh':
|
||||||
if mode == 'polish':
|
if mode == 'polish':
|
||||||
inputs_array = [f"以下是一篇学术论文中的一段内容,请将此部分润色以满足学术标准,提高语法、清晰度和整体可读性,不要修改任何LaTeX命令,例如\section,\cite和方程式:" +
|
inputs_array = [r"以下是一篇学术论文中的一段内容,请将此部分润色以满足学术标准,提高语法、清晰度和整体可读性,不要修改任何LaTeX命令,例如\section,\cite和方程式:" +
|
||||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||||
else:
|
else:
|
||||||
inputs_array = [f"以下是一篇学术论文中的一段内容,请对这部分内容进行语法矫正。不要修改任何LaTeX命令,例如\section,\cite和方程式:" +
|
inputs_array = [r"以下是一篇学术论文中的一段内容,请对这部分内容进行语法矫正。不要修改任何LaTeX命令,例如\section,\cite和方程式:" +
|
||||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||||
inputs_show_user_array = [f"润色 {f}" for f in pfg.sp_file_tag]
|
inputs_show_user_array = [f"润色 {f}" for f in pfg.sp_file_tag]
|
||||||
sys_prompt_array=["你是一位专业的中文学术论文作家。" for _ in range(n_split)]
|
sys_prompt_array=["你是一位专业的中文学术论文作家。" for _ in range(n_split)]
|
||||||
|
|||||||
@@ -1,313 +0,0 @@
|
|||||||
from toolbox import update_ui, trimmed_format_exc, get_conf, get_log_folder, promote_file_to_downloadzone
|
|
||||||
from toolbox import CatchException, report_exception, update_ui_lastest_msg, zip_result, gen_time_str
|
|
||||||
from functools import partial
|
|
||||||
import glob, os, requests, time, tarfile
|
|
||||||
pj = os.path.join
|
|
||||||
ARXIV_CACHE_DIR = os.path.expanduser(f"~/arxiv_cache/")
|
|
||||||
|
|
||||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- 工具函数 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
|
||||||
# 专业词汇声明 = 'If the term "agent" is used in this section, it should be translated to "智能体". '
|
|
||||||
def switch_prompt(pfg, mode, more_requirement):
|
|
||||||
"""
|
|
||||||
Generate prompts and system prompts based on the mode for proofreading or translating.
|
|
||||||
Args:
|
|
||||||
- pfg: Proofreader or Translator instance.
|
|
||||||
- mode: A string specifying the mode, either 'proofread' or 'translate_zh'.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
- inputs_array: A list of strings containing prompts for users to respond to.
|
|
||||||
- sys_prompt_array: A list of strings containing prompts for system prompts.
|
|
||||||
"""
|
|
||||||
n_split = len(pfg.sp_file_contents)
|
|
||||||
if mode == 'proofread_en':
|
|
||||||
inputs_array = [r"Below is a section from an academic paper, proofread this section." +
|
|
||||||
r"Do not modify any latex command such as \section, \cite, \begin, \item and equations. " + more_requirement +
|
|
||||||
r"Answer me only with the revised text:" +
|
|
||||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
|
||||||
sys_prompt_array = ["You are a professional academic paper writer." for _ in range(n_split)]
|
|
||||||
elif mode == 'translate_zh':
|
|
||||||
inputs_array = [r"Below is a section from an English academic paper, translate it into Chinese. " + more_requirement +
|
|
||||||
r"Do not modify any latex command such as \section, \cite, \begin, \item and equations. " +
|
|
||||||
r"Answer me only with the translated text:" +
|
|
||||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
|
||||||
sys_prompt_array = ["You are a professional translator." for _ in range(n_split)]
|
|
||||||
else:
|
|
||||||
assert False, "未知指令"
|
|
||||||
return inputs_array, sys_prompt_array
|
|
||||||
|
|
||||||
def desend_to_extracted_folder_if_exist(project_folder):
|
|
||||||
"""
|
|
||||||
Descend into the extracted folder if it exists, otherwise return the original folder.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
- project_folder: A string specifying the folder path.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
- A string specifying the path to the extracted folder, or the original folder if there is no extracted folder.
|
|
||||||
"""
|
|
||||||
maybe_dir = [f for f in glob.glob(f'{project_folder}/*') if os.path.isdir(f)]
|
|
||||||
if len(maybe_dir) == 0: return project_folder
|
|
||||||
if maybe_dir[0].endswith('.extract'): return maybe_dir[0]
|
|
||||||
return project_folder
|
|
||||||
|
|
||||||
def move_project(project_folder, arxiv_id=None):
|
|
||||||
"""
|
|
||||||
Create a new work folder and copy the project folder to it.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
- project_folder: A string specifying the folder path of the project.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
- A string specifying the path to the new work folder.
|
|
||||||
"""
|
|
||||||
import shutil, time
|
|
||||||
time.sleep(2) # avoid time string conflict
|
|
||||||
if arxiv_id is not None:
|
|
||||||
new_workfolder = pj(ARXIV_CACHE_DIR, arxiv_id, 'workfolder')
|
|
||||||
else:
|
|
||||||
new_workfolder = f'{get_log_folder()}/{gen_time_str()}'
|
|
||||||
try:
|
|
||||||
shutil.rmtree(new_workfolder)
|
|
||||||
except:
|
|
||||||
pass
|
|
||||||
|
|
||||||
# align subfolder if there is a folder wrapper
|
|
||||||
items = glob.glob(pj(project_folder,'*'))
|
|
||||||
items = [item for item in items if os.path.basename(item)!='__MACOSX']
|
|
||||||
if len(glob.glob(pj(project_folder,'*.tex'))) == 0 and len(items) == 1:
|
|
||||||
if os.path.isdir(items[0]): project_folder = items[0]
|
|
||||||
|
|
||||||
shutil.copytree(src=project_folder, dst=new_workfolder)
|
|
||||||
return new_workfolder
|
|
||||||
|
|
||||||
def arxiv_download(chatbot, history, txt, allow_cache=True):
|
|
||||||
def check_cached_translation_pdf(arxiv_id):
|
|
||||||
translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'translation')
|
|
||||||
if not os.path.exists(translation_dir):
|
|
||||||
os.makedirs(translation_dir)
|
|
||||||
target_file = pj(translation_dir, 'translate_zh.pdf')
|
|
||||||
if os.path.exists(target_file):
|
|
||||||
promote_file_to_downloadzone(target_file, rename_file=None, chatbot=chatbot)
|
|
||||||
target_file_compare = pj(translation_dir, 'comparison.pdf')
|
|
||||||
if os.path.exists(target_file_compare):
|
|
||||||
promote_file_to_downloadzone(target_file_compare, rename_file=None, chatbot=chatbot)
|
|
||||||
return target_file
|
|
||||||
return False
|
|
||||||
def is_float(s):
|
|
||||||
try:
|
|
||||||
float(s)
|
|
||||||
return True
|
|
||||||
except ValueError:
|
|
||||||
return False
|
|
||||||
if ('.' in txt) and ('/' not in txt) and is_float(txt): # is arxiv ID
|
|
||||||
txt = 'https://arxiv.org/abs/' + txt.strip()
|
|
||||||
if ('.' in txt) and ('/' not in txt) and is_float(txt[:10]): # is arxiv ID
|
|
||||||
txt = 'https://arxiv.org/abs/' + txt[:10]
|
|
||||||
if not txt.startswith('https://arxiv.org'):
|
|
||||||
return txt, None # 是本地文件,跳过下载
|
|
||||||
|
|
||||||
# <-------------- inspect format ------------->
|
|
||||||
chatbot.append([f"检测到arxiv文档连接", '尝试下载 ...'])
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
|
||||||
time.sleep(1) # 刷新界面
|
|
||||||
|
|
||||||
url_ = txt # https://arxiv.org/abs/1707.06690
|
|
||||||
if not txt.startswith('https://arxiv.org/abs/'):
|
|
||||||
msg = f"解析arxiv网址失败, 期望格式例如: https://arxiv.org/abs/1707.06690。实际得到格式: {url_}。"
|
|
||||||
yield from update_ui_lastest_msg(msg, chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
return msg, None
|
|
||||||
# <-------------- set format ------------->
|
|
||||||
arxiv_id = url_.split('/abs/')[-1]
|
|
||||||
if 'v' in arxiv_id: arxiv_id = arxiv_id[:10]
|
|
||||||
cached_translation_pdf = check_cached_translation_pdf(arxiv_id)
|
|
||||||
if cached_translation_pdf and allow_cache: return cached_translation_pdf, arxiv_id
|
|
||||||
|
|
||||||
url_tar = url_.replace('/abs/', '/e-print/')
|
|
||||||
translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'e-print')
|
|
||||||
extract_dst = pj(ARXIV_CACHE_DIR, arxiv_id, 'extract')
|
|
||||||
os.makedirs(translation_dir, exist_ok=True)
|
|
||||||
|
|
||||||
# <-------------- download arxiv source file ------------->
|
|
||||||
dst = pj(translation_dir, arxiv_id+'.tar')
|
|
||||||
if os.path.exists(dst):
|
|
||||||
yield from update_ui_lastest_msg("调用缓存", chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
else:
|
|
||||||
yield from update_ui_lastest_msg("开始下载", chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
proxies = get_conf('proxies')
|
|
||||||
r = requests.get(url_tar, proxies=proxies)
|
|
||||||
with open(dst, 'wb+') as f:
|
|
||||||
f.write(r.content)
|
|
||||||
# <-------------- extract file ------------->
|
|
||||||
yield from update_ui_lastest_msg("下载完成", chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
from toolbox import extract_archive
|
|
||||||
extract_archive(file_path=dst, dest_dir=extract_dst)
|
|
||||||
return extract_dst, arxiv_id
|
|
||||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 插件主程序1 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
|
||||||
|
|
||||||
|
|
||||||
@CatchException
|
|
||||||
def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
|
||||||
# <-------------- information about this plugin ------------->
|
|
||||||
chatbot.append([ "函数插件功能?",
|
|
||||||
"对整个Latex项目进行纠错, 用latex编译为PDF对修正处做高亮。函数插件贡献者: Binary-Husky。注意事项: 目前仅支持GPT3.5/GPT4,其他模型转化效果未知。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。仅在Windows系统进行了测试,其他操作系统表现未知。"])
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
|
|
||||||
# <-------------- more requirements ------------->
|
|
||||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
|
||||||
more_req = plugin_kwargs.get("advanced_arg", "")
|
|
||||||
_switch_prompt_ = partial(switch_prompt, more_requirement=more_req)
|
|
||||||
|
|
||||||
# <-------------- check deps ------------->
|
|
||||||
try:
|
|
||||||
import glob, os, time, subprocess
|
|
||||||
subprocess.Popen(['pdflatex', '-version'])
|
|
||||||
from .latex_fns.latex_actions import Latex精细分解与转化, 编译Latex
|
|
||||||
except Exception as e:
|
|
||||||
chatbot.append([ f"解析项目: {txt}",
|
|
||||||
f"尝试执行Latex指令失败。Latex没有安装, 或者不在环境变量PATH中。安装方法https://tug.org/texlive/。报错信息\n\n```\n\n{trimmed_format_exc()}\n\n```\n\n"])
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
return
|
|
||||||
|
|
||||||
|
|
||||||
# <-------------- clear history and read input ------------->
|
|
||||||
history = []
|
|
||||||
if os.path.exists(txt):
|
|
||||||
project_folder = txt
|
|
||||||
else:
|
|
||||||
if txt == "": txt = '空空如也的输入栏'
|
|
||||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
return
|
|
||||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
|
|
||||||
if len(file_manifest) == 0:
|
|
||||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
return
|
|
||||||
|
|
||||||
|
|
||||||
# <-------------- if is a zip/tar file ------------->
|
|
||||||
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
|
||||||
|
|
||||||
|
|
||||||
# <-------------- move latex project away from temp folder ------------->
|
|
||||||
project_folder = move_project(project_folder, arxiv_id=None)
|
|
||||||
|
|
||||||
|
|
||||||
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
|
|
||||||
if not os.path.exists(project_folder + '/merge_proofread_en.tex'):
|
|
||||||
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
|
||||||
chatbot, history, system_prompt, mode='proofread_en', switch_prompt=_switch_prompt_)
|
|
||||||
|
|
||||||
|
|
||||||
# <-------------- compile PDF ------------->
|
|
||||||
success = yield from 编译Latex(chatbot, history, main_file_original='merge', main_file_modified='merge_proofread_en',
|
|
||||||
work_folder_original=project_folder, work_folder_modified=project_folder, work_folder=project_folder)
|
|
||||||
|
|
||||||
|
|
||||||
# <-------------- zip PDF ------------->
|
|
||||||
zip_res = zip_result(project_folder)
|
|
||||||
if success:
|
|
||||||
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history); time.sleep(1) # 刷新界面
|
|
||||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
|
||||||
else:
|
|
||||||
chatbot.append((f"失败了", '虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 也是可读的, 您可以到Github Issue区, 用该压缩包+对话历史存档进行反馈 ...'))
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history); time.sleep(1) # 刷新界面
|
|
||||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
|
||||||
|
|
||||||
# <-------------- we are done ------------->
|
|
||||||
return success
|
|
||||||
|
|
||||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 插件主程序2 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
|
||||||
|
|
||||||
@CatchException
|
|
||||||
def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
|
||||||
# <-------------- information about this plugin ------------->
|
|
||||||
chatbot.append([
|
|
||||||
"函数插件功能?",
|
|
||||||
"对整个Latex项目进行翻译, 生成中文PDF。函数插件贡献者: Binary-Husky。注意事项: 此插件Windows支持最佳,Linux下必须使用Docker安装,详见项目主README.md。目前仅支持GPT3.5/GPT4,其他模型转化效果未知。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。"])
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
|
|
||||||
# <-------------- more requirements ------------->
|
|
||||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
|
||||||
more_req = plugin_kwargs.get("advanced_arg", "")
|
|
||||||
no_cache = more_req.startswith("--no-cache")
|
|
||||||
if no_cache: more_req.lstrip("--no-cache")
|
|
||||||
allow_cache = not no_cache
|
|
||||||
_switch_prompt_ = partial(switch_prompt, more_requirement=more_req)
|
|
||||||
|
|
||||||
# <-------------- check deps ------------->
|
|
||||||
try:
|
|
||||||
import glob, os, time, subprocess
|
|
||||||
subprocess.Popen(['pdflatex', '-version'])
|
|
||||||
from .latex_fns.latex_actions import Latex精细分解与转化, 编译Latex
|
|
||||||
except Exception as e:
|
|
||||||
chatbot.append([ f"解析项目: {txt}",
|
|
||||||
f"尝试执行Latex指令失败。Latex没有安装, 或者不在环境变量PATH中。安装方法https://tug.org/texlive/。报错信息\n\n```\n\n{trimmed_format_exc()}\n\n```\n\n"])
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
return
|
|
||||||
|
|
||||||
|
|
||||||
# <-------------- clear history and read input ------------->
|
|
||||||
history = []
|
|
||||||
try:
|
|
||||||
txt, arxiv_id = yield from arxiv_download(chatbot, history, txt, allow_cache)
|
|
||||||
except tarfile.ReadError as e:
|
|
||||||
yield from update_ui_lastest_msg(
|
|
||||||
"无法自动下载该论文的Latex源码,请前往arxiv打开此论文下载页面,点other Formats,然后download source手动下载latex源码包。接下来调用本地Latex翻译插件即可。",
|
|
||||||
chatbot=chatbot, history=history)
|
|
||||||
return
|
|
||||||
|
|
||||||
if txt.endswith('.pdf'):
|
|
||||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"发现已经存在翻译好的PDF文档")
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
return
|
|
||||||
|
|
||||||
|
|
||||||
if os.path.exists(txt):
|
|
||||||
project_folder = txt
|
|
||||||
else:
|
|
||||||
if txt == "": txt = '空空如也的输入栏'
|
|
||||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无法处理: {txt}")
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
return
|
|
||||||
|
|
||||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
|
|
||||||
if len(file_manifest) == 0:
|
|
||||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
return
|
|
||||||
|
|
||||||
|
|
||||||
# <-------------- if is a zip/tar file ------------->
|
|
||||||
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
|
||||||
|
|
||||||
|
|
||||||
# <-------------- move latex project away from temp folder ------------->
|
|
||||||
project_folder = move_project(project_folder, arxiv_id)
|
|
||||||
|
|
||||||
|
|
||||||
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
|
|
||||||
if not os.path.exists(project_folder + '/merge_translate_zh.tex'):
|
|
||||||
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
|
||||||
chatbot, history, system_prompt, mode='translate_zh', switch_prompt=_switch_prompt_)
|
|
||||||
|
|
||||||
|
|
||||||
# <-------------- compile PDF ------------->
|
|
||||||
success = yield from 编译Latex(chatbot, history, main_file_original='merge', main_file_modified='merge_translate_zh', mode='translate_zh',
|
|
||||||
work_folder_original=project_folder, work_folder_modified=project_folder, work_folder=project_folder)
|
|
||||||
|
|
||||||
# <-------------- zip PDF ------------->
|
|
||||||
zip_res = zip_result(project_folder)
|
|
||||||
if success:
|
|
||||||
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history); time.sleep(1) # 刷新界面
|
|
||||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
|
||||||
else:
|
|
||||||
chatbot.append((f"失败了", '虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 您可以到Github Issue区, 用该压缩包进行反馈。如系统是Linux,请检查系统字体(见Github wiki) ...'))
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history); time.sleep(1) # 刷新界面
|
|
||||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
|
||||||
|
|
||||||
|
|
||||||
# <-------------- we are done ------------->
|
|
||||||
return success
|
|
||||||
@@ -1,5 +1,5 @@
|
|||||||
import glob, time, os, re, logging
|
import glob, shutil, os, re, logging
|
||||||
from toolbox import update_ui, trimmed_format_exc, gen_time_str, disable_auto_promotion
|
from toolbox import update_ui, trimmed_format_exc, gen_time_str
|
||||||
from toolbox import CatchException, report_exception, get_log_folder
|
from toolbox import CatchException, report_exception, get_log_folder
|
||||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||||
fast_debug = False
|
fast_debug = False
|
||||||
@@ -18,7 +18,7 @@ class PaperFileGroup():
|
|||||||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||||||
self.get_token_num = get_token_num
|
self.get_token_num = get_token_num
|
||||||
|
|
||||||
def run_file_split(self, max_token_limit=1900):
|
def run_file_split(self, max_token_limit=2048):
|
||||||
"""
|
"""
|
||||||
将长文本分离开来
|
将长文本分离开来
|
||||||
"""
|
"""
|
||||||
@@ -64,25 +64,25 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
|||||||
pfg.file_contents.append(file_content)
|
pfg.file_contents.append(file_content)
|
||||||
|
|
||||||
# <-------- 拆分过长的Markdown文件 ---------->
|
# <-------- 拆分过长的Markdown文件 ---------->
|
||||||
pfg.run_file_split(max_token_limit=1500)
|
pfg.run_file_split(max_token_limit=2048)
|
||||||
n_split = len(pfg.sp_file_contents)
|
n_split = len(pfg.sp_file_contents)
|
||||||
|
|
||||||
# <-------- 多线程翻译开始 ---------->
|
# <-------- 多线程翻译开始 ---------->
|
||||||
if language == 'en->zh':
|
if language == 'en->zh':
|
||||||
inputs_array = ["This is a Markdown file, translate it into Chinese, do not modify any existing Markdown commands:" +
|
inputs_array = ["This is a Markdown file, translate it into Chinese, do NOT modify any existing Markdown commands, do NOT use code wrapper (```), ONLY answer me with translated results:" +
|
||||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||||
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
||||||
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
|
sys_prompt_array = ["You are a professional academic paper translator." + plugin_kwargs.get("additional_prompt", "") for _ in range(n_split)]
|
||||||
elif language == 'zh->en':
|
elif language == 'zh->en':
|
||||||
inputs_array = [f"This is a Markdown file, translate it into English, do not modify any existing Markdown commands:" +
|
inputs_array = [f"This is a Markdown file, translate it into English, do NOT modify any existing Markdown commands, do NOT use code wrapper (```), ONLY answer me with translated results:" +
|
||||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||||
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
||||||
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
|
sys_prompt_array = ["You are a professional academic paper translator." + plugin_kwargs.get("additional_prompt", "") for _ in range(n_split)]
|
||||||
else:
|
else:
|
||||||
inputs_array = [f"This is a Markdown file, translate it into {language}, do not modify any existing Markdown commands, only answer me with translated results:" +
|
inputs_array = [f"This is a Markdown file, translate it into {language}, do NOT modify any existing Markdown commands, do NOT use code wrapper (```), ONLY answer me with translated results:" +
|
||||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||||
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
||||||
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
|
sys_prompt_array = ["You are a professional academic paper translator." + plugin_kwargs.get("additional_prompt", "") for _ in range(n_split)]
|
||||||
|
|
||||||
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||||
inputs_array=inputs_array,
|
inputs_array=inputs_array,
|
||||||
@@ -99,7 +99,12 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
|||||||
for i_say, gpt_say in zip(gpt_response_collection[0::2], gpt_response_collection[1::2]):
|
for i_say, gpt_say in zip(gpt_response_collection[0::2], gpt_response_collection[1::2]):
|
||||||
pfg.sp_file_result.append(gpt_say)
|
pfg.sp_file_result.append(gpt_say)
|
||||||
pfg.merge_result()
|
pfg.merge_result()
|
||||||
pfg.write_result(language)
|
output_file_arr = pfg.write_result(language)
|
||||||
|
for output_file in output_file_arr:
|
||||||
|
promote_file_to_downloadzone(output_file, chatbot=chatbot)
|
||||||
|
if 'markdown_expected_output_path' in plugin_kwargs:
|
||||||
|
expected_f_name = plugin_kwargs['markdown_expected_output_path']
|
||||||
|
shutil.copyfile(output_file, expected_f_name)
|
||||||
except:
|
except:
|
||||||
logging.error(trimmed_format_exc())
|
logging.error(trimmed_format_exc())
|
||||||
|
|
||||||
@@ -159,7 +164,6 @@ def Markdown英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
|
|||||||
"函数插件功能?",
|
"函数插件功能?",
|
||||||
"对整个Markdown项目进行翻译。函数插件贡献者: Binary-Husky"])
|
"对整个Markdown项目进行翻译。函数插件贡献者: Binary-Husky"])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
disable_auto_promotion(chatbot)
|
|
||||||
|
|
||||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||||
try:
|
try:
|
||||||
@@ -199,7 +203,6 @@ def Markdown中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
|
|||||||
"函数插件功能?",
|
"函数插件功能?",
|
||||||
"对整个Markdown项目进行翻译。函数插件贡献者: Binary-Husky"])
|
"对整个Markdown项目进行翻译。函数插件贡献者: Binary-Husky"])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
disable_auto_promotion(chatbot)
|
|
||||||
|
|
||||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||||
try:
|
try:
|
||||||
@@ -232,7 +235,6 @@ def Markdown翻译指定语言(txt, llm_kwargs, plugin_kwargs, chatbot, history,
|
|||||||
"函数插件功能?",
|
"函数插件功能?",
|
||||||
"对整个Markdown项目进行翻译。函数插件贡献者: Binary-Husky"])
|
"对整个Markdown项目进行翻译。函数插件贡献者: Binary-Husky"])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
disable_auto_promotion(chatbot)
|
|
||||||
|
|
||||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||||
try:
|
try:
|
||||||
83
crazy_functions/PDF_Translate.py
Normal file
83
crazy_functions/PDF_Translate.py
Normal file
@@ -0,0 +1,83 @@
|
|||||||
|
from toolbox import CatchException, check_packages, get_conf
|
||||||
|
from toolbox import update_ui, update_ui_lastest_msg, disable_auto_promotion
|
||||||
|
from toolbox import trimmed_format_exc_markdown
|
||||||
|
from crazy_functions.crazy_utils import get_files_from_everything
|
||||||
|
from crazy_functions.pdf_fns.parse_pdf import get_avail_grobid_url
|
||||||
|
from crazy_functions.pdf_fns.parse_pdf_via_doc2x import 解析PDF_基于DOC2X
|
||||||
|
from crazy_functions.pdf_fns.parse_pdf_legacy import 解析PDF_简单拆解
|
||||||
|
from crazy_functions.pdf_fns.parse_pdf_grobid import 解析PDF_基于GROBID
|
||||||
|
from shared_utils.colorful import *
|
||||||
|
|
||||||
|
@CatchException
|
||||||
|
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||||
|
|
||||||
|
disable_auto_promotion(chatbot)
|
||||||
|
# 基本信息:功能、贡献者
|
||||||
|
chatbot.append([None, "插件功能:批量翻译PDF文档。函数插件贡献者: Binary-Husky"])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
|
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||||
|
try:
|
||||||
|
check_packages(["fitz", "tiktoken", "scipdf"])
|
||||||
|
except:
|
||||||
|
chatbot.append([None, f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf tiktoken scipdf_parser```。"])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
# 清空历史,以免输入溢出
|
||||||
|
history = []
|
||||||
|
success, file_manifest, project_folder = get_files_from_everything(txt, type='.pdf')
|
||||||
|
|
||||||
|
# 检测输入参数,如没有给定输入参数,直接退出
|
||||||
|
if (not success) and txt == "": txt = '空空如也的输入栏。提示:请先上传文件(把PDF文件拖入对话)。'
|
||||||
|
|
||||||
|
# 如果没找到任何文件
|
||||||
|
if len(file_manifest) == 0:
|
||||||
|
chatbot.append([None, f"找不到任何.pdf拓展名的文件: {txt}"])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
# 开始正式执行任务
|
||||||
|
method = plugin_kwargs.get("pdf_parse_method", None)
|
||||||
|
if method == "DOC2X":
|
||||||
|
# ------- 第一种方法,效果最好,但是需要DOC2X服务 -------
|
||||||
|
DOC2X_API_KEY = get_conf("DOC2X_API_KEY")
|
||||||
|
if len(DOC2X_API_KEY) != 0:
|
||||||
|
try:
|
||||||
|
yield from 解析PDF_基于DOC2X(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, DOC2X_API_KEY, user_request)
|
||||||
|
return
|
||||||
|
except:
|
||||||
|
chatbot.append([None, f"DOC2X服务不可用,现在将执行效果稍差的旧版代码。{trimmed_format_exc_markdown()}"])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
|
||||||
|
if method == "GROBID":
|
||||||
|
# ------- 第二种方法,效果次优 -------
|
||||||
|
grobid_url = get_avail_grobid_url()
|
||||||
|
if grobid_url is not None:
|
||||||
|
yield from 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url)
|
||||||
|
return
|
||||||
|
|
||||||
|
if method == "ClASSIC":
|
||||||
|
# ------- 第三种方法,早期代码,效果不理想 -------
|
||||||
|
yield from update_ui_lastest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
|
||||||
|
yield from 解析PDF_简单拆解(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||||
|
return
|
||||||
|
|
||||||
|
if method is None:
|
||||||
|
# ------- 以上三种方法都试一遍 -------
|
||||||
|
DOC2X_API_KEY = get_conf("DOC2X_API_KEY")
|
||||||
|
if len(DOC2X_API_KEY) != 0:
|
||||||
|
try:
|
||||||
|
yield from 解析PDF_基于DOC2X(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, DOC2X_API_KEY, user_request)
|
||||||
|
return
|
||||||
|
except:
|
||||||
|
chatbot.append([None, f"DOC2X服务不可用,正在尝试GROBID。{trimmed_format_exc_markdown()}"])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
grobid_url = get_avail_grobid_url()
|
||||||
|
if grobid_url is not None:
|
||||||
|
yield from 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url)
|
||||||
|
return
|
||||||
|
yield from update_ui_lastest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
|
||||||
|
yield from 解析PDF_简单拆解(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||||
|
return
|
||||||
|
|
||||||
33
crazy_functions/PDF_Translate_Wrap.py
Normal file
33
crazy_functions/PDF_Translate_Wrap.py
Normal file
@@ -0,0 +1,33 @@
|
|||||||
|
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
|
||||||
|
from .PDF_Translate import 批量翻译PDF文档
|
||||||
|
|
||||||
|
|
||||||
|
class PDF_Tran(GptAcademicPluginTemplate):
|
||||||
|
def __init__(self):
|
||||||
|
"""
|
||||||
|
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
|
||||||
|
"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
def define_arg_selection_menu(self):
|
||||||
|
"""
|
||||||
|
定义插件的二级选项菜单
|
||||||
|
"""
|
||||||
|
gui_definition = {
|
||||||
|
"main_input":
|
||||||
|
ArgProperty(title="PDF文件路径", description="未指定路径,请上传文件后,再点击该插件", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
|
||||||
|
"additional_prompt":
|
||||||
|
ArgProperty(title="额外提示词", description="例如:对专有名词、翻译语气等方面的要求", default_value="", type="string").model_dump_json(), # 高级参数输入区,自动同步
|
||||||
|
"pdf_parse_method":
|
||||||
|
ArgProperty(title="PDF解析方法", options=["DOC2X", "GROBID", "ClASSIC"], description="无", default_value="GROBID", type="dropdown").model_dump_json(),
|
||||||
|
}
|
||||||
|
return gui_definition
|
||||||
|
|
||||||
|
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||||
|
"""
|
||||||
|
执行插件
|
||||||
|
"""
|
||||||
|
main_input = plugin_kwargs["main_input"]
|
||||||
|
additional_prompt = plugin_kwargs["additional_prompt"]
|
||||||
|
pdf_parse_method = plugin_kwargs["pdf_parse_method"]
|
||||||
|
yield from 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||||
@@ -135,14 +135,26 @@ def request_gpt_model_in_new_thread_with_ui_alive(
|
|||||||
yield from update_ui(chatbot=chatbot, history=[]) # 如果最后成功了,则删除报错信息
|
yield from update_ui(chatbot=chatbot, history=[]) # 如果最后成功了,则删除报错信息
|
||||||
return final_result
|
return final_result
|
||||||
|
|
||||||
def can_multi_process(llm):
|
def can_multi_process(llm) -> bool:
|
||||||
|
from request_llms.bridge_all import model_info
|
||||||
|
|
||||||
|
def default_condition(llm) -> bool:
|
||||||
|
# legacy condition
|
||||||
if llm.startswith('gpt-'): return True
|
if llm.startswith('gpt-'): return True
|
||||||
if llm.startswith('api2d-'): return True
|
if llm.startswith('api2d-'): return True
|
||||||
if llm.startswith('azure-'): return True
|
if llm.startswith('azure-'): return True
|
||||||
if llm.startswith('spark'): return True
|
if llm.startswith('spark'): return True
|
||||||
if llm.startswith('zhipuai'): return True
|
if llm.startswith('zhipuai') or llm.startswith('glm-'): return True
|
||||||
return False
|
return False
|
||||||
|
|
||||||
|
if llm in model_info:
|
||||||
|
if 'can_multi_thread' in model_info[llm]:
|
||||||
|
return model_info[llm]['can_multi_thread']
|
||||||
|
else:
|
||||||
|
return default_condition(llm)
|
||||||
|
else:
|
||||||
|
return default_condition(llm)
|
||||||
|
|
||||||
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||||
inputs_array, inputs_show_user_array, llm_kwargs,
|
inputs_array, inputs_show_user_array, llm_kwargs,
|
||||||
chatbot, history_array, sys_prompt_array,
|
chatbot, history_array, sys_prompt_array,
|
||||||
@@ -337,7 +349,7 @@ def read_and_clean_pdf_text(fp):
|
|||||||
import fitz, copy
|
import fitz, copy
|
||||||
import re
|
import re
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from colorful import print亮黄, print亮绿
|
from shared_utils.colorful import print亮黄, print亮绿
|
||||||
fc = 0 # Index 0 文本
|
fc = 0 # Index 0 文本
|
||||||
fs = 1 # Index 1 字体
|
fs = 1 # Index 1 字体
|
||||||
fb = 2 # Index 2 框框
|
fb = 2 # Index 2 框框
|
||||||
@@ -556,7 +568,7 @@ class nougat_interface():
|
|||||||
from toolbox import ProxyNetworkActivate
|
from toolbox import ProxyNetworkActivate
|
||||||
logging.info(f'正在执行命令 {command}')
|
logging.info(f'正在执行命令 {command}')
|
||||||
with ProxyNetworkActivate("Nougat_Download"):
|
with ProxyNetworkActivate("Nougat_Download"):
|
||||||
process = subprocess.Popen(command, shell=True, cwd=cwd, env=os.environ)
|
process = subprocess.Popen(command, shell=False, cwd=cwd, env=os.environ)
|
||||||
try:
|
try:
|
||||||
stdout, stderr = process.communicate(timeout=timeout)
|
stdout, stderr = process.communicate(timeout=timeout)
|
||||||
except subprocess.TimeoutExpired:
|
except subprocess.TimeoutExpired:
|
||||||
@@ -580,7 +592,8 @@ class nougat_interface():
|
|||||||
|
|
||||||
yield from update_ui_lastest_msg("正在解析论文, 请稍候。进度:正在加载NOUGAT... (提示:首次运行需要花费较长时间下载NOUGAT参数)",
|
yield from update_ui_lastest_msg("正在解析论文, 请稍候。进度:正在加载NOUGAT... (提示:首次运行需要花费较长时间下载NOUGAT参数)",
|
||||||
chatbot=chatbot, history=history, delay=0)
|
chatbot=chatbot, history=history, delay=0)
|
||||||
self.nougat_with_timeout(f'nougat --out "{os.path.abspath(dst)}" "{os.path.abspath(fp)}"', os.getcwd(), timeout=3600)
|
command = ['nougat', '--out', os.path.abspath(dst), os.path.abspath(fp)]
|
||||||
|
self.nougat_with_timeout(command, cwd=os.getcwd(), timeout=3600)
|
||||||
res = glob.glob(os.path.join(dst,'*.mmd'))
|
res = glob.glob(os.path.join(dst,'*.mmd'))
|
||||||
if len(res) == 0:
|
if len(res) == 0:
|
||||||
self.threadLock.release()
|
self.threadLock.release()
|
||||||
|
|||||||
@@ -62,8 +62,8 @@ class GptJsonIO():
|
|||||||
if "type" in reduced_schema:
|
if "type" in reduced_schema:
|
||||||
del reduced_schema["type"]
|
del reduced_schema["type"]
|
||||||
# Ensure json in context is well-formed with double quotes.
|
# Ensure json in context is well-formed with double quotes.
|
||||||
if self.example_instruction:
|
|
||||||
schema_str = json.dumps(reduced_schema)
|
schema_str = json.dumps(reduced_schema)
|
||||||
|
if self.example_instruction:
|
||||||
return PYDANTIC_FORMAT_INSTRUCTIONS.format(schema=schema_str)
|
return PYDANTIC_FORMAT_INSTRUCTIONS.format(schema=schema_str)
|
||||||
else:
|
else:
|
||||||
return PYDANTIC_FORMAT_INSTRUCTIONS_SIMPLE.format(schema=schema_str)
|
return PYDANTIC_FORMAT_INSTRUCTIONS_SIMPLE.format(schema=schema_str)
|
||||||
|
|||||||
@@ -1,10 +1,11 @@
|
|||||||
from toolbox import update_ui, update_ui_lastest_msg, get_log_folder
|
from toolbox import update_ui, update_ui_lastest_msg, get_log_folder
|
||||||
from toolbox import get_conf, objdump, objload, promote_file_to_downloadzone
|
from toolbox import get_conf, promote_file_to_downloadzone
|
||||||
from .latex_toolbox import PRESERVE, TRANSFORM
|
from .latex_toolbox import PRESERVE, TRANSFORM
|
||||||
from .latex_toolbox import set_forbidden_text, set_forbidden_text_begin_end, set_forbidden_text_careful_brace
|
from .latex_toolbox import set_forbidden_text, set_forbidden_text_begin_end, set_forbidden_text_careful_brace
|
||||||
from .latex_toolbox import reverse_forbidden_text_careful_brace, reverse_forbidden_text, convert_to_linklist, post_process
|
from .latex_toolbox import reverse_forbidden_text_careful_brace, reverse_forbidden_text, convert_to_linklist, post_process
|
||||||
from .latex_toolbox import fix_content, find_main_tex_file, merge_tex_files, compile_latex_with_timeout
|
from .latex_toolbox import fix_content, find_main_tex_file, merge_tex_files, compile_latex_with_timeout
|
||||||
from .latex_toolbox import find_title_and_abs
|
from .latex_toolbox import find_title_and_abs
|
||||||
|
from .latex_pickle_io import objdump, objload
|
||||||
|
|
||||||
import os, shutil
|
import os, shutil
|
||||||
import re
|
import re
|
||||||
|
|||||||
38
crazy_functions/latex_fns/latex_pickle_io.py
Normal file
38
crazy_functions/latex_fns/latex_pickle_io.py
Normal file
@@ -0,0 +1,38 @@
|
|||||||
|
import pickle
|
||||||
|
|
||||||
|
|
||||||
|
class SafeUnpickler(pickle.Unpickler):
|
||||||
|
|
||||||
|
def get_safe_classes(self):
|
||||||
|
from .latex_actions import LatexPaperFileGroup, LatexPaperSplit
|
||||||
|
# 定义允许的安全类
|
||||||
|
safe_classes = {
|
||||||
|
# 在这里添加其他安全的类
|
||||||
|
'LatexPaperFileGroup': LatexPaperFileGroup,
|
||||||
|
'LatexPaperSplit' : LatexPaperSplit,
|
||||||
|
}
|
||||||
|
return safe_classes
|
||||||
|
|
||||||
|
def find_class(self, module, name):
|
||||||
|
# 只允许特定的类进行反序列化
|
||||||
|
self.safe_classes = self.get_safe_classes()
|
||||||
|
if f'{module}.{name}' in self.safe_classes:
|
||||||
|
return self.safe_classes[f'{module}.{name}']
|
||||||
|
# 如果尝试加载未授权的类,则抛出异常
|
||||||
|
raise pickle.UnpicklingError(f"Attempted to deserialize unauthorized class '{name}' from module '{module}'")
|
||||||
|
|
||||||
|
def objdump(obj, file="objdump.tmp"):
|
||||||
|
|
||||||
|
with open(file, "wb+") as f:
|
||||||
|
pickle.dump(obj, f)
|
||||||
|
return
|
||||||
|
|
||||||
|
|
||||||
|
def objload(file="objdump.tmp"):
|
||||||
|
import os
|
||||||
|
|
||||||
|
if not os.path.exists(file):
|
||||||
|
return
|
||||||
|
with open(file, "rb") as f:
|
||||||
|
unpickler = SafeUnpickler(f)
|
||||||
|
return unpickler.load()
|
||||||
@@ -4,7 +4,7 @@ from toolbox import promote_file_to_downloadzone
|
|||||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||||
from toolbox import get_conf
|
from toolbox import get_conf
|
||||||
from toolbox import ProxyNetworkActivate
|
from toolbox import ProxyNetworkActivate
|
||||||
from colorful import *
|
from shared_utils.colorful import *
|
||||||
import requests
|
import requests
|
||||||
import random
|
import random
|
||||||
import copy
|
import copy
|
||||||
@@ -72,7 +72,7 @@ def produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chat
|
|||||||
generated_conclusion_files.append(res_path)
|
generated_conclusion_files.append(res_path)
|
||||||
return res_path
|
return res_path
|
||||||
|
|
||||||
def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG):
|
def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG, plugin_kwargs={}):
|
||||||
from crazy_functions.pdf_fns.report_gen_html import construct_html
|
from crazy_functions.pdf_fns.report_gen_html import construct_html
|
||||||
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
@@ -138,7 +138,7 @@ def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_fi
|
|||||||
chatbot=chatbot,
|
chatbot=chatbot,
|
||||||
history_array=[meta for _ in inputs_array],
|
history_array=[meta for _ in inputs_array],
|
||||||
sys_prompt_array=[
|
sys_prompt_array=[
|
||||||
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array],
|
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" + plugin_kwargs.get("additional_prompt", "") for _ in inputs_array],
|
||||||
)
|
)
|
||||||
# -=-=-=-=-=-=-=-= 写出Markdown文件 -=-=-=-=-=-=-=-=
|
# -=-=-=-=-=-=-=-= 写出Markdown文件 -=-=-=-=-=-=-=-=
|
||||||
produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chatbot, fp, generated_conclusion_files)
|
produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chatbot, fp, generated_conclusion_files)
|
||||||
|
|||||||
26
crazy_functions/pdf_fns/parse_pdf_grobid.py
Normal file
26
crazy_functions/pdf_fns/parse_pdf_grobid.py
Normal file
@@ -0,0 +1,26 @@
|
|||||||
|
import os
|
||||||
|
from toolbox import CatchException, report_exception, get_log_folder, gen_time_str, check_packages
|
||||||
|
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
|
||||||
|
from toolbox import write_history_to_file, promote_file_to_downloadzone, get_conf, extract_archive
|
||||||
|
from crazy_functions.pdf_fns.parse_pdf import parse_pdf, translate_pdf
|
||||||
|
|
||||||
|
def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url):
|
||||||
|
import copy, json
|
||||||
|
TOKEN_LIMIT_PER_FRAGMENT = 1024
|
||||||
|
generated_conclusion_files = []
|
||||||
|
generated_html_files = []
|
||||||
|
DST_LANG = "中文"
|
||||||
|
from crazy_functions.pdf_fns.report_gen_html import construct_html
|
||||||
|
for index, fp in enumerate(file_manifest):
|
||||||
|
chatbot.append(["当前进度:", f"正在连接GROBID服务,请稍候: {grobid_url}\n如果等待时间过长,请修改config中的GROBID_URL,可修改成本地GROBID服务。"]); yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
article_dict = parse_pdf(fp, grobid_url)
|
||||||
|
grobid_json_res = os.path.join(get_log_folder(), gen_time_str() + "grobid.json")
|
||||||
|
with open(grobid_json_res, 'w+', encoding='utf8') as f:
|
||||||
|
f.write(json.dumps(article_dict, indent=4, ensure_ascii=False))
|
||||||
|
promote_file_to_downloadzone(grobid_json_res, chatbot=chatbot)
|
||||||
|
if article_dict is None: raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
|
||||||
|
yield from translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG, plugin_kwargs=plugin_kwargs)
|
||||||
|
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
|
|
||||||
@@ -1,83 +1,15 @@
|
|||||||
from toolbox import CatchException, report_exception, get_log_folder, gen_time_str, check_packages
|
from toolbox import get_log_folder
|
||||||
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
|
from toolbox import update_ui, promote_file_to_downloadzone
|
||||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
from .crazy_utils import read_and_clean_pdf_text
|
from crazy_functions.crazy_utils import read_and_clean_pdf_text
|
||||||
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url, translate_pdf
|
from shared_utils.colorful import *
|
||||||
from colorful import *
|
|
||||||
import os
|
import os
|
||||||
|
|
||||||
|
def 解析PDF_简单拆解(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||||
@CatchException
|
|
||||||
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
|
||||||
|
|
||||||
disable_auto_promotion(chatbot)
|
|
||||||
# 基本信息:功能、贡献者
|
|
||||||
chatbot.append([
|
|
||||||
"函数插件功能?",
|
|
||||||
"批量翻译PDF文档。函数插件贡献者: Binary-Husky"])
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
|
|
||||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
|
||||||
try:
|
|
||||||
check_packages(["fitz", "tiktoken", "scipdf"])
|
|
||||||
except:
|
|
||||||
report_exception(chatbot, history,
|
|
||||||
a=f"解析项目: {txt}",
|
|
||||||
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf tiktoken scipdf_parser```。")
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
return
|
|
||||||
|
|
||||||
# 清空历史,以免输入溢出
|
|
||||||
history = []
|
|
||||||
|
|
||||||
from .crazy_utils import get_files_from_everything
|
|
||||||
success, file_manifest, project_folder = get_files_from_everything(txt, type='.pdf')
|
|
||||||
# 检测输入参数,如没有给定输入参数,直接退出
|
|
||||||
if not success:
|
|
||||||
if txt == "": txt = '空空如也的输入栏'
|
|
||||||
|
|
||||||
# 如果没找到任何文件
|
|
||||||
if len(file_manifest) == 0:
|
|
||||||
report_exception(chatbot, history,
|
|
||||||
a=f"解析项目: {txt}", b=f"找不到任何.pdf拓展名的文件: {txt}")
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
return
|
|
||||||
|
|
||||||
# 开始正式执行任务
|
|
||||||
grobid_url = get_avail_grobid_url()
|
|
||||||
if grobid_url is not None:
|
|
||||||
yield from 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url)
|
|
||||||
else:
|
|
||||||
yield from update_ui_lastest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
|
|
||||||
yield from 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
|
||||||
|
|
||||||
|
|
||||||
def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url):
|
|
||||||
import copy, json
|
|
||||||
TOKEN_LIMIT_PER_FRAGMENT = 1024
|
|
||||||
generated_conclusion_files = []
|
|
||||||
generated_html_files = []
|
|
||||||
DST_LANG = "中文"
|
|
||||||
from crazy_functions.pdf_fns.report_gen_html import construct_html
|
|
||||||
for index, fp in enumerate(file_manifest):
|
|
||||||
chatbot.append(["当前进度:", f"正在连接GROBID服务,请稍候: {grobid_url}\n如果等待时间过长,请修改config中的GROBID_URL,可修改成本地GROBID服务。"]); yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
article_dict = parse_pdf(fp, grobid_url)
|
|
||||||
grobid_json_res = os.path.join(get_log_folder(), gen_time_str() + "grobid.json")
|
|
||||||
with open(grobid_json_res, 'w+', encoding='utf8') as f:
|
|
||||||
f.write(json.dumps(article_dict, indent=4, ensure_ascii=False))
|
|
||||||
promote_file_to_downloadzone(grobid_json_res, chatbot=chatbot)
|
|
||||||
|
|
||||||
if article_dict is None: raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
|
|
||||||
yield from translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG)
|
|
||||||
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
|
|
||||||
|
|
||||||
def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
|
||||||
"""
|
"""
|
||||||
此函数已经弃用
|
注意:此函数已经弃用!!新函数位于:crazy_functions/pdf_fns/parse_pdf.py
|
||||||
"""
|
"""
|
||||||
import copy
|
import copy
|
||||||
TOKEN_LIMIT_PER_FRAGMENT = 1024
|
TOKEN_LIMIT_PER_FRAGMENT = 1024
|
||||||
@@ -116,7 +48,8 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
|
|||||||
chatbot=chatbot,
|
chatbot=chatbot,
|
||||||
history_array=[[paper_meta] for _ in paper_fragments],
|
history_array=[[paper_meta] for _ in paper_fragments],
|
||||||
sys_prompt_array=[
|
sys_prompt_array=[
|
||||||
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in paper_fragments],
|
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" + plugin_kwargs.get("additional_prompt", "")
|
||||||
|
for _ in paper_fragments],
|
||||||
# max_workers=5 # OpenAI所允许的最大并行过载
|
# max_workers=5 # OpenAI所允许的最大并行过载
|
||||||
)
|
)
|
||||||
gpt_response_collection_md = copy.deepcopy(gpt_response_collection)
|
gpt_response_collection_md = copy.deepcopy(gpt_response_collection)
|
||||||
211
crazy_functions/pdf_fns/parse_pdf_via_doc2x.py
Normal file
211
crazy_functions/pdf_fns/parse_pdf_via_doc2x.py
Normal file
@@ -0,0 +1,211 @@
|
|||||||
|
from toolbox import get_log_folder, gen_time_str, get_conf
|
||||||
|
from toolbox import update_ui, promote_file_to_downloadzone
|
||||||
|
from toolbox import promote_file_to_downloadzone, extract_archive
|
||||||
|
from toolbox import generate_file_link, zip_folder
|
||||||
|
from crazy_functions.crazy_utils import get_files_from_everything
|
||||||
|
from shared_utils.colorful import *
|
||||||
|
import os
|
||||||
|
|
||||||
|
def refresh_key(doc2x_api_key):
|
||||||
|
import requests, json
|
||||||
|
url = "https://api.doc2x.noedgeai.com/api/token/refresh"
|
||||||
|
res = requests.post(
|
||||||
|
url,
|
||||||
|
headers={"Authorization": "Bearer " + doc2x_api_key}
|
||||||
|
)
|
||||||
|
res_json = []
|
||||||
|
if res.status_code == 200:
|
||||||
|
decoded = res.content.decode("utf-8")
|
||||||
|
res_json = json.loads(decoded)
|
||||||
|
doc2x_api_key = res_json['data']['token']
|
||||||
|
else:
|
||||||
|
raise RuntimeError(format("[ERROR] status code: %d, body: %s" % (res.status_code, res.text)))
|
||||||
|
return doc2x_api_key
|
||||||
|
|
||||||
|
def 解析PDF_DOC2X_转Latex(pdf_file_path):
|
||||||
|
import requests, json, os
|
||||||
|
DOC2X_API_KEY = get_conf('DOC2X_API_KEY')
|
||||||
|
latex_dir = get_log_folder(plugin_name="pdf_ocr_latex")
|
||||||
|
doc2x_api_key = DOC2X_API_KEY
|
||||||
|
if doc2x_api_key.startswith('sk-'):
|
||||||
|
url = "https://api.doc2x.noedgeai.com/api/v1/pdf"
|
||||||
|
else:
|
||||||
|
doc2x_api_key = refresh_key(doc2x_api_key)
|
||||||
|
url = "https://api.doc2x.noedgeai.com/api/platform/pdf"
|
||||||
|
|
||||||
|
res = requests.post(
|
||||||
|
url,
|
||||||
|
files={"file": open(pdf_file_path, "rb")},
|
||||||
|
data={"ocr": "1"},
|
||||||
|
headers={"Authorization": "Bearer " + doc2x_api_key}
|
||||||
|
)
|
||||||
|
res_json = []
|
||||||
|
if res.status_code == 200:
|
||||||
|
decoded = res.content.decode("utf-8")
|
||||||
|
for z_decoded in decoded.split('\n'):
|
||||||
|
if len(z_decoded) == 0: continue
|
||||||
|
assert z_decoded.startswith("data: ")
|
||||||
|
z_decoded = z_decoded[len("data: "):]
|
||||||
|
decoded_json = json.loads(z_decoded)
|
||||||
|
res_json.append(decoded_json)
|
||||||
|
else:
|
||||||
|
raise RuntimeError(format("[ERROR] status code: %d, body: %s" % (res.status_code, res.text)))
|
||||||
|
|
||||||
|
uuid = res_json[0]['uuid']
|
||||||
|
to = "latex" # latex, md, docx
|
||||||
|
url = "https://api.doc2x.noedgeai.com/api/export"+"?request_id="+uuid+"&to="+to
|
||||||
|
|
||||||
|
res = requests.get(url, headers={"Authorization": "Bearer " + doc2x_api_key})
|
||||||
|
latex_zip_path = os.path.join(latex_dir, gen_time_str() + '.zip')
|
||||||
|
latex_unzip_path = os.path.join(latex_dir, gen_time_str())
|
||||||
|
if res.status_code == 200:
|
||||||
|
with open(latex_zip_path, "wb") as f: f.write(res.content)
|
||||||
|
else:
|
||||||
|
raise RuntimeError(format("[ERROR] status code: %d, body: %s" % (res.status_code, res.text)))
|
||||||
|
|
||||||
|
import zipfile
|
||||||
|
with zipfile.ZipFile(latex_zip_path, 'r') as zip_ref:
|
||||||
|
zip_ref.extractall(latex_unzip_path)
|
||||||
|
|
||||||
|
|
||||||
|
return latex_unzip_path
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def 解析PDF_DOC2X_单文件(fp, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, DOC2X_API_KEY, user_request):
|
||||||
|
|
||||||
|
|
||||||
|
def pdf2markdown(filepath):
|
||||||
|
import requests, json, os
|
||||||
|
markdown_dir = get_log_folder(plugin_name="pdf_ocr")
|
||||||
|
doc2x_api_key = DOC2X_API_KEY
|
||||||
|
if doc2x_api_key.startswith('sk-'):
|
||||||
|
url = "https://api.doc2x.noedgeai.com/api/v1/pdf"
|
||||||
|
else:
|
||||||
|
doc2x_api_key = refresh_key(doc2x_api_key)
|
||||||
|
url = "https://api.doc2x.noedgeai.com/api/platform/pdf"
|
||||||
|
|
||||||
|
chatbot.append((None, "加载PDF文件,发送至DOC2X解析..."))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
|
res = requests.post(
|
||||||
|
url,
|
||||||
|
files={"file": open(filepath, "rb")},
|
||||||
|
data={"ocr": "1"},
|
||||||
|
headers={"Authorization": "Bearer " + doc2x_api_key}
|
||||||
|
)
|
||||||
|
res_json = []
|
||||||
|
if res.status_code == 200:
|
||||||
|
decoded = res.content.decode("utf-8")
|
||||||
|
for z_decoded in decoded.split('\n'):
|
||||||
|
if len(z_decoded) == 0: continue
|
||||||
|
assert z_decoded.startswith("data: ")
|
||||||
|
z_decoded = z_decoded[len("data: "):]
|
||||||
|
decoded_json = json.loads(z_decoded)
|
||||||
|
res_json.append(decoded_json)
|
||||||
|
else:
|
||||||
|
raise RuntimeError(format("[ERROR] status code: %d, body: %s" % (res.status_code, res.text)))
|
||||||
|
uuid = res_json[0]['uuid']
|
||||||
|
to = "md" # latex, md, docx
|
||||||
|
url = "https://api.doc2x.noedgeai.com/api/export"+"?request_id="+uuid+"&to="+to
|
||||||
|
|
||||||
|
chatbot.append((None, f"读取解析: {url} ..."))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
|
res = requests.get(url, headers={"Authorization": "Bearer " + doc2x_api_key})
|
||||||
|
md_zip_path = os.path.join(markdown_dir, gen_time_str() + '.zip')
|
||||||
|
if res.status_code == 200:
|
||||||
|
with open(md_zip_path, "wb") as f: f.write(res.content)
|
||||||
|
else:
|
||||||
|
raise RuntimeError(format("[ERROR] status code: %d, body: %s" % (res.status_code, res.text)))
|
||||||
|
promote_file_to_downloadzone(md_zip_path, chatbot=chatbot)
|
||||||
|
chatbot.append((None, f"完成解析 {md_zip_path} ..."))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
return md_zip_path
|
||||||
|
|
||||||
|
def deliver_to_markdown_plugin(md_zip_path, user_request):
|
||||||
|
from crazy_functions.Markdown_Translate import Markdown英译中
|
||||||
|
import shutil, re
|
||||||
|
|
||||||
|
time_tag = gen_time_str()
|
||||||
|
target_path_base = get_log_folder(chatbot.get_user())
|
||||||
|
file_origin_name = os.path.basename(md_zip_path)
|
||||||
|
this_file_path = os.path.join(target_path_base, file_origin_name)
|
||||||
|
os.makedirs(target_path_base, exist_ok=True)
|
||||||
|
shutil.copyfile(md_zip_path, this_file_path)
|
||||||
|
ex_folder = this_file_path + ".extract"
|
||||||
|
extract_archive(
|
||||||
|
file_path=this_file_path, dest_dir=ex_folder
|
||||||
|
)
|
||||||
|
|
||||||
|
# edit markdown files
|
||||||
|
success, file_manifest, project_folder = get_files_from_everything(ex_folder, type='.md')
|
||||||
|
for generated_fp in file_manifest:
|
||||||
|
# 修正一些公式问题
|
||||||
|
with open(generated_fp, 'r', encoding='utf8') as f:
|
||||||
|
content = f.read()
|
||||||
|
# 将公式中的\[ \]替换成$$
|
||||||
|
content = content.replace(r'\[', r'$$').replace(r'\]', r'$$')
|
||||||
|
# 将公式中的\( \)替换成$
|
||||||
|
content = content.replace(r'\(', r'$').replace(r'\)', r'$')
|
||||||
|
content = content.replace('```markdown', '\n').replace('```', '\n')
|
||||||
|
with open(generated_fp, 'w', encoding='utf8') as f:
|
||||||
|
f.write(content)
|
||||||
|
promote_file_to_downloadzone(generated_fp, chatbot=chatbot)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
|
# 生成在线预览html
|
||||||
|
file_name = '在线预览翻译(原文)' + gen_time_str() + '.html'
|
||||||
|
preview_fp = os.path.join(ex_folder, file_name)
|
||||||
|
from shared_utils.advanced_markdown_format import markdown_convertion_for_file
|
||||||
|
with open(generated_fp, "r", encoding="utf-8") as f:
|
||||||
|
md = f.read()
|
||||||
|
# Markdown中使用不标准的表格,需要在表格前加上一个emoji,以便公式渲染
|
||||||
|
md = re.sub(r'^<table>', r'😃<table>', md, flags=re.MULTILINE)
|
||||||
|
html = markdown_convertion_for_file(md)
|
||||||
|
with open(preview_fp, "w", encoding="utf-8") as f: f.write(html)
|
||||||
|
chatbot.append([None, f"生成在线预览:{generate_file_link([preview_fp])}"])
|
||||||
|
promote_file_to_downloadzone(preview_fp, chatbot=chatbot)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
chatbot.append((None, f"调用Markdown插件 {ex_folder} ..."))
|
||||||
|
plugin_kwargs['markdown_expected_output_dir'] = ex_folder
|
||||||
|
|
||||||
|
translated_f_name = 'translated_markdown.md'
|
||||||
|
generated_fp = plugin_kwargs['markdown_expected_output_path'] = os.path.join(ex_folder, translated_f_name)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
yield from Markdown英译中(ex_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||||
|
if os.path.exists(generated_fp):
|
||||||
|
# 修正一些公式问题
|
||||||
|
with open(generated_fp, 'r', encoding='utf8') as f: content = f.read()
|
||||||
|
content = content.replace('```markdown', '\n').replace('```', '\n')
|
||||||
|
# Markdown中使用不标准的表格,需要在表格前加上一个emoji,以便公式渲染
|
||||||
|
content = re.sub(r'^<table>', r'😃<table>', content, flags=re.MULTILINE)
|
||||||
|
with open(generated_fp, 'w', encoding='utf8') as f: f.write(content)
|
||||||
|
# 生成在线预览html
|
||||||
|
file_name = '在线预览翻译' + gen_time_str() + '.html'
|
||||||
|
preview_fp = os.path.join(ex_folder, file_name)
|
||||||
|
from shared_utils.advanced_markdown_format import markdown_convertion_for_file
|
||||||
|
with open(generated_fp, "r", encoding="utf-8") as f:
|
||||||
|
md = f.read()
|
||||||
|
html = markdown_convertion_for_file(md)
|
||||||
|
with open(preview_fp, "w", encoding="utf-8") as f: f.write(html)
|
||||||
|
promote_file_to_downloadzone(preview_fp, chatbot=chatbot)
|
||||||
|
# 生成包含图片的压缩包
|
||||||
|
dest_folder = get_log_folder(chatbot.get_user())
|
||||||
|
zip_name = '翻译后的带图文档.zip'
|
||||||
|
zip_folder(source_folder=ex_folder, dest_folder=dest_folder, zip_name=zip_name)
|
||||||
|
zip_fp = os.path.join(dest_folder, zip_name)
|
||||||
|
promote_file_to_downloadzone(zip_fp, chatbot=chatbot)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
md_zip_path = yield from pdf2markdown(fp)
|
||||||
|
yield from deliver_to_markdown_plugin(md_zip_path, user_request)
|
||||||
|
|
||||||
|
def 解析PDF_基于DOC2X(file_manifest, *args):
|
||||||
|
for index, fp in enumerate(file_manifest):
|
||||||
|
yield from 解析PDF_DOC2X_单文件(fp, *args)
|
||||||
|
return
|
||||||
|
|
||||||
|
|
||||||
85
crazy_functions/pdf_fns/parse_word.py
Normal file
85
crazy_functions/pdf_fns/parse_word.py
Normal file
@@ -0,0 +1,85 @@
|
|||||||
|
from crazy_functions.crazy_utils import read_and_clean_pdf_text, get_files_from_everything
|
||||||
|
import os
|
||||||
|
import re
|
||||||
|
def extract_text_from_files(txt, chatbot, history):
|
||||||
|
"""
|
||||||
|
查找pdf/md/word并获取文本内容并返回状态以及文本
|
||||||
|
|
||||||
|
输入参数 Args:
|
||||||
|
chatbot: chatbot inputs and outputs (用户界面对话窗口句柄,用于数据流可视化)
|
||||||
|
history (list): List of chat history (历史,对话历史列表)
|
||||||
|
|
||||||
|
输出 Returns:
|
||||||
|
文件是否存在(bool)
|
||||||
|
final_result(list):文本内容
|
||||||
|
page_one(list):第一页内容/摘要
|
||||||
|
file_manifest(list):文件路径
|
||||||
|
excption(string):需要用户手动处理的信息,如没出错则保持为空
|
||||||
|
"""
|
||||||
|
|
||||||
|
final_result = []
|
||||||
|
page_one = []
|
||||||
|
file_manifest = []
|
||||||
|
excption = ""
|
||||||
|
|
||||||
|
if txt == "":
|
||||||
|
final_result.append(txt)
|
||||||
|
return False, final_result, page_one, file_manifest, excption #如输入区内容不是文件则直接返回输入区内容
|
||||||
|
|
||||||
|
#查找输入区内容中的文件
|
||||||
|
file_pdf,pdf_manifest,folder_pdf = get_files_from_everything(txt, '.pdf')
|
||||||
|
file_md,md_manifest,folder_md = get_files_from_everything(txt, '.md')
|
||||||
|
file_word,word_manifest,folder_word = get_files_from_everything(txt, '.docx')
|
||||||
|
file_doc,doc_manifest,folder_doc = get_files_from_everything(txt, '.doc')
|
||||||
|
|
||||||
|
if file_doc:
|
||||||
|
excption = "word"
|
||||||
|
return False, final_result, page_one, file_manifest, excption
|
||||||
|
|
||||||
|
file_num = len(pdf_manifest) + len(md_manifest) + len(word_manifest)
|
||||||
|
if file_num == 0:
|
||||||
|
final_result.append(txt)
|
||||||
|
return False, final_result, page_one, file_manifest, excption #如输入区内容不是文件则直接返回输入区内容
|
||||||
|
|
||||||
|
if file_pdf:
|
||||||
|
try: # 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||||
|
import fitz
|
||||||
|
except:
|
||||||
|
excption = "pdf"
|
||||||
|
return False, final_result, page_one, file_manifest, excption
|
||||||
|
for index, fp in enumerate(pdf_manifest):
|
||||||
|
file_content, pdf_one = read_and_clean_pdf_text(fp) # (尝试)按照章节切割PDF
|
||||||
|
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||||||
|
pdf_one = str(pdf_one).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||||||
|
final_result.append(file_content)
|
||||||
|
page_one.append(pdf_one)
|
||||||
|
file_manifest.append(os.path.relpath(fp, folder_pdf))
|
||||||
|
|
||||||
|
if file_md:
|
||||||
|
for index, fp in enumerate(md_manifest):
|
||||||
|
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
|
||||||
|
file_content = f.read()
|
||||||
|
file_content = file_content.encode('utf-8', 'ignore').decode()
|
||||||
|
headers = re.findall(r'^#\s(.*)$', file_content, re.MULTILINE) #接下来提取md中的一级/二级标题作为摘要
|
||||||
|
if len(headers) > 0:
|
||||||
|
page_one.append("\n".join(headers)) #合并所有的标题,以换行符分割
|
||||||
|
else:
|
||||||
|
page_one.append("")
|
||||||
|
final_result.append(file_content)
|
||||||
|
file_manifest.append(os.path.relpath(fp, folder_md))
|
||||||
|
|
||||||
|
if file_word:
|
||||||
|
try: # 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||||
|
from docx import Document
|
||||||
|
except:
|
||||||
|
excption = "word_pip"
|
||||||
|
return False, final_result, page_one, file_manifest, excption
|
||||||
|
for index, fp in enumerate(word_manifest):
|
||||||
|
doc = Document(fp)
|
||||||
|
file_content = '\n'.join([p.text for p in doc.paragraphs])
|
||||||
|
file_content = file_content.encode('utf-8', 'ignore').decode()
|
||||||
|
page_one.append(file_content[:200])
|
||||||
|
final_result.append(file_content)
|
||||||
|
file_manifest.append(os.path.relpath(fp, folder_word))
|
||||||
|
|
||||||
|
return True, final_result, page_one, file_manifest, excption
|
||||||
73
crazy_functions/pdf_fns/report_template_v2.html
Normal file
73
crazy_functions/pdf_fns/report_template_v2.html
Normal file
@@ -0,0 +1,73 @@
|
|||||||
|
<!DOCTYPE html>
|
||||||
|
<html xmlns="http://www.w3.org/1999/xhtml">
|
||||||
|
|
||||||
|
<head>
|
||||||
|
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
|
||||||
|
<title>GPT-Academic 翻译报告书</title>
|
||||||
|
<style>
|
||||||
|
.centered-a {
|
||||||
|
color: red;
|
||||||
|
text-align: center;
|
||||||
|
margin-bottom: 2%;
|
||||||
|
font-size: 1.5em;
|
||||||
|
}
|
||||||
|
.centered-b {
|
||||||
|
color: red;
|
||||||
|
text-align: center;
|
||||||
|
margin-top: 10%;
|
||||||
|
margin-bottom: 20%;
|
||||||
|
font-size: 1.5em;
|
||||||
|
}
|
||||||
|
.centered-c {
|
||||||
|
color: rgba(255, 0, 0, 0);
|
||||||
|
text-align: center;
|
||||||
|
margin-top: 2%;
|
||||||
|
margin-bottom: 20%;
|
||||||
|
font-size: 7em;
|
||||||
|
}
|
||||||
|
</style>
|
||||||
|
<script>
|
||||||
|
// Configure MathJax settings
|
||||||
|
MathJax = {
|
||||||
|
tex: {
|
||||||
|
inlineMath: [
|
||||||
|
['$', '$'],
|
||||||
|
['\(', '\)']
|
||||||
|
]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
addEventListener('zero-md-rendered', () => {MathJax.typeset(); console.log('MathJax typeset!');})
|
||||||
|
</script>
|
||||||
|
<!-- Load MathJax library -->
|
||||||
|
<script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js"></script>
|
||||||
|
<script
|
||||||
|
type="module"
|
||||||
|
src="https://cdn.jsdelivr.net/gh/zerodevx/zero-md@2/dist/zero-md.min.js"
|
||||||
|
></script>
|
||||||
|
|
||||||
|
</head>
|
||||||
|
|
||||||
|
<body>
|
||||||
|
<div class="test_temp1" style="width:10%; height: 500px; float:left;">
|
||||||
|
|
||||||
|
</div>
|
||||||
|
<div class="test_temp2" style="width:80%; height: 500px; float:left;">
|
||||||
|
<!-- Simply set the `src` attribute to your MD file and win -->
|
||||||
|
<div class="centered-a">
|
||||||
|
请按Ctrl+S保存此页面,否则该页面可能在几分钟后失效。
|
||||||
|
</div>
|
||||||
|
<zero-md src="translated_markdown.md" no-shadow>
|
||||||
|
</zero-md>
|
||||||
|
<div class="centered-b">
|
||||||
|
本报告由GPT-Academic开源项目生成,地址:https://github.com/binary-husky/gpt_academic。
|
||||||
|
</div>
|
||||||
|
<div class="centered-c">
|
||||||
|
本报告由GPT-Academic开源项目生成,地址:https://github.com/binary-husky/gpt_academic。
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
<div class="test_temp3" style="width:10%; height: 500px; float:left;">
|
||||||
|
</div>
|
||||||
|
|
||||||
|
</body>
|
||||||
|
|
||||||
|
</html>
|
||||||
52
crazy_functions/plugin_template/plugin_class_template.py
Normal file
52
crazy_functions/plugin_template/plugin_class_template.py
Normal file
@@ -0,0 +1,52 @@
|
|||||||
|
import os, json, base64
|
||||||
|
from pydantic import BaseModel, Field
|
||||||
|
from textwrap import dedent
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
class ArgProperty(BaseModel): # PLUGIN_ARG_MENU
|
||||||
|
title: str = Field(description="The title", default="")
|
||||||
|
description: str = Field(description="The description", default="")
|
||||||
|
default_value: str = Field(description="The default value", default="")
|
||||||
|
type: str = Field(description="The type", default="") # currently we support ['string', 'dropdown']
|
||||||
|
options: List[str] = Field(default=[], description="List of options available for the argument") # only used when type is 'dropdown'
|
||||||
|
|
||||||
|
class GptAcademicPluginTemplate():
|
||||||
|
def __init__(self):
|
||||||
|
# please note that `execute` method may run in different threads,
|
||||||
|
# thus you should not store any state in the plugin instance,
|
||||||
|
# which may be accessed by multiple threads
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
def define_arg_selection_menu(self):
|
||||||
|
"""
|
||||||
|
An example as below:
|
||||||
|
```
|
||||||
|
def define_arg_selection_menu(self):
|
||||||
|
gui_definition = {
|
||||||
|
"main_input":
|
||||||
|
ArgProperty(title="main input", description="description", default_value="default_value", type="string").model_dump_json(),
|
||||||
|
"advanced_arg":
|
||||||
|
ArgProperty(title="advanced arguments", description="description", default_value="default_value", type="string").model_dump_json(),
|
||||||
|
"additional_arg_01":
|
||||||
|
ArgProperty(title="additional", description="description", default_value="default_value", type="string").model_dump_json(),
|
||||||
|
}
|
||||||
|
return gui_definition
|
||||||
|
```
|
||||||
|
"""
|
||||||
|
raise NotImplementedError("You need to implement this method in your plugin class")
|
||||||
|
|
||||||
|
|
||||||
|
def get_js_code_for_generating_menu(self, btnName):
|
||||||
|
define_arg_selection = self.define_arg_selection_menu()
|
||||||
|
|
||||||
|
if len(define_arg_selection.keys()) > 8:
|
||||||
|
raise ValueError("You can only have up to 8 arguments in the define_arg_selection")
|
||||||
|
# if "main_input" not in define_arg_selection:
|
||||||
|
# raise ValueError("You must have a 'main_input' in the define_arg_selection")
|
||||||
|
|
||||||
|
DEFINE_ARG_INPUT_INTERFACE = json.dumps(define_arg_selection)
|
||||||
|
return base64.b64encode(DEFINE_ARG_INPUT_INTERFACE.encode('utf-8')).decode('utf-8')
|
||||||
|
|
||||||
|
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||||
|
raise NotImplementedError("You need to implement this method in your plugin class")
|
||||||
@@ -10,7 +10,7 @@ def read_avail_plugin_enum():
|
|||||||
from crazy_functional import get_crazy_functions
|
from crazy_functional import get_crazy_functions
|
||||||
plugin_arr = get_crazy_functions()
|
plugin_arr = get_crazy_functions()
|
||||||
# remove plugins with out explaination
|
# remove plugins with out explaination
|
||||||
plugin_arr = {k:v for k, v in plugin_arr.items() if 'Info' in v}
|
plugin_arr = {k:v for k, v in plugin_arr.items() if ('Info' in v) and ('Function' in v)}
|
||||||
plugin_arr_info = {"F_{:04d}".format(i):v["Info"] for i, v in enumerate(plugin_arr.values(), start=1)}
|
plugin_arr_info = {"F_{:04d}".format(i):v["Info"] for i, v in enumerate(plugin_arr.values(), start=1)}
|
||||||
plugin_arr_dict = {"F_{:04d}".format(i):v for i, v in enumerate(plugin_arr.values(), start=1)}
|
plugin_arr_dict = {"F_{:04d}".format(i):v for i, v in enumerate(plugin_arr.values(), start=1)}
|
||||||
plugin_arr_dict_parse = {"F_{:04d}".format(i):v for i, v in enumerate(plugin_arr.values(), start=1)}
|
plugin_arr_dict_parse = {"F_{:04d}".format(i):v for i, v in enumerate(plugin_arr.values(), start=1)}
|
||||||
|
|||||||
@@ -5,7 +5,7 @@ from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
|||||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
from .crazy_utils import read_and_clean_pdf_text
|
from .crazy_utils import read_and_clean_pdf_text
|
||||||
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url, translate_pdf
|
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url, translate_pdf
|
||||||
from colorful import *
|
from shared_utils.colorful import *
|
||||||
import copy
|
import copy
|
||||||
import os
|
import os
|
||||||
import math
|
import math
|
||||||
|
|||||||
@@ -1,7 +1,9 @@
|
|||||||
from toolbox import CatchException, update_ui, report_exception
|
from toolbox import CatchException, update_ui, report_exception
|
||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from .crazy_utils import read_and_clean_pdf_text
|
from crazy_functions.plugin_template.plugin_class_template import (
|
||||||
import datetime
|
GptAcademicPluginTemplate,
|
||||||
|
)
|
||||||
|
from crazy_functions.plugin_template.plugin_class_template import ArgProperty
|
||||||
|
|
||||||
# 以下是每类图表的PROMPT
|
# 以下是每类图表的PROMPT
|
||||||
SELECT_PROMPT = """
|
SELECT_PROMPT = """
|
||||||
@@ -21,19 +23,21 @@ SELECT_PROMPT = """
|
|||||||
# 没有思维导图!!!测试发现模型始终会优先选择思维导图
|
# 没有思维导图!!!测试发现模型始终会优先选择思维导图
|
||||||
# 流程图
|
# 流程图
|
||||||
PROMPT_1 = """
|
PROMPT_1 = """
|
||||||
请你给出围绕“{subject}”的逻辑关系图,使用mermaid语法,mermaid语法举例:
|
请你给出围绕“{subject}”的逻辑关系图,使用mermaid语法,注意需要使用双引号将内容括起来。
|
||||||
|
mermaid语法举例:
|
||||||
```mermaid
|
```mermaid
|
||||||
graph TD
|
graph TD
|
||||||
P(编程) --> L1(Python)
|
P("编程") --> L1("Python")
|
||||||
P(编程) --> L2(C)
|
P("编程") --> L2("C")
|
||||||
P(编程) --> L3(C++)
|
P("编程") --> L3("C++")
|
||||||
P(编程) --> L4(Javascipt)
|
P("编程") --> L4("Javascipt")
|
||||||
P(编程) --> L5(PHP)
|
P("编程") --> L5("PHP")
|
||||||
```
|
```
|
||||||
"""
|
"""
|
||||||
# 序列图
|
# 序列图
|
||||||
PROMPT_2 = """
|
PROMPT_2 = """
|
||||||
请你给出围绕“{subject}”的序列图,使用mermaid语法,mermaid语法举例:
|
请你给出围绕“{subject}”的序列图,使用mermaid语法。
|
||||||
|
mermaid语法举例:
|
||||||
```mermaid
|
```mermaid
|
||||||
sequenceDiagram
|
sequenceDiagram
|
||||||
participant A as 用户
|
participant A as 用户
|
||||||
@@ -46,7 +50,8 @@ sequenceDiagram
|
|||||||
"""
|
"""
|
||||||
# 类图
|
# 类图
|
||||||
PROMPT_3 = """
|
PROMPT_3 = """
|
||||||
请你给出围绕“{subject}”的类图,使用mermaid语法,mermaid语法举例:
|
请你给出围绕“{subject}”的类图,使用mermaid语法。
|
||||||
|
mermaid语法举例:
|
||||||
```mermaid
|
```mermaid
|
||||||
classDiagram
|
classDiagram
|
||||||
Class01 <|-- AveryLongClass : Cool
|
Class01 <|-- AveryLongClass : Cool
|
||||||
@@ -66,7 +71,8 @@ classDiagram
|
|||||||
"""
|
"""
|
||||||
# 饼图
|
# 饼图
|
||||||
PROMPT_4 = """
|
PROMPT_4 = """
|
||||||
请你给出围绕“{subject}”的饼图,使用mermaid语法,mermaid语法举例:
|
请你给出围绕“{subject}”的饼图,使用mermaid语法,注意需要使用双引号将内容括起来。
|
||||||
|
mermaid语法举例:
|
||||||
```mermaid
|
```mermaid
|
||||||
pie title Pets adopted by volunteers
|
pie title Pets adopted by volunteers
|
||||||
"狗" : 386
|
"狗" : 386
|
||||||
@@ -76,36 +82,39 @@ pie title Pets adopted by volunteers
|
|||||||
"""
|
"""
|
||||||
# 甘特图
|
# 甘特图
|
||||||
PROMPT_5 = """
|
PROMPT_5 = """
|
||||||
请你给出围绕“{subject}”的甘特图,使用mermaid语法,mermaid语法举例:
|
请你给出围绕“{subject}”的甘特图,使用mermaid语法,注意需要使用双引号将内容括起来。
|
||||||
|
mermaid语法举例:
|
||||||
```mermaid
|
```mermaid
|
||||||
gantt
|
gantt
|
||||||
title 项目开发流程
|
title "项目开发流程"
|
||||||
dateFormat YYYY-MM-DD
|
dateFormat YYYY-MM-DD
|
||||||
section 设计
|
section "设计"
|
||||||
需求分析 :done, des1, 2024-01-06,2024-01-08
|
"需求分析" :done, des1, 2024-01-06,2024-01-08
|
||||||
原型设计 :active, des2, 2024-01-09, 3d
|
"原型设计" :active, des2, 2024-01-09, 3d
|
||||||
UI设计 : des3, after des2, 5d
|
"UI设计" : des3, after des2, 5d
|
||||||
section 开发
|
section "开发"
|
||||||
前端开发 :2024-01-20, 10d
|
"前端开发" :2024-01-20, 10d
|
||||||
后端开发 :2024-01-20, 10d
|
"后端开发" :2024-01-20, 10d
|
||||||
```
|
```
|
||||||
"""
|
"""
|
||||||
# 状态图
|
# 状态图
|
||||||
PROMPT_6 = """
|
PROMPT_6 = """
|
||||||
请你给出围绕“{subject}”的状态图,使用mermaid语法,mermaid语法举例:
|
请你给出围绕“{subject}”的状态图,使用mermaid语法,注意需要使用双引号将内容括起来。
|
||||||
|
mermaid语法举例:
|
||||||
```mermaid
|
```mermaid
|
||||||
stateDiagram-v2
|
stateDiagram-v2
|
||||||
[*] --> Still
|
[*] --> "Still"
|
||||||
Still --> [*]
|
"Still" --> [*]
|
||||||
Still --> Moving
|
"Still" --> "Moving"
|
||||||
Moving --> Still
|
"Moving" --> "Still"
|
||||||
Moving --> Crash
|
"Moving" --> "Crash"
|
||||||
Crash --> [*]
|
"Crash" --> [*]
|
||||||
```
|
```
|
||||||
"""
|
"""
|
||||||
# 实体关系图
|
# 实体关系图
|
||||||
PROMPT_7 = """
|
PROMPT_7 = """
|
||||||
请你给出围绕“{subject}”的实体关系图,使用mermaid语法,mermaid语法举例:
|
请你给出围绕“{subject}”的实体关系图,使用mermaid语法。
|
||||||
|
mermaid语法举例:
|
||||||
```mermaid
|
```mermaid
|
||||||
erDiagram
|
erDiagram
|
||||||
CUSTOMER ||--o{ ORDER : places
|
CUSTOMER ||--o{ ORDER : places
|
||||||
@@ -127,142 +136,171 @@ erDiagram
|
|||||||
"""
|
"""
|
||||||
# 象限提示图
|
# 象限提示图
|
||||||
PROMPT_8 = """
|
PROMPT_8 = """
|
||||||
请你给出围绕“{subject}”的象限图,使用mermaid语法,mermaid语法举例:
|
请你给出围绕“{subject}”的象限图,使用mermaid语法,注意需要使用双引号将内容括起来。
|
||||||
|
mermaid语法举例:
|
||||||
```mermaid
|
```mermaid
|
||||||
graph LR
|
graph LR
|
||||||
A[Hard skill] --> B(Programming)
|
A["Hard skill"] --> B("Programming")
|
||||||
A[Hard skill] --> C(Design)
|
A["Hard skill"] --> C("Design")
|
||||||
D[Soft skill] --> E(Coordination)
|
D["Soft skill"] --> E("Coordination")
|
||||||
D[Soft skill] --> F(Communication)
|
D["Soft skill"] --> F("Communication")
|
||||||
```
|
```
|
||||||
"""
|
"""
|
||||||
# 思维导图
|
# 思维导图
|
||||||
PROMPT_9 = """
|
PROMPT_9 = """
|
||||||
{subject}
|
{subject}
|
||||||
==========
|
==========
|
||||||
请给出上方内容的思维导图,充分考虑其之间的逻辑,使用mermaid语法,mermaid语法举例:
|
请给出上方内容的思维导图,充分考虑其之间的逻辑,使用mermaid语法,注意需要使用双引号将内容括起来。
|
||||||
|
mermaid语法举例:
|
||||||
```mermaid
|
```mermaid
|
||||||
mindmap
|
mindmap
|
||||||
root((mindmap))
|
root((mindmap))
|
||||||
Origins
|
("Origins")
|
||||||
Long history
|
("Long history")
|
||||||
::icon(fa fa-book)
|
::icon(fa fa-book)
|
||||||
Popularisation
|
("Popularisation")
|
||||||
British popular psychology author Tony Buzan
|
("British popular psychology author Tony Buzan")
|
||||||
Research
|
::icon(fa fa-user)
|
||||||
On effectiveness<br/>and features
|
("Research")
|
||||||
On Automatic creation
|
("On effectiveness<br/>and features")
|
||||||
Uses
|
::icon(fa fa-search)
|
||||||
Creative techniques
|
("On Automatic creation")
|
||||||
Strategic planning
|
::icon(fa fa-robot)
|
||||||
Argument mapping
|
("Uses")
|
||||||
Tools
|
("Creative techniques")
|
||||||
Pen and paper
|
::icon(fa fa-lightbulb-o)
|
||||||
Mermaid
|
("Strategic planning")
|
||||||
|
::icon(fa fa-flag)
|
||||||
|
("Argument mapping")
|
||||||
|
::icon(fa fa-comments)
|
||||||
|
("Tools")
|
||||||
|
("Pen and paper")
|
||||||
|
::icon(fa fa-pencil)
|
||||||
|
("Mermaid")
|
||||||
|
::icon(fa fa-code)
|
||||||
```
|
```
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def 解析历史输入(history,llm_kwargs,chatbot,plugin_kwargs):
|
|
||||||
|
def 解析历史输入(history, llm_kwargs, file_manifest, chatbot, plugin_kwargs):
|
||||||
############################## <第 0 步,切割输入> ##################################
|
############################## <第 0 步,切割输入> ##################################
|
||||||
# 借用PDF切割中的函数对文本进行切割
|
# 借用PDF切割中的函数对文本进行切割
|
||||||
TOKEN_LIMIT_PER_FRAGMENT = 2500
|
TOKEN_LIMIT_PER_FRAGMENT = 2500
|
||||||
txt = str(history).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
txt = (
|
||||||
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
str(history).encode("utf-8", "ignore").decode()
|
||||||
txt = breakdown_text_to_satisfy_token_limit(txt=txt, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs['llm_model'])
|
) # avoid reading non-utf8 chars
|
||||||
|
from crazy_functions.pdf_fns.breakdown_txt import (
|
||||||
|
breakdown_text_to_satisfy_token_limit,
|
||||||
|
)
|
||||||
|
|
||||||
|
txt = breakdown_text_to_satisfy_token_limit(
|
||||||
|
txt=txt, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs["llm_model"]
|
||||||
|
)
|
||||||
############################## <第 1 步,迭代地历遍整个文章,提取精炼信息> ##################################
|
############################## <第 1 步,迭代地历遍整个文章,提取精炼信息> ##################################
|
||||||
i_say_show_user = f'首先你从历史记录或文件中提取摘要。'; gpt_say = "[Local Message] 收到。" # 用户提示
|
|
||||||
chatbot.append([i_say_show_user, gpt_say]); yield from update_ui(chatbot=chatbot, history=history) # 更新UI
|
|
||||||
results = []
|
results = []
|
||||||
MAX_WORD_TOTAL = 4096
|
MAX_WORD_TOTAL = 4096
|
||||||
n_txt = len(txt)
|
n_txt = len(txt)
|
||||||
last_iteration_result = "从以下文本中提取摘要。"
|
last_iteration_result = "从以下文本中提取摘要。"
|
||||||
if n_txt >= 20: print('文章极长,不能达到预期效果')
|
if n_txt >= 20:
|
||||||
|
print("文章极长,不能达到预期效果")
|
||||||
for i in range(n_txt):
|
for i in range(n_txt):
|
||||||
NUM_OF_WORD = MAX_WORD_TOTAL // n_txt
|
NUM_OF_WORD = MAX_WORD_TOTAL // n_txt
|
||||||
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {txt[i]}"
|
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words in Chinese: {txt[i]}"
|
||||||
i_say_show_user = f"[{i+1}/{n_txt}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {txt[i][:200]} ...."
|
i_say_show_user = f"[{i+1}/{n_txt}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {txt[i][:200]} ...."
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
llm_kwargs, chatbot,
|
i_say,
|
||||||
history=["The main content of the previous section is?", last_iteration_result], # 迭代上一次的结果
|
i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
|
||||||
sys_prompt="Extracts the main content from the text section where it is located for graphing purposes, answer me with Chinese." # 提示
|
llm_kwargs,
|
||||||
|
chatbot,
|
||||||
|
history=[
|
||||||
|
"The main content of the previous section is?",
|
||||||
|
last_iteration_result,
|
||||||
|
], # 迭代上一次的结果
|
||||||
|
sys_prompt="Extracts the main content from the text section where it is located for graphing purposes, answer me with Chinese.", # 提示
|
||||||
)
|
)
|
||||||
results.append(gpt_say)
|
results.append(gpt_say)
|
||||||
last_iteration_result = gpt_say
|
last_iteration_result = gpt_say
|
||||||
############################## <第 2 步,根据整理的摘要选择图表类型> ##################################
|
############################## <第 2 步,根据整理的摘要选择图表类型> ##################################
|
||||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
gpt_say = str(plugin_kwargs) # 将图表类型参数赋值为插件参数
|
||||||
gpt_say = plugin_kwargs.get("advanced_arg", "") #将图表类型参数赋值为插件参数
|
results_txt = "\n".join(results) # 合并摘要
|
||||||
results_txt = '\n'.join(results) #合并摘要
|
if gpt_say not in [
|
||||||
if gpt_say not in ['1','2','3','4','5','6','7','8','9']: #如插件参数不正确则使用对话模型判断
|
"1",
|
||||||
i_say_show_user = f'接下来将判断适合的图表类型,如连续3次判断失败将会使用流程图进行绘制'; gpt_say = "[Local Message] 收到。" # 用户提示
|
"2",
|
||||||
chatbot.append([i_say_show_user, gpt_say]); yield from update_ui(chatbot=chatbot, history=[]) # 更新UI
|
"3",
|
||||||
|
"4",
|
||||||
|
"5",
|
||||||
|
"6",
|
||||||
|
"7",
|
||||||
|
"8",
|
||||||
|
"9",
|
||||||
|
]: # 如插件参数不正确则使用对话模型判断
|
||||||
|
i_say_show_user = (
|
||||||
|
f"接下来将判断适合的图表类型,如连续3次判断失败将会使用流程图进行绘制"
|
||||||
|
)
|
||||||
|
gpt_say = "[Local Message] 收到。" # 用户提示
|
||||||
|
chatbot.append([i_say_show_user, gpt_say])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=[]) # 更新UI
|
||||||
i_say = SELECT_PROMPT.format(subject=results_txt)
|
i_say = SELECT_PROMPT.format(subject=results_txt)
|
||||||
i_say_show_user = f'请判断适合使用的流程图类型,其中数字对应关系为:1-流程图,2-序列图,3-类图,4-饼图,5-甘特图,6-状态图,7-实体关系图,8-象限提示图。由于不管提供文本是什么,模型大概率认为"思维导图"最合适,因此思维导图仅能通过参数调用。'
|
i_say_show_user = f'请判断适合使用的流程图类型,其中数字对应关系为:1-流程图,2-序列图,3-类图,4-饼图,5-甘特图,6-状态图,7-实体关系图,8-象限提示图。由于不管提供文本是什么,模型大概率认为"思维导图"最合适,因此思维导图仅能通过参数调用。'
|
||||||
for i in range(3):
|
for i in range(3):
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs=i_say,
|
inputs=i_say,
|
||||||
inputs_show_user=i_say_show_user,
|
inputs_show_user=i_say_show_user,
|
||||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
llm_kwargs=llm_kwargs,
|
||||||
sys_prompt=""
|
chatbot=chatbot,
|
||||||
|
history=[],
|
||||||
|
sys_prompt="",
|
||||||
)
|
)
|
||||||
if gpt_say in ['1','2','3','4','5','6','7','8','9']: #判断返回是否正确
|
if gpt_say in [
|
||||||
|
"1",
|
||||||
|
"2",
|
||||||
|
"3",
|
||||||
|
"4",
|
||||||
|
"5",
|
||||||
|
"6",
|
||||||
|
"7",
|
||||||
|
"8",
|
||||||
|
"9",
|
||||||
|
]: # 判断返回是否正确
|
||||||
break
|
break
|
||||||
if gpt_say not in ['1','2','3','4','5','6','7','8','9']:
|
if gpt_say not in ["1", "2", "3", "4", "5", "6", "7", "8", "9"]:
|
||||||
gpt_say = '1'
|
gpt_say = "1"
|
||||||
############################## <第 3 步,根据选择的图表类型绘制图表> ##################################
|
############################## <第 3 步,根据选择的图表类型绘制图表> ##################################
|
||||||
if gpt_say == '1':
|
if gpt_say == "1":
|
||||||
i_say = PROMPT_1.format(subject=results_txt)
|
i_say = PROMPT_1.format(subject=results_txt)
|
||||||
elif gpt_say == '2':
|
elif gpt_say == "2":
|
||||||
i_say = PROMPT_2.format(subject=results_txt)
|
i_say = PROMPT_2.format(subject=results_txt)
|
||||||
elif gpt_say == '3':
|
elif gpt_say == "3":
|
||||||
i_say = PROMPT_3.format(subject=results_txt)
|
i_say = PROMPT_3.format(subject=results_txt)
|
||||||
elif gpt_say == '4':
|
elif gpt_say == "4":
|
||||||
i_say = PROMPT_4.format(subject=results_txt)
|
i_say = PROMPT_4.format(subject=results_txt)
|
||||||
elif gpt_say == '5':
|
elif gpt_say == "5":
|
||||||
i_say = PROMPT_5.format(subject=results_txt)
|
i_say = PROMPT_5.format(subject=results_txt)
|
||||||
elif gpt_say == '6':
|
elif gpt_say == "6":
|
||||||
i_say = PROMPT_6.format(subject=results_txt)
|
i_say = PROMPT_6.format(subject=results_txt)
|
||||||
elif gpt_say == '7':
|
elif gpt_say == "7":
|
||||||
i_say = PROMPT_7.replace("{subject}", results_txt) # 由于实体关系图用到了{}符号
|
i_say = PROMPT_7.replace("{subject}", results_txt) # 由于实体关系图用到了{}符号
|
||||||
elif gpt_say == '8':
|
elif gpt_say == "8":
|
||||||
i_say = PROMPT_8.format(subject=results_txt)
|
i_say = PROMPT_8.format(subject=results_txt)
|
||||||
elif gpt_say == '9':
|
elif gpt_say == "9":
|
||||||
i_say = PROMPT_9.format(subject=results_txt)
|
i_say = PROMPT_9.format(subject=results_txt)
|
||||||
i_say_show_user = f'请根据判断结果绘制相应的图表。如需绘制思维导图请使用参数调用,同时过大的图表可能需要复制到在线编辑器中进行渲染。'
|
i_say_show_user = f"请根据判断结果绘制相应的图表。如需绘制思维导图请使用参数调用,同时过大的图表可能需要复制到在线编辑器中进行渲染。"
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs=i_say,
|
inputs=i_say,
|
||||||
inputs_show_user=i_say_show_user,
|
inputs_show_user=i_say_show_user,
|
||||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
llm_kwargs=llm_kwargs,
|
||||||
sys_prompt="你精通使用mermaid语法来绘制图表,首先确保语法正确,其次避免在mermaid语法中使用不允许的字符,此外也应当分考虑图表的可读性。"
|
chatbot=chatbot,
|
||||||
|
history=[],
|
||||||
|
sys_prompt="",
|
||||||
)
|
)
|
||||||
history.append(gpt_say)
|
history.append(gpt_say)
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||||
|
|
||||||
def 输入区文件处理(txt):
|
|
||||||
if txt == "": return False, txt
|
|
||||||
success = True
|
|
||||||
import glob
|
|
||||||
from .crazy_utils import get_files_from_everything
|
|
||||||
file_pdf,pdf_manifest,folder_pdf = get_files_from_everything(txt, '.pdf')
|
|
||||||
file_md,md_manifest,folder_md = get_files_from_everything(txt, '.md')
|
|
||||||
if len(pdf_manifest) == 0 and len(md_manifest) == 0:
|
|
||||||
return False, txt #如输入区内容不是文件则直接返回输入区内容
|
|
||||||
|
|
||||||
final_result = ""
|
|
||||||
if file_pdf:
|
|
||||||
for index, fp in enumerate(pdf_manifest):
|
|
||||||
file_content, page_one = read_and_clean_pdf_text(fp) # (尝试)按照章节切割PDF
|
|
||||||
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
|
||||||
final_result += "\n" + file_content
|
|
||||||
if file_md:
|
|
||||||
for index, fp in enumerate(md_manifest):
|
|
||||||
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
|
|
||||||
file_content = f.read()
|
|
||||||
file_content = file_content.encode('utf-8', 'ignore').decode()
|
|
||||||
final_result += "\n" + file_content
|
|
||||||
return True, final_result
|
|
||||||
|
|
||||||
@CatchException
|
@CatchException
|
||||||
def 生成多种Mermaid图表(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
def 生成多种Mermaid图表(
|
||||||
|
txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port
|
||||||
|
):
|
||||||
"""
|
"""
|
||||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||||
@@ -275,28 +313,126 @@ def 生成多种Mermaid图表(txt, llm_kwargs, plugin_kwargs, chatbot, history,
|
|||||||
import os
|
import os
|
||||||
|
|
||||||
# 基本信息:功能、贡献者
|
# 基本信息:功能、贡献者
|
||||||
chatbot.append([
|
chatbot.append(
|
||||||
|
[
|
||||||
"函数插件功能?",
|
"函数插件功能?",
|
||||||
"根据当前聊天历史或文件中(文件内容优先)绘制多种mermaid图表,将会由对话模型首先判断适合的图表类型,随后绘制图表。\
|
"根据当前聊天历史或指定的路径文件(文件内容优先)绘制多种mermaid图表,将会由对话模型首先判断适合的图表类型,随后绘制图表。\
|
||||||
\n您也可以使用插件参数指定绘制的图表类型,函数插件贡献者: Menghuan1918"])
|
\n您也可以使用插件参数指定绘制的图表类型,函数插件贡献者: Menghuan1918",
|
||||||
|
]
|
||||||
|
)
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
|
||||||
try:
|
|
||||||
import fitz
|
|
||||||
except:
|
|
||||||
report_exception(chatbot, history,
|
|
||||||
a = f"解析项目: {txt}",
|
|
||||||
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。")
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
return
|
|
||||||
|
|
||||||
if os.path.exists(txt): # 如输入区无内容则直接解析历史记录
|
if os.path.exists(txt): # 如输入区无内容则直接解析历史记录
|
||||||
file_exist, txt = 输入区文件处理(txt)
|
from crazy_functions.pdf_fns.parse_word import extract_text_from_files
|
||||||
|
|
||||||
|
file_exist, final_result, page_one, file_manifest, excption = (
|
||||||
|
extract_text_from_files(txt, chatbot, history)
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
file_exist = False
|
file_exist = False
|
||||||
|
excption = ""
|
||||||
|
file_manifest = []
|
||||||
|
|
||||||
if file_exist : history = [] #如输入区内容为文件则清空历史记录
|
if excption != "":
|
||||||
history.append(txt) #将解析后的txt传递加入到历史中
|
if excption == "word":
|
||||||
|
report_exception(
|
||||||
|
chatbot,
|
||||||
|
history,
|
||||||
|
a=f"解析项目: {txt}",
|
||||||
|
b=f"找到了.doc文件,但是该文件格式不被支持,请先转化为.docx格式。",
|
||||||
|
)
|
||||||
|
|
||||||
yield from 解析历史输入(history,llm_kwargs,chatbot,plugin_kwargs)
|
elif excption == "pdf":
|
||||||
|
report_exception(
|
||||||
|
chatbot,
|
||||||
|
history,
|
||||||
|
a=f"解析项目: {txt}",
|
||||||
|
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。",
|
||||||
|
)
|
||||||
|
|
||||||
|
elif excption == "word_pip":
|
||||||
|
report_exception(
|
||||||
|
chatbot,
|
||||||
|
history,
|
||||||
|
a=f"解析项目: {txt}",
|
||||||
|
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade python-docx pywin32```。",
|
||||||
|
)
|
||||||
|
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
|
else:
|
||||||
|
if not file_exist:
|
||||||
|
history.append(txt) # 如输入区不是文件则将输入区内容加入历史记录
|
||||||
|
i_say_show_user = f"首先你从历史记录中提取摘要。"
|
||||||
|
gpt_say = "[Local Message] 收到。" # 用户提示
|
||||||
|
chatbot.append([i_say_show_user, gpt_say])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 更新UI
|
||||||
|
yield from 解析历史输入(
|
||||||
|
history, llm_kwargs, file_manifest, chatbot, plugin_kwargs
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
file_num = len(file_manifest)
|
||||||
|
for i in range(file_num): # 依次处理文件
|
||||||
|
i_say_show_user = f"[{i+1}/{file_num}]处理文件{file_manifest[i]}"
|
||||||
|
gpt_say = "[Local Message] 收到。" # 用户提示
|
||||||
|
chatbot.append([i_say_show_user, gpt_say])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 更新UI
|
||||||
|
history = [] # 如输入区内容为文件则清空历史记录
|
||||||
|
history.append(final_result[i])
|
||||||
|
yield from 解析历史输入(
|
||||||
|
history, llm_kwargs, file_manifest, chatbot, plugin_kwargs
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class Mermaid_Gen(GptAcademicPluginTemplate):
|
||||||
|
def __init__(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def define_arg_selection_menu(self):
|
||||||
|
gui_definition = {
|
||||||
|
"Type_of_Mermaid": ArgProperty(
|
||||||
|
title="绘制的Mermaid图表类型",
|
||||||
|
options=[
|
||||||
|
"由LLM决定",
|
||||||
|
"流程图",
|
||||||
|
"序列图",
|
||||||
|
"类图",
|
||||||
|
"饼图",
|
||||||
|
"甘特图",
|
||||||
|
"状态图",
|
||||||
|
"实体关系图",
|
||||||
|
"象限提示图",
|
||||||
|
"思维导图",
|
||||||
|
],
|
||||||
|
default_value="由LLM决定",
|
||||||
|
description="选择'由LLM决定'时将由对话模型判断适合的图表类型(不包括思维导图),选择其他类型时将直接绘制指定的图表类型。",
|
||||||
|
type="dropdown",
|
||||||
|
).model_dump_json(),
|
||||||
|
}
|
||||||
|
return gui_definition
|
||||||
|
|
||||||
|
def execute(
|
||||||
|
txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request
|
||||||
|
):
|
||||||
|
options = [
|
||||||
|
"由LLM决定",
|
||||||
|
"流程图",
|
||||||
|
"序列图",
|
||||||
|
"类图",
|
||||||
|
"饼图",
|
||||||
|
"甘特图",
|
||||||
|
"状态图",
|
||||||
|
"实体关系图",
|
||||||
|
"象限提示图",
|
||||||
|
"思维导图",
|
||||||
|
]
|
||||||
|
plugin_kwargs = options.index(plugin_kwargs['Type_of_Mermaid'])
|
||||||
|
yield from 生成多种Mermaid图表(
|
||||||
|
txt,
|
||||||
|
llm_kwargs,
|
||||||
|
plugin_kwargs,
|
||||||
|
chatbot,
|
||||||
|
history,
|
||||||
|
system_prompt,
|
||||||
|
user_request,
|
||||||
|
)
|
||||||
|
|||||||
@@ -12,6 +12,12 @@ class PaperFileGroup():
|
|||||||
self.sp_file_index = []
|
self.sp_file_index = []
|
||||||
self.sp_file_tag = []
|
self.sp_file_tag = []
|
||||||
|
|
||||||
|
# count_token
|
||||||
|
from request_llms.bridge_all import model_info
|
||||||
|
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
||||||
|
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||||||
|
self.get_token_num = get_token_num
|
||||||
|
|
||||||
def run_file_split(self, max_token_limit=1900):
|
def run_file_split(self, max_token_limit=1900):
|
||||||
"""
|
"""
|
||||||
将长文本分离开来
|
将长文本分离开来
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
from toolbox import update_ui, promote_file_to_downloadzone, disable_auto_promotion
|
from toolbox import update_ui, promote_file_to_downloadzone, disable_auto_promotion
|
||||||
from toolbox import CatchException, report_exception, write_history_to_file
|
from toolbox import CatchException, report_exception, write_history_to_file
|
||||||
from .crazy_utils import input_clipping
|
from shared_utils.fastapi_server import validate_path_safety
|
||||||
|
from crazy_functions.crazy_utils import input_clipping
|
||||||
|
|
||||||
def 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
def 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||||
import os, copy
|
import os, copy
|
||||||
@@ -128,6 +129,7 @@ def 解析一个Python项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
|||||||
import glob, os
|
import glob, os
|
||||||
if os.path.exists(txt):
|
if os.path.exists(txt):
|
||||||
project_folder = txt
|
project_folder = txt
|
||||||
|
validate_path_safety(project_folder, chatbot.get_user())
|
||||||
else:
|
else:
|
||||||
if txt == "": txt = '空空如也的输入栏'
|
if txt == "": txt = '空空如也的输入栏'
|
||||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||||
@@ -146,6 +148,7 @@ def 解析一个Matlab项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
|||||||
import glob, os
|
import glob, os
|
||||||
if os.path.exists(txt):
|
if os.path.exists(txt):
|
||||||
project_folder = txt
|
project_folder = txt
|
||||||
|
validate_path_safety(project_folder, chatbot.get_user())
|
||||||
else:
|
else:
|
||||||
if txt == "": txt = '空空如也的输入栏'
|
if txt == "": txt = '空空如也的输入栏'
|
||||||
report_exception(chatbot, history, a = f"解析Matlab项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
report_exception(chatbot, history, a = f"解析Matlab项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||||
@@ -164,6 +167,7 @@ def 解析一个C项目的头文件(txt, llm_kwargs, plugin_kwargs, chatbot, his
|
|||||||
import glob, os
|
import glob, os
|
||||||
if os.path.exists(txt):
|
if os.path.exists(txt):
|
||||||
project_folder = txt
|
project_folder = txt
|
||||||
|
validate_path_safety(project_folder, chatbot.get_user())
|
||||||
else:
|
else:
|
||||||
if txt == "": txt = '空空如也的输入栏'
|
if txt == "": txt = '空空如也的输入栏'
|
||||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||||
@@ -184,6 +188,7 @@ def 解析一个C项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system
|
|||||||
import glob, os
|
import glob, os
|
||||||
if os.path.exists(txt):
|
if os.path.exists(txt):
|
||||||
project_folder = txt
|
project_folder = txt
|
||||||
|
validate_path_safety(project_folder, chatbot.get_user())
|
||||||
else:
|
else:
|
||||||
if txt == "": txt = '空空如也的输入栏'
|
if txt == "": txt = '空空如也的输入栏'
|
||||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||||
@@ -206,6 +211,7 @@ def 解析一个Java项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys
|
|||||||
import glob, os
|
import glob, os
|
||||||
if os.path.exists(txt):
|
if os.path.exists(txt):
|
||||||
project_folder = txt
|
project_folder = txt
|
||||||
|
validate_path_safety(project_folder, chatbot.get_user())
|
||||||
else:
|
else:
|
||||||
if txt == "": txt = '空空如也的输入栏'
|
if txt == "": txt = '空空如也的输入栏'
|
||||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
||||||
@@ -228,6 +234,7 @@ def 解析一个前端项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
|||||||
import glob, os
|
import glob, os
|
||||||
if os.path.exists(txt):
|
if os.path.exists(txt):
|
||||||
project_folder = txt
|
project_folder = txt
|
||||||
|
validate_path_safety(project_folder, chatbot.get_user())
|
||||||
else:
|
else:
|
||||||
if txt == "": txt = '空空如也的输入栏'
|
if txt == "": txt = '空空如也的输入栏'
|
||||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
||||||
@@ -257,6 +264,7 @@ def 解析一个Golang项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
|||||||
import glob, os
|
import glob, os
|
||||||
if os.path.exists(txt):
|
if os.path.exists(txt):
|
||||||
project_folder = txt
|
project_folder = txt
|
||||||
|
validate_path_safety(project_folder, chatbot.get_user())
|
||||||
else:
|
else:
|
||||||
if txt == "": txt = '空空如也的输入栏'
|
if txt == "": txt = '空空如也的输入栏'
|
||||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
||||||
@@ -278,6 +286,7 @@ def 解析一个Rust项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys
|
|||||||
import glob, os
|
import glob, os
|
||||||
if os.path.exists(txt):
|
if os.path.exists(txt):
|
||||||
project_folder = txt
|
project_folder = txt
|
||||||
|
validate_path_safety(project_folder, chatbot.get_user())
|
||||||
else:
|
else:
|
||||||
if txt == "": txt = '空空如也的输入栏'
|
if txt == "": txt = '空空如也的输入栏'
|
||||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
||||||
@@ -298,6 +307,7 @@ def 解析一个Lua项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
import glob, os
|
import glob, os
|
||||||
if os.path.exists(txt):
|
if os.path.exists(txt):
|
||||||
project_folder = txt
|
project_folder = txt
|
||||||
|
validate_path_safety(project_folder, chatbot.get_user())
|
||||||
else:
|
else:
|
||||||
if txt == "": txt = '空空如也的输入栏'
|
if txt == "": txt = '空空如也的输入栏'
|
||||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||||
@@ -320,6 +330,7 @@ def 解析一个CSharp项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
|||||||
import glob, os
|
import glob, os
|
||||||
if os.path.exists(txt):
|
if os.path.exists(txt):
|
||||||
project_folder = txt
|
project_folder = txt
|
||||||
|
validate_path_safety(project_folder, chatbot.get_user())
|
||||||
else:
|
else:
|
||||||
if txt == "": txt = '空空如也的输入栏'
|
if txt == "": txt = '空空如也的输入栏'
|
||||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||||
@@ -345,15 +356,19 @@ def 解析任意code项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys
|
|||||||
pattern_except_suffix = [_.lstrip(" ^*.,").rstrip(" ,") for _ in txt_pattern.split(" ") if _ != "" and _.strip().startswith("^*.")]
|
pattern_except_suffix = [_.lstrip(" ^*.,").rstrip(" ,") for _ in txt_pattern.split(" ") if _ != "" and _.strip().startswith("^*.")]
|
||||||
pattern_except_suffix += ['zip', 'rar', '7z', 'tar', 'gz'] # 避免解析压缩文件
|
pattern_except_suffix += ['zip', 'rar', '7z', 'tar', 'gz'] # 避免解析压缩文件
|
||||||
# 将要忽略匹配的文件名(例如: ^README.md)
|
# 将要忽略匹配的文件名(例如: ^README.md)
|
||||||
pattern_except_name = [_.lstrip(" ^*,").rstrip(" ,").replace(".", "\.") for _ in txt_pattern.split(" ") if _ != "" and _.strip().startswith("^") and not _.strip().startswith("^*.")]
|
pattern_except_name = [_.lstrip(" ^*,").rstrip(" ,").replace(".", r"\.") # 移除左边通配符,移除右侧逗号,转义点号
|
||||||
|
for _ in txt_pattern.split(" ") # 以空格分割
|
||||||
|
if (_ != "" and _.strip().startswith("^") and not _.strip().startswith("^*.")) # ^开始,但不是^*.开始
|
||||||
|
]
|
||||||
# 生成正则表达式
|
# 生成正则表达式
|
||||||
pattern_except = '/[^/]+\.(' + "|".join(pattern_except_suffix) + ')$'
|
pattern_except = r'/[^/]+\.(' + "|".join(pattern_except_suffix) + ')$'
|
||||||
pattern_except += '|/(' + "|".join(pattern_except_name) + ')$' if pattern_except_name != [] else ''
|
pattern_except += '|/(' + "|".join(pattern_except_name) + ')$' if pattern_except_name != [] else ''
|
||||||
|
|
||||||
history.clear()
|
history.clear()
|
||||||
import glob, os, re
|
import glob, os, re
|
||||||
if os.path.exists(txt):
|
if os.path.exists(txt):
|
||||||
project_folder = txt
|
project_folder = txt
|
||||||
|
validate_path_safety(project_folder, chatbot.get_user())
|
||||||
else:
|
else:
|
||||||
if txt == "": txt = '空空如也的输入栏'
|
if txt == "": txt = '空空如也的输入栏'
|
||||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||||
|
|||||||
@@ -2,6 +2,10 @@ from toolbox import CatchException, update_ui
|
|||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
import datetime
|
import datetime
|
||||||
|
|
||||||
|
####################################################################################################################
|
||||||
|
# Demo 1: 一个非常简单的插件 #########################################################################################
|
||||||
|
####################################################################################################################
|
||||||
|
|
||||||
高阶功能模板函数示意图 = f"""
|
高阶功能模板函数示意图 = f"""
|
||||||
```mermaid
|
```mermaid
|
||||||
flowchart TD
|
flowchart TD
|
||||||
@@ -26,7 +30,7 @@ flowchart TD
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
@CatchException
|
@CatchException
|
||||||
def 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
def 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request, num_day=5):
|
||||||
"""
|
"""
|
||||||
# 高阶功能模板函数示意图:https://mermaid.live/edit#pako:eNptk1tvEkEYhv8KmattQpvlvOyFCcdeeaVXuoYssBwie8gyhCIlqVoLhrbbtAWNUpEGUkyMEDW2Fmn_DDOL_8LZHdOwxrnamX3f7_3mmZk6yKhZCfAgV1KrmYKoQ9fDuKC4yChX0nld1Aou1JzjznQ5fWmejh8LYHW6vG2a47YAnlCLNSIRolnenKBXI_zRIBrcuqRT890u7jZx7zMDt-AaMbnW1--5olGiz2sQjwfoQxsZL0hxplSSU0-rop4vrzmKR6O2JxYjHmwcL2Y_HDatVMkXlf86YzHbGY9bO5j8XE7O8Nsbc3iNB3ukL2SMcH-XIQBgWoVOZzxuOxOJOyc63EPGV6ZQLENVrznViYStTiaJ2vw2M2d9bByRnOXkgCnXylCSU5quyto_IcmkbdvctELmJ-j1ASW3uB3g5xOmKqVTmqr_Na3AtuS_dtBFm8H90XJyHkDDT7S9xXWb4HGmRChx64AOL5HRpUm411rM5uh4H78Z4V7fCZzytjZz2seto9XaNPFue07clLaVZF8UNLygJ-VES8lah_n-O-5Ozc7-77NzJ0-K0yr0ZYrmHdqAk50t2RbA4qq9uNohBASw7YpSgaRkLWCCAtxAlnRZLGbJba9bPwUAC5IsCYAnn1kpJ1ZKUACC0iBSsQLVBzUlA3ioVyQ3qGhZEUrxokiehAz4nFgqk1VNVABfB1uAD_g2_AGPl-W8nMcbCvsDblADfNCz4feyobDPy3rYEMtxwYYbPFNVUoHdCPmDHBv2cP4AMfrCbiBli-Q-3afv0X6WdsIjW2-10fgDy1SAig
|
# 高阶功能模板函数示意图:https://mermaid.live/edit#pako:eNptk1tvEkEYhv8KmattQpvlvOyFCcdeeaVXuoYssBwie8gyhCIlqVoLhrbbtAWNUpEGUkyMEDW2Fmn_DDOL_8LZHdOwxrnamX3f7_3mmZk6yKhZCfAgV1KrmYKoQ9fDuKC4yChX0nld1Aou1JzjznQ5fWmejh8LYHW6vG2a47YAnlCLNSIRolnenKBXI_zRIBrcuqRT890u7jZx7zMDt-AaMbnW1--5olGiz2sQjwfoQxsZL0hxplSSU0-rop4vrzmKR6O2JxYjHmwcL2Y_HDatVMkXlf86YzHbGY9bO5j8XE7O8Nsbc3iNB3ukL2SMcH-XIQBgWoVOZzxuOxOJOyc63EPGV6ZQLENVrznViYStTiaJ2vw2M2d9bByRnOXkgCnXylCSU5quyto_IcmkbdvctELmJ-j1ASW3uB3g5xOmKqVTmqr_Na3AtuS_dtBFm8H90XJyHkDDT7S9xXWb4HGmRChx64AOL5HRpUm411rM5uh4H78Z4V7fCZzytjZz2seto9XaNPFue07clLaVZF8UNLygJ-VES8lah_n-O-5Ozc7-77NzJ0-K0yr0ZYrmHdqAk50t2RbA4qq9uNohBASw7YpSgaRkLWCCAtxAlnRZLGbJba9bPwUAC5IsCYAnn1kpJ1ZKUACC0iBSsQLVBzUlA3ioVyQ3qGhZEUrxokiehAz4nFgqk1VNVABfB1uAD_g2_AGPl-W8nMcbCvsDblADfNCz4feyobDPy3rYEMtxwYYbPFNVUoHdCPmDHBv2cP4AMfrCbiBli-Q-3afv0X6WdsIjW2-10fgDy1SAig
|
||||||
|
|
||||||
@@ -43,7 +47,7 @@ def 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
|||||||
"您正在调用插件:历史上的今天",
|
"您正在调用插件:历史上的今天",
|
||||||
"[Local Message] 请注意,您正在调用一个[函数插件]的模板,该函数面向希望实现更多有趣功能的开发者,它可以作为创建新功能函数的模板(该函数只有20多行代码)。此外我们也提供可同步处理大量文件的多线程Demo供您参考。您若希望分享新的功能模组,请不吝PR!" + 高阶功能模板函数示意图))
|
"[Local Message] 请注意,您正在调用一个[函数插件]的模板,该函数面向希望实现更多有趣功能的开发者,它可以作为创建新功能函数的模板(该函数只有20多行代码)。此外我们也提供可同步处理大量文件的多线程Demo供您参考。您若希望分享新的功能模组,请不吝PR!" + 高阶功能模板函数示意图))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||||
for i in range(5):
|
for i in range(int(num_day)):
|
||||||
currentMonth = (datetime.date.today() + datetime.timedelta(days=i)).month
|
currentMonth = (datetime.date.today() + datetime.timedelta(days=i)).month
|
||||||
currentDay = (datetime.date.today() + datetime.timedelta(days=i)).day
|
currentDay = (datetime.date.today() + datetime.timedelta(days=i)).day
|
||||||
i_say = f'历史中哪些事件发生在{currentMonth}月{currentDay}日?列举两条并发送相关图片。发送图片时,请使用Markdown,将Unsplash API中的PUT_YOUR_QUERY_HERE替换成描述该事件的一个最重要的单词。'
|
i_say = f'历史中哪些事件发生在{currentMonth}月{currentDay}日?列举两条并发送相关图片。发送图片时,请使用Markdown,将Unsplash API中的PUT_YOUR_QUERY_HERE替换成描述该事件的一个最重要的单词。'
|
||||||
@@ -59,6 +63,56 @@ def 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
####################################################################################################################
|
||||||
|
# Demo 2: 一个带二级菜单的插件 #######################################################################################
|
||||||
|
####################################################################################################################
|
||||||
|
|
||||||
|
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
|
||||||
|
class Demo_Wrap(GptAcademicPluginTemplate):
|
||||||
|
def __init__(self):
|
||||||
|
"""
|
||||||
|
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
|
||||||
|
"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
def define_arg_selection_menu(self):
|
||||||
|
"""
|
||||||
|
定义插件的二级选项菜单
|
||||||
|
"""
|
||||||
|
gui_definition = {
|
||||||
|
"num_day":
|
||||||
|
ArgProperty(title="日期选择", options=["仅今天", "未来3天", "未来5天"], default_value="未来3天", description="无", type="dropdown").model_dump_json(),
|
||||||
|
}
|
||||||
|
return gui_definition
|
||||||
|
|
||||||
|
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||||
|
"""
|
||||||
|
执行插件
|
||||||
|
"""
|
||||||
|
num_day = plugin_kwargs["num_day"]
|
||||||
|
if num_day == "仅今天": num_day = 1
|
||||||
|
if num_day == "未来3天": num_day = 3
|
||||||
|
if num_day == "未来5天": num_day = 5
|
||||||
|
yield from 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request, num_day=num_day)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
####################################################################################################################
|
||||||
|
# Demo 3: 绘制脑图的Demo ############################################################################################
|
||||||
|
####################################################################################################################
|
||||||
|
|
||||||
PROMPT = """
|
PROMPT = """
|
||||||
请你给出围绕“{subject}”的逻辑关系图,使用mermaid语法,mermaid语法举例:
|
请你给出围绕“{subject}”的逻辑关系图,使用mermaid语法,mermaid语法举例:
|
||||||
```mermaid
|
```mermaid
|
||||||
|
|||||||
@@ -4,9 +4,9 @@
|
|||||||
# 1. 请在以下方案中选择任意一种,然后删除其他的方案
|
# 1. 请在以下方案中选择任意一种,然后删除其他的方案
|
||||||
# 2. 修改你选择的方案中的environment环境变量,详情请见github wiki或者config.py
|
# 2. 修改你选择的方案中的environment环境变量,详情请见github wiki或者config.py
|
||||||
# 3. 选择一种暴露服务端口的方法,并对相应的配置做出修改:
|
# 3. 选择一种暴露服务端口的方法,并对相应的配置做出修改:
|
||||||
# 【方法1: 适用于Linux,很方便,可惜windows不支持】与宿主的网络融合为一体,这个是默认配置
|
# 「方法1: 适用于Linux,很方便,可惜windows不支持」与宿主的网络融合为一体,这个是默认配置
|
||||||
# network_mode: "host"
|
# network_mode: "host"
|
||||||
# 【方法2: 适用于所有系统包括Windows和MacOS】端口映射,把容器的端口映射到宿主的端口(注意您需要先删除network_mode: "host",再追加以下内容)
|
# 「方法2: 适用于所有系统包括Windows和MacOS」端口映射,把容器的端口映射到宿主的端口(注意您需要先删除network_mode: "host",再追加以下内容)
|
||||||
# ports:
|
# ports:
|
||||||
# - "12345:12345" # 注意!12345必须与WEB_PORT环境变量相互对应
|
# - "12345:12345" # 注意!12345必须与WEB_PORT环境变量相互对应
|
||||||
# 4. 最后`docker-compose up`运行
|
# 4. 最后`docker-compose up`运行
|
||||||
@@ -25,7 +25,7 @@
|
|||||||
## ===================================================
|
## ===================================================
|
||||||
|
|
||||||
## ===================================================
|
## ===================================================
|
||||||
## 【方案零】 部署项目的全部能力(这个是包含cuda和latex的大型镜像。如果您网速慢、硬盘小或没有显卡,则不推荐使用这个)
|
## 「方案零」 部署项目的全部能力(这个是包含cuda和latex的大型镜像。如果您网速慢、硬盘小或没有显卡,则不推荐使用这个)
|
||||||
## ===================================================
|
## ===================================================
|
||||||
version: '3'
|
version: '3'
|
||||||
services:
|
services:
|
||||||
@@ -63,10 +63,10 @@ services:
|
|||||||
# count: 1
|
# count: 1
|
||||||
# capabilities: [gpu]
|
# capabilities: [gpu]
|
||||||
|
|
||||||
# 【WEB_PORT暴露方法1: 适用于Linux】与宿主的网络融合
|
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
|
||||||
network_mode: "host"
|
network_mode: "host"
|
||||||
|
|
||||||
# 【WEB_PORT暴露方法2: 适用于所有系统】端口映射
|
# 「WEB_PORT暴露方法2: 适用于所有系统」端口映射
|
||||||
# ports:
|
# ports:
|
||||||
# - "12345:12345" # 12345必须与WEB_PORT相互对应
|
# - "12345:12345" # 12345必须与WEB_PORT相互对应
|
||||||
|
|
||||||
@@ -75,10 +75,8 @@ services:
|
|||||||
bash -c "python3 -u main.py"
|
bash -c "python3 -u main.py"
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
## ===================================================
|
## ===================================================
|
||||||
## 【方案一】 如果不需要运行本地模型(仅 chatgpt, azure, 星火, 千帆, claude 等在线大模型服务)
|
## 「方案一」 如果不需要运行本地模型(仅 chatgpt, azure, 星火, 千帆, claude 等在线大模型服务)
|
||||||
## ===================================================
|
## ===================================================
|
||||||
version: '3'
|
version: '3'
|
||||||
services:
|
services:
|
||||||
@@ -97,16 +95,16 @@ services:
|
|||||||
# DEFAULT_WORKER_NUM: ' 10 '
|
# DEFAULT_WORKER_NUM: ' 10 '
|
||||||
# AUTHENTICATION: ' [("username", "passwd"), ("username2", "passwd2")] '
|
# AUTHENTICATION: ' [("username", "passwd"), ("username2", "passwd2")] '
|
||||||
|
|
||||||
# 与宿主的网络融合
|
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
|
||||||
network_mode: "host"
|
network_mode: "host"
|
||||||
|
|
||||||
# 不使用代理网络拉取最新代码
|
# 启动命令
|
||||||
command: >
|
command: >
|
||||||
bash -c "python3 -u main.py"
|
bash -c "python3 -u main.py"
|
||||||
|
|
||||||
|
|
||||||
### ===================================================
|
### ===================================================
|
||||||
### 【方案二】 如果需要运行ChatGLM + Qwen + MOSS等本地模型
|
### 「方案二」 如果需要运行ChatGLM + Qwen + MOSS等本地模型
|
||||||
### ===================================================
|
### ===================================================
|
||||||
version: '3'
|
version: '3'
|
||||||
services:
|
services:
|
||||||
@@ -130,8 +128,10 @@ services:
|
|||||||
devices:
|
devices:
|
||||||
- /dev/nvidia0:/dev/nvidia0
|
- /dev/nvidia0:/dev/nvidia0
|
||||||
|
|
||||||
# 与宿主的网络融合
|
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
|
||||||
network_mode: "host"
|
network_mode: "host"
|
||||||
|
|
||||||
|
# 启动命令
|
||||||
command: >
|
command: >
|
||||||
bash -c "python3 -u main.py"
|
bash -c "python3 -u main.py"
|
||||||
|
|
||||||
@@ -139,8 +139,9 @@ services:
|
|||||||
# command: >
|
# command: >
|
||||||
# bash -c "pip install -r request_llms/requirements_qwen.txt && python3 -u main.py"
|
# bash -c "pip install -r request_llms/requirements_qwen.txt && python3 -u main.py"
|
||||||
|
|
||||||
|
|
||||||
### ===================================================
|
### ===================================================
|
||||||
### 【方案三】 如果需要运行ChatGPT + LLAMA + 盘古 + RWKV本地模型
|
### 「方案三」 如果需要运行ChatGPT + LLAMA + 盘古 + RWKV本地模型
|
||||||
### ===================================================
|
### ===================================================
|
||||||
version: '3'
|
version: '3'
|
||||||
services:
|
services:
|
||||||
@@ -164,16 +165,16 @@ services:
|
|||||||
devices:
|
devices:
|
||||||
- /dev/nvidia0:/dev/nvidia0
|
- /dev/nvidia0:/dev/nvidia0
|
||||||
|
|
||||||
# 与宿主的网络融合
|
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
|
||||||
network_mode: "host"
|
network_mode: "host"
|
||||||
|
|
||||||
# 不使用代理网络拉取最新代码
|
# 启动命令
|
||||||
command: >
|
command: >
|
||||||
python3 -u main.py
|
python3 -u main.py
|
||||||
|
|
||||||
|
|
||||||
## ===================================================
|
## ===================================================
|
||||||
## 【方案四】 ChatGPT + Latex
|
## 「方案四」 ChatGPT + Latex
|
||||||
## ===================================================
|
## ===================================================
|
||||||
version: '3'
|
version: '3'
|
||||||
services:
|
services:
|
||||||
@@ -190,16 +191,16 @@ services:
|
|||||||
DEFAULT_WORKER_NUM: ' 10 '
|
DEFAULT_WORKER_NUM: ' 10 '
|
||||||
WEB_PORT: ' 12303 '
|
WEB_PORT: ' 12303 '
|
||||||
|
|
||||||
# 与宿主的网络融合
|
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
|
||||||
network_mode: "host"
|
network_mode: "host"
|
||||||
|
|
||||||
# 不使用代理网络拉取最新代码
|
# 启动命令
|
||||||
command: >
|
command: >
|
||||||
bash -c "python3 -u main.py"
|
bash -c "python3 -u main.py"
|
||||||
|
|
||||||
|
|
||||||
## ===================================================
|
## ===================================================
|
||||||
## 【方案五】 ChatGPT + 语音助手 (请先阅读 docs/use_audio.md)
|
## 「方案五」 ChatGPT + 语音助手 (请先阅读 docs/use_audio.md)
|
||||||
## ===================================================
|
## ===================================================
|
||||||
version: '3'
|
version: '3'
|
||||||
services:
|
services:
|
||||||
@@ -223,9 +224,9 @@ services:
|
|||||||
# (无需填写) ALIYUN_ACCESSKEY: ' LTAI5q6BrFUzoRXVGUWnekh1 '
|
# (无需填写) ALIYUN_ACCESSKEY: ' LTAI5q6BrFUzoRXVGUWnekh1 '
|
||||||
# (无需填写) ALIYUN_SECRET: ' eHmI20AVWIaQZ0CiTD2bGQVsaP9i68 '
|
# (无需填写) ALIYUN_SECRET: ' eHmI20AVWIaQZ0CiTD2bGQVsaP9i68 '
|
||||||
|
|
||||||
# 与宿主的网络融合
|
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
|
||||||
network_mode: "host"
|
network_mode: "host"
|
||||||
|
|
||||||
# 不使用代理网络拉取最新代码
|
# 启动命令
|
||||||
command: >
|
command: >
|
||||||
bash -c "python3 -u main.py"
|
bash -c "python3 -u main.py"
|
||||||
|
|||||||
@@ -28,6 +28,8 @@ RUN python3 -m pip install -r request_llms/requirements_chatglm.txt
|
|||||||
RUN python3 -m pip install -r request_llms/requirements_newbing.txt
|
RUN python3 -m pip install -r request_llms/requirements_newbing.txt
|
||||||
RUN python3 -m pip install nougat-ocr
|
RUN python3 -m pip install nougat-ocr
|
||||||
|
|
||||||
|
# edge-tts需要的依赖
|
||||||
|
RUN apt update && apt install ffmpeg -y
|
||||||
|
|
||||||
# 预热Tiktoken模块
|
# 预热Tiktoken模块
|
||||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||||
|
|||||||
@@ -36,6 +36,9 @@ RUN python3 -m pip install -r request_llms/requirements_chatglm.txt
|
|||||||
RUN python3 -m pip install -r request_llms/requirements_newbing.txt
|
RUN python3 -m pip install -r request_llms/requirements_newbing.txt
|
||||||
RUN python3 -m pip install nougat-ocr
|
RUN python3 -m pip install nougat-ocr
|
||||||
|
|
||||||
|
# edge-tts需要的依赖
|
||||||
|
RUN apt update && apt install ffmpeg -y
|
||||||
|
|
||||||
# 预热Tiktoken模块
|
# 预热Tiktoken模块
|
||||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||||
|
|
||||||
|
|||||||
@@ -21,7 +21,8 @@ RUN python3 -m pip install -r request_llms/requirements_qwen.txt
|
|||||||
RUN python3 -m pip install -r request_llms/requirements_chatglm.txt
|
RUN python3 -m pip install -r request_llms/requirements_chatglm.txt
|
||||||
RUN python3 -m pip install -r request_llms/requirements_newbing.txt
|
RUN python3 -m pip install -r request_llms/requirements_newbing.txt
|
||||||
|
|
||||||
|
# edge-tts需要的依赖
|
||||||
|
RUN apt update && apt install ffmpeg -y
|
||||||
|
|
||||||
# 预热Tiktoken模块
|
# 预热Tiktoken模块
|
||||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||||
|
|||||||
@@ -23,6 +23,9 @@ RUN python3 -m pip install -r request_llms/requirements_jittorllms.txt -i https:
|
|||||||
# 下载JittorLLMs
|
# 下载JittorLLMs
|
||||||
RUN git clone https://github.com/binary-husky/JittorLLMs.git --depth 1 request_llms/jittorllms
|
RUN git clone https://github.com/binary-husky/JittorLLMs.git --depth 1 request_llms/jittorllms
|
||||||
|
|
||||||
|
# edge-tts需要的依赖
|
||||||
|
RUN apt update && apt install ffmpeg -y
|
||||||
|
|
||||||
# 禁用缓存,确保更新代码
|
# 禁用缓存,确保更新代码
|
||||||
ADD "https://www.random.org/cgi-bin/randbyte?nbytes=10&format=h" skipcache
|
ADD "https://www.random.org/cgi-bin/randbyte?nbytes=10&format=h" skipcache
|
||||||
RUN git pull
|
RUN git pull
|
||||||
|
|||||||
@@ -12,6 +12,8 @@ COPY . .
|
|||||||
# 安装依赖
|
# 安装依赖
|
||||||
RUN pip3 install -r requirements.txt
|
RUN pip3 install -r requirements.txt
|
||||||
|
|
||||||
|
# edge-tts需要的依赖
|
||||||
|
RUN apt update && apt install ffmpeg -y
|
||||||
|
|
||||||
# 可选步骤,用于预热模块
|
# 可选步骤,用于预热模块
|
||||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||||
|
|||||||
@@ -13,7 +13,10 @@ COPY . .
|
|||||||
RUN pip3 install -r requirements.txt
|
RUN pip3 install -r requirements.txt
|
||||||
|
|
||||||
# 安装语音插件的额外依赖
|
# 安装语音插件的额外依赖
|
||||||
RUN pip3 install pyOpenSSL scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git
|
RUN pip3 install aliyun-python-sdk-core==2.13.3 pyOpenSSL webrtcvad scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git
|
||||||
|
|
||||||
|
# edge-tts需要的依赖
|
||||||
|
RUN apt update && apt install ffmpeg -y
|
||||||
|
|
||||||
# 可选步骤,用于预热模块
|
# 可选步骤,用于预热模块
|
||||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||||
|
|||||||
@@ -25,6 +25,9 @@ COPY . .
|
|||||||
# 安装依赖
|
# 安装依赖
|
||||||
RUN pip3 install -r requirements.txt
|
RUN pip3 install -r requirements.txt
|
||||||
|
|
||||||
|
# edge-tts需要的依赖
|
||||||
|
RUN apt update && apt install ffmpeg -y
|
||||||
|
|
||||||
# 可选步骤,用于预热模块
|
# 可选步骤,用于预热模块
|
||||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||||
|
|
||||||
|
|||||||
@@ -19,6 +19,9 @@ RUN pip3 install transformers protobuf langchain sentence-transformers faiss-cp
|
|||||||
RUN pip3 install unstructured[all-docs] --upgrade
|
RUN pip3 install unstructured[all-docs] --upgrade
|
||||||
RUN python3 -c 'from check_proxy import warm_up_vectordb; warm_up_vectordb()'
|
RUN python3 -c 'from check_proxy import warm_up_vectordb; warm_up_vectordb()'
|
||||||
|
|
||||||
|
# edge-tts需要的依赖
|
||||||
|
RUN apt update && apt install ffmpeg -y
|
||||||
|
|
||||||
# 可选步骤,用于预热模块
|
# 可选步骤,用于预热模块
|
||||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||||
|
|
||||||
|
|||||||
189
docs/plugin_with_secondary_menu.md
Normal file
189
docs/plugin_with_secondary_menu.md
Normal file
@@ -0,0 +1,189 @@
|
|||||||
|
# 实现带二级菜单的插件
|
||||||
|
|
||||||
|
## 一、如何写带有二级菜单的插件
|
||||||
|
|
||||||
|
1. 声明一个 `Class`,继承父类 `GptAcademicPluginTemplate`
|
||||||
|
|
||||||
|
```python
|
||||||
|
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate
|
||||||
|
from crazy_functions.plugin_template.plugin_class_template import ArgProperty
|
||||||
|
|
||||||
|
class Demo_Wrap(GptAcademicPluginTemplate):
|
||||||
|
def __init__(self): ...
|
||||||
|
```
|
||||||
|
|
||||||
|
2. 声明二级菜单中需要的变量,覆盖父类的`define_arg_selection_menu`函数。
|
||||||
|
|
||||||
|
```python
|
||||||
|
class Demo_Wrap(GptAcademicPluginTemplate):
|
||||||
|
...
|
||||||
|
|
||||||
|
def define_arg_selection_menu(self):
|
||||||
|
"""
|
||||||
|
定义插件的二级选项菜单
|
||||||
|
|
||||||
|
第一个参数,名称`main_input`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
|
||||||
|
第二个参数,名称`advanced_arg`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
|
||||||
|
第三个参数,名称`allow_cache`,参数`type`声明这是一个下拉菜单,下拉菜单上方显示`title`+`description`,下拉菜单的选项为`options`,`default_value`为下拉菜单默认值;
|
||||||
|
"""
|
||||||
|
gui_definition = {
|
||||||
|
"main_input":
|
||||||
|
ArgProperty(title="ArxivID", description="输入Arxiv的ID或者网址", default_value="", type="string").model_dump_json(),
|
||||||
|
"advanced_arg":
|
||||||
|
ArgProperty(title="额外的翻译提示词",
|
||||||
|
description=r"如果有必要, 请在此处给出自定义翻译命令",
|
||||||
|
default_value="", type="string").model_dump_json(),
|
||||||
|
"allow_cache":
|
||||||
|
ArgProperty(title="是否允许从缓存中调取结果", options=["允许缓存", "从头执行"], default_value="允许缓存", description="无", type="dropdown").model_dump_json(),
|
||||||
|
}
|
||||||
|
return gui_definition
|
||||||
|
...
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
> [!IMPORTANT]
|
||||||
|
>
|
||||||
|
> ArgProperty 中每个条目对应一个参数,`type == "string"`时,使用文本块,`type == dropdown`时,使用下拉菜单。
|
||||||
|
>
|
||||||
|
> 注意:`main_input` 和 `advanced_arg`是两个特殊的参数。`main_input`会自动与界面右上角的`输入区`进行同步,而`advanced_arg`会自动与界面右下角的`高级参数输入区`同步。除此之外,参数名称可以任意选取。其他细节详见`crazy_functions/plugin_template/plugin_class_template.py`。
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
3. 编写插件程序,覆盖父类的`execute`函数。
|
||||||
|
|
||||||
|
例如:
|
||||||
|
|
||||||
|
```python
|
||||||
|
class Demo_Wrap(GptAcademicPluginTemplate):
|
||||||
|
...
|
||||||
|
...
|
||||||
|
|
||||||
|
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||||
|
"""
|
||||||
|
执行插件
|
||||||
|
|
||||||
|
plugin_kwargs字典中会包含用户的选择,与上述 `define_arg_selection_menu` 一一对应
|
||||||
|
"""
|
||||||
|
allow_cache = plugin_kwargs["allow_cache"]
|
||||||
|
advanced_arg = plugin_kwargs["advanced_arg"]
|
||||||
|
|
||||||
|
if allow_cache == "从头执行": plugin_kwargs["advanced_arg"] = "--no-cache " + plugin_kwargs["advanced_arg"]
|
||||||
|
yield from Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
4. 注册插件
|
||||||
|
|
||||||
|
将以下条目插入`crazy_functional.py`即可。注意,与旧插件不同的是,`Function`键值应该为None,而`Class`键值为上述插件的类名称(`Demo_Wrap`)。
|
||||||
|
```
|
||||||
|
"新插件": {
|
||||||
|
"Group": "学术",
|
||||||
|
"Color": "stop",
|
||||||
|
"AsButton": True,
|
||||||
|
"Info": "插件说明",
|
||||||
|
"Function": None,
|
||||||
|
"Class": Demo_Wrap,
|
||||||
|
},
|
||||||
|
```
|
||||||
|
|
||||||
|
5. 已经结束了,启动程序测试吧~!
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
## 二、背后的原理(需要JavaScript的前置知识)
|
||||||
|
|
||||||
|
|
||||||
|
### (I) 首先介绍三个Gradio官方没有的重要前端函数
|
||||||
|
|
||||||
|
主javascript程序`common.js`中有三个Gradio官方没有的重要API
|
||||||
|
|
||||||
|
1. `get_data_from_gradio_component`
|
||||||
|
这个函数可以获取任意gradio组件的当前值,例如textbox中的字符,dropdown中的当前选项,chatbot当前的对话等等。调用方法举例:
|
||||||
|
```javascript
|
||||||
|
// 获取当前的对话
|
||||||
|
let chatbot = await get_data_from_gradio_component('gpt-chatbot');
|
||||||
|
```
|
||||||
|
|
||||||
|
2. `get_gradio_component`
|
||||||
|
有时候我们不仅需要gradio组件的当前值,还需要它的label值、是否隐藏、下拉菜单其他可选选项等等,而通过这个函数可以直接获取这个组件的句柄。举例:
|
||||||
|
```javascript
|
||||||
|
// 获取下拉菜单组件的句柄
|
||||||
|
var model_sel = await get_gradio_component("elem_model_sel");
|
||||||
|
// 获取它的所有属性,包括其所有可选选项
|
||||||
|
console.log(model_sel.props)
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
3. `push_data_to_gradio_component`
|
||||||
|
这个函数可以将数据推回gradio组件,例如textbox中的字符,dropdown中的当前选项等等。调用方法举例:
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
// 修改一个按钮上面的文本
|
||||||
|
push_data_to_gradio_component("btnName", "gradio_element_id", "string");
|
||||||
|
|
||||||
|
// 隐藏一个组件
|
||||||
|
push_data_to_gradio_component({ visible: false, __type__: 'update' }, "plugin_arg_menu", "obj");
|
||||||
|
|
||||||
|
// 修改组件label
|
||||||
|
push_data_to_gradio_component({ label: '新label的值', __type__: 'update' }, "gpt-chatbot", "obj")
|
||||||
|
|
||||||
|
// 第一个参数是value,
|
||||||
|
// - 可以是字符串(调整textbox的文本,按钮的文本);
|
||||||
|
// - 还可以是 { visible: false, __type__: 'update' } 这样的字典(调整visible, label, choices)
|
||||||
|
// 第二个参数是elem_id
|
||||||
|
// 第三个参数是"string" 或者 "obj"
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
### (II) 从点击插件到执行插件的逻辑过程
|
||||||
|
|
||||||
|
简述:程序启动时把每个插件的二级菜单编码为BASE64,存储在用户的浏览器前端,用户调用对应功能时,会按照插件的BASE64编码,将平时隐藏的菜单(有选择性地)显示出来。
|
||||||
|
|
||||||
|
1. 启动阶段(主函数 `main.py` 中),遍历每个插件,生成二级菜单的BASE64编码,存入变量`register_advanced_plugin_init_code_arr`。
|
||||||
|
```python
|
||||||
|
def get_js_code_for_generating_menu(self, btnName):
|
||||||
|
define_arg_selection = self.define_arg_selection_menu()
|
||||||
|
DEFINE_ARG_INPUT_INTERFACE = json.dumps(define_arg_selection)
|
||||||
|
return base64.b64encode(DEFINE_ARG_INPUT_INTERFACE.encode('utf-8')).decode('utf-8')
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
2. 用户加载阶段(主javascript程序`common.js`中),浏览器加载`register_advanced_plugin_init_code_arr`,存入本地的字典`advanced_plugin_init_code_lib`:
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
advanced_plugin_init_code_lib = {}
|
||||||
|
function register_advanced_plugin_init_code(key, code){
|
||||||
|
advanced_plugin_init_code_lib[key] = code;
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
3. 用户点击插件按钮(主函数 `main.py` 中)时,仅执行以下javascript代码,唤醒隐藏的二级菜单(生成菜单的代码在`common.js`中的`generate_menu`函数上):
|
||||||
|
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
// 生成高级插件的选择菜单
|
||||||
|
function run_advanced_plugin_launch_code(key){
|
||||||
|
generate_menu(advanced_plugin_init_code_lib[key], key);
|
||||||
|
}
|
||||||
|
function on_flex_button_click(key){
|
||||||
|
run_advanced_plugin_launch_code(key);
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
```python
|
||||||
|
click_handle = plugins[k]["Button"].click(None, inputs=[], outputs=None, _js=f"""()=>run_advanced_plugin_launch_code("{k}")""")
|
||||||
|
```
|
||||||
|
|
||||||
|
4. 当用户点击二级菜单的执行键时,通过javascript脚本模拟点击一个隐藏按钮,触发后续程序(`common.js`中的`execute_current_pop_up_plugin`,会把二级菜单中的参数缓存到`invisible_current_pop_up_plugin_arg_final`,然后模拟点击`invisible_callback_btn_for_plugin_exe`按钮)。隐藏按钮的定义在(主函数 `main.py` ),该隐藏按钮会最终触发`route_switchy_bt_with_arg`函数(定义于`themes/gui_advanced_plugin_class.py`):
|
||||||
|
|
||||||
|
```python
|
||||||
|
click_handle_ng = new_plugin_callback.click(route_switchy_bt_with_arg, [
|
||||||
|
gr.State(["new_plugin_callback", "usr_confirmed_arg"] + input_combo_order),
|
||||||
|
new_plugin_callback, usr_confirmed_arg, *input_combo
|
||||||
|
], output_combo)
|
||||||
|
```
|
||||||
|
|
||||||
|
5. 最后,`route_switchy_bt_with_arg`中,会搜集所有用户参数,统一集中到`plugin_kwargs`参数中,并执行对应插件的`execute`函数。
|
||||||
@@ -22,13 +22,13 @@
|
|||||||
| crazy_functions\下载arxiv论文翻译摘要.py | 下载 `arxiv` 论文的 PDF 文件,并提取摘要和翻译 |
|
| crazy_functions\下载arxiv论文翻译摘要.py | 下载 `arxiv` 论文的 PDF 文件,并提取摘要和翻译 |
|
||||||
| crazy_functions\代码重写为全英文_多线程.py | 将Python源代码文件中的中文内容转化为英文 |
|
| crazy_functions\代码重写为全英文_多线程.py | 将Python源代码文件中的中文内容转化为英文 |
|
||||||
| crazy_functions\图片生成.py | 根据激励文本使用GPT模型生成相应的图像 |
|
| crazy_functions\图片生成.py | 根据激励文本使用GPT模型生成相应的图像 |
|
||||||
| crazy_functions\对话历史存档.py | 将每次对话记录写入Markdown格式的文件中 |
|
| crazy_functions\Conversation_To_File.py | 将每次对话记录写入Markdown格式的文件中 |
|
||||||
| crazy_functions\总结word文档.py | 对输入的word文档进行摘要生成 |
|
| crazy_functions\总结word文档.py | 对输入的word文档进行摘要生成 |
|
||||||
| crazy_functions\总结音视频.py | 对输入的音视频文件进行摘要生成 |
|
| crazy_functions\总结音视频.py | 对输入的音视频文件进行摘要生成 |
|
||||||
| crazy_functions\批量Markdown翻译.py | 将指定目录下的Markdown文件进行中英文翻译 |
|
| crazy_functions\Markdown_Translate.py | 将指定目录下的Markdown文件进行中英文翻译 |
|
||||||
| crazy_functions\批量总结PDF文档.py | 对PDF文件进行切割和摘要生成 |
|
| crazy_functions\批量总结PDF文档.py | 对PDF文件进行切割和摘要生成 |
|
||||||
| crazy_functions\批量总结PDF文档pdfminer.py | 对PDF文件进行文本内容的提取和摘要生成 |
|
| crazy_functions\批量总结PDF文档pdfminer.py | 对PDF文件进行文本内容的提取和摘要生成 |
|
||||||
| crazy_functions\批量翻译PDF文档_多线程.py | 将指定目录下的PDF文件进行中英文翻译 |
|
| crazy_functions\PDF_Translate.py | 将指定目录下的PDF文件进行中英文翻译 |
|
||||||
| crazy_functions\理解PDF文档内容.py | 对PDF文件进行摘要生成和问题解答 |
|
| crazy_functions\理解PDF文档内容.py | 对PDF文件进行摘要生成和问题解答 |
|
||||||
| crazy_functions\生成函数注释.py | 自动生成Python函数的注释 |
|
| crazy_functions\生成函数注释.py | 自动生成Python函数的注释 |
|
||||||
| crazy_functions\联网的ChatGPT.py | 使用网络爬虫和ChatGPT模型进行聊天回答 |
|
| crazy_functions\联网的ChatGPT.py | 使用网络爬虫和ChatGPT模型进行聊天回答 |
|
||||||
@@ -155,9 +155,9 @@ toolbox.py是一个工具类库,其中主要包含了一些函数装饰器和
|
|||||||
|
|
||||||
该程序文件提供了一个用于生成图像的函数`图片生成`。函数实现的过程中,会调用`gen_image`函数来生成图像,并返回图像生成的网址和本地文件地址。函数有多个参数,包括`prompt`(激励文本)、`llm_kwargs`(GPT模型的参数)、`plugin_kwargs`(插件模型的参数)等。函数核心代码使用了`requests`库向OpenAI API请求图像,并做了简单的处理和保存。函数还更新了交互界面,清空聊天历史并显示正在生成图像的消息和最终的图像网址和预览。
|
该程序文件提供了一个用于生成图像的函数`图片生成`。函数实现的过程中,会调用`gen_image`函数来生成图像,并返回图像生成的网址和本地文件地址。函数有多个参数,包括`prompt`(激励文本)、`llm_kwargs`(GPT模型的参数)、`plugin_kwargs`(插件模型的参数)等。函数核心代码使用了`requests`库向OpenAI API请求图像,并做了简单的处理和保存。函数还更新了交互界面,清空聊天历史并显示正在生成图像的消息和最终的图像网址和预览。
|
||||||
|
|
||||||
## [18/48] 请对下面的程序文件做一个概述: crazy_functions\对话历史存档.py
|
## [18/48] 请对下面的程序文件做一个概述: crazy_functions\Conversation_To_File.py
|
||||||
|
|
||||||
这个文件是名为crazy_functions\对话历史存档.py的Python程序文件,包含了4个函数:
|
这个文件是名为crazy_functions\Conversation_To_File.py的Python程序文件,包含了4个函数:
|
||||||
|
|
||||||
1. write_chat_to_file(chatbot, history=None, file_name=None):用来将对话记录以Markdown格式写入文件中,并且生成文件名,如果没指定文件名则用当前时间。写入完成后将文件路径打印出来。
|
1. write_chat_to_file(chatbot, history=None, file_name=None):用来将对话记录以Markdown格式写入文件中,并且生成文件名,如果没指定文件名则用当前时间。写入完成后将文件路径打印出来。
|
||||||
|
|
||||||
@@ -165,7 +165,7 @@ toolbox.py是一个工具类库,其中主要包含了一些函数装饰器和
|
|||||||
|
|
||||||
3. read_file_to_chat(chatbot, history, file_name):从传入的文件中读取内容,解析出对话历史记录并更新聊天显示框。
|
3. read_file_to_chat(chatbot, history, file_name):从传入的文件中读取内容,解析出对话历史记录并更新聊天显示框。
|
||||||
|
|
||||||
4. 对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):一个主要函数,用于保存当前对话记录并提醒用户。如果用户希望加载历史记录,则调用read_file_to_chat()来更新聊天显示框。如果用户希望删除历史记录,调用删除所有本地对话历史记录()函数完成删除操作。
|
4. Conversation_To_File(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):一个主要函数,用于保存当前对话记录并提醒用户。如果用户希望加载历史记录,则调用read_file_to_chat()来更新聊天显示框。如果用户希望删除历史记录,调用删除所有本地对话历史记录()函数完成删除操作。
|
||||||
|
|
||||||
## [19/48] 请对下面的程序文件做一个概述: crazy_functions\总结word文档.py
|
## [19/48] 请对下面的程序文件做一个概述: crazy_functions\总结word文档.py
|
||||||
|
|
||||||
@@ -175,9 +175,9 @@ toolbox.py是一个工具类库,其中主要包含了一些函数装饰器和
|
|||||||
|
|
||||||
该程序文件包括两个函数:split_audio_file()和AnalyAudio(),并且导入了一些必要的库并定义了一些工具函数。split_audio_file用于将音频文件分割成多个时长相等的片段,返回一个包含所有切割音频片段文件路径的列表,而AnalyAudio用来分析音频文件,通过调用whisper模型进行音频转文字并使用GPT模型对音频内容进行概述,最终将所有总结结果写入结果文件中。
|
该程序文件包括两个函数:split_audio_file()和AnalyAudio(),并且导入了一些必要的库并定义了一些工具函数。split_audio_file用于将音频文件分割成多个时长相等的片段,返回一个包含所有切割音频片段文件路径的列表,而AnalyAudio用来分析音频文件,通过调用whisper模型进行音频转文字并使用GPT模型对音频内容进行概述,最终将所有总结结果写入结果文件中。
|
||||||
|
|
||||||
## [21/48] 请对下面的程序文件做一个概述: crazy_functions\批量Markdown翻译.py
|
## [21/48] 请对下面的程序文件做一个概述: crazy_functions\Markdown_Translate.py
|
||||||
|
|
||||||
该程序文件名为`批量Markdown翻译.py`,包含了以下功能:读取Markdown文件,将长文本分离开来,将Markdown文件进行翻译(英译中和中译英),整理结果并退出。程序使用了多线程以提高效率。程序使用了`tiktoken`依赖库,可能需要额外安装。文件中还有一些其他的函数和类,但与文件名所描述的功能无关。
|
该程序文件名为`Markdown_Translate.py`,包含了以下功能:读取Markdown文件,将长文本分离开来,将Markdown文件进行翻译(英译中和中译英),整理结果并退出。程序使用了多线程以提高效率。程序使用了`tiktoken`依赖库,可能需要额外安装。文件中还有一些其他的函数和类,但与文件名所描述的功能无关。
|
||||||
|
|
||||||
## [22/48] 请对下面的程序文件做一个概述: crazy_functions\批量总结PDF文档.py
|
## [22/48] 请对下面的程序文件做一个概述: crazy_functions\批量总结PDF文档.py
|
||||||
|
|
||||||
@@ -187,9 +187,9 @@ toolbox.py是一个工具类库,其中主要包含了一些函数装饰器和
|
|||||||
|
|
||||||
该程序文件是一个用于批量总结PDF文档的函数插件,使用了pdfminer插件和BeautifulSoup库来提取PDF文档的文本内容,对每个PDF文件分别进行处理并生成中英文摘要。同时,该程序文件还包括一些辅助工具函数和处理异常的装饰器。
|
该程序文件是一个用于批量总结PDF文档的函数插件,使用了pdfminer插件和BeautifulSoup库来提取PDF文档的文本内容,对每个PDF文件分别进行处理并生成中英文摘要。同时,该程序文件还包括一些辅助工具函数和处理异常的装饰器。
|
||||||
|
|
||||||
## [24/48] 请对下面的程序文件做一个概述: crazy_functions\批量翻译PDF文档_多线程.py
|
## [24/48] 请对下面的程序文件做一个概述: crazy_functions\PDF_Translate.py
|
||||||
|
|
||||||
这个程序文件是一个Python脚本,文件名为“批量翻译PDF文档_多线程.py”。它主要使用了“toolbox”、“request_gpt_model_in_new_thread_with_ui_alive”、“request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency”、“colorful”等Python库和自定义的模块“crazy_utils”的一些函数。程序实现了一个批量翻译PDF文档的功能,可以自动解析PDF文件中的基础信息,递归地切割PDF文件,翻译和处理PDF论文中的所有内容,并生成相应的翻译结果文件(包括md文件和html文件)。功能比较复杂,其中需要调用多个函数和依赖库,涉及到多线程操作和UI更新。文件中有详细的注释和变量命名,代码比较清晰易读。
|
这个程序文件是一个Python脚本,文件名为“PDF_Translate.py”。它主要使用了“toolbox”、“request_gpt_model_in_new_thread_with_ui_alive”、“request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency”、“colorful”等Python库和自定义的模块“crazy_utils”的一些函数。程序实现了一个批量翻译PDF文档的功能,可以自动解析PDF文件中的基础信息,递归地切割PDF文件,翻译和处理PDF论文中的所有内容,并生成相应的翻译结果文件(包括md文件和html文件)。功能比较复杂,其中需要调用多个函数和依赖库,涉及到多线程操作和UI更新。文件中有详细的注释和变量命名,代码比较清晰易读。
|
||||||
|
|
||||||
## [25/48] 请对下面的程序文件做一个概述: crazy_functions\理解PDF文档内容.py
|
## [25/48] 请对下面的程序文件做一个概述: crazy_functions\理解PDF文档内容.py
|
||||||
|
|
||||||
@@ -331,19 +331,19 @@ check_proxy.py, colorful.py, config.py, config_private.py, core_functional.py, c
|
|||||||
这些程序源文件提供了基础的文本和语言处理功能、工具函数和高级插件,使 Chatbot 能够处理各种复杂的学术文本问题,包括润色、翻译、搜索、下载、解析等。
|
这些程序源文件提供了基础的文本和语言处理功能、工具函数和高级插件,使 Chatbot 能够处理各种复杂的学术文本问题,包括润色、翻译、搜索、下载、解析等。
|
||||||
|
|
||||||
## 用一张Markdown表格简要描述以下文件的功能:
|
## 用一张Markdown表格简要描述以下文件的功能:
|
||||||
crazy_functions\代码重写为全英文_多线程.py, crazy_functions\图片生成.py, crazy_functions\对话历史存档.py, crazy_functions\总结word文档.py, crazy_functions\总结音视频.py, crazy_functions\批量Markdown翻译.py, crazy_functions\批量总结PDF文档.py, crazy_functions\批量总结PDF文档pdfminer.py, crazy_functions\批量翻译PDF文档_多线程.py, crazy_functions\理解PDF文档内容.py, crazy_functions\生成函数注释.py, crazy_functions\联网的ChatGPT.py, crazy_functions\解析JupyterNotebook.py, crazy_functions\解析项目源代码.py, crazy_functions\询问多个大语言模型.py, crazy_functions\读文章写摘要.py。根据以上分析,用一句话概括程序的整体功能。
|
crazy_functions\代码重写为全英文_多线程.py, crazy_functions\图片生成.py, crazy_functions\Conversation_To_File.py, crazy_functions\总结word文档.py, crazy_functions\总结音视频.py, crazy_functions\Markdown_Translate.py, crazy_functions\批量总结PDF文档.py, crazy_functions\批量总结PDF文档pdfminer.py, crazy_functions\PDF_Translate.py, crazy_functions\理解PDF文档内容.py, crazy_functions\生成函数注释.py, crazy_functions\联网的ChatGPT.py, crazy_functions\解析JupyterNotebook.py, crazy_functions\解析项目源代码.py, crazy_functions\询问多个大语言模型.py, crazy_functions\读文章写摘要.py。根据以上分析,用一句话概括程序的整体功能。
|
||||||
|
|
||||||
| 文件名 | 功能简述 |
|
| 文件名 | 功能简述 |
|
||||||
| --- | --- |
|
| --- | --- |
|
||||||
| 代码重写为全英文_多线程.py | 将Python源代码文件中的中文内容转化为英文 |
|
| 代码重写为全英文_多线程.py | 将Python源代码文件中的中文内容转化为英文 |
|
||||||
| 图片生成.py | 根据激励文本使用GPT模型生成相应的图像 |
|
| 图片生成.py | 根据激励文本使用GPT模型生成相应的图像 |
|
||||||
| 对话历史存档.py | 将每次对话记录写入Markdown格式的文件中 |
|
| Conversation_To_File.py | 将每次对话记录写入Markdown格式的文件中 |
|
||||||
| 总结word文档.py | 对输入的word文档进行摘要生成 |
|
| 总结word文档.py | 对输入的word文档进行摘要生成 |
|
||||||
| 总结音视频.py | 对输入的音视频文件进行摘要生成 |
|
| 总结音视频.py | 对输入的音视频文件进行摘要生成 |
|
||||||
| 批量Markdown翻译.py | 将指定目录下的Markdown文件进行中英文翻译 |
|
| Markdown_Translate.py | 将指定目录下的Markdown文件进行中英文翻译 |
|
||||||
| 批量总结PDF文档.py | 对PDF文件进行切割和摘要生成 |
|
| 批量总结PDF文档.py | 对PDF文件进行切割和摘要生成 |
|
||||||
| 批量总结PDF文档pdfminer.py | 对PDF文件进行文本内容的提取和摘要生成 |
|
| 批量总结PDF文档pdfminer.py | 对PDF文件进行文本内容的提取和摘要生成 |
|
||||||
| 批量翻译PDF文档_多线程.py | 将指定目录下的PDF文件进行中英文翻译 |
|
| PDF_Translate.py | 将指定目录下的PDF文件进行中英文翻译 |
|
||||||
| 理解PDF文档内容.py | 对PDF文件进行摘要生成和问题解答 |
|
| 理解PDF文档内容.py | 对PDF文件进行摘要生成和问题解答 |
|
||||||
| 生成函数注释.py | 自动生成Python函数的注释 |
|
| 生成函数注释.py | 自动生成Python函数的注释 |
|
||||||
| 联网的ChatGPT.py | 使用网络爬虫和ChatGPT模型进行聊天回答 |
|
| 联网的ChatGPT.py | 使用网络爬虫和ChatGPT模型进行聊天回答 |
|
||||||
|
|||||||
File diff suppressed because it is too large
Load Diff
@@ -36,15 +36,15 @@
|
|||||||
"总结word文档": "SummarizeWordDocument",
|
"总结word文档": "SummarizeWordDocument",
|
||||||
"解析ipynb文件": "ParseIpynbFile",
|
"解析ipynb文件": "ParseIpynbFile",
|
||||||
"解析JupyterNotebook": "ParseJupyterNotebook",
|
"解析JupyterNotebook": "ParseJupyterNotebook",
|
||||||
"对话历史存档": "ConversationHistoryArchive",
|
"Conversation_To_File": "ConversationHistoryArchive",
|
||||||
"载入对话历史存档": "LoadConversationHistoryArchive",
|
"载入Conversation_To_File": "LoadConversationHistoryArchive",
|
||||||
"删除所有本地对话历史记录": "DeleteAllLocalChatHistory",
|
"删除所有本地对话历史记录": "DeleteAllLocalChatHistory",
|
||||||
"Markdown英译中": "MarkdownTranslateFromEngToChi",
|
"Markdown英译中": "MarkdownTranslateFromEngToChi",
|
||||||
"批量Markdown翻译": "BatchTranslateMarkdown",
|
"Markdown_Translate": "BatchTranslateMarkdown",
|
||||||
"批量总结PDF文档": "BatchSummarizePDFDocuments",
|
"批量总结PDF文档": "BatchSummarizePDFDocuments",
|
||||||
"批量总结PDF文档pdfminer": "BatchSummarizePDFDocumentsUsingPDFMiner",
|
"批量总结PDF文档pdfminer": "BatchSummarizePDFDocumentsUsingPDFMiner",
|
||||||
"批量翻译PDF文档": "BatchTranslatePDFDocuments",
|
"批量翻译PDF文档": "BatchTranslatePDFDocuments",
|
||||||
"批量翻译PDF文档_多线程": "BatchTranslatePDFDocumentsUsingMultiThreading",
|
"PDF_Translate": "BatchTranslatePDFDocumentsUsingMultiThreading",
|
||||||
"谷歌检索小助手": "GoogleSearchAssistant",
|
"谷歌检索小助手": "GoogleSearchAssistant",
|
||||||
"理解PDF文档内容标准文件输入": "StandardFileInputForUnderstandingPDFDocumentContent",
|
"理解PDF文档内容标准文件输入": "StandardFileInputForUnderstandingPDFDocumentContent",
|
||||||
"理解PDF文档内容": "UnderstandingPDFDocumentContent",
|
"理解PDF文档内容": "UnderstandingPDFDocumentContent",
|
||||||
@@ -1492,7 +1492,7 @@
|
|||||||
"交互功能模板函数": "InteractiveFunctionTemplateFunction",
|
"交互功能模板函数": "InteractiveFunctionTemplateFunction",
|
||||||
"交互功能函数模板": "InteractiveFunctionFunctionTemplate",
|
"交互功能函数模板": "InteractiveFunctionFunctionTemplate",
|
||||||
"Latex英文纠错加PDF对比": "LatexEnglishErrorCorrectionWithPDFComparison",
|
"Latex英文纠错加PDF对比": "LatexEnglishErrorCorrectionWithPDFComparison",
|
||||||
"Latex输出PDF结果": "LatexOutputPDFResult",
|
"Latex_Function": "LatexOutputPDFResult",
|
||||||
"Latex翻译中文并重新编译PDF": "TranslateChineseAndRecompilePDF",
|
"Latex翻译中文并重新编译PDF": "TranslateChineseAndRecompilePDF",
|
||||||
"语音助手": "VoiceAssistant",
|
"语音助手": "VoiceAssistant",
|
||||||
"微调数据集生成": "FineTuneDatasetGeneration",
|
"微调数据集生成": "FineTuneDatasetGeneration",
|
||||||
|
|||||||
@@ -6,17 +6,14 @@
|
|||||||
"Latex英文纠错加PDF对比": "CorrectEnglishInLatexWithPDFComparison",
|
"Latex英文纠错加PDF对比": "CorrectEnglishInLatexWithPDFComparison",
|
||||||
"下载arxiv论文并翻译摘要": "DownloadArxivPaperAndTranslateAbstract",
|
"下载arxiv论文并翻译摘要": "DownloadArxivPaperAndTranslateAbstract",
|
||||||
"Markdown翻译指定语言": "TranslateMarkdownToSpecifiedLanguage",
|
"Markdown翻译指定语言": "TranslateMarkdownToSpecifiedLanguage",
|
||||||
"批量翻译PDF文档_多线程": "BatchTranslatePDFDocuments_MultiThreaded",
|
|
||||||
"下载arxiv论文翻译摘要": "DownloadArxivPaperTranslateAbstract",
|
"下载arxiv论文翻译摘要": "DownloadArxivPaperTranslateAbstract",
|
||||||
"解析一个Python项目": "ParsePythonProject",
|
"解析一个Python项目": "ParsePythonProject",
|
||||||
"解析一个Golang项目": "ParseGolangProject",
|
"解析一个Golang项目": "ParseGolangProject",
|
||||||
"代码重写为全英文_多线程": "RewriteCodeToEnglish_MultiThreaded",
|
"代码重写为全英文_多线程": "RewriteCodeToEnglish_MultiThreaded",
|
||||||
"解析一个CSharp项目": "ParsingCSharpProject",
|
"解析一个CSharp项目": "ParsingCSharpProject",
|
||||||
"删除所有本地对话历史记录": "DeleteAllLocalConversationHistoryRecords",
|
"删除所有本地对话历史记录": "DeleteAllLocalConversationHistoryRecords",
|
||||||
"批量Markdown翻译": "BatchTranslateMarkdown",
|
|
||||||
"连接bing搜索回答问题": "ConnectBingSearchAnswerQuestion",
|
"连接bing搜索回答问题": "ConnectBingSearchAnswerQuestion",
|
||||||
"Langchain知识库": "LangchainKnowledgeBase",
|
"Langchain知识库": "LangchainKnowledgeBase",
|
||||||
"Latex输出PDF结果": "OutputPDFFromLatex",
|
|
||||||
"把字符太少的块清除为回车": "ClearBlocksWithTooFewCharactersToNewline",
|
"把字符太少的块清除为回车": "ClearBlocksWithTooFewCharactersToNewline",
|
||||||
"Latex精细分解与转化": "DecomposeAndConvertLatex",
|
"Latex精细分解与转化": "DecomposeAndConvertLatex",
|
||||||
"解析一个C项目的头文件": "ParseCProjectHeaderFiles",
|
"解析一个C项目的头文件": "ParseCProjectHeaderFiles",
|
||||||
@@ -46,7 +43,7 @@
|
|||||||
"高阶功能模板函数": "HighOrderFunctionTemplateFunctions",
|
"高阶功能模板函数": "HighOrderFunctionTemplateFunctions",
|
||||||
"高级功能函数模板": "AdvancedFunctionTemplate",
|
"高级功能函数模板": "AdvancedFunctionTemplate",
|
||||||
"总结word文档": "SummarizingWordDocuments",
|
"总结word文档": "SummarizingWordDocuments",
|
||||||
"载入对话历史存档": "LoadConversationHistoryArchive",
|
"载入Conversation_To_File": "LoadConversationHistoryArchive",
|
||||||
"Latex中译英": "LatexChineseToEnglish",
|
"Latex中译英": "LatexChineseToEnglish",
|
||||||
"Latex英译中": "LatexEnglishToChinese",
|
"Latex英译中": "LatexEnglishToChinese",
|
||||||
"连接网络回答问题": "ConnectToNetworkToAnswerQuestions",
|
"连接网络回答问题": "ConnectToNetworkToAnswerQuestions",
|
||||||
@@ -70,7 +67,6 @@
|
|||||||
"读文章写摘要": "ReadArticleWriteSummary",
|
"读文章写摘要": "ReadArticleWriteSummary",
|
||||||
"生成函数注释": "GenerateFunctionComments",
|
"生成函数注释": "GenerateFunctionComments",
|
||||||
"解析项目本身": "ParseProjectItself",
|
"解析项目本身": "ParseProjectItself",
|
||||||
"对话历史存档": "ConversationHistoryArchive",
|
|
||||||
"专业词汇声明": "ProfessionalTerminologyDeclaration",
|
"专业词汇声明": "ProfessionalTerminologyDeclaration",
|
||||||
"解析docx": "ParseDocx",
|
"解析docx": "ParseDocx",
|
||||||
"解析源代码新": "ParsingSourceCodeNew",
|
"解析源代码新": "ParsingSourceCodeNew",
|
||||||
@@ -97,5 +93,18 @@
|
|||||||
"多智能体": "MultiAgent",
|
"多智能体": "MultiAgent",
|
||||||
"图片生成_DALLE2": "ImageGeneration_DALLE2",
|
"图片生成_DALLE2": "ImageGeneration_DALLE2",
|
||||||
"图片生成_DALLE3": "ImageGeneration_DALLE3",
|
"图片生成_DALLE3": "ImageGeneration_DALLE3",
|
||||||
"图片修改_DALLE2": "ImageModification_DALLE2"
|
"图片修改_DALLE2": "ImageModification_DALLE2",
|
||||||
|
"生成多种Mermaid图表": "GenerateMultipleMermaidCharts",
|
||||||
|
"知识库文件注入": "InjectKnowledgeBaseFiles",
|
||||||
|
"PDF翻译中文并重新编译PDF": "TranslatePDFToChineseAndRecompilePDF",
|
||||||
|
"随机小游戏": "RandomMiniGame",
|
||||||
|
"互动小游戏": "InteractiveMiniGame",
|
||||||
|
"解析历史输入": "ParseHistoricalInput",
|
||||||
|
"高阶功能模板函数示意图": "HighOrderFunctionTemplateDiagram",
|
||||||
|
"载入对话历史存档": "LoadChatHistoryArchive",
|
||||||
|
"对话历史存档": "ChatHistoryArchive",
|
||||||
|
"解析PDF_DOC2X_转Latex": "ParsePDF_DOC2X_toLatex",
|
||||||
|
"解析PDF_基于DOC2X": "ParsePDF_basedDOC2X",
|
||||||
|
"解析PDF_简单拆解": "ParsePDF_simpleDecomposition",
|
||||||
|
"解析PDF_DOC2X_单文件": "ParsePDF_DOC2X_singleFile"
|
||||||
}
|
}
|
||||||
@@ -35,15 +35,15 @@
|
|||||||
"总结word文档": "SummarizeWordDocument",
|
"总结word文档": "SummarizeWordDocument",
|
||||||
"解析ipynb文件": "ParseIpynbFile",
|
"解析ipynb文件": "ParseIpynbFile",
|
||||||
"解析JupyterNotebook": "ParseJupyterNotebook",
|
"解析JupyterNotebook": "ParseJupyterNotebook",
|
||||||
"对话历史存档": "ConversationHistoryArchive",
|
"Conversation_To_File": "ConversationHistoryArchive",
|
||||||
"载入对话历史存档": "LoadConversationHistoryArchive",
|
"载入Conversation_To_File": "LoadConversationHistoryArchive",
|
||||||
"删除所有本地对话历史记录": "DeleteAllLocalConversationHistoryRecords",
|
"删除所有本地对话历史记录": "DeleteAllLocalConversationHistoryRecords",
|
||||||
"Markdown英译中": "MarkdownEnglishToChinese",
|
"Markdown英译中": "MarkdownEnglishToChinese",
|
||||||
"批量Markdown翻译": "BatchMarkdownTranslation",
|
"Markdown_Translate": "BatchMarkdownTranslation",
|
||||||
"批量总结PDF文档": "BatchSummarizePDFDocuments",
|
"批量总结PDF文档": "BatchSummarizePDFDocuments",
|
||||||
"批量总结PDF文档pdfminer": "BatchSummarizePDFDocumentsPdfminer",
|
"批量总结PDF文档pdfminer": "BatchSummarizePDFDocumentsPdfminer",
|
||||||
"批量翻译PDF文档": "BatchTranslatePDFDocuments",
|
"批量翻译PDF文档": "BatchTranslatePDFDocuments",
|
||||||
"批量翻译PDF文档_多线程": "BatchTranslatePdfDocumentsMultithreaded",
|
"PDF_Translate": "BatchTranslatePdfDocumentsMultithreaded",
|
||||||
"谷歌检索小助手": "GoogleSearchAssistant",
|
"谷歌检索小助手": "GoogleSearchAssistant",
|
||||||
"理解PDF文档内容标准文件输入": "StandardFileInputForUnderstandingPdfDocumentContent",
|
"理解PDF文档内容标准文件输入": "StandardFileInputForUnderstandingPdfDocumentContent",
|
||||||
"理解PDF文档内容": "UnderstandingPdfDocumentContent",
|
"理解PDF文档内容": "UnderstandingPdfDocumentContent",
|
||||||
@@ -1468,7 +1468,7 @@
|
|||||||
"交互功能模板函数": "InteractiveFunctionTemplateFunctions",
|
"交互功能模板函数": "InteractiveFunctionTemplateFunctions",
|
||||||
"交互功能函数模板": "InteractiveFunctionFunctionTemplates",
|
"交互功能函数模板": "InteractiveFunctionFunctionTemplates",
|
||||||
"Latex英文纠错加PDF对比": "LatexEnglishCorrectionWithPDFComparison",
|
"Latex英文纠错加PDF对比": "LatexEnglishCorrectionWithPDFComparison",
|
||||||
"Latex输出PDF结果": "OutputPDFFromLatex",
|
"Latex_Function": "OutputPDFFromLatex",
|
||||||
"Latex翻译中文并重新编译PDF": "TranslateLatexToChineseAndRecompilePDF",
|
"Latex翻译中文并重新编译PDF": "TranslateLatexToChineseAndRecompilePDF",
|
||||||
"语音助手": "VoiceAssistant",
|
"语音助手": "VoiceAssistant",
|
||||||
"微调数据集生成": "FineTuneDatasetGeneration",
|
"微调数据集生成": "FineTuneDatasetGeneration",
|
||||||
|
|||||||
@@ -3,7 +3,7 @@
|
|||||||
|
|
||||||
## 1. 安装额外依赖
|
## 1. 安装额外依赖
|
||||||
```
|
```
|
||||||
pip install --upgrade pyOpenSSL scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git
|
pip install --upgrade pyOpenSSL webrtcvad scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git
|
||||||
```
|
```
|
||||||
|
|
||||||
如果因为特色网络问题导致上述命令无法执行:
|
如果因为特色网络问题导致上述命令无法执行:
|
||||||
|
|||||||
58
docs/use_tts.md
Normal file
58
docs/use_tts.md
Normal file
@@ -0,0 +1,58 @@
|
|||||||
|
# 使用TTS文字转语音
|
||||||
|
|
||||||
|
|
||||||
|
## 1. 使用EDGE-TTS(简单)
|
||||||
|
|
||||||
|
将本项目配置项修改如下即可
|
||||||
|
|
||||||
|
```
|
||||||
|
TTS_TYPE = "EDGE_TTS"
|
||||||
|
EDGE_TTS_VOICE = "zh-CN-XiaoxiaoNeural"
|
||||||
|
```
|
||||||
|
|
||||||
|
## 2. 使用SoVITS(需要有显卡)
|
||||||
|
|
||||||
|
使用以下docker-compose.yml文件,先启动SoVITS服务API
|
||||||
|
|
||||||
|
1. 创建以下文件夹结构
|
||||||
|
```shell
|
||||||
|
.
|
||||||
|
├── docker-compose.yml
|
||||||
|
└── reference
|
||||||
|
├── clone_target_txt.txt
|
||||||
|
└── clone_target_wave.mp3
|
||||||
|
```
|
||||||
|
2. 其中`docker-compose.yml`为
|
||||||
|
```yaml
|
||||||
|
version: '3.8'
|
||||||
|
services:
|
||||||
|
gpt-sovits:
|
||||||
|
image: fuqingxu/sovits_gptac_trim:latest
|
||||||
|
container_name: sovits_gptac_container
|
||||||
|
working_dir: /workspace/gpt_sovits_demo
|
||||||
|
environment:
|
||||||
|
- is_half=False
|
||||||
|
- is_share=False
|
||||||
|
volumes:
|
||||||
|
- ./reference:/reference
|
||||||
|
ports:
|
||||||
|
- "19880:9880" # 19880 为 sovits api 的暴露端口,记住它
|
||||||
|
shm_size: 16G
|
||||||
|
deploy:
|
||||||
|
resources:
|
||||||
|
reservations:
|
||||||
|
devices:
|
||||||
|
- driver: nvidia
|
||||||
|
count: "all"
|
||||||
|
capabilities: [gpu]
|
||||||
|
command: bash -c "python3 api.py"
|
||||||
|
```
|
||||||
|
3. 其中`clone_target_wave.mp3`为需要克隆的角色音频,`clone_target_txt.txt`为该音频对应的文字文本( https://wiki.biligame.com/ys/%E8%A7%92%E8%89%B2%E8%AF%AD%E9%9F%B3 )
|
||||||
|
4. 运行`docker-compose up`
|
||||||
|
5. 将本项目配置项修改如下即可
|
||||||
|
(19880 为 sovits api 的暴露端口,与docker-compose.yml中的端口对应)
|
||||||
|
```
|
||||||
|
TTS_TYPE = "LOCAL_SOVITS_API"
|
||||||
|
GPT_SOVITS_URL = "http://127.0.0.1:19880"
|
||||||
|
```
|
||||||
|
6. 启动本项目
|
||||||
46
docs/use_vllm.md
Normal file
46
docs/use_vllm.md
Normal file
@@ -0,0 +1,46 @@
|
|||||||
|
# 使用VLLM
|
||||||
|
|
||||||
|
|
||||||
|
## 1. 首先启动 VLLM,自行选择模型
|
||||||
|
|
||||||
|
```
|
||||||
|
python -m vllm.entrypoints.openai.api_server --model /home/hmp/llm/cache/Qwen1___5-32B-Chat --tensor-parallel-size 2 --dtype=half
|
||||||
|
```
|
||||||
|
|
||||||
|
这里使用了存储在 `/home/hmp/llm/cache/Qwen1___5-32B-Chat` 的本地模型,可以根据自己的需求更改。
|
||||||
|
|
||||||
|
## 2. 测试 VLLM
|
||||||
|
|
||||||
|
```
|
||||||
|
curl http://localhost:8000/v1/chat/completions \
|
||||||
|
-H "Content-Type: application/json" \
|
||||||
|
-d '{
|
||||||
|
"model": "/home/hmp/llm/cache/Qwen1___5-32B-Chat",
|
||||||
|
"messages": [
|
||||||
|
{"role": "system", "content": "You are a helpful assistant."},
|
||||||
|
{"role": "user", "content": "怎么实现一个去中心化的控制器?"}
|
||||||
|
]
|
||||||
|
}'
|
||||||
|
```
|
||||||
|
|
||||||
|
## 3. 配置本项目
|
||||||
|
|
||||||
|
```
|
||||||
|
API_KEY = "sk-123456789xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx123456789"
|
||||||
|
LLM_MODEL = "vllm-/home/hmp/llm/cache/Qwen1___5-32B-Chat(max_token=4096)"
|
||||||
|
API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "http://localhost:8000/v1/chat/completions"}
|
||||||
|
```
|
||||||
|
|
||||||
|
```
|
||||||
|
"vllm-/home/hmp/llm/cache/Qwen1___5-32B-Chat(max_token=4096)"
|
||||||
|
其中
|
||||||
|
"vllm-" 是前缀(必要)
|
||||||
|
"/home/hmp/llm/cache/Qwen1___5-32B-Chat" 是模型名(必要)
|
||||||
|
"(max_token=6666)" 是配置(非必要)
|
||||||
|
```
|
||||||
|
|
||||||
|
## 4. 启动!
|
||||||
|
|
||||||
|
```
|
||||||
|
python main.py
|
||||||
|
```
|
||||||
@@ -1,30 +0,0 @@
|
|||||||
try {
|
|
||||||
$("<link>").attr({href: "file=docs/waifu_plugin/waifu.css", rel: "stylesheet", type: "text/css"}).appendTo('head');
|
|
||||||
$('body').append('<div class="waifu"><div class="waifu-tips"></div><canvas id="live2d" class="live2d"></canvas><div class="waifu-tool"><span class="fui-home"></span> <span class="fui-chat"></span> <span class="fui-eye"></span> <span class="fui-user"></span> <span class="fui-photo"></span> <span class="fui-info-circle"></span> <span class="fui-cross"></span></div></div>');
|
|
||||||
$.ajax({url: "file=docs/waifu_plugin/waifu-tips.js", dataType:"script", cache: true, success: function() {
|
|
||||||
$.ajax({url: "file=docs/waifu_plugin/live2d.js", dataType:"script", cache: true, success: function() {
|
|
||||||
/* 可直接修改部分参数 */
|
|
||||||
live2d_settings['hitokotoAPI'] = "hitokoto.cn"; // 一言 API
|
|
||||||
live2d_settings['modelId'] = 5; // 默认模型 ID
|
|
||||||
live2d_settings['modelTexturesId'] = 1; // 默认材质 ID
|
|
||||||
live2d_settings['modelStorage'] = false; // 不储存模型 ID
|
|
||||||
live2d_settings['waifuSize'] = '210x187';
|
|
||||||
live2d_settings['waifuTipsSize'] = '187x52';
|
|
||||||
live2d_settings['canSwitchModel'] = true;
|
|
||||||
live2d_settings['canSwitchTextures'] = true;
|
|
||||||
live2d_settings['canSwitchHitokoto'] = false;
|
|
||||||
live2d_settings['canTakeScreenshot'] = false;
|
|
||||||
live2d_settings['canTurnToHomePage'] = false;
|
|
||||||
live2d_settings['canTurnToAboutPage'] = false;
|
|
||||||
live2d_settings['showHitokoto'] = false; // 显示一言
|
|
||||||
live2d_settings['showF12Status'] = false; // 显示加载状态
|
|
||||||
live2d_settings['showF12Message'] = false; // 显示看板娘消息
|
|
||||||
live2d_settings['showF12OpenMsg'] = false; // 显示控制台打开提示
|
|
||||||
live2d_settings['showCopyMessage'] = false; // 显示 复制内容 提示
|
|
||||||
live2d_settings['showWelcomeMessage'] = true; // 显示进入面页欢迎词
|
|
||||||
|
|
||||||
/* 在 initModel 前添加 */
|
|
||||||
initModel("file=docs/waifu_plugin/waifu-tips.json");
|
|
||||||
}});
|
|
||||||
}});
|
|
||||||
} catch(err) { console.log("[Error] JQuery is not defined.") }
|
|
||||||
266
main.py
266
main.py
@@ -1,4 +1,4 @@
|
|||||||
import os; os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
|
import os, json; os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
|
||||||
|
|
||||||
help_menu_description = \
|
help_menu_description = \
|
||||||
"""Github源代码开源和更新[地址🚀](https://github.com/binary-husky/gpt_academic),
|
"""Github源代码开源和更新[地址🚀](https://github.com/binary-husky/gpt_academic),
|
||||||
@@ -13,35 +13,41 @@ help_menu_description = \
|
|||||||
</br></br>如何语音对话: 请阅读Wiki
|
</br></br>如何语音对话: 请阅读Wiki
|
||||||
</br></br>如何临时更换API_KEY: 在输入区输入临时API_KEY后提交(网页刷新后失效)"""
|
</br></br>如何临时更换API_KEY: 在输入区输入临时API_KEY后提交(网页刷新后失效)"""
|
||||||
|
|
||||||
|
def enable_log(PATH_LOGGING):
|
||||||
|
import logging
|
||||||
|
admin_log_path = os.path.join(PATH_LOGGING, "admin")
|
||||||
|
os.makedirs(admin_log_path, exist_ok=True)
|
||||||
|
log_dir = os.path.join(admin_log_path, "chat_secrets.log")
|
||||||
|
try:logging.basicConfig(filename=log_dir, level=logging.INFO, encoding="utf-8", format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
|
||||||
|
except:logging.basicConfig(filename=log_dir, level=logging.INFO, format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
|
||||||
|
# Disable logging output from the 'httpx' logger
|
||||||
|
logging.getLogger("httpx").setLevel(logging.WARNING)
|
||||||
|
print(f"所有对话记录将自动保存在本地目录{log_dir}, 请注意自我隐私保护哦!")
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
if gr.__version__ not in ['3.32.6', '3.32.7']:
|
if gr.__version__ not in ['3.32.9', '3.32.10']:
|
||||||
raise ModuleNotFoundError("使用项目内置Gradio获取最优体验! 请运行 `pip install -r requirements.txt` 指令安装内置Gradio及其他依赖, 详情信息见requirements.txt.")
|
raise ModuleNotFoundError("使用项目内置Gradio获取最优体验! 请运行 `pip install -r requirements.txt` 指令安装内置Gradio及其他依赖, 详情信息见requirements.txt.")
|
||||||
from request_llms.bridge_all import predict
|
from request_llms.bridge_all import predict
|
||||||
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, load_chat_cookies, DummyWith
|
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, DummyWith
|
||||||
# 建议您复制一个config_private.py放自己的秘密, 如API和代理网址
|
# 建议您复制一个config_private.py放自己的秘密, 如API和代理网址
|
||||||
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION = get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION')
|
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION = get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION')
|
||||||
CHATBOT_HEIGHT, LAYOUT, AVAIL_LLM_MODELS, AUTO_CLEAR_TXT = get_conf('CHATBOT_HEIGHT', 'LAYOUT', 'AVAIL_LLM_MODELS', 'AUTO_CLEAR_TXT')
|
CHATBOT_HEIGHT, LAYOUT, AVAIL_LLM_MODELS, AUTO_CLEAR_TXT = get_conf('CHATBOT_HEIGHT', 'LAYOUT', 'AVAIL_LLM_MODELS', 'AUTO_CLEAR_TXT')
|
||||||
ENABLE_AUDIO, AUTO_CLEAR_TXT, PATH_LOGGING, AVAIL_THEMES, THEME = get_conf('ENABLE_AUDIO', 'AUTO_CLEAR_TXT', 'PATH_LOGGING', 'AVAIL_THEMES', 'THEME')
|
ENABLE_AUDIO, AUTO_CLEAR_TXT, PATH_LOGGING, AVAIL_THEMES, THEME, ADD_WAIFU = get_conf('ENABLE_AUDIO', 'AUTO_CLEAR_TXT', 'PATH_LOGGING', 'AVAIL_THEMES', 'THEME', 'ADD_WAIFU')
|
||||||
DARK_MODE, NUM_CUSTOM_BASIC_BTN, SSL_KEYFILE, SSL_CERTFILE = get_conf('DARK_MODE', 'NUM_CUSTOM_BASIC_BTN', 'SSL_KEYFILE', 'SSL_CERTFILE')
|
NUM_CUSTOM_BASIC_BTN, SSL_KEYFILE, SSL_CERTFILE = get_conf('NUM_CUSTOM_BASIC_BTN', 'SSL_KEYFILE', 'SSL_CERTFILE')
|
||||||
INIT_SYS_PROMPT = get_conf('INIT_SYS_PROMPT')
|
DARK_MODE, INIT_SYS_PROMPT, ADD_WAIFU, TTS_TYPE = get_conf('DARK_MODE', 'INIT_SYS_PROMPT', 'ADD_WAIFU', 'TTS_TYPE')
|
||||||
|
if LLM_MODEL not in AVAIL_LLM_MODELS: AVAIL_LLM_MODELS += [LLM_MODEL]
|
||||||
|
|
||||||
# 如果WEB_PORT是-1, 则随机选取WEB端口
|
# 如果WEB_PORT是-1, 则随机选取WEB端口
|
||||||
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
|
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
|
||||||
from check_proxy import get_current_version
|
from check_proxy import get_current_version
|
||||||
from themes.theme import adjust_theme, advanced_css, theme_declaration
|
from themes.theme import adjust_theme, advanced_css, theme_declaration, js_code_clear, js_code_reset, js_code_show_or_hide, js_code_show_or_hide_group2
|
||||||
from themes.theme import js_code_for_css_changing, js_code_for_darkmode_init, js_code_for_toggle_darkmode, js_code_for_persistent_cookie_init
|
from themes.theme import js_code_for_css_changing, js_code_for_toggle_darkmode, js_code_for_persistent_cookie_init
|
||||||
from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, init_cookie
|
from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, assign_user_uuid
|
||||||
title_html = f"<h1 align=\"center\">GPT 学术优化 {get_current_version()}</h1>{theme_declaration}"
|
title_html = f"<h1 align=\"center\">GPT 学术优化 {get_current_version()}</h1>{theme_declaration}"
|
||||||
|
|
||||||
# 问询记录, python 版本建议3.9+(越新越好)
|
# 对话、日志记录
|
||||||
import logging, uuid
|
enable_log(PATH_LOGGING)
|
||||||
os.makedirs(PATH_LOGGING, exist_ok=True)
|
|
||||||
try:logging.basicConfig(filename=f"{PATH_LOGGING}/chat_secrets.log", level=logging.INFO, encoding="utf-8", format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
|
|
||||||
except:logging.basicConfig(filename=f"{PATH_LOGGING}/chat_secrets.log", level=logging.INFO, format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
|
|
||||||
# Disable logging output from the 'httpx' logger
|
|
||||||
logging.getLogger("httpx").setLevel(logging.WARNING)
|
|
||||||
print(f"所有问询记录将自动保存在本地目录./{PATH_LOGGING}/chat_secrets.log, 请注意自我隐私保护哦!")
|
|
||||||
|
|
||||||
# 一些普通功能模块
|
# 一些普通功能模块
|
||||||
from core_functional import get_core_functions
|
from core_functional import get_core_functions
|
||||||
@@ -65,7 +71,7 @@ def main():
|
|||||||
proxy_info = check_proxy(proxies)
|
proxy_info = check_proxy(proxies)
|
||||||
|
|
||||||
gr_L1 = lambda: gr.Row().style()
|
gr_L1 = lambda: gr.Row().style()
|
||||||
gr_L2 = lambda scale, elem_id: gr.Column(scale=scale, elem_id=elem_id)
|
gr_L2 = lambda scale, elem_id: gr.Column(scale=scale, elem_id=elem_id, min_width=400)
|
||||||
if LAYOUT == "TOP-DOWN":
|
if LAYOUT == "TOP-DOWN":
|
||||||
gr_L1 = lambda: DummyWith()
|
gr_L1 = lambda: DummyWith()
|
||||||
gr_L2 = lambda scale, elem_id: gr.Row()
|
gr_L2 = lambda scale, elem_id: gr.Row()
|
||||||
@@ -74,15 +80,18 @@ def main():
|
|||||||
cancel_handles = []
|
cancel_handles = []
|
||||||
customize_btns = {}
|
customize_btns = {}
|
||||||
predefined_btns = {}
|
predefined_btns = {}
|
||||||
with gr.Blocks(title="GPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as demo:
|
from shared_utils.cookie_manager import make_cookie_cache, make_history_cache
|
||||||
|
with gr.Blocks(title="GPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as app_block:
|
||||||
gr.HTML(title_html)
|
gr.HTML(title_html)
|
||||||
secret_css, dark_mode, persistent_cookie = gr.Textbox(visible=False), gr.Textbox(DARK_MODE, visible=False), gr.Textbox(visible=False)
|
secret_css = gr.Textbox(visible=False, elem_id="secret_css")
|
||||||
cookies = gr.State(load_chat_cookies())
|
register_advanced_plugin_init_code_arr = ""
|
||||||
|
|
||||||
|
cookies, web_cookie_cache = make_cookie_cache() # 定义 后端state(cookies)、前端(web_cookie_cache)两兄弟
|
||||||
with gr_L1():
|
with gr_L1():
|
||||||
with gr_L2(scale=2, elem_id="gpt-chat"):
|
with gr_L2(scale=2, elem_id="gpt-chat"):
|
||||||
chatbot = gr.Chatbot(label=f"当前模型:{LLM_MODEL}", elem_id="gpt-chatbot")
|
chatbot = gr.Chatbot(label=f"当前模型:{LLM_MODEL}", elem_id="gpt-chatbot")
|
||||||
if LAYOUT == "TOP-DOWN": chatbot.style(height=CHATBOT_HEIGHT)
|
if LAYOUT == "TOP-DOWN": chatbot.style(height=CHATBOT_HEIGHT)
|
||||||
history = gr.State([])
|
history, history_cache, history_cache_update = make_history_cache() # 定义 后端state(history)、前端(history_cache)、后端setter(history_cache_update)三兄弟
|
||||||
with gr_L2(scale=1, elem_id="gpt-panel"):
|
with gr_L2(scale=1, elem_id="gpt-panel"):
|
||||||
with gr.Accordion("输入区", open=True, elem_id="input-panel") as area_input_primary:
|
with gr.Accordion("输入区", open=True, elem_id="input-panel") as area_input_primary:
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
@@ -98,6 +107,7 @@ def main():
|
|||||||
audio_mic = gr.Audio(source="microphone", type="numpy", elem_id="elem_audio", streaming=True, show_label=False).style(container=False)
|
audio_mic = gr.Audio(source="microphone", type="numpy", elem_id="elem_audio", streaming=True, show_label=False).style(container=False)
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
status = gr.Markdown(f"Tip: 按Enter提交, 按Shift+Enter换行。当前模型: {LLM_MODEL} \n {proxy_info}", elem_id="state-panel")
|
status = gr.Markdown(f"Tip: 按Enter提交, 按Shift+Enter换行。当前模型: {LLM_MODEL} \n {proxy_info}", elem_id="state-panel")
|
||||||
|
|
||||||
with gr.Accordion("基础功能区", open=True, elem_id="basic-panel") as area_basic_fn:
|
with gr.Accordion("基础功能区", open=True, elem_id="basic-panel") as area_basic_fn:
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
for k in range(NUM_CUSTOM_BASIC_BTN):
|
for k in range(NUM_CUSTOM_BASIC_BTN):
|
||||||
@@ -112,7 +122,7 @@ def main():
|
|||||||
predefined_btns.update({k: functional[k]["Button"]})
|
predefined_btns.update({k: functional[k]["Button"]})
|
||||||
with gr.Accordion("函数插件区", open=True, elem_id="plugin-panel") as area_crazy_fn:
|
with gr.Accordion("函数插件区", open=True, elem_id="plugin-panel") as area_crazy_fn:
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
gr.Markdown("插件可读取“输入区”文本/路径作为参数(上传文件自动修正路径)")
|
gr.Markdown("<small>插件可读取“输入区”文本/路径作为参数(上传文件自动修正路径)</small>")
|
||||||
with gr.Row(elem_id="input-plugin-group"):
|
with gr.Row(elem_id="input-plugin-group"):
|
||||||
plugin_group_sel = gr.Dropdown(choices=all_plugin_groups, label='', show_label=False, value=DEFAULT_FN_GROUPS,
|
plugin_group_sel = gr.Dropdown(choices=all_plugin_groups, label='', show_label=False, value=DEFAULT_FN_GROUPS,
|
||||||
multiselect=True, interactive=True, elem_classes='normal_mut_select').style(container=False)
|
multiselect=True, interactive=True, elem_classes='normal_mut_select').style(container=False)
|
||||||
@@ -132,9 +142,9 @@ def main():
|
|||||||
if not plugin.get("AsButton", True): dropdown_fn_list.append(k) # 排除已经是按钮的插件
|
if not plugin.get("AsButton", True): dropdown_fn_list.append(k) # 排除已经是按钮的插件
|
||||||
elif plugin.get('AdvancedArgs', False): dropdown_fn_list.append(k) # 对于需要高级参数的插件,亦在下拉菜单中显示
|
elif plugin.get('AdvancedArgs', False): dropdown_fn_list.append(k) # 对于需要高级参数的插件,亦在下拉菜单中显示
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
dropdown = gr.Dropdown(dropdown_fn_list, value=r"打开插件列表", label="", show_label=False).style(container=False)
|
dropdown = gr.Dropdown(dropdown_fn_list, value=r"点击这里搜索插件列表", label="", show_label=False).style(container=False)
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
plugin_advanced_arg = gr.Textbox(show_label=True, label="高级参数输入区", visible=False,
|
plugin_advanced_arg = gr.Textbox(show_label=True, label="高级参数输入区", visible=False, elem_id="advance_arg_input_legacy",
|
||||||
placeholder="这里是特殊函数插件的高级参数输入区").style(container=False)
|
placeholder="这里是特殊函数插件的高级参数输入区").style(container=False)
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
switchy_bt = gr.Button(r"请先从插件列表中选择", variant="secondary").style(size="sm")
|
switchy_bt = gr.Button(r"请先从插件列表中选择", variant="secondary").style(size="sm")
|
||||||
@@ -142,119 +152,28 @@ def main():
|
|||||||
with gr.Accordion("点击展开“文件下载区”。", open=False) as area_file_up:
|
with gr.Accordion("点击展开“文件下载区”。", open=False) as area_file_up:
|
||||||
file_upload = gr.Files(label="任何文件, 推荐上传压缩文件(zip, tar)", file_count="multiple", elem_id="elem_upload")
|
file_upload = gr.Files(label="任何文件, 推荐上传压缩文件(zip, tar)", file_count="multiple", elem_id="elem_upload")
|
||||||
|
|
||||||
|
from themes.gui_toolbar import define_gui_toolbar
|
||||||
|
checkboxes, checkboxes_2, max_length_sl, theme_dropdown, system_prompt, file_upload_2, md_dropdown, top_p, temperature = \
|
||||||
|
define_gui_toolbar(AVAIL_LLM_MODELS, LLM_MODEL, INIT_SYS_PROMPT, THEME, AVAIL_THEMES, ADD_WAIFU, help_menu_description, js_code_for_toggle_darkmode)
|
||||||
|
|
||||||
with gr.Floating(init_x="0%", init_y="0%", visible=True, width=None, drag="forbidden", elem_id="tooltip"):
|
from themes.gui_floating_menu import define_gui_floating_menu
|
||||||
with gr.Row():
|
area_input_secondary, txt2, area_customize, submitBtn2, resetBtn2, clearBtn2, stopBtn2 = \
|
||||||
with gr.Tab("上传文件", elem_id="interact-panel"):
|
define_gui_floating_menu(customize_btns, functional, predefined_btns, cookies, web_cookie_cache)
|
||||||
gr.Markdown("请上传本地文件/压缩包供“函数插件区”功能调用。请注意: 上传文件后会自动把输入区修改为相应路径。")
|
|
||||||
file_upload_2 = gr.Files(label="任何文件, 推荐上传压缩文件(zip, tar)", file_count="multiple", elem_id="elem_upload_float")
|
|
||||||
|
|
||||||
with gr.Tab("更换模型", elem_id="interact-panel"):
|
from themes.gui_advanced_plugin_class import define_gui_advanced_plugin_class
|
||||||
md_dropdown = gr.Dropdown(AVAIL_LLM_MODELS, value=LLM_MODEL, label="更换LLM模型/请求源").style(container=False)
|
new_plugin_callback, route_switchy_bt_with_arg, usr_confirmed_arg = \
|
||||||
top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.01,interactive=True, label="Top-p (nucleus sampling)",)
|
define_gui_advanced_plugin_class(plugins)
|
||||||
temperature = gr.Slider(minimum=-0, maximum=2.0, value=1.0, step=0.01, interactive=True, label="Temperature",)
|
|
||||||
max_length_sl = gr.Slider(minimum=256, maximum=1024*32, value=4096, step=128, interactive=True, label="Local LLM MaxLength",)
|
|
||||||
system_prompt = gr.Textbox(show_label=True, lines=2, placeholder=f"System Prompt", label="System prompt", value=INIT_SYS_PROMPT)
|
|
||||||
|
|
||||||
with gr.Tab("界面外观", elem_id="interact-panel"):
|
|
||||||
theme_dropdown = gr.Dropdown(AVAIL_THEMES, value=THEME, label="更换UI主题").style(container=False)
|
|
||||||
checkboxes = gr.CheckboxGroup(["基础功能区", "函数插件区", "浮动输入区", "输入清除键", "插件参数区"],
|
|
||||||
value=["基础功能区", "函数插件区"], label="显示/隐藏功能区", elem_id='cbs').style(container=False)
|
|
||||||
checkboxes_2 = gr.CheckboxGroup(["自定义菜单"],
|
|
||||||
value=[], label="显示/隐藏自定义菜单", elem_id='cbsc').style(container=False)
|
|
||||||
dark_mode_btn = gr.Button("切换界面明暗 ☀", variant="secondary").style(size="sm")
|
|
||||||
dark_mode_btn.click(None, None, None, _js=js_code_for_toggle_darkmode)
|
|
||||||
with gr.Tab("帮助", elem_id="interact-panel"):
|
|
||||||
gr.Markdown(help_menu_description)
|
|
||||||
|
|
||||||
with gr.Floating(init_x="20%", init_y="50%", visible=False, width="40%", drag="top") as area_input_secondary:
|
|
||||||
with gr.Accordion("浮动输入区", open=True, elem_id="input-panel2"):
|
|
||||||
with gr.Row() as row:
|
|
||||||
row.style(equal_height=True)
|
|
||||||
with gr.Column(scale=10):
|
|
||||||
txt2 = gr.Textbox(show_label=False, placeholder="Input question here.",
|
|
||||||
elem_id='user_input_float', lines=8, label="输入区2").style(container=False)
|
|
||||||
with gr.Column(scale=1, min_width=40):
|
|
||||||
submitBtn2 = gr.Button("提交", variant="primary"); submitBtn2.style(size="sm")
|
|
||||||
resetBtn2 = gr.Button("重置", variant="secondary"); resetBtn2.style(size="sm")
|
|
||||||
stopBtn2 = gr.Button("停止", variant="secondary"); stopBtn2.style(size="sm")
|
|
||||||
clearBtn2 = gr.Button("清除", variant="secondary", visible=False); clearBtn2.style(size="sm")
|
|
||||||
|
|
||||||
|
|
||||||
with gr.Floating(init_x="20%", init_y="50%", visible=False, width="40%", drag="top") as area_customize:
|
|
||||||
with gr.Accordion("自定义菜单", open=True, elem_id="edit-panel"):
|
|
||||||
with gr.Row() as row:
|
|
||||||
with gr.Column(scale=10):
|
|
||||||
AVAIL_BTN = [btn for btn in customize_btns.keys()] + [k for k in functional]
|
|
||||||
basic_btn_dropdown = gr.Dropdown(AVAIL_BTN, value="自定义按钮1", label="选择一个需要自定义基础功能区按钮").style(container=False)
|
|
||||||
basic_fn_title = gr.Textbox(show_label=False, placeholder="输入新按钮名称", lines=1).style(container=False)
|
|
||||||
basic_fn_prefix = gr.Textbox(show_label=False, placeholder="输入新提示前缀", lines=4).style(container=False)
|
|
||||||
basic_fn_suffix = gr.Textbox(show_label=False, placeholder="输入新提示后缀", lines=4).style(container=False)
|
|
||||||
with gr.Column(scale=1, min_width=70):
|
|
||||||
basic_fn_confirm = gr.Button("确认并保存", variant="primary"); basic_fn_confirm.style(size="sm")
|
|
||||||
basic_fn_load = gr.Button("加载已保存", variant="primary"); basic_fn_load.style(size="sm")
|
|
||||||
def assign_btn(persistent_cookie_, cookies_, basic_btn_dropdown_, basic_fn_title, basic_fn_prefix, basic_fn_suffix):
|
|
||||||
ret = {}
|
|
||||||
customize_fn_overwrite_ = cookies_['customize_fn_overwrite']
|
|
||||||
customize_fn_overwrite_.update({
|
|
||||||
basic_btn_dropdown_:
|
|
||||||
{
|
|
||||||
"Title":basic_fn_title,
|
|
||||||
"Prefix":basic_fn_prefix,
|
|
||||||
"Suffix":basic_fn_suffix,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
)
|
|
||||||
cookies_.update(customize_fn_overwrite_)
|
|
||||||
if basic_btn_dropdown_ in customize_btns:
|
|
||||||
ret.update({customize_btns[basic_btn_dropdown_]: gr.update(visible=True, value=basic_fn_title)})
|
|
||||||
else:
|
|
||||||
ret.update({predefined_btns[basic_btn_dropdown_]: gr.update(visible=True, value=basic_fn_title)})
|
|
||||||
ret.update({cookies: cookies_})
|
|
||||||
try: persistent_cookie_ = from_cookie_str(persistent_cookie_) # persistent cookie to dict
|
|
||||||
except: persistent_cookie_ = {}
|
|
||||||
persistent_cookie_["custom_bnt"] = customize_fn_overwrite_ # dict update new value
|
|
||||||
persistent_cookie_ = to_cookie_str(persistent_cookie_) # persistent cookie to dict
|
|
||||||
ret.update({persistent_cookie: persistent_cookie_}) # write persistent cookie
|
|
||||||
return ret
|
|
||||||
|
|
||||||
def reflesh_btn(persistent_cookie_, cookies_):
|
|
||||||
ret = {}
|
|
||||||
for k in customize_btns:
|
|
||||||
ret.update({customize_btns[k]: gr.update(visible=False, value="")})
|
|
||||||
|
|
||||||
try: persistent_cookie_ = from_cookie_str(persistent_cookie_) # persistent cookie to dict
|
|
||||||
except: return ret
|
|
||||||
|
|
||||||
customize_fn_overwrite_ = persistent_cookie_.get("custom_bnt", {})
|
|
||||||
cookies_['customize_fn_overwrite'] = customize_fn_overwrite_
|
|
||||||
ret.update({cookies: cookies_})
|
|
||||||
|
|
||||||
for k,v in persistent_cookie_["custom_bnt"].items():
|
|
||||||
if v['Title'] == "": continue
|
|
||||||
if k in customize_btns: ret.update({customize_btns[k]: gr.update(visible=True, value=v['Title'])})
|
|
||||||
else: ret.update({predefined_btns[k]: gr.update(visible=True, value=v['Title'])})
|
|
||||||
return ret
|
|
||||||
|
|
||||||
basic_fn_load.click(reflesh_btn, [persistent_cookie, cookies], [cookies, *customize_btns.values(), *predefined_btns.values()])
|
|
||||||
h = basic_fn_confirm.click(assign_btn, [persistent_cookie, cookies, basic_btn_dropdown, basic_fn_title, basic_fn_prefix, basic_fn_suffix],
|
|
||||||
[persistent_cookie, cookies, *customize_btns.values(), *predefined_btns.values()])
|
|
||||||
# save persistent cookie
|
|
||||||
h.then(None, [persistent_cookie], None, _js="""(persistent_cookie)=>{setCookie("persistent_cookie", persistent_cookie, 5);}""")
|
|
||||||
|
|
||||||
# 功能区显示开关与功能区的互动
|
# 功能区显示开关与功能区的互动
|
||||||
def fn_area_visibility(a):
|
def fn_area_visibility(a):
|
||||||
ret = {}
|
ret = {}
|
||||||
ret.update({area_basic_fn: gr.update(visible=("基础功能区" in a))})
|
|
||||||
ret.update({area_crazy_fn: gr.update(visible=("函数插件区" in a))})
|
|
||||||
ret.update({area_input_primary: gr.update(visible=("浮动输入区" not in a))})
|
ret.update({area_input_primary: gr.update(visible=("浮动输入区" not in a))})
|
||||||
ret.update({area_input_secondary: gr.update(visible=("浮动输入区" in a))})
|
ret.update({area_input_secondary: gr.update(visible=("浮动输入区" in a))})
|
||||||
ret.update({clearBtn: gr.update(visible=("输入清除键" in a))})
|
|
||||||
ret.update({clearBtn2: gr.update(visible=("输入清除键" in a))})
|
|
||||||
ret.update({plugin_advanced_arg: gr.update(visible=("插件参数区" in a))})
|
ret.update({plugin_advanced_arg: gr.update(visible=("插件参数区" in a))})
|
||||||
if "浮动输入区" in a: ret.update({txt: gr.update(value="")})
|
if "浮动输入区" in a: ret.update({txt: gr.update(value="")})
|
||||||
return ret
|
return ret
|
||||||
checkboxes.select(fn_area_visibility, [checkboxes], [area_basic_fn, area_crazy_fn, area_input_primary, area_input_secondary, txt, txt2, clearBtn, clearBtn2, plugin_advanced_arg] )
|
checkboxes.select(fn_area_visibility, [checkboxes], [area_basic_fn, area_crazy_fn, area_input_primary, area_input_secondary, txt, txt2, plugin_advanced_arg] )
|
||||||
|
checkboxes.select(None, [checkboxes], None, _js=js_code_show_or_hide)
|
||||||
|
|
||||||
# 功能区显示开关与功能区的互动
|
# 功能区显示开关与功能区的互动
|
||||||
def fn_area_visibility_2(a):
|
def fn_area_visibility_2(a):
|
||||||
@@ -262,9 +181,11 @@ def main():
|
|||||||
ret.update({area_customize: gr.update(visible=("自定义菜单" in a))})
|
ret.update({area_customize: gr.update(visible=("自定义菜单" in a))})
|
||||||
return ret
|
return ret
|
||||||
checkboxes_2.select(fn_area_visibility_2, [checkboxes_2], [area_customize] )
|
checkboxes_2.select(fn_area_visibility_2, [checkboxes_2], [area_customize] )
|
||||||
|
checkboxes_2.select(None, [checkboxes_2], None, _js=js_code_show_or_hide_group2)
|
||||||
|
|
||||||
# 整理反复出现的控件句柄组合
|
# 整理反复出现的控件句柄组合
|
||||||
input_combo = [cookies, max_length_sl, md_dropdown, txt, txt2, top_p, temperature, chatbot, history, system_prompt, plugin_advanced_arg]
|
input_combo = [cookies, max_length_sl, md_dropdown, txt, txt2, top_p, temperature, chatbot, history, system_prompt, plugin_advanced_arg]
|
||||||
|
input_combo_order = ["cookies", "max_length_sl", "md_dropdown", "txt", "txt2", "top_p", "temperature", "chatbot", "history", "system_prompt", "plugin_advanced_arg"]
|
||||||
output_combo = [cookies, chatbot, history, status]
|
output_combo = [cookies, chatbot, history, status]
|
||||||
predict_args = dict(fn=ArgsGeneralWrapper(predict), inputs=[*input_combo, gr.State(True)], outputs=output_combo)
|
predict_args = dict(fn=ArgsGeneralWrapper(predict), inputs=[*input_combo, gr.State(True)], outputs=output_combo)
|
||||||
# 提交按钮、重置按钮
|
# 提交按钮、重置按钮
|
||||||
@@ -272,15 +193,18 @@ def main():
|
|||||||
cancel_handles.append(txt2.submit(**predict_args))
|
cancel_handles.append(txt2.submit(**predict_args))
|
||||||
cancel_handles.append(submitBtn.click(**predict_args))
|
cancel_handles.append(submitBtn.click(**predict_args))
|
||||||
cancel_handles.append(submitBtn2.click(**predict_args))
|
cancel_handles.append(submitBtn2.click(**predict_args))
|
||||||
resetBtn.click(lambda: ([], [], "已重置"), None, [chatbot, history, status])
|
resetBtn.click(None, None, [chatbot, history, status], _js=js_code_reset) # 先在前端快速清除chatbot&status
|
||||||
resetBtn2.click(lambda: ([], [], "已重置"), None, [chatbot, history, status])
|
resetBtn2.click(None, None, [chatbot, history, status], _js=js_code_reset) # 先在前端快速清除chatbot&status
|
||||||
clearBtn.click(lambda: ("",""), None, [txt, txt2])
|
reset_server_side_args = (lambda history: ([], [], "已重置", json.dumps(history)), [history], [chatbot, history, status, history_cache])
|
||||||
clearBtn2.click(lambda: ("",""), None, [txt, txt2])
|
resetBtn.click(*reset_server_side_args) # 再在后端清除history,把history转存history_cache备用
|
||||||
|
resetBtn2.click(*reset_server_side_args) # 再在后端清除history,把history转存history_cache备用
|
||||||
|
clearBtn.click(None, None, [txt, txt2], _js=js_code_clear)
|
||||||
|
clearBtn2.click(None, None, [txt, txt2], _js=js_code_clear)
|
||||||
if AUTO_CLEAR_TXT:
|
if AUTO_CLEAR_TXT:
|
||||||
submitBtn.click(lambda: ("",""), None, [txt, txt2])
|
submitBtn.click(None, None, [txt, txt2], _js=js_code_clear)
|
||||||
submitBtn2.click(lambda: ("",""), None, [txt, txt2])
|
submitBtn2.click(None, None, [txt, txt2], _js=js_code_clear)
|
||||||
txt.submit(lambda: ("",""), None, [txt, txt2])
|
txt.submit(None, None, [txt, txt2], _js=js_code_clear)
|
||||||
txt2.submit(lambda: ("",""), None, [txt, txt2])
|
txt2.submit(None, None, [txt, txt2], _js=js_code_clear)
|
||||||
# 基础功能区的回调函数注册
|
# 基础功能区的回调函数注册
|
||||||
for k in functional:
|
for k in functional:
|
||||||
if ("Visible" in functional[k]) and (not functional[k]["Visible"]): continue
|
if ("Visible" in functional[k]) and (not functional[k]["Visible"]): continue
|
||||||
@@ -294,10 +218,18 @@ def main():
|
|||||||
file_upload_2.upload(on_file_uploaded, [file_upload_2, chatbot, txt, txt2, checkboxes, cookies], [chatbot, txt, txt2, cookies]).then(None, None, None, _js=r"()=>{toast_push('上传完毕 ...'); cancel_loading_status();}")
|
file_upload_2.upload(on_file_uploaded, [file_upload_2, chatbot, txt, txt2, checkboxes, cookies], [chatbot, txt, txt2, cookies]).then(None, None, None, _js=r"()=>{toast_push('上传完毕 ...'); cancel_loading_status();}")
|
||||||
# 函数插件-固定按钮区
|
# 函数插件-固定按钮区
|
||||||
for k in plugins:
|
for k in plugins:
|
||||||
|
if plugins[k].get("Class", None):
|
||||||
|
plugins[k]["JsMenu"] = plugins[k]["Class"]().get_js_code_for_generating_menu(k)
|
||||||
|
register_advanced_plugin_init_code_arr += """register_advanced_plugin_init_code("{k}","{gui_js}");""".format(k=k, gui_js=plugins[k]["JsMenu"])
|
||||||
if not plugins[k].get("AsButton", True): continue
|
if not plugins[k].get("AsButton", True): continue
|
||||||
|
if plugins[k].get("Class", None) is None:
|
||||||
|
assert plugins[k].get("Function", None) is not None
|
||||||
click_handle = plugins[k]["Button"].click(ArgsGeneralWrapper(plugins[k]["Function"]), [*input_combo], output_combo)
|
click_handle = plugins[k]["Button"].click(ArgsGeneralWrapper(plugins[k]["Function"]), [*input_combo], output_combo)
|
||||||
click_handle.then(on_report_generated, [cookies, file_upload, chatbot], [cookies, file_upload, chatbot])
|
click_handle.then(on_report_generated, [cookies, file_upload, chatbot], [cookies, file_upload, chatbot]).then(None, [plugins[k]["Button"]], None, _js=r"(fn)=>on_plugin_exe_complete(fn)")
|
||||||
cancel_handles.append(click_handle)
|
cancel_handles.append(click_handle)
|
||||||
|
else:
|
||||||
|
click_handle = plugins[k]["Button"].click(None, inputs=[], outputs=None, _js=f"""()=>run_advanced_plugin_launch_code("{k}")""")
|
||||||
|
|
||||||
# 函数插件-下拉菜单与随变按钮的互动
|
# 函数插件-下拉菜单与随变按钮的互动
|
||||||
def on_dropdown_changed(k):
|
def on_dropdown_changed(k):
|
||||||
variant = plugins[k]["Color"] if "Color" in plugins[k] else "secondary"
|
variant = plugins[k]["Color"] if "Color" in plugins[k] else "secondary"
|
||||||
@@ -329,13 +261,27 @@ def main():
|
|||||||
None,
|
None,
|
||||||
_js=js_code_for_css_changing
|
_js=js_code_for_css_changing
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
switchy_bt.click(None, [switchy_bt], None, _js="(switchy_bt)=>on_flex_button_click(switchy_bt)")
|
||||||
# 随变按钮的回调函数注册
|
# 随变按钮的回调函数注册
|
||||||
def route(request: gr.Request, k, *args, **kwargs):
|
def route(request: gr.Request, k, *args, **kwargs):
|
||||||
if k in [r"打开插件列表", r"请先从插件列表中选择"]: return
|
if k not in [r"点击这里搜索插件列表", r"请先从插件列表中选择"]:
|
||||||
|
if plugins[k].get("Class", None) is None:
|
||||||
|
assert plugins[k].get("Function", None) is not None
|
||||||
yield from ArgsGeneralWrapper(plugins[k]["Function"])(request, *args, **kwargs)
|
yield from ArgsGeneralWrapper(plugins[k]["Function"])(request, *args, **kwargs)
|
||||||
click_handle = switchy_bt.click(route,[switchy_bt, *input_combo], output_combo)
|
# 旧插件的高级参数区确认按钮(隐藏)
|
||||||
click_handle.then(on_report_generated, [cookies, file_upload, chatbot], [cookies, file_upload, chatbot])
|
old_plugin_callback = gr.Button(r"未选定任何插件", variant="secondary", visible=False, elem_id="old_callback_btn_for_plugin_exe")
|
||||||
cancel_handles.append(click_handle)
|
click_handle_ng = old_plugin_callback.click(route, [switchy_bt, *input_combo], output_combo)
|
||||||
|
click_handle_ng.then(on_report_generated, [cookies, file_upload, chatbot], [cookies, file_upload, chatbot]).then(None, [switchy_bt], None, _js=r"(fn)=>on_plugin_exe_complete(fn)")
|
||||||
|
cancel_handles.append(click_handle_ng)
|
||||||
|
# 新一代插件的高级参数区确认按钮(隐藏)
|
||||||
|
click_handle_ng = new_plugin_callback.click(route_switchy_bt_with_arg, [
|
||||||
|
gr.State(["new_plugin_callback", "usr_confirmed_arg"] + input_combo_order),
|
||||||
|
new_plugin_callback, usr_confirmed_arg, *input_combo
|
||||||
|
], output_combo)
|
||||||
|
click_handle_ng.then(on_report_generated, [cookies, file_upload, chatbot], [cookies, file_upload, chatbot]).then(None, [switchy_bt], None, _js=r"(fn)=>on_plugin_exe_complete(fn)")
|
||||||
|
cancel_handles.append(click_handle_ng)
|
||||||
# 终止按钮的回调函数注册
|
# 终止按钮的回调函数注册
|
||||||
stopBtn.click(fn=None, inputs=None, outputs=None, cancels=cancel_handles)
|
stopBtn.click(fn=None, inputs=None, outputs=None, cancels=cancel_handles)
|
||||||
stopBtn2.click(fn=None, inputs=None, outputs=None, cancels=cancel_handles)
|
stopBtn2.click(fn=None, inputs=None, outputs=None, cancels=cancel_handles)
|
||||||
@@ -360,11 +306,15 @@ def main():
|
|||||||
audio_mic.stream(deal_audio, inputs=[audio_mic, cookies])
|
audio_mic.stream(deal_audio, inputs=[audio_mic, cookies])
|
||||||
|
|
||||||
|
|
||||||
demo.load(init_cookie, inputs=[cookies, chatbot], outputs=[cookies])
|
app_block.load(assign_user_uuid, inputs=[cookies], outputs=[cookies])
|
||||||
darkmode_js = js_code_for_darkmode_init
|
|
||||||
demo.load(None, inputs=None, outputs=[persistent_cookie], _js=js_code_for_persistent_cookie_init)
|
from shared_utils.cookie_manager import load_web_cookie_cache__fn_builder
|
||||||
demo.load(None, inputs=[dark_mode], outputs=None, _js=darkmode_js) # 配置暗色主题或亮色主题
|
load_web_cookie_cache = load_web_cookie_cache__fn_builder(customize_btns, cookies, predefined_btns)
|
||||||
demo.load(None, inputs=[gr.Textbox(LAYOUT, visible=False)], outputs=None, _js='(LAYOUT)=>{GptAcademicJavaScriptInit(LAYOUT);}')
|
app_block.load(load_web_cookie_cache, inputs = [web_cookie_cache, cookies],
|
||||||
|
outputs = [web_cookie_cache, cookies, *customize_btns.values(), *predefined_btns.values()], _js=js_code_for_persistent_cookie_init)
|
||||||
|
|
||||||
|
app_block.load(None, inputs=[], outputs=None, _js=f"""()=>GptAcademicJavaScriptInit("{DARK_MODE}","{INIT_SYS_PROMPT}","{ADD_WAIFU}","{LAYOUT}","{TTS_TYPE}")""") # 配置暗色主题或亮色主题
|
||||||
|
app_block.load(None, inputs=[], outputs=None, _js="""()=>{REP}""".replace("REP", register_advanced_plugin_init_code_arr))
|
||||||
|
|
||||||
# gradio的inbrowser触发不太稳定,回滚代码到原始的浏览器打开函数
|
# gradio的inbrowser触发不太稳定,回滚代码到原始的浏览器打开函数
|
||||||
def run_delayed_tasks():
|
def run_delayed_tasks():
|
||||||
@@ -378,29 +328,17 @@ def main():
|
|||||||
def warm_up_mods(): time.sleep(6); warm_up_modules()
|
def warm_up_mods(): time.sleep(6); warm_up_modules()
|
||||||
|
|
||||||
threading.Thread(target=auto_updates, name="self-upgrade", daemon=True).start() # 查看自动更新
|
threading.Thread(target=auto_updates, name="self-upgrade", daemon=True).start() # 查看自动更新
|
||||||
threading.Thread(target=open_browser, name="open-browser", daemon=True).start() # 打开浏览器页面
|
|
||||||
threading.Thread(target=warm_up_mods, name="warm-up", daemon=True).start() # 预热tiktoken模块
|
threading.Thread(target=warm_up_mods, name="warm-up", daemon=True).start() # 预热tiktoken模块
|
||||||
|
if get_conf('AUTO_OPEN_BROWSER'):
|
||||||
|
threading.Thread(target=open_browser, name="open-browser", daemon=True).start() # 打开浏览器页面
|
||||||
|
|
||||||
|
# 运行一些异步任务:自动更新、打开浏览器页面、预热tiktoken模块
|
||||||
run_delayed_tasks()
|
run_delayed_tasks()
|
||||||
demo.queue(concurrency_count=CONCURRENT_COUNT).launch(
|
|
||||||
quiet=True,
|
|
||||||
server_name="0.0.0.0",
|
|
||||||
ssl_keyfile=None if SSL_KEYFILE == "" else SSL_KEYFILE,
|
|
||||||
ssl_certfile=None if SSL_CERTFILE == "" else SSL_CERTFILE,
|
|
||||||
ssl_verify=False,
|
|
||||||
server_port=PORT,
|
|
||||||
favicon_path=os.path.join(os.path.dirname(__file__), "docs/logo.png"),
|
|
||||||
auth=AUTHENTICATION if len(AUTHENTICATION) != 0 else None,
|
|
||||||
blocked_paths=["config.py","config_private.py","docker-compose.yml","Dockerfile",f"{PATH_LOGGING}/admin"])
|
|
||||||
|
|
||||||
# 如果需要在二级路径下运行
|
# 最后,正式开始服务
|
||||||
# CUSTOM_PATH = get_conf('CUSTOM_PATH')
|
from shared_utils.fastapi_server import start_app
|
||||||
# if CUSTOM_PATH != "/":
|
start_app(app_block, CONCURRENT_COUNT, AUTHENTICATION, PORT, SSL_KEYFILE, SSL_CERTFILE)
|
||||||
# from toolbox import run_gradio_in_subpath
|
|
||||||
# run_gradio_in_subpath(demo, auth=AUTHENTICATION, port=PORT, custom_path=CUSTOM_PATH)
|
|
||||||
# else:
|
|
||||||
# demo.launch(server_name="0.0.0.0", server_port=PORT, auth=AUTHENTICATION, favicon_path="docs/logo.png",
|
|
||||||
# blocked_paths=["config.py","config_private.py","docker-compose.yml","Dockerfile",f"{PATH_LOGGING}/admin"])
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
||||||
|
|||||||
@@ -8,10 +8,10 @@
|
|||||||
具备多线程调用能力的函数:在函数插件中被调用,灵活而简洁
|
具备多线程调用能力的函数:在函数插件中被调用,灵活而简洁
|
||||||
2. predict_no_ui_long_connection(...)
|
2. predict_no_ui_long_connection(...)
|
||||||
"""
|
"""
|
||||||
import tiktoken, copy
|
import tiktoken, copy, re
|
||||||
from functools import lru_cache
|
from functools import lru_cache
|
||||||
from concurrent.futures import ThreadPoolExecutor
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
from toolbox import get_conf, trimmed_format_exc, apply_gpt_academic_string_mask
|
from toolbox import get_conf, trimmed_format_exc, apply_gpt_academic_string_mask, read_one_api_model_name
|
||||||
|
|
||||||
from .bridge_chatgpt import predict_no_ui_long_connection as chatgpt_noui
|
from .bridge_chatgpt import predict_no_ui_long_connection as chatgpt_noui
|
||||||
from .bridge_chatgpt import predict as chatgpt_ui
|
from .bridge_chatgpt import predict as chatgpt_ui
|
||||||
@@ -31,6 +31,14 @@ from .bridge_qianfan import predict as qianfan_ui
|
|||||||
from .bridge_google_gemini import predict as genai_ui
|
from .bridge_google_gemini import predict as genai_ui
|
||||||
from .bridge_google_gemini import predict_no_ui_long_connection as genai_noui
|
from .bridge_google_gemini import predict_no_ui_long_connection as genai_noui
|
||||||
|
|
||||||
|
from .bridge_zhipu import predict_no_ui_long_connection as zhipu_noui
|
||||||
|
from .bridge_zhipu import predict as zhipu_ui
|
||||||
|
|
||||||
|
from .bridge_cohere import predict as cohere_ui
|
||||||
|
from .bridge_cohere import predict_no_ui_long_connection as cohere_noui
|
||||||
|
|
||||||
|
from .oai_std_model_template import get_predict_function
|
||||||
|
|
||||||
colors = ['#FF00FF', '#00FFFF', '#FF0000', '#990099', '#009999', '#990044']
|
colors = ['#FF00FF', '#00FFFF', '#FF0000', '#990099', '#009999', '#990044']
|
||||||
|
|
||||||
class LazyloadTiktoken(object):
|
class LazyloadTiktoken(object):
|
||||||
@@ -58,6 +66,13 @@ API_URL_REDIRECT, AZURE_ENDPOINT, AZURE_ENGINE = get_conf("API_URL_REDIRECT", "A
|
|||||||
openai_endpoint = "https://api.openai.com/v1/chat/completions"
|
openai_endpoint = "https://api.openai.com/v1/chat/completions"
|
||||||
api2d_endpoint = "https://openai.api2d.net/v1/chat/completions"
|
api2d_endpoint = "https://openai.api2d.net/v1/chat/completions"
|
||||||
newbing_endpoint = "wss://sydney.bing.com/sydney/ChatHub"
|
newbing_endpoint = "wss://sydney.bing.com/sydney/ChatHub"
|
||||||
|
gemini_endpoint = "https://generativelanguage.googleapis.com/v1beta/models"
|
||||||
|
claude_endpoint = "https://api.anthropic.com/v1/messages"
|
||||||
|
cohere_endpoint = "https://api.cohere.ai/v1/chat"
|
||||||
|
ollama_endpoint = "http://localhost:11434/api/chat"
|
||||||
|
yimodel_endpoint = "https://api.lingyiwanwu.com/v1/chat/completions"
|
||||||
|
deepseekapi_endpoint = "https://api.deepseek.com/v1/chat/completions"
|
||||||
|
|
||||||
if not AZURE_ENDPOINT.endswith('/'): AZURE_ENDPOINT += '/'
|
if not AZURE_ENDPOINT.endswith('/'): AZURE_ENDPOINT += '/'
|
||||||
azure_endpoint = AZURE_ENDPOINT + f'openai/deployments/{AZURE_ENGINE}/chat/completions?api-version=2023-05-15'
|
azure_endpoint = AZURE_ENDPOINT + f'openai/deployments/{AZURE_ENGINE}/chat/completions?api-version=2023-05-15'
|
||||||
# 兼容旧版的配置
|
# 兼容旧版的配置
|
||||||
@@ -72,7 +87,12 @@ except:
|
|||||||
if openai_endpoint in API_URL_REDIRECT: openai_endpoint = API_URL_REDIRECT[openai_endpoint]
|
if openai_endpoint in API_URL_REDIRECT: openai_endpoint = API_URL_REDIRECT[openai_endpoint]
|
||||||
if api2d_endpoint in API_URL_REDIRECT: api2d_endpoint = API_URL_REDIRECT[api2d_endpoint]
|
if api2d_endpoint in API_URL_REDIRECT: api2d_endpoint = API_URL_REDIRECT[api2d_endpoint]
|
||||||
if newbing_endpoint in API_URL_REDIRECT: newbing_endpoint = API_URL_REDIRECT[newbing_endpoint]
|
if newbing_endpoint in API_URL_REDIRECT: newbing_endpoint = API_URL_REDIRECT[newbing_endpoint]
|
||||||
|
if gemini_endpoint in API_URL_REDIRECT: gemini_endpoint = API_URL_REDIRECT[gemini_endpoint]
|
||||||
|
if claude_endpoint in API_URL_REDIRECT: claude_endpoint = API_URL_REDIRECT[claude_endpoint]
|
||||||
|
if cohere_endpoint in API_URL_REDIRECT: cohere_endpoint = API_URL_REDIRECT[cohere_endpoint]
|
||||||
|
if ollama_endpoint in API_URL_REDIRECT: ollama_endpoint = API_URL_REDIRECT[ollama_endpoint]
|
||||||
|
if yimodel_endpoint in API_URL_REDIRECT: yimodel_endpoint = API_URL_REDIRECT[yimodel_endpoint]
|
||||||
|
if deepseekapi_endpoint in API_URL_REDIRECT: deepseekapi_endpoint = API_URL_REDIRECT[deepseekapi_endpoint]
|
||||||
|
|
||||||
# 获取tokenizer
|
# 获取tokenizer
|
||||||
tokenizer_gpt35 = LazyloadTiktoken("gpt-3.5-turbo")
|
tokenizer_gpt35 = LazyloadTiktoken("gpt-3.5-turbo")
|
||||||
@@ -91,7 +111,7 @@ model_info = {
|
|||||||
"fn_with_ui": chatgpt_ui,
|
"fn_with_ui": chatgpt_ui,
|
||||||
"fn_without_ui": chatgpt_noui,
|
"fn_without_ui": chatgpt_noui,
|
||||||
"endpoint": openai_endpoint,
|
"endpoint": openai_endpoint,
|
||||||
"max_token": 4096,
|
"max_token": 16385,
|
||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
"token_cnt": get_token_num_gpt35,
|
"token_cnt": get_token_num_gpt35,
|
||||||
},
|
},
|
||||||
@@ -132,6 +152,15 @@ model_info = {
|
|||||||
"token_cnt": get_token_num_gpt35,
|
"token_cnt": get_token_num_gpt35,
|
||||||
},
|
},
|
||||||
|
|
||||||
|
"gpt-3.5-turbo-0125": { #16k
|
||||||
|
"fn_with_ui": chatgpt_ui,
|
||||||
|
"fn_without_ui": chatgpt_noui,
|
||||||
|
"endpoint": openai_endpoint,
|
||||||
|
"max_token": 16385,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
|
||||||
"gpt-4": {
|
"gpt-4": {
|
||||||
"fn_with_ui": chatgpt_ui,
|
"fn_with_ui": chatgpt_ui,
|
||||||
"fn_without_ui": chatgpt_noui,
|
"fn_without_ui": chatgpt_noui,
|
||||||
@@ -150,6 +179,33 @@ model_info = {
|
|||||||
"token_cnt": get_token_num_gpt4,
|
"token_cnt": get_token_num_gpt4,
|
||||||
},
|
},
|
||||||
|
|
||||||
|
"gpt-4o": {
|
||||||
|
"fn_with_ui": chatgpt_ui,
|
||||||
|
"fn_without_ui": chatgpt_noui,
|
||||||
|
"endpoint": openai_endpoint,
|
||||||
|
"max_token": 128000,
|
||||||
|
"tokenizer": tokenizer_gpt4,
|
||||||
|
"token_cnt": get_token_num_gpt4,
|
||||||
|
},
|
||||||
|
|
||||||
|
"gpt-4o-2024-05-13": {
|
||||||
|
"fn_with_ui": chatgpt_ui,
|
||||||
|
"fn_without_ui": chatgpt_noui,
|
||||||
|
"endpoint": openai_endpoint,
|
||||||
|
"max_token": 128000,
|
||||||
|
"tokenizer": tokenizer_gpt4,
|
||||||
|
"token_cnt": get_token_num_gpt4,
|
||||||
|
},
|
||||||
|
|
||||||
|
"gpt-4-turbo-preview": {
|
||||||
|
"fn_with_ui": chatgpt_ui,
|
||||||
|
"fn_without_ui": chatgpt_noui,
|
||||||
|
"endpoint": openai_endpoint,
|
||||||
|
"max_token": 128000,
|
||||||
|
"tokenizer": tokenizer_gpt4,
|
||||||
|
"token_cnt": get_token_num_gpt4,
|
||||||
|
},
|
||||||
|
|
||||||
"gpt-4-1106-preview": {
|
"gpt-4-1106-preview": {
|
||||||
"fn_with_ui": chatgpt_ui,
|
"fn_with_ui": chatgpt_ui,
|
||||||
"fn_without_ui": chatgpt_noui,
|
"fn_without_ui": chatgpt_noui,
|
||||||
@@ -159,6 +215,34 @@ model_info = {
|
|||||||
"token_cnt": get_token_num_gpt4,
|
"token_cnt": get_token_num_gpt4,
|
||||||
},
|
},
|
||||||
|
|
||||||
|
"gpt-4-0125-preview": {
|
||||||
|
"fn_with_ui": chatgpt_ui,
|
||||||
|
"fn_without_ui": chatgpt_noui,
|
||||||
|
"endpoint": openai_endpoint,
|
||||||
|
"max_token": 128000,
|
||||||
|
"tokenizer": tokenizer_gpt4,
|
||||||
|
"token_cnt": get_token_num_gpt4,
|
||||||
|
},
|
||||||
|
|
||||||
|
"gpt-4-turbo": {
|
||||||
|
"fn_with_ui": chatgpt_ui,
|
||||||
|
"fn_without_ui": chatgpt_noui,
|
||||||
|
"endpoint": openai_endpoint,
|
||||||
|
"max_token": 128000,
|
||||||
|
"tokenizer": tokenizer_gpt4,
|
||||||
|
"token_cnt": get_token_num_gpt4,
|
||||||
|
},
|
||||||
|
|
||||||
|
"gpt-4-turbo-2024-04-09": {
|
||||||
|
"fn_with_ui": chatgpt_ui,
|
||||||
|
"fn_without_ui": chatgpt_noui,
|
||||||
|
"endpoint": openai_endpoint,
|
||||||
|
"max_token": 128000,
|
||||||
|
"tokenizer": tokenizer_gpt4,
|
||||||
|
"token_cnt": get_token_num_gpt4,
|
||||||
|
},
|
||||||
|
|
||||||
|
|
||||||
"gpt-3.5-random": {
|
"gpt-3.5-random": {
|
||||||
"fn_with_ui": chatgpt_ui,
|
"fn_with_ui": chatgpt_ui,
|
||||||
"fn_without_ui": chatgpt_noui,
|
"fn_without_ui": chatgpt_noui,
|
||||||
@@ -197,16 +281,65 @@ model_info = {
|
|||||||
"token_cnt": get_token_num_gpt4,
|
"token_cnt": get_token_num_gpt4,
|
||||||
},
|
},
|
||||||
|
|
||||||
# api_2d (此后不需要在此处添加api2d的接口了,因为下面的代码会自动添加)
|
# 智谱AI
|
||||||
"api2d-gpt-3.5-turbo": {
|
"glm-4": {
|
||||||
"fn_with_ui": chatgpt_ui,
|
"fn_with_ui": zhipu_ui,
|
||||||
"fn_without_ui": chatgpt_noui,
|
"fn_without_ui": zhipu_noui,
|
||||||
"endpoint": api2d_endpoint,
|
"endpoint": None,
|
||||||
"max_token": 4096,
|
"max_token": 10124 * 8,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
"glm-4-0520": {
|
||||||
|
"fn_with_ui": zhipu_ui,
|
||||||
|
"fn_without_ui": zhipu_noui,
|
||||||
|
"endpoint": None,
|
||||||
|
"max_token": 10124 * 8,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
"glm-4-air": {
|
||||||
|
"fn_with_ui": zhipu_ui,
|
||||||
|
"fn_without_ui": zhipu_noui,
|
||||||
|
"endpoint": None,
|
||||||
|
"max_token": 10124 * 8,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
"glm-4-airx": {
|
||||||
|
"fn_with_ui": zhipu_ui,
|
||||||
|
"fn_without_ui": zhipu_noui,
|
||||||
|
"endpoint": None,
|
||||||
|
"max_token": 10124 * 8,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
"glm-4-flash": {
|
||||||
|
"fn_with_ui": zhipu_ui,
|
||||||
|
"fn_without_ui": zhipu_noui,
|
||||||
|
"endpoint": None,
|
||||||
|
"max_token": 10124 * 8,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
"glm-4v": {
|
||||||
|
"fn_with_ui": zhipu_ui,
|
||||||
|
"fn_without_ui": zhipu_noui,
|
||||||
|
"endpoint": None,
|
||||||
|
"max_token": 1000,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
"glm-3-turbo": {
|
||||||
|
"fn_with_ui": zhipu_ui,
|
||||||
|
"fn_without_ui": zhipu_noui,
|
||||||
|
"endpoint": None,
|
||||||
|
"max_token": 10124 * 4,
|
||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
"token_cnt": get_token_num_gpt35,
|
"token_cnt": get_token_num_gpt35,
|
||||||
},
|
},
|
||||||
|
|
||||||
|
# api_2d (此后不需要在此处添加api2d的接口了,因为下面的代码会自动添加)
|
||||||
"api2d-gpt-4": {
|
"api2d-gpt-4": {
|
||||||
"fn_with_ui": chatgpt_ui,
|
"fn_with_ui": chatgpt_ui,
|
||||||
"fn_without_ui": chatgpt_noui,
|
"fn_without_ui": chatgpt_noui,
|
||||||
@@ -252,7 +385,7 @@ model_info = {
|
|||||||
"gemini-pro": {
|
"gemini-pro": {
|
||||||
"fn_with_ui": genai_ui,
|
"fn_with_ui": genai_ui,
|
||||||
"fn_without_ui": genai_noui,
|
"fn_without_ui": genai_noui,
|
||||||
"endpoint": None,
|
"endpoint": gemini_endpoint,
|
||||||
"max_token": 1024 * 32,
|
"max_token": 1024 * 32,
|
||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
"token_cnt": get_token_num_gpt35,
|
"token_cnt": get_token_num_gpt35,
|
||||||
@@ -260,13 +393,56 @@ model_info = {
|
|||||||
"gemini-pro-vision": {
|
"gemini-pro-vision": {
|
||||||
"fn_with_ui": genai_ui,
|
"fn_with_ui": genai_ui,
|
||||||
"fn_without_ui": genai_noui,
|
"fn_without_ui": genai_noui,
|
||||||
|
"endpoint": gemini_endpoint,
|
||||||
|
"max_token": 1024 * 32,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
|
||||||
|
# cohere
|
||||||
|
"cohere-command-r-plus": {
|
||||||
|
"fn_with_ui": cohere_ui,
|
||||||
|
"fn_without_ui": cohere_noui,
|
||||||
|
"can_multi_thread": True,
|
||||||
|
"endpoint": cohere_endpoint,
|
||||||
|
"max_token": 1024 * 4,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
|
||||||
|
}
|
||||||
|
# -=-=-=-=-=-=- 月之暗面 -=-=-=-=-=-=-
|
||||||
|
from request_llms.bridge_moonshot import predict as moonshot_ui
|
||||||
|
from request_llms.bridge_moonshot import predict_no_ui_long_connection as moonshot_no_ui
|
||||||
|
model_info.update({
|
||||||
|
"moonshot-v1-8k": {
|
||||||
|
"fn_with_ui": moonshot_ui,
|
||||||
|
"fn_without_ui": moonshot_no_ui,
|
||||||
|
"can_multi_thread": True,
|
||||||
|
"endpoint": None,
|
||||||
|
"max_token": 1024 * 8,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
"moonshot-v1-32k": {
|
||||||
|
"fn_with_ui": moonshot_ui,
|
||||||
|
"fn_without_ui": moonshot_no_ui,
|
||||||
|
"can_multi_thread": True,
|
||||||
"endpoint": None,
|
"endpoint": None,
|
||||||
"max_token": 1024 * 32,
|
"max_token": 1024 * 32,
|
||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
"token_cnt": get_token_num_gpt35,
|
"token_cnt": get_token_num_gpt35,
|
||||||
},
|
},
|
||||||
|
"moonshot-v1-128k": {
|
||||||
|
"fn_with_ui": moonshot_ui,
|
||||||
|
"fn_without_ui": moonshot_no_ui,
|
||||||
|
"can_multi_thread": True,
|
||||||
|
"endpoint": None,
|
||||||
|
"max_token": 1024 * 128,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
}
|
}
|
||||||
|
})
|
||||||
# -=-=-=-=-=-=- api2d 对齐支持 -=-=-=-=-=-=-
|
# -=-=-=-=-=-=- api2d 对齐支持 -=-=-=-=-=-=-
|
||||||
for model in AVAIL_LLM_MODELS:
|
for model in AVAIL_LLM_MODELS:
|
||||||
if model.startswith('api2d-') and (model.replace('api2d-','') in model_info.keys()):
|
if model.startswith('api2d-') and (model.replace('api2d-','') in model_info.keys()):
|
||||||
@@ -282,25 +458,67 @@ for model in AVAIL_LLM_MODELS:
|
|||||||
model_info.update({model: mi})
|
model_info.update({model: mi})
|
||||||
|
|
||||||
# -=-=-=-=-=-=- 以下部分是新加入的模型,可能附带额外依赖 -=-=-=-=-=-=-
|
# -=-=-=-=-=-=- 以下部分是新加入的模型,可能附带额外依赖 -=-=-=-=-=-=-
|
||||||
if "claude-1-100k" in AVAIL_LLM_MODELS or "claude-2" in AVAIL_LLM_MODELS:
|
# claude家族
|
||||||
|
claude_models = ["claude-instant-1.2","claude-2.0","claude-2.1","claude-3-haiku-20240307","claude-3-sonnet-20240229","claude-3-opus-20240229"]
|
||||||
|
if any(item in claude_models for item in AVAIL_LLM_MODELS):
|
||||||
from .bridge_claude import predict_no_ui_long_connection as claude_noui
|
from .bridge_claude import predict_no_ui_long_connection as claude_noui
|
||||||
from .bridge_claude import predict as claude_ui
|
from .bridge_claude import predict as claude_ui
|
||||||
model_info.update({
|
model_info.update({
|
||||||
"claude-1-100k": {
|
"claude-instant-1.2": {
|
||||||
"fn_with_ui": claude_ui,
|
"fn_with_ui": claude_ui,
|
||||||
"fn_without_ui": claude_noui,
|
"fn_without_ui": claude_noui,
|
||||||
"endpoint": None,
|
"endpoint": claude_endpoint,
|
||||||
"max_token": 8196,
|
"max_token": 100000,
|
||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
"token_cnt": get_token_num_gpt35,
|
"token_cnt": get_token_num_gpt35,
|
||||||
},
|
},
|
||||||
})
|
})
|
||||||
model_info.update({
|
model_info.update({
|
||||||
"claude-2": {
|
"claude-2.0": {
|
||||||
"fn_with_ui": claude_ui,
|
"fn_with_ui": claude_ui,
|
||||||
"fn_without_ui": claude_noui,
|
"fn_without_ui": claude_noui,
|
||||||
"endpoint": None,
|
"endpoint": claude_endpoint,
|
||||||
"max_token": 8196,
|
"max_token": 100000,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
})
|
||||||
|
model_info.update({
|
||||||
|
"claude-2.1": {
|
||||||
|
"fn_with_ui": claude_ui,
|
||||||
|
"fn_without_ui": claude_noui,
|
||||||
|
"endpoint": claude_endpoint,
|
||||||
|
"max_token": 200000,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
})
|
||||||
|
model_info.update({
|
||||||
|
"claude-3-haiku-20240307": {
|
||||||
|
"fn_with_ui": claude_ui,
|
||||||
|
"fn_without_ui": claude_noui,
|
||||||
|
"endpoint": claude_endpoint,
|
||||||
|
"max_token": 200000,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
})
|
||||||
|
model_info.update({
|
||||||
|
"claude-3-sonnet-20240229": {
|
||||||
|
"fn_with_ui": claude_ui,
|
||||||
|
"fn_without_ui": claude_noui,
|
||||||
|
"endpoint": claude_endpoint,
|
||||||
|
"max_token": 200000,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
})
|
||||||
|
model_info.update({
|
||||||
|
"claude-3-opus-20240229": {
|
||||||
|
"fn_with_ui": claude_ui,
|
||||||
|
"fn_without_ui": claude_noui,
|
||||||
|
"endpoint": claude_endpoint,
|
||||||
|
"max_token": 200000,
|
||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
"token_cnt": get_token_num_gpt35,
|
"token_cnt": get_token_num_gpt35,
|
||||||
},
|
},
|
||||||
@@ -370,22 +588,6 @@ if "stack-claude" in AVAIL_LLM_MODELS:
|
|||||||
"token_cnt": get_token_num_gpt35,
|
"token_cnt": get_token_num_gpt35,
|
||||||
}
|
}
|
||||||
})
|
})
|
||||||
if "newbing-free" in AVAIL_LLM_MODELS:
|
|
||||||
try:
|
|
||||||
from .bridge_newbingfree import predict_no_ui_long_connection as newbingfree_noui
|
|
||||||
from .bridge_newbingfree import predict as newbingfree_ui
|
|
||||||
model_info.update({
|
|
||||||
"newbing-free": {
|
|
||||||
"fn_with_ui": newbingfree_ui,
|
|
||||||
"fn_without_ui": newbingfree_noui,
|
|
||||||
"endpoint": newbing_endpoint,
|
|
||||||
"max_token": 4096,
|
|
||||||
"tokenizer": tokenizer_gpt35,
|
|
||||||
"token_cnt": get_token_num_gpt35,
|
|
||||||
}
|
|
||||||
})
|
|
||||||
except:
|
|
||||||
print(trimmed_format_exc())
|
|
||||||
if "newbing" in AVAIL_LLM_MODELS: # same with newbing-free
|
if "newbing" in AVAIL_LLM_MODELS: # same with newbing-free
|
||||||
try:
|
try:
|
||||||
from .bridge_newbingfree import predict_no_ui_long_connection as newbingfree_noui
|
from .bridge_newbingfree import predict_no_ui_long_connection as newbingfree_noui
|
||||||
@@ -418,6 +620,7 @@ if "chatglmft" in AVAIL_LLM_MODELS: # same with newbing-free
|
|||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
print(trimmed_format_exc())
|
||||||
|
# -=-=-=-=-=-=- 上海AI-LAB书生大模型 -=-=-=-=-=-=-
|
||||||
if "internlm" in AVAIL_LLM_MODELS:
|
if "internlm" in AVAIL_LLM_MODELS:
|
||||||
try:
|
try:
|
||||||
from .bridge_internlm import predict_no_ui_long_connection as internlm_noui
|
from .bridge_internlm import predict_no_ui_long_connection as internlm_noui
|
||||||
@@ -450,6 +653,7 @@ if "chatglm_onnx" in AVAIL_LLM_MODELS:
|
|||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
print(trimmed_format_exc())
|
||||||
|
# -=-=-=-=-=-=- 通义-本地模型 -=-=-=-=-=-=-
|
||||||
if "qwen-local" in AVAIL_LLM_MODELS:
|
if "qwen-local" in AVAIL_LLM_MODELS:
|
||||||
try:
|
try:
|
||||||
from .bridge_qwen_local import predict_no_ui_long_connection as qwen_local_noui
|
from .bridge_qwen_local import predict_no_ui_long_connection as qwen_local_noui
|
||||||
@@ -458,6 +662,7 @@ if "qwen-local" in AVAIL_LLM_MODELS:
|
|||||||
"qwen-local": {
|
"qwen-local": {
|
||||||
"fn_with_ui": qwen_local_ui,
|
"fn_with_ui": qwen_local_ui,
|
||||||
"fn_without_ui": qwen_local_noui,
|
"fn_without_ui": qwen_local_noui,
|
||||||
|
"can_multi_thread": False,
|
||||||
"endpoint": None,
|
"endpoint": None,
|
||||||
"max_token": 4096,
|
"max_token": 4096,
|
||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
@@ -466,6 +671,7 @@ if "qwen-local" in AVAIL_LLM_MODELS:
|
|||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
print(trimmed_format_exc())
|
||||||
|
# -=-=-=-=-=-=- 通义-在线模型 -=-=-=-=-=-=-
|
||||||
if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-max" in AVAIL_LLM_MODELS: # zhipuai
|
if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-max" in AVAIL_LLM_MODELS: # zhipuai
|
||||||
try:
|
try:
|
||||||
from .bridge_qwen import predict_no_ui_long_connection as qwen_noui
|
from .bridge_qwen import predict_no_ui_long_connection as qwen_noui
|
||||||
@@ -474,6 +680,7 @@ if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-
|
|||||||
"qwen-turbo": {
|
"qwen-turbo": {
|
||||||
"fn_with_ui": qwen_ui,
|
"fn_with_ui": qwen_ui,
|
||||||
"fn_without_ui": qwen_noui,
|
"fn_without_ui": qwen_noui,
|
||||||
|
"can_multi_thread": True,
|
||||||
"endpoint": None,
|
"endpoint": None,
|
||||||
"max_token": 6144,
|
"max_token": 6144,
|
||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
@@ -482,6 +689,7 @@ if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-
|
|||||||
"qwen-plus": {
|
"qwen-plus": {
|
||||||
"fn_with_ui": qwen_ui,
|
"fn_with_ui": qwen_ui,
|
||||||
"fn_without_ui": qwen_noui,
|
"fn_without_ui": qwen_noui,
|
||||||
|
"can_multi_thread": True,
|
||||||
"endpoint": None,
|
"endpoint": None,
|
||||||
"max_token": 30720,
|
"max_token": 30720,
|
||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
@@ -490,6 +698,7 @@ if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-
|
|||||||
"qwen-max": {
|
"qwen-max": {
|
||||||
"fn_with_ui": qwen_ui,
|
"fn_with_ui": qwen_ui,
|
||||||
"fn_without_ui": qwen_noui,
|
"fn_without_ui": qwen_noui,
|
||||||
|
"can_multi_thread": True,
|
||||||
"endpoint": None,
|
"endpoint": None,
|
||||||
"max_token": 28672,
|
"max_token": 28672,
|
||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
@@ -498,7 +707,88 @@ if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-
|
|||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
print(trimmed_format_exc())
|
||||||
if "spark" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
|
# -=-=-=-=-=-=- 零一万物模型 -=-=-=-=-=-=-
|
||||||
|
yi_models = ["yi-34b-chat-0205","yi-34b-chat-200k","yi-large","yi-medium","yi-spark","yi-large-turbo","yi-large-preview"]
|
||||||
|
if any(item in yi_models for item in AVAIL_LLM_MODELS):
|
||||||
|
try:
|
||||||
|
yimodel_4k_noui, yimodel_4k_ui = get_predict_function(
|
||||||
|
api_key_conf_name="YIMODEL_API_KEY", max_output_token=600, disable_proxy=False
|
||||||
|
)
|
||||||
|
yimodel_16k_noui, yimodel_16k_ui = get_predict_function(
|
||||||
|
api_key_conf_name="YIMODEL_API_KEY", max_output_token=4000, disable_proxy=False
|
||||||
|
)
|
||||||
|
yimodel_200k_noui, yimodel_200k_ui = get_predict_function(
|
||||||
|
api_key_conf_name="YIMODEL_API_KEY", max_output_token=4096, disable_proxy=False
|
||||||
|
)
|
||||||
|
model_info.update({
|
||||||
|
"yi-34b-chat-0205": {
|
||||||
|
"fn_with_ui": yimodel_4k_ui,
|
||||||
|
"fn_without_ui": yimodel_4k_noui,
|
||||||
|
"can_multi_thread": False, # 目前来说,默认情况下并发量极低,因此禁用
|
||||||
|
"endpoint": yimodel_endpoint,
|
||||||
|
"max_token": 4000,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
"yi-34b-chat-200k": {
|
||||||
|
"fn_with_ui": yimodel_200k_ui,
|
||||||
|
"fn_without_ui": yimodel_200k_noui,
|
||||||
|
"can_multi_thread": False, # 目前来说,默认情况下并发量极低,因此禁用
|
||||||
|
"endpoint": yimodel_endpoint,
|
||||||
|
"max_token": 200000,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
"yi-large": {
|
||||||
|
"fn_with_ui": yimodel_16k_ui,
|
||||||
|
"fn_without_ui": yimodel_16k_noui,
|
||||||
|
"can_multi_thread": False, # 目前来说,默认情况下并发量极低,因此禁用
|
||||||
|
"endpoint": yimodel_endpoint,
|
||||||
|
"max_token": 16000,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
"yi-medium": {
|
||||||
|
"fn_with_ui": yimodel_16k_ui,
|
||||||
|
"fn_without_ui": yimodel_16k_noui,
|
||||||
|
"can_multi_thread": True, # 这个并发量稍微大一点
|
||||||
|
"endpoint": yimodel_endpoint,
|
||||||
|
"max_token": 16000,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
"yi-spark": {
|
||||||
|
"fn_with_ui": yimodel_16k_ui,
|
||||||
|
"fn_without_ui": yimodel_16k_noui,
|
||||||
|
"can_multi_thread": True, # 这个并发量稍微大一点
|
||||||
|
"endpoint": yimodel_endpoint,
|
||||||
|
"max_token": 16000,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
"yi-large-turbo": {
|
||||||
|
"fn_with_ui": yimodel_16k_ui,
|
||||||
|
"fn_without_ui": yimodel_16k_noui,
|
||||||
|
"can_multi_thread": False, # 目前来说,默认情况下并发量极低,因此禁用
|
||||||
|
"endpoint": yimodel_endpoint,
|
||||||
|
"max_token": 16000,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
"yi-large-preview": {
|
||||||
|
"fn_with_ui": yimodel_16k_ui,
|
||||||
|
"fn_without_ui": yimodel_16k_noui,
|
||||||
|
"can_multi_thread": False, # 目前来说,默认情况下并发量极低,因此禁用
|
||||||
|
"endpoint": yimodel_endpoint,
|
||||||
|
"max_token": 16000,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
})
|
||||||
|
except:
|
||||||
|
print(trimmed_format_exc())
|
||||||
|
# -=-=-=-=-=-=- 讯飞星火认知大模型 -=-=-=-=-=-=-
|
||||||
|
if "spark" in AVAIL_LLM_MODELS:
|
||||||
try:
|
try:
|
||||||
from .bridge_spark import predict_no_ui_long_connection as spark_noui
|
from .bridge_spark import predict_no_ui_long_connection as spark_noui
|
||||||
from .bridge_spark import predict as spark_ui
|
from .bridge_spark import predict as spark_ui
|
||||||
@@ -506,6 +796,7 @@ if "spark" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
|
|||||||
"spark": {
|
"spark": {
|
||||||
"fn_with_ui": spark_ui,
|
"fn_with_ui": spark_ui,
|
||||||
"fn_without_ui": spark_noui,
|
"fn_without_ui": spark_noui,
|
||||||
|
"can_multi_thread": True,
|
||||||
"endpoint": None,
|
"endpoint": None,
|
||||||
"max_token": 4096,
|
"max_token": 4096,
|
||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
@@ -522,6 +813,7 @@ if "sparkv2" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
|
|||||||
"sparkv2": {
|
"sparkv2": {
|
||||||
"fn_with_ui": spark_ui,
|
"fn_with_ui": spark_ui,
|
||||||
"fn_without_ui": spark_noui,
|
"fn_without_ui": spark_noui,
|
||||||
|
"can_multi_thread": True,
|
||||||
"endpoint": None,
|
"endpoint": None,
|
||||||
"max_token": 4096,
|
"max_token": 4096,
|
||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
@@ -530,7 +822,7 @@ if "sparkv2" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
|
|||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
print(trimmed_format_exc())
|
||||||
if "sparkv3" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
|
if "sparkv3" in AVAIL_LLM_MODELS or "sparkv3.5" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
|
||||||
try:
|
try:
|
||||||
from .bridge_spark import predict_no_ui_long_connection as spark_noui
|
from .bridge_spark import predict_no_ui_long_connection as spark_noui
|
||||||
from .bridge_spark import predict as spark_ui
|
from .bridge_spark import predict as spark_ui
|
||||||
@@ -538,6 +830,16 @@ if "sparkv3" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
|
|||||||
"sparkv3": {
|
"sparkv3": {
|
||||||
"fn_with_ui": spark_ui,
|
"fn_with_ui": spark_ui,
|
||||||
"fn_without_ui": spark_noui,
|
"fn_without_ui": spark_noui,
|
||||||
|
"can_multi_thread": True,
|
||||||
|
"endpoint": None,
|
||||||
|
"max_token": 4096,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
"sparkv3.5": {
|
||||||
|
"fn_with_ui": spark_ui,
|
||||||
|
"fn_without_ui": spark_noui,
|
||||||
|
"can_multi_thread": True,
|
||||||
"endpoint": None,
|
"endpoint": None,
|
||||||
"max_token": 4096,
|
"max_token": 4096,
|
||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
@@ -562,22 +864,22 @@ if "llama2" in AVAIL_LLM_MODELS: # llama2
|
|||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
print(trimmed_format_exc())
|
||||||
if "zhipuai" in AVAIL_LLM_MODELS: # zhipuai
|
# -=-=-=-=-=-=- 智谱 -=-=-=-=-=-=-
|
||||||
|
if "zhipuai" in AVAIL_LLM_MODELS: # zhipuai 是glm-4的别名,向后兼容配置
|
||||||
try:
|
try:
|
||||||
from .bridge_zhipu import predict_no_ui_long_connection as zhipu_noui
|
|
||||||
from .bridge_zhipu import predict as zhipu_ui
|
|
||||||
model_info.update({
|
model_info.update({
|
||||||
"zhipuai": {
|
"zhipuai": {
|
||||||
"fn_with_ui": zhipu_ui,
|
"fn_with_ui": zhipu_ui,
|
||||||
"fn_without_ui": zhipu_noui,
|
"fn_without_ui": zhipu_noui,
|
||||||
"endpoint": None,
|
"endpoint": None,
|
||||||
"max_token": 4096,
|
"max_token": 10124 * 8,
|
||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
"token_cnt": get_token_num_gpt35,
|
"token_cnt": get_token_num_gpt35,
|
||||||
}
|
},
|
||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
print(trimmed_format_exc())
|
||||||
|
# -=-=-=-=-=-=- 幻方-深度求索大模型 -=-=-=-=-=-=-
|
||||||
if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
|
if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
|
||||||
try:
|
try:
|
||||||
from .bridge_deepseekcoder import predict_no_ui_long_connection as deepseekcoder_noui
|
from .bridge_deepseekcoder import predict_no_ui_long_connection as deepseekcoder_noui
|
||||||
@@ -594,26 +896,109 @@ if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
|
|||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
print(trimmed_format_exc())
|
||||||
# if "skylark" in AVAIL_LLM_MODELS:
|
# -=-=-=-=-=-=- 幻方-深度求索大模型在线API -=-=-=-=-=-=-
|
||||||
# try:
|
if "deepseek-chat" in AVAIL_LLM_MODELS or "deepseek-coder" in AVAIL_LLM_MODELS:
|
||||||
# from .bridge_skylark2 import predict_no_ui_long_connection as skylark_noui
|
try:
|
||||||
# from .bridge_skylark2 import predict as skylark_ui
|
deepseekapi_noui, deepseekapi_ui = get_predict_function(
|
||||||
# model_info.update({
|
api_key_conf_name="DEEPSEEK_API_KEY", max_output_token=4096, disable_proxy=False
|
||||||
# "skylark": {
|
)
|
||||||
# "fn_with_ui": skylark_ui,
|
model_info.update({
|
||||||
# "fn_without_ui": skylark_noui,
|
"deepseek-chat":{
|
||||||
# "endpoint": None,
|
"fn_with_ui": deepseekapi_ui,
|
||||||
# "max_token": 4096,
|
"fn_without_ui": deepseekapi_noui,
|
||||||
# "tokenizer": tokenizer_gpt35,
|
"endpoint": deepseekapi_endpoint,
|
||||||
# "token_cnt": get_token_num_gpt35,
|
"can_multi_thread": True,
|
||||||
# }
|
"max_token": 32000,
|
||||||
# })
|
"tokenizer": tokenizer_gpt35,
|
||||||
# except:
|
"token_cnt": get_token_num_gpt35,
|
||||||
# print(trimmed_format_exc())
|
},
|
||||||
|
"deepseek-coder":{
|
||||||
|
"fn_with_ui": deepseekapi_ui,
|
||||||
|
"fn_without_ui": deepseekapi_noui,
|
||||||
|
"endpoint": deepseekapi_endpoint,
|
||||||
|
"can_multi_thread": True,
|
||||||
|
"max_token": 16000,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
})
|
||||||
|
except:
|
||||||
|
print(trimmed_format_exc())
|
||||||
|
# -=-=-=-=-=-=- one-api 对齐支持 -=-=-=-=-=-=-
|
||||||
|
for model in [m for m in AVAIL_LLM_MODELS if m.startswith("one-api-")]:
|
||||||
|
# 为了更灵活地接入one-api多模型管理界面,设计了此接口,例子:AVAIL_LLM_MODELS = ["one-api-mixtral-8x7b(max_token=6666)"]
|
||||||
|
# 其中
|
||||||
|
# "one-api-" 是前缀(必要)
|
||||||
|
# "mixtral-8x7b" 是模型名(必要)
|
||||||
|
# "(max_token=6666)" 是配置(非必要)
|
||||||
|
try:
|
||||||
|
_, max_token_tmp = read_one_api_model_name(model)
|
||||||
|
except:
|
||||||
|
print(f"one-api模型 {model} 的 max_token 配置不是整数,请检查配置文件。")
|
||||||
|
continue
|
||||||
|
model_info.update({
|
||||||
|
model: {
|
||||||
|
"fn_with_ui": chatgpt_ui,
|
||||||
|
"fn_without_ui": chatgpt_noui,
|
||||||
|
"can_multi_thread": True,
|
||||||
|
"endpoint": openai_endpoint,
|
||||||
|
"max_token": max_token_tmp,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
})
|
||||||
|
# -=-=-=-=-=-=- vllm 对齐支持 -=-=-=-=-=-=-
|
||||||
|
for model in [m for m in AVAIL_LLM_MODELS if m.startswith("vllm-")]:
|
||||||
|
# 为了更灵活地接入vllm多模型管理界面,设计了此接口,例子:AVAIL_LLM_MODELS = ["vllm-/home/hmp/llm/cache/Qwen1___5-32B-Chat(max_token=6666)"]
|
||||||
|
# 其中
|
||||||
|
# "vllm-" 是前缀(必要)
|
||||||
|
# "mixtral-8x7b" 是模型名(必要)
|
||||||
|
# "(max_token=6666)" 是配置(非必要)
|
||||||
|
try:
|
||||||
|
_, max_token_tmp = read_one_api_model_name(model)
|
||||||
|
except:
|
||||||
|
print(f"vllm模型 {model} 的 max_token 配置不是整数,请检查配置文件。")
|
||||||
|
continue
|
||||||
|
model_info.update({
|
||||||
|
model: {
|
||||||
|
"fn_with_ui": chatgpt_ui,
|
||||||
|
"fn_without_ui": chatgpt_noui,
|
||||||
|
"can_multi_thread": True,
|
||||||
|
"endpoint": openai_endpoint,
|
||||||
|
"max_token": max_token_tmp,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
})
|
||||||
|
# -=-=-=-=-=-=- ollama 对齐支持 -=-=-=-=-=-=-
|
||||||
|
for model in [m for m in AVAIL_LLM_MODELS if m.startswith("ollama-")]:
|
||||||
|
from .bridge_ollama import predict_no_ui_long_connection as ollama_noui
|
||||||
|
from .bridge_ollama import predict as ollama_ui
|
||||||
|
break
|
||||||
|
for model in [m for m in AVAIL_LLM_MODELS if m.startswith("ollama-")]:
|
||||||
|
# 为了更灵活地接入ollama多模型管理界面,设计了此接口,例子:AVAIL_LLM_MODELS = ["ollama-phi3(max_token=6666)"]
|
||||||
|
# 其中
|
||||||
|
# "ollama-" 是前缀(必要)
|
||||||
|
# "phi3" 是模型名(必要)
|
||||||
|
# "(max_token=6666)" 是配置(非必要)
|
||||||
|
try:
|
||||||
|
_, max_token_tmp = read_one_api_model_name(model)
|
||||||
|
except:
|
||||||
|
print(f"ollama模型 {model} 的 max_token 配置不是整数,请检查配置文件。")
|
||||||
|
continue
|
||||||
|
model_info.update({
|
||||||
|
model: {
|
||||||
|
"fn_with_ui": ollama_ui,
|
||||||
|
"fn_without_ui": ollama_noui,
|
||||||
|
"endpoint": ollama_endpoint,
|
||||||
|
"max_token": max_token_tmp,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
})
|
||||||
|
|
||||||
|
# -=-=-=-=-=-=- azure模型对齐支持 -=-=-=-=-=-=-
|
||||||
# <-- 用于定义和切换多个azure模型 -->
|
AZURE_CFG_ARRAY = get_conf("AZURE_CFG_ARRAY") # <-- 用于定义和切换多个azure模型 -->
|
||||||
AZURE_CFG_ARRAY = get_conf("AZURE_CFG_ARRAY")
|
|
||||||
if len(AZURE_CFG_ARRAY) > 0:
|
if len(AZURE_CFG_ARRAY) > 0:
|
||||||
for azure_model_name, azure_cfg_dict in AZURE_CFG_ARRAY.items():
|
for azure_model_name, azure_cfg_dict in AZURE_CFG_ARRAY.items():
|
||||||
# 可能会覆盖之前的配置,但这是意料之中的
|
# 可能会覆盖之前的配置,但这是意料之中的
|
||||||
@@ -636,13 +1021,20 @@ if len(AZURE_CFG_ARRAY) > 0:
|
|||||||
AVAIL_LLM_MODELS += [azure_model_name]
|
AVAIL_LLM_MODELS += [azure_model_name]
|
||||||
|
|
||||||
|
|
||||||
|
# -=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=-=-=
|
||||||
|
# -=-=-=-=-=-=-=-=-=- ☝️ 以上是模型路由 -=-=-=-=-=-=-=-=-=
|
||||||
|
# -=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=-=-=
|
||||||
|
|
||||||
|
# -=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=-=-=
|
||||||
|
# -=-=-=-=-=-=-= 👇 以下是多模型路由切换函数 -=-=-=-=-=-=-=
|
||||||
|
# -=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=-=-=
|
||||||
|
|
||||||
|
|
||||||
def LLM_CATCH_EXCEPTION(f):
|
def LLM_CATCH_EXCEPTION(f):
|
||||||
"""
|
"""
|
||||||
装饰器函数,将错误显示出来
|
装饰器函数,将错误显示出来
|
||||||
"""
|
"""
|
||||||
def decorated(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience):
|
def decorated(inputs:str, llm_kwargs:dict, history:list, sys_prompt:str, observe_window:list, console_slience:bool):
|
||||||
try:
|
try:
|
||||||
return f(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience)
|
return f(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
@@ -652,9 +1044,9 @@ def LLM_CATCH_EXCEPTION(f):
|
|||||||
return decorated
|
return decorated
|
||||||
|
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list, sys_prompt:str, observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
发送至LLM,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
发送至LLM,等待回复,一次性完成,不显示中间过程。但内部(尽可能地)用stream的方法避免中途网线被掐。
|
||||||
inputs:
|
inputs:
|
||||||
是本次问询的输入
|
是本次问询的输入
|
||||||
sys_prompt:
|
sys_prompt:
|
||||||
@@ -672,14 +1064,11 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
|
|||||||
model = llm_kwargs['llm_model']
|
model = llm_kwargs['llm_model']
|
||||||
n_model = 1
|
n_model = 1
|
||||||
if '&' not in model:
|
if '&' not in model:
|
||||||
assert not model.startswith("tgui"), "TGUI不支持函数插件的实现"
|
# 如果只询问“一个”大语言模型(多数情况):
|
||||||
|
|
||||||
# 如果只询问1个大语言模型:
|
|
||||||
method = model_info[model]["fn_without_ui"]
|
method = model_info[model]["fn_without_ui"]
|
||||||
return method(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience)
|
return method(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience)
|
||||||
else:
|
else:
|
||||||
|
# 如果同时询问“多个”大语言模型,这个稍微啰嗦一点,但思路相同,您不必读这个else分支
|
||||||
# 如果同时询问多个大语言模型,这个稍微啰嗦一点,但思路相同,您不必读这个else分支
|
|
||||||
executor = ThreadPoolExecutor(max_workers=4)
|
executor = ThreadPoolExecutor(max_workers=4)
|
||||||
models = model.split('&')
|
models = model.split('&')
|
||||||
n_model = len(models)
|
n_model = len(models)
|
||||||
@@ -707,7 +1096,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
|
|||||||
# 观察窗(window)
|
# 观察窗(window)
|
||||||
chat_string = []
|
chat_string = []
|
||||||
for i in range(n_model):
|
for i in range(n_model):
|
||||||
chat_string.append( f"【{str(models[i])} 说】: <font color=\"{colors[i]}\"> {window_mutex[i][0]} </font>" )
|
color = colors[i%len(colors)]
|
||||||
|
chat_string.append( f"【{str(models[i])} 说】: <font color=\"{color}\"> {window_mutex[i][0]} </font>" )
|
||||||
res = '<br/><br/>\n\n---\n\n'.join(chat_string)
|
res = '<br/><br/>\n\n---\n\n'.join(chat_string)
|
||||||
# # # # # # # # # # #
|
# # # # # # # # # # #
|
||||||
observe_window[0] = res
|
observe_window[0] = res
|
||||||
@@ -724,25 +1114,56 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
|
|||||||
time.sleep(1)
|
time.sleep(1)
|
||||||
|
|
||||||
for i, future in enumerate(futures): # wait and get
|
for i, future in enumerate(futures): # wait and get
|
||||||
return_string_collect.append( f"【{str(models[i])} 说】: <font color=\"{colors[i]}\"> {future.result()} </font>" )
|
color = colors[i%len(colors)]
|
||||||
|
return_string_collect.append( f"【{str(models[i])} 说】: <font color=\"{color}\"> {future.result()} </font>" )
|
||||||
|
|
||||||
window_mutex[-1] = False # stop mutex thread
|
window_mutex[-1] = False # stop mutex thread
|
||||||
res = '<br/><br/>\n\n---\n\n'.join(return_string_collect)
|
res = '<br/><br/>\n\n---\n\n'.join(return_string_collect)
|
||||||
return res
|
return res
|
||||||
|
|
||||||
|
# 根据基础功能区 ModelOverride 参数调整模型类型,用于 `predict` 中
|
||||||
|
import importlib
|
||||||
|
import core_functional
|
||||||
|
def execute_model_override(llm_kwargs, additional_fn, method):
|
||||||
|
functional = core_functional.get_core_functions()
|
||||||
|
if (additional_fn in functional) and 'ModelOverride' in functional[additional_fn]:
|
||||||
|
# 热更新Prompt & ModelOverride
|
||||||
|
importlib.reload(core_functional)
|
||||||
|
functional = core_functional.get_core_functions()
|
||||||
|
model_override = functional[additional_fn]['ModelOverride']
|
||||||
|
if model_override not in model_info:
|
||||||
|
raise ValueError(f"模型覆盖参数 '{model_override}' 指向一个暂不支持的模型,请检查配置文件。")
|
||||||
|
method = model_info[model_override]["fn_with_ui"]
|
||||||
|
llm_kwargs['llm_model'] = model_override
|
||||||
|
return llm_kwargs, additional_fn, method
|
||||||
|
# 默认返回原参数
|
||||||
|
return llm_kwargs, additional_fn, method
|
||||||
|
|
||||||
def predict(inputs, llm_kwargs, *args, **kwargs):
|
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot,
|
||||||
|
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||||
"""
|
"""
|
||||||
发送至LLM,流式获取输出。
|
发送至LLM,流式获取输出。
|
||||||
用于基础的对话功能。
|
用于基础的对话功能。
|
||||||
inputs 是本次问询的输入
|
|
||||||
top_p, temperature是LLM的内部调优参数
|
完整参数列表:
|
||||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
predict(
|
||||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
inputs:str, # 是本次问询的输入
|
||||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
llm_kwargs:dict, # 是LLM的内部调优参数
|
||||||
|
plugin_kwargs:dict, # 是插件的内部参数
|
||||||
|
chatbot:ChatBotWithCookies, # 原样传递,负责向用户前端展示对话,兼顾前端状态的功能
|
||||||
|
history:list=[], # 是之前的对话列表
|
||||||
|
system_prompt:str='', # 系统静默prompt
|
||||||
|
stream:bool=True, # 是否流式输出(已弃用)
|
||||||
|
additional_fn:str=None # 基础功能区按钮的附加功能
|
||||||
|
):
|
||||||
"""
|
"""
|
||||||
|
|
||||||
inputs = apply_gpt_academic_string_mask(inputs, mode="show_llm")
|
inputs = apply_gpt_academic_string_mask(inputs, mode="show_llm")
|
||||||
method = model_info[llm_kwargs['llm_model']]["fn_with_ui"] # 如果这里报错,检查config中的AVAIL_LLM_MODELS选项
|
|
||||||
yield from method(inputs, llm_kwargs, *args, **kwargs)
|
method = model_info[llm_kwargs['llm_model']]["fn_with_ui"] # 如果这里报错,检查config中的AVAIL_LLM_MODELS选项
|
||||||
|
|
||||||
|
if additional_fn: # 根据基础功能区 ModelOverride 参数调整模型类型
|
||||||
|
llm_kwargs, additional_fn, method = execute_model_override(llm_kwargs, additional_fn, method)
|
||||||
|
|
||||||
|
yield from method(inputs, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, stream, additional_fn)
|
||||||
|
|
||||||
|
|||||||
@@ -6,7 +6,6 @@ from toolbox import get_conf, ProxyNetworkActivate
|
|||||||
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
|
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# ------------------------------------------------------------------------------------------------------------------------
|
# ------------------------------------------------------------------------------------------------------------------------
|
||||||
# 🔌💻 Local Model
|
# 🔌💻 Local Model
|
||||||
# ------------------------------------------------------------------------------------------------------------------------
|
# ------------------------------------------------------------------------------------------------------------------------
|
||||||
@@ -23,20 +22,45 @@ class GetGLM3Handle(LocalLLMHandle):
|
|||||||
import os, glob
|
import os, glob
|
||||||
import os
|
import os
|
||||||
import platform
|
import platform
|
||||||
LOCAL_MODEL_QUANT, device = get_conf('LOCAL_MODEL_QUANT', 'LOCAL_MODEL_DEVICE')
|
|
||||||
|
|
||||||
if LOCAL_MODEL_QUANT == "INT4": # INT4
|
LOCAL_MODEL_QUANT, device = get_conf("LOCAL_MODEL_QUANT", "LOCAL_MODEL_DEVICE")
|
||||||
_model_name_ = "THUDM/chatglm3-6b-int4"
|
_model_name_ = "THUDM/chatglm3-6b"
|
||||||
|
# if LOCAL_MODEL_QUANT == "INT4": # INT4
|
||||||
|
# _model_name_ = "THUDM/chatglm3-6b-int4"
|
||||||
|
# elif LOCAL_MODEL_QUANT == "INT8": # INT8
|
||||||
|
# _model_name_ = "THUDM/chatglm3-6b-int8"
|
||||||
|
# else:
|
||||||
|
# _model_name_ = "THUDM/chatglm3-6b" # FP16
|
||||||
|
with ProxyNetworkActivate("Download_LLM"):
|
||||||
|
chatglm_tokenizer = AutoTokenizer.from_pretrained(
|
||||||
|
_model_name_, trust_remote_code=True
|
||||||
|
)
|
||||||
|
if device == "cpu":
|
||||||
|
chatglm_model = AutoModel.from_pretrained(
|
||||||
|
_model_name_,
|
||||||
|
trust_remote_code=True,
|
||||||
|
device="cpu",
|
||||||
|
).float()
|
||||||
|
elif LOCAL_MODEL_QUANT == "INT4": # INT4
|
||||||
|
chatglm_model = AutoModel.from_pretrained(
|
||||||
|
pretrained_model_name_or_path=_model_name_,
|
||||||
|
trust_remote_code=True,
|
||||||
|
device="cuda",
|
||||||
|
load_in_4bit=True,
|
||||||
|
)
|
||||||
elif LOCAL_MODEL_QUANT == "INT8": # INT8
|
elif LOCAL_MODEL_QUANT == "INT8": # INT8
|
||||||
_model_name_ = "THUDM/chatglm3-6b-int8"
|
chatglm_model = AutoModel.from_pretrained(
|
||||||
|
pretrained_model_name_or_path=_model_name_,
|
||||||
|
trust_remote_code=True,
|
||||||
|
device="cuda",
|
||||||
|
load_in_8bit=True,
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
_model_name_ = "THUDM/chatglm3-6b" # FP16
|
chatglm_model = AutoModel.from_pretrained(
|
||||||
with ProxyNetworkActivate('Download_LLM'):
|
pretrained_model_name_or_path=_model_name_,
|
||||||
chatglm_tokenizer = AutoTokenizer.from_pretrained(_model_name_, trust_remote_code=True)
|
trust_remote_code=True,
|
||||||
if device=='cpu':
|
device="cuda",
|
||||||
chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True, device='cpu').float()
|
)
|
||||||
else:
|
|
||||||
chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True, device='cuda')
|
|
||||||
chatglm_model = chatglm_model.eval()
|
chatglm_model = chatglm_model.eval()
|
||||||
|
|
||||||
self._model = chatglm_model
|
self._model = chatglm_model
|
||||||
@@ -46,16 +70,17 @@ class GetGLM3Handle(LocalLLMHandle):
|
|||||||
def llm_stream_generator(self, **kwargs):
|
def llm_stream_generator(self, **kwargs):
|
||||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||||
def adaptor(kwargs):
|
def adaptor(kwargs):
|
||||||
query = kwargs['query']
|
query = kwargs["query"]
|
||||||
max_length = kwargs['max_length']
|
max_length = kwargs["max_length"]
|
||||||
top_p = kwargs['top_p']
|
top_p = kwargs["top_p"]
|
||||||
temperature = kwargs['temperature']
|
temperature = kwargs["temperature"]
|
||||||
history = kwargs['history']
|
history = kwargs["history"]
|
||||||
return query, max_length, top_p, temperature, history
|
return query, max_length, top_p, temperature, history
|
||||||
|
|
||||||
query, max_length, top_p, temperature, history = adaptor(kwargs)
|
query, max_length, top_p, temperature, history = adaptor(kwargs)
|
||||||
|
|
||||||
for response, history in self._model.stream_chat(self._tokenizer,
|
for response, history in self._model.stream_chat(
|
||||||
|
self._tokenizer,
|
||||||
query,
|
query,
|
||||||
history,
|
history,
|
||||||
max_length=max_length,
|
max_length=max_length,
|
||||||
@@ -68,10 +93,13 @@ class GetGLM3Handle(LocalLLMHandle):
|
|||||||
# import something that will raise error if the user does not install requirement_*.txt
|
# import something that will raise error if the user does not install requirement_*.txt
|
||||||
# 🏃♂️🏃♂️🏃♂️ 主进程执行
|
# 🏃♂️🏃♂️🏃♂️ 主进程执行
|
||||||
import importlib
|
import importlib
|
||||||
|
|
||||||
# importlib.import_module('modelscope')
|
# importlib.import_module('modelscope')
|
||||||
|
|
||||||
|
|
||||||
# ------------------------------------------------------------------------------------------------------------------------
|
# ------------------------------------------------------------------------------------------------------------------------
|
||||||
# 🔌💻 GPT-Academic Interface
|
# 🔌💻 GPT-Academic Interface
|
||||||
# ------------------------------------------------------------------------------------------------------------------------
|
# ------------------------------------------------------------------------------------------------------------------------
|
||||||
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(GetGLM3Handle, model_name, history_format='chatglm3')
|
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(
|
||||||
|
GetGLM3Handle, model_name, history_format="chatglm3"
|
||||||
|
)
|
||||||
|
|||||||
@@ -137,7 +137,8 @@ class GetGLMFTHandle(Process):
|
|||||||
global glmft_handle
|
global glmft_handle
|
||||||
glmft_handle = None
|
glmft_handle = None
|
||||||
#################################################################################
|
#################################################################################
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
|
observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
多线程方法
|
多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
|
|||||||
@@ -21,7 +21,9 @@ import random
|
|||||||
|
|
||||||
# config_private.py放自己的秘密如API和代理网址
|
# config_private.py放自己的秘密如API和代理网址
|
||||||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||||
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc, is_the_upload_folder
|
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history
|
||||||
|
from toolbox import trimmed_format_exc, is_the_upload_folder, read_one_api_model_name, log_chat
|
||||||
|
from toolbox import ChatBotWithCookies
|
||||||
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
|
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
|
||||||
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')
|
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')
|
||||||
|
|
||||||
@@ -68,7 +70,7 @@ def verify_endpoint(endpoint):
|
|||||||
raise ValueError("Endpoint不正确, 请检查AZURE_ENDPOINT的配置! 当前的Endpoint为:" + endpoint)
|
raise ValueError("Endpoint不正确, 请检查AZURE_ENDPOINT的配置! 当前的Endpoint为:" + endpoint)
|
||||||
return endpoint
|
return endpoint
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||||
inputs:
|
inputs:
|
||||||
@@ -113,6 +115,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
error_msg = get_full_error(chunk, stream_response).decode()
|
error_msg = get_full_error(chunk, stream_response).decode()
|
||||||
if "reduce the length" in error_msg:
|
if "reduce the length" in error_msg:
|
||||||
raise ConnectionAbortedError("OpenAI拒绝了请求:" + error_msg)
|
raise ConnectionAbortedError("OpenAI拒绝了请求:" + error_msg)
|
||||||
|
elif """type":"upstream_error","param":"307""" in error_msg:
|
||||||
|
raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。")
|
||||||
else:
|
else:
|
||||||
raise RuntimeError("OpenAI拒绝了请求:" + error_msg)
|
raise RuntimeError("OpenAI拒绝了请求:" + error_msg)
|
||||||
if ('data: [DONE]' in chunk_decoded): break # api2d 正常完成
|
if ('data: [DONE]' in chunk_decoded): break # api2d 正常完成
|
||||||
@@ -123,8 +127,9 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
json_data = chunkjson['choices'][0]
|
json_data = chunkjson['choices'][0]
|
||||||
delta = json_data["delta"]
|
delta = json_data["delta"]
|
||||||
if len(delta) == 0: break
|
if len(delta) == 0: break
|
||||||
if "role" in delta: continue
|
if (not has_content) and has_role: continue
|
||||||
if "content" in delta:
|
if (not has_content) and (not has_role): continue # raise RuntimeError("发现不标准的第三方接口:"+delta)
|
||||||
|
if has_content: # has_role = True/False
|
||||||
result += delta["content"]
|
result += delta["content"]
|
||||||
if not console_slience: print(delta["content"], end='')
|
if not console_slience: print(delta["content"], end='')
|
||||||
if observe_window is not None:
|
if observe_window is not None:
|
||||||
@@ -143,7 +148,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
return result
|
return result
|
||||||
|
|
||||||
|
|
||||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
|
||||||
|
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||||
"""
|
"""
|
||||||
发送至chatGPT,流式获取输出。
|
发送至chatGPT,流式获取输出。
|
||||||
用于基础的对话功能。
|
用于基础的对话功能。
|
||||||
@@ -168,8 +174,6 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
from core_functional import handle_core_functionality
|
from core_functional import handle_core_functionality
|
||||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||||
|
|
||||||
raw_input = inputs
|
|
||||||
logging.info(f'[raw_input] {raw_input}')
|
|
||||||
chatbot.append((inputs, ""))
|
chatbot.append((inputs, ""))
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||||
|
|
||||||
@@ -250,7 +254,8 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
# 前者是API2D的结束条件,后者是OPENAI的结束条件
|
# 前者是API2D的结束条件,后者是OPENAI的结束条件
|
||||||
if ('data: [DONE]' in chunk_decoded) or (len(chunkjson['choices'][0]["delta"]) == 0):
|
if ('data: [DONE]' in chunk_decoded) or (len(chunkjson['choices'][0]["delta"]) == 0):
|
||||||
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
||||||
logging.info(f'[response] {gpt_replying_buffer}')
|
# logging.info(f'[response] {gpt_replying_buffer}')
|
||||||
|
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
||||||
break
|
break
|
||||||
# 处理数据流的主体
|
# 处理数据流的主体
|
||||||
status_text = f"finish_reason: {chunkjson['choices'][0].get('finish_reason', 'null')}"
|
status_text = f"finish_reason: {chunkjson['choices'][0].get('finish_reason', 'null')}"
|
||||||
@@ -262,7 +267,8 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
# 一些第三方接口的出现这样的错误,兼容一下吧
|
# 一些第三方接口的出现这样的错误,兼容一下吧
|
||||||
continue
|
continue
|
||||||
else:
|
else:
|
||||||
# 一些垃圾第三方接口的出现这样的错误
|
# 至此已经超出了正常接口应该进入的范围,一些垃圾第三方接口会出现这样的错误
|
||||||
|
if chunkjson['choices'][0]["delta"]["content"] is None: continue # 一些垃圾第三方接口出现这样的错误,兼容一下吧
|
||||||
gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]
|
gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]
|
||||||
|
|
||||||
history[-1] = gpt_replying_buffer
|
history[-1] = gpt_replying_buffer
|
||||||
@@ -315,6 +321,9 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
|||||||
if not is_any_api_key(llm_kwargs['api_key']):
|
if not is_any_api_key(llm_kwargs['api_key']):
|
||||||
raise AssertionError("你提供了错误的API_KEY。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。")
|
raise AssertionError("你提供了错误的API_KEY。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。")
|
||||||
|
|
||||||
|
if llm_kwargs['llm_model'].startswith('vllm-'):
|
||||||
|
api_key = 'no-api-key'
|
||||||
|
else:
|
||||||
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
|
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
|
||||||
|
|
||||||
headers = {
|
headers = {
|
||||||
@@ -354,7 +363,12 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
|||||||
model = llm_kwargs['llm_model']
|
model = llm_kwargs['llm_model']
|
||||||
if llm_kwargs['llm_model'].startswith('api2d-'):
|
if llm_kwargs['llm_model'].startswith('api2d-'):
|
||||||
model = llm_kwargs['llm_model'][len('api2d-'):]
|
model = llm_kwargs['llm_model'][len('api2d-'):]
|
||||||
|
if llm_kwargs['llm_model'].startswith('one-api-'):
|
||||||
|
model = llm_kwargs['llm_model'][len('one-api-'):]
|
||||||
|
model, _ = read_one_api_model_name(model)
|
||||||
|
if llm_kwargs['llm_model'].startswith('vllm-'):
|
||||||
|
model = llm_kwargs['llm_model'][len('vllm-'):]
|
||||||
|
model, _ = read_one_api_model_name(model)
|
||||||
if model == "gpt-3.5-random": # 随机选择, 绕过openai访问频率限制
|
if model == "gpt-3.5-random": # 随机选择, 绕过openai访问频率限制
|
||||||
model = random.choice([
|
model = random.choice([
|
||||||
"gpt-3.5-turbo",
|
"gpt-3.5-turbo",
|
||||||
@@ -373,8 +387,6 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
|||||||
"top_p": llm_kwargs['top_p'], # 1.0,
|
"top_p": llm_kwargs['top_p'], # 1.0,
|
||||||
"n": 1,
|
"n": 1,
|
||||||
"stream": stream,
|
"stream": stream,
|
||||||
"presence_penalty": 0,
|
|
||||||
"frequency_penalty": 0,
|
|
||||||
}
|
}
|
||||||
try:
|
try:
|
||||||
print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]} ..........")
|
print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]} ..........")
|
||||||
|
|||||||
@@ -9,15 +9,15 @@
|
|||||||
具备多线程调用能力的函数
|
具备多线程调用能力的函数
|
||||||
2. predict_no_ui_long_connection:支持多线程
|
2. predict_no_ui_long_connection:支持多线程
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import os
|
|
||||||
import json
|
|
||||||
import time
|
|
||||||
import gradio as gr
|
|
||||||
import logging
|
import logging
|
||||||
|
import os
|
||||||
|
import time
|
||||||
import traceback
|
import traceback
|
||||||
|
import json
|
||||||
import requests
|
import requests
|
||||||
import importlib
|
from toolbox import get_conf, update_ui, trimmed_format_exc, encode_image, every_image_file_in_path, log_chat
|
||||||
|
picture_system_prompt = "\n当回复图像时,必须说明正在回复哪张图像。所有图像仅在最后一个问题中提供,即使它们在历史记录中被提及。请使用'这是第X张图像:'的格式来指明您正在描述的是哪张图像。"
|
||||||
|
Claude_3_Models = ["claude-3-haiku-20240307", "claude-3-sonnet-20240229", "claude-3-opus-20240229"]
|
||||||
|
|
||||||
# config_private.py放自己的秘密如API和代理网址
|
# config_private.py放自己的秘密如API和代理网址
|
||||||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||||
@@ -39,6 +39,34 @@ def get_full_error(chunk, stream_response):
|
|||||||
break
|
break
|
||||||
return chunk
|
return chunk
|
||||||
|
|
||||||
|
def decode_chunk(chunk):
|
||||||
|
# 提前读取一些信息(用于判断异常)
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
chunkjson = None
|
||||||
|
is_last_chunk = False
|
||||||
|
need_to_pass = False
|
||||||
|
if chunk_decoded.startswith('data:'):
|
||||||
|
try:
|
||||||
|
chunkjson = json.loads(chunk_decoded[6:])
|
||||||
|
except:
|
||||||
|
need_to_pass = True
|
||||||
|
pass
|
||||||
|
elif chunk_decoded.startswith('event:'):
|
||||||
|
try:
|
||||||
|
event_type = chunk_decoded.split(':')[1].strip()
|
||||||
|
if event_type == 'content_block_stop' or event_type == 'message_stop':
|
||||||
|
is_last_chunk = True
|
||||||
|
elif event_type == 'content_block_start' or event_type == 'message_start':
|
||||||
|
need_to_pass = True
|
||||||
|
pass
|
||||||
|
except:
|
||||||
|
need_to_pass = True
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
need_to_pass = True
|
||||||
|
pass
|
||||||
|
return need_to_pass, chunkjson, is_last_chunk
|
||||||
|
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
||||||
"""
|
"""
|
||||||
@@ -54,50 +82,67 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
observe_window = None:
|
observe_window = None:
|
||||||
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
||||||
"""
|
"""
|
||||||
from anthropic import Anthropic
|
|
||||||
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
||||||
prompt = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
|
|
||||||
retry = 0
|
|
||||||
if len(ANTHROPIC_API_KEY) == 0:
|
if len(ANTHROPIC_API_KEY) == 0:
|
||||||
raise RuntimeError("没有设置ANTHROPIC_API_KEY选项")
|
raise RuntimeError("没有设置ANTHROPIC_API_KEY选项")
|
||||||
|
if inputs == "": inputs = "空空如也的输入栏"
|
||||||
|
headers, message = generate_payload(inputs, llm_kwargs, history, sys_prompt, image_paths=None)
|
||||||
|
retry = 0
|
||||||
|
|
||||||
|
|
||||||
while True:
|
while True:
|
||||||
try:
|
try:
|
||||||
# make a POST request to the API endpoint, stream=False
|
# make a POST request to the API endpoint, stream=False
|
||||||
from .bridge_all import model_info
|
from .bridge_all import model_info
|
||||||
anthropic = Anthropic(api_key=ANTHROPIC_API_KEY)
|
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||||
# endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
response = requests.post(endpoint, headers=headers, json=message,
|
||||||
# with ProxyNetworkActivate()
|
proxies=proxies, stream=True, timeout=TIMEOUT_SECONDS);break
|
||||||
stream = anthropic.completions.create(
|
except requests.exceptions.ReadTimeout as e:
|
||||||
prompt=prompt,
|
|
||||||
max_tokens_to_sample=4096, # The maximum number of tokens to generate before stopping.
|
|
||||||
model=llm_kwargs['llm_model'],
|
|
||||||
stream=True,
|
|
||||||
temperature = llm_kwargs['temperature']
|
|
||||||
)
|
|
||||||
break
|
|
||||||
except Exception as e:
|
|
||||||
retry += 1
|
retry += 1
|
||||||
traceback.print_exc()
|
traceback.print_exc()
|
||||||
if retry > MAX_RETRY: raise TimeoutError
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||||
|
stream_response = response.iter_lines()
|
||||||
result = ''
|
result = ''
|
||||||
|
while True:
|
||||||
|
try: chunk = next(stream_response)
|
||||||
|
except StopIteration:
|
||||||
|
break
|
||||||
|
except requests.exceptions.ConnectionError:
|
||||||
|
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||||
|
need_to_pass, chunkjson, is_last_chunk = decode_chunk(chunk)
|
||||||
|
if chunk:
|
||||||
try:
|
try:
|
||||||
for completion in stream:
|
if need_to_pass:
|
||||||
result += completion.completion
|
pass
|
||||||
if not console_slience: print(completion.completion, end='')
|
elif is_last_chunk:
|
||||||
|
# logging.info(f'[response] {result}')
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
if chunkjson and chunkjson['type'] == 'content_block_delta':
|
||||||
|
result += chunkjson['delta']['text']
|
||||||
|
print(chunkjson['delta']['text'], end='')
|
||||||
if observe_window is not None:
|
if observe_window is not None:
|
||||||
# 观测窗,把已经获取的数据显示出去
|
# 观测窗,把已经获取的数据显示出去
|
||||||
if len(observe_window) >= 1: observe_window[0] += completion.completion
|
if len(observe_window) >= 1:
|
||||||
|
observe_window[0] += chunkjson['delta']['text']
|
||||||
# 看门狗,如果超过期限没有喂狗,则终止
|
# 看门狗,如果超过期限没有喂狗,则终止
|
||||||
if len(observe_window) >= 2:
|
if len(observe_window) >= 2:
|
||||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||||
raise RuntimeError("用户取消了程序。")
|
raise RuntimeError("用户取消了程序。")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
traceback.print_exc()
|
chunk = get_full_error(chunk, stream_response)
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
error_msg = chunk_decoded
|
||||||
|
print(error_msg)
|
||||||
|
raise RuntimeError("Json解析不合常规")
|
||||||
|
|
||||||
return result
|
return result
|
||||||
|
|
||||||
|
def make_media_input(history,inputs,image_paths):
|
||||||
|
for image_path in image_paths:
|
||||||
|
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'
|
||||||
|
return inputs
|
||||||
|
|
||||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||||
"""
|
"""
|
||||||
@@ -109,7 +154,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||||
"""
|
"""
|
||||||
from anthropic import Anthropic
|
if inputs == "": inputs = "空空如也的输入栏"
|
||||||
if len(ANTHROPIC_API_KEY) == 0:
|
if len(ANTHROPIC_API_KEY) == 0:
|
||||||
chatbot.append((inputs, "没有设置ANTHROPIC_API_KEY"))
|
chatbot.append((inputs, "没有设置ANTHROPIC_API_KEY"))
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||||
@@ -119,13 +164,23 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
from core_functional import handle_core_functionality
|
from core_functional import handle_core_functionality
|
||||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||||
|
|
||||||
raw_input = inputs
|
have_recent_file, image_paths = every_image_file_in_path(chatbot)
|
||||||
logging.info(f'[raw_input] {raw_input}')
|
if len(image_paths) > 20:
|
||||||
|
chatbot.append((inputs, "图片数量超过api上限(20张)"))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应")
|
||||||
|
return
|
||||||
|
|
||||||
|
if any([llm_kwargs['llm_model'] == model for model in Claude_3_Models]) and have_recent_file:
|
||||||
|
if inputs == "" or inputs == "空空如也的输入栏": inputs = "请描述给出的图片"
|
||||||
|
system_prompt += picture_system_prompt # 由于没有单独的参数保存包含图片的历史,所以只能通过提示词对第几张图片进行定位
|
||||||
|
chatbot.append((make_media_input(history,inputs, image_paths), ""))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||||
|
else:
|
||||||
chatbot.append((inputs, ""))
|
chatbot.append((inputs, ""))
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||||
|
|
||||||
try:
|
try:
|
||||||
prompt = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
|
headers, message = generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths)
|
||||||
except RuntimeError as e:
|
except RuntimeError as e:
|
||||||
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
|
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
|
||||||
@@ -138,91 +193,117 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
try:
|
try:
|
||||||
# make a POST request to the API endpoint, stream=True
|
# make a POST request to the API endpoint, stream=True
|
||||||
from .bridge_all import model_info
|
from .bridge_all import model_info
|
||||||
anthropic = Anthropic(api_key=ANTHROPIC_API_KEY)
|
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||||
# endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
response = requests.post(endpoint, headers=headers, json=message,
|
||||||
# with ProxyNetworkActivate()
|
proxies=proxies, stream=True, timeout=TIMEOUT_SECONDS);break
|
||||||
stream = anthropic.completions.create(
|
except requests.exceptions.ReadTimeout as e:
|
||||||
prompt=prompt,
|
|
||||||
max_tokens_to_sample=4096, # The maximum number of tokens to generate before stopping.
|
|
||||||
model=llm_kwargs['llm_model'],
|
|
||||||
stream=True,
|
|
||||||
temperature = llm_kwargs['temperature']
|
|
||||||
)
|
|
||||||
|
|
||||||
break
|
|
||||||
except:
|
|
||||||
retry += 1
|
retry += 1
|
||||||
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
|
traceback.print_exc()
|
||||||
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
|
|
||||||
if retry > MAX_RETRY: raise TimeoutError
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
|
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||||
|
stream_response = response.iter_lines()
|
||||||
gpt_replying_buffer = ""
|
gpt_replying_buffer = ""
|
||||||
|
|
||||||
for completion in stream:
|
while True:
|
||||||
|
try: chunk = next(stream_response)
|
||||||
|
except StopIteration:
|
||||||
|
break
|
||||||
|
except requests.exceptions.ConnectionError:
|
||||||
|
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||||
|
need_to_pass, chunkjson, is_last_chunk = decode_chunk(chunk)
|
||||||
|
if chunk:
|
||||||
try:
|
try:
|
||||||
gpt_replying_buffer = gpt_replying_buffer + completion.completion
|
if need_to_pass:
|
||||||
|
pass
|
||||||
|
elif is_last_chunk:
|
||||||
|
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
||||||
|
# logging.info(f'[response] {gpt_replying_buffer}')
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
if chunkjson and chunkjson['type'] == 'content_block_delta':
|
||||||
|
gpt_replying_buffer += chunkjson['delta']['text']
|
||||||
history[-1] = gpt_replying_buffer
|
history[-1] = gpt_replying_buffer
|
||||||
chatbot[-1] = (history[-2], history[-1])
|
chatbot[-1] = (history[-2], history[-1])
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg='正常') # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg='正常') # 刷新界面
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
from toolbox import regular_txt_to_markdown
|
chunk = get_full_error(chunk, stream_response)
|
||||||
tb_str = '```\n' + trimmed_format_exc() + '```'
|
chunk_decoded = chunk.decode()
|
||||||
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str}")
|
error_msg = chunk_decoded
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + tb_str) # 刷新界面
|
print(error_msg)
|
||||||
return
|
raise RuntimeError("Json解析不合常规")
|
||||||
|
|
||||||
|
def multiple_picture_types(image_paths):
|
||||||
|
"""
|
||||||
|
根据图片类型返回image/jpeg, image/png, image/gif, image/webp,无法判断则返回image/jpeg
|
||||||
|
"""
|
||||||
|
for image_path in image_paths:
|
||||||
|
if image_path.endswith('.jpeg') or image_path.endswith('.jpg'):
|
||||||
|
return 'image/jpeg'
|
||||||
|
elif image_path.endswith('.png'):
|
||||||
|
return 'image/png'
|
||||||
|
elif image_path.endswith('.gif'):
|
||||||
|
return 'image/gif'
|
||||||
|
elif image_path.endswith('.webp'):
|
||||||
|
return 'image/webp'
|
||||||
|
return 'image/jpeg'
|
||||||
|
|
||||||
|
def generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths):
|
||||||
|
|
||||||
# https://github.com/jtsang4/claude-to-chatgpt/blob/main/claude_to_chatgpt/adapter.py
|
|
||||||
def convert_messages_to_prompt(messages):
|
|
||||||
prompt = ""
|
|
||||||
role_map = {
|
|
||||||
"system": "Human",
|
|
||||||
"user": "Human",
|
|
||||||
"assistant": "Assistant",
|
|
||||||
}
|
|
||||||
for message in messages:
|
|
||||||
role = message["role"]
|
|
||||||
content = message["content"]
|
|
||||||
transformed_role = role_map[role]
|
|
||||||
prompt += f"\n\n{transformed_role.capitalize()}: {content}"
|
|
||||||
prompt += "\n\nAssistant: "
|
|
||||||
return prompt
|
|
||||||
|
|
||||||
def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
|
||||||
"""
|
"""
|
||||||
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
|
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
|
||||||
"""
|
"""
|
||||||
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
|
|
||||||
|
|
||||||
conversation_cnt = len(history) // 2
|
conversation_cnt = len(history) // 2
|
||||||
|
|
||||||
messages = [{"role": "system", "content": system_prompt}]
|
messages = []
|
||||||
|
|
||||||
if conversation_cnt:
|
if conversation_cnt:
|
||||||
for index in range(0, 2*conversation_cnt, 2):
|
for index in range(0, 2*conversation_cnt, 2):
|
||||||
what_i_have_asked = {}
|
what_i_have_asked = {}
|
||||||
what_i_have_asked["role"] = "user"
|
what_i_have_asked["role"] = "user"
|
||||||
what_i_have_asked["content"] = history[index]
|
what_i_have_asked["content"] = [{"type": "text", "text": history[index]}]
|
||||||
what_gpt_answer = {}
|
what_gpt_answer = {}
|
||||||
what_gpt_answer["role"] = "assistant"
|
what_gpt_answer["role"] = "assistant"
|
||||||
what_gpt_answer["content"] = history[index+1]
|
what_gpt_answer["content"] = [{"type": "text", "text": history[index+1]}]
|
||||||
if what_i_have_asked["content"] != "":
|
if what_i_have_asked["content"][0]["text"] != "":
|
||||||
if what_gpt_answer["content"] == "": continue
|
if what_i_have_asked["content"][0]["text"] == "": continue
|
||||||
if what_gpt_answer["content"] == timeout_bot_msg: continue
|
if what_i_have_asked["content"][0]["text"] == timeout_bot_msg: continue
|
||||||
messages.append(what_i_have_asked)
|
messages.append(what_i_have_asked)
|
||||||
messages.append(what_gpt_answer)
|
messages.append(what_gpt_answer)
|
||||||
else:
|
else:
|
||||||
messages[-1]['content'] = what_gpt_answer['content']
|
messages[-1]['content'][0]['text'] = what_gpt_answer['content'][0]['text']
|
||||||
|
|
||||||
|
if any([llm_kwargs['llm_model'] == model for model in Claude_3_Models]) and image_paths:
|
||||||
what_i_ask_now = {}
|
what_i_ask_now = {}
|
||||||
what_i_ask_now["role"] = "user"
|
what_i_ask_now["role"] = "user"
|
||||||
what_i_ask_now["content"] = inputs
|
what_i_ask_now["content"] = []
|
||||||
|
for image_path in image_paths:
|
||||||
|
what_i_ask_now["content"].append({
|
||||||
|
"type": "image",
|
||||||
|
"source": {
|
||||||
|
"type": "base64",
|
||||||
|
"media_type": multiple_picture_types(image_paths),
|
||||||
|
"data": encode_image(image_path),
|
||||||
|
}
|
||||||
|
})
|
||||||
|
what_i_ask_now["content"].append({"type": "text", "text": inputs})
|
||||||
|
else:
|
||||||
|
what_i_ask_now = {}
|
||||||
|
what_i_ask_now["role"] = "user"
|
||||||
|
what_i_ask_now["content"] = [{"type": "text", "text": inputs}]
|
||||||
messages.append(what_i_ask_now)
|
messages.append(what_i_ask_now)
|
||||||
prompt = convert_messages_to_prompt(messages)
|
# 开始整理headers与message
|
||||||
|
headers = {
|
||||||
return prompt
|
'x-api-key': ANTHROPIC_API_KEY,
|
||||||
|
'anthropic-version': '2023-06-01',
|
||||||
|
'content-type': 'application/json'
|
||||||
|
}
|
||||||
|
payload = {
|
||||||
|
'model': llm_kwargs['llm_model'],
|
||||||
|
'max_tokens': 4096,
|
||||||
|
'messages': messages,
|
||||||
|
'temperature': llm_kwargs['temperature'],
|
||||||
|
'stream': True,
|
||||||
|
'system': system_prompt
|
||||||
|
}
|
||||||
|
return headers, payload
|
||||||
|
|||||||
328
request_llms/bridge_cohere.py
Normal file
328
request_llms/bridge_cohere.py
Normal file
@@ -0,0 +1,328 @@
|
|||||||
|
# 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目
|
||||||
|
|
||||||
|
"""
|
||||||
|
该文件中主要包含三个函数
|
||||||
|
|
||||||
|
不具备多线程能力的函数:
|
||||||
|
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
|
||||||
|
|
||||||
|
具备多线程调用能力的函数
|
||||||
|
2. predict_no_ui_long_connection:支持多线程
|
||||||
|
"""
|
||||||
|
|
||||||
|
import json
|
||||||
|
import time
|
||||||
|
import gradio as gr
|
||||||
|
import logging
|
||||||
|
import traceback
|
||||||
|
import requests
|
||||||
|
import importlib
|
||||||
|
import random
|
||||||
|
|
||||||
|
# config_private.py放自己的秘密如API和代理网址
|
||||||
|
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||||
|
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history
|
||||||
|
from toolbox import trimmed_format_exc, is_the_upload_folder, read_one_api_model_name, log_chat
|
||||||
|
from toolbox import ChatBotWithCookies
|
||||||
|
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
|
||||||
|
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')
|
||||||
|
|
||||||
|
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
||||||
|
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
|
||||||
|
|
||||||
|
def get_full_error(chunk, stream_response):
|
||||||
|
"""
|
||||||
|
获取完整的从Cohere返回的报错
|
||||||
|
"""
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
chunk += next(stream_response)
|
||||||
|
except:
|
||||||
|
break
|
||||||
|
return chunk
|
||||||
|
|
||||||
|
def decode_chunk(chunk):
|
||||||
|
# 提前读取一些信息 (用于判断异常)
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
chunkjson = None
|
||||||
|
has_choices = False
|
||||||
|
choice_valid = False
|
||||||
|
has_content = False
|
||||||
|
has_role = False
|
||||||
|
try:
|
||||||
|
chunkjson = json.loads(chunk_decoded)
|
||||||
|
has_choices = 'choices' in chunkjson
|
||||||
|
if has_choices: choice_valid = (len(chunkjson['choices']) > 0)
|
||||||
|
if has_choices and choice_valid: has_content = ("content" in chunkjson['choices'][0]["delta"])
|
||||||
|
if has_content: has_content = (chunkjson['choices'][0]["delta"]["content"] is not None)
|
||||||
|
if has_choices and choice_valid: has_role = "role" in chunkjson['choices'][0]["delta"]
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
return chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role
|
||||||
|
|
||||||
|
from functools import lru_cache
|
||||||
|
@lru_cache(maxsize=32)
|
||||||
|
def verify_endpoint(endpoint):
|
||||||
|
"""
|
||||||
|
检查endpoint是否可用
|
||||||
|
"""
|
||||||
|
if "你亲手写的api名称" in endpoint:
|
||||||
|
raise ValueError("Endpoint不正确, 请检查AZURE_ENDPOINT的配置! 当前的Endpoint为:" + endpoint)
|
||||||
|
return endpoint
|
||||||
|
|
||||||
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_slience:bool=False):
|
||||||
|
"""
|
||||||
|
发送,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||||
|
inputs:
|
||||||
|
是本次问询的输入
|
||||||
|
sys_prompt:
|
||||||
|
系统静默prompt
|
||||||
|
llm_kwargs:
|
||||||
|
内部调优参数
|
||||||
|
history:
|
||||||
|
是之前的对话列表
|
||||||
|
observe_window = None:
|
||||||
|
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
||||||
|
"""
|
||||||
|
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
||||||
|
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
|
||||||
|
retry = 0
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
# make a POST request to the API endpoint, stream=False
|
||||||
|
from .bridge_all import model_info
|
||||||
|
endpoint = verify_endpoint(model_info[llm_kwargs['llm_model']]['endpoint'])
|
||||||
|
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
||||||
|
json=payload, stream=True, timeout=TIMEOUT_SECONDS); break
|
||||||
|
except requests.exceptions.ReadTimeout as e:
|
||||||
|
retry += 1
|
||||||
|
traceback.print_exc()
|
||||||
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
|
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||||
|
|
||||||
|
stream_response = response.iter_lines()
|
||||||
|
result = ''
|
||||||
|
json_data = None
|
||||||
|
while True:
|
||||||
|
try: chunk = next(stream_response)
|
||||||
|
except StopIteration:
|
||||||
|
break
|
||||||
|
except requests.exceptions.ConnectionError:
|
||||||
|
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||||
|
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
|
||||||
|
if chunkjson['event_type'] == 'stream-start': continue
|
||||||
|
if chunkjson['event_type'] == 'text-generation':
|
||||||
|
result += chunkjson["text"]
|
||||||
|
if not console_slience: print(chunkjson["text"], end='')
|
||||||
|
if observe_window is not None:
|
||||||
|
# 观测窗,把已经获取的数据显示出去
|
||||||
|
if len(observe_window) >= 1:
|
||||||
|
observe_window[0] += chunkjson["text"]
|
||||||
|
# 看门狗,如果超过期限没有喂狗,则终止
|
||||||
|
if len(observe_window) >= 2:
|
||||||
|
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||||
|
raise RuntimeError("用户取消了程序。")
|
||||||
|
if chunkjson['event_type'] == 'stream-end': break
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
|
||||||
|
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||||
|
"""
|
||||||
|
发送至chatGPT,流式获取输出。
|
||||||
|
用于基础的对话功能。
|
||||||
|
inputs 是本次问询的输入
|
||||||
|
top_p, temperature是chatGPT的内部调优参数
|
||||||
|
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||||
|
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||||
|
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||||
|
"""
|
||||||
|
# if is_any_api_key(inputs):
|
||||||
|
# chatbot._cookies['api_key'] = inputs
|
||||||
|
# chatbot.append(("输入已识别为Cohere的api_key", what_keys(inputs)))
|
||||||
|
# yield from update_ui(chatbot=chatbot, history=history, msg="api_key已导入") # 刷新界面
|
||||||
|
# return
|
||||||
|
# elif not is_any_api_key(chatbot._cookies['api_key']):
|
||||||
|
# chatbot.append((inputs, "缺少api_key。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。"))
|
||||||
|
# yield from update_ui(chatbot=chatbot, history=history, msg="缺少api_key") # 刷新界面
|
||||||
|
# return
|
||||||
|
|
||||||
|
user_input = inputs
|
||||||
|
if additional_fn is not None:
|
||||||
|
from core_functional import handle_core_functionality
|
||||||
|
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||||
|
|
||||||
|
raw_input = inputs
|
||||||
|
# logging.info(f'[raw_input] {raw_input}')
|
||||||
|
chatbot.append((inputs, ""))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||||
|
|
||||||
|
# check mis-behavior
|
||||||
|
if is_the_upload_folder(user_input):
|
||||||
|
chatbot[-1] = (inputs, f"[Local Message] 检测到操作错误!当您上传文档之后,需点击“**函数插件区**”按钮进行处理,请勿点击“提交”按钮或者“基础功能区”按钮。")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="正常") # 刷新界面
|
||||||
|
time.sleep(2)
|
||||||
|
|
||||||
|
try:
|
||||||
|
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
|
||||||
|
except RuntimeError as e:
|
||||||
|
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
# 检查endpoint是否合法
|
||||||
|
try:
|
||||||
|
from .bridge_all import model_info
|
||||||
|
endpoint = verify_endpoint(model_info[llm_kwargs['llm_model']]['endpoint'])
|
||||||
|
except:
|
||||||
|
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||||
|
chatbot[-1] = (inputs, tb_str)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="Endpoint不满足要求") # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
history.append(inputs); history.append("")
|
||||||
|
|
||||||
|
retry = 0
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
# make a POST request to the API endpoint, stream=True
|
||||||
|
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
||||||
|
json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
|
||||||
|
except:
|
||||||
|
retry += 1
|
||||||
|
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
|
||||||
|
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
|
||||||
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
|
|
||||||
|
gpt_replying_buffer = ""
|
||||||
|
|
||||||
|
is_head_of_the_stream = True
|
||||||
|
if stream:
|
||||||
|
stream_response = response.iter_lines()
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
chunk = next(stream_response)
|
||||||
|
except StopIteration:
|
||||||
|
# 非Cohere官方接口的出现这样的报错,Cohere和API2D不会走这里
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
error_msg = chunk_decoded
|
||||||
|
# 其他情况,直接返回报错
|
||||||
|
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="非Cohere官方接口返回了错误:" + chunk.decode()) # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
# 提前读取一些信息 (用于判断异常)
|
||||||
|
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
|
||||||
|
|
||||||
|
if chunkjson:
|
||||||
|
try:
|
||||||
|
if chunkjson['event_type'] == 'stream-start':
|
||||||
|
continue
|
||||||
|
if chunkjson['event_type'] == 'text-generation':
|
||||||
|
gpt_replying_buffer = gpt_replying_buffer + chunkjson["text"]
|
||||||
|
history[-1] = gpt_replying_buffer
|
||||||
|
chatbot[-1] = (history[-2], history[-1])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="正常") # 刷新界面
|
||||||
|
if chunkjson['event_type'] == 'stream-end':
|
||||||
|
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
||||||
|
history[-1] = gpt_replying_buffer
|
||||||
|
chatbot[-1] = (history[-2], history[-1])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="正常") # 刷新界面
|
||||||
|
break
|
||||||
|
except Exception as e:
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
|
||||||
|
chunk = get_full_error(chunk, stream_response)
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
error_msg = chunk_decoded
|
||||||
|
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
|
||||||
|
print(error_msg)
|
||||||
|
return
|
||||||
|
|
||||||
|
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):
|
||||||
|
from .bridge_all import model_info
|
||||||
|
Cohere_website = ' 请登录Cohere查看详情 https://platform.Cohere.com/signup'
|
||||||
|
if "reduce the length" in error_msg:
|
||||||
|
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
|
||||||
|
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
|
||||||
|
max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
|
||||||
|
elif "does not exist" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], f"[Local Message] Model {llm_kwargs['llm_model']} does not exist. 模型不存在, 或者您没有获得体验资格.")
|
||||||
|
elif "Incorrect API key" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. Cohere以提供了不正确的API_KEY为由, 拒绝服务. " + Cohere_website)
|
||||||
|
elif "exceeded your current quota" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] You exceeded your current quota. Cohere以账户额度不足为由, 拒绝服务." + Cohere_website)
|
||||||
|
elif "account is not active" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Your account is not active. Cohere以账户失效为由, 拒绝服务." + Cohere_website)
|
||||||
|
elif "associated with a deactivated account" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] You are associated with a deactivated account. Cohere以账户失效为由, 拒绝服务." + Cohere_website)
|
||||||
|
elif "API key has been deactivated" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] API key has been deactivated. Cohere以账户失效为由, 拒绝服务." + Cohere_website)
|
||||||
|
elif "bad forward key" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Bad forward key. API2D账户额度不足.")
|
||||||
|
elif "Not enough point" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Not enough point. API2D账户点数不足.")
|
||||||
|
else:
|
||||||
|
from toolbox import regular_txt_to_markdown
|
||||||
|
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||||
|
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}")
|
||||||
|
return chatbot, history
|
||||||
|
|
||||||
|
def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||||
|
"""
|
||||||
|
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
|
||||||
|
"""
|
||||||
|
# if not is_any_api_key(llm_kwargs['api_key']):
|
||||||
|
# raise AssertionError("你提供了错误的API_KEY。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。")
|
||||||
|
|
||||||
|
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
|
||||||
|
|
||||||
|
headers = {
|
||||||
|
"Content-Type": "application/json",
|
||||||
|
"Authorization": f"Bearer {api_key}"
|
||||||
|
}
|
||||||
|
if API_ORG.startswith('org-'): headers.update({"Cohere-Organization": API_ORG})
|
||||||
|
if llm_kwargs['llm_model'].startswith('azure-'):
|
||||||
|
headers.update({"api-key": api_key})
|
||||||
|
if llm_kwargs['llm_model'] in AZURE_CFG_ARRAY.keys():
|
||||||
|
azure_api_key_unshared = AZURE_CFG_ARRAY[llm_kwargs['llm_model']]["AZURE_API_KEY"]
|
||||||
|
headers.update({"api-key": azure_api_key_unshared})
|
||||||
|
|
||||||
|
conversation_cnt = len(history) // 2
|
||||||
|
|
||||||
|
messages = [{"role": "SYSTEM", "message": system_prompt}]
|
||||||
|
if conversation_cnt:
|
||||||
|
for index in range(0, 2*conversation_cnt, 2):
|
||||||
|
what_i_have_asked = {}
|
||||||
|
what_i_have_asked["role"] = "USER"
|
||||||
|
what_i_have_asked["message"] = history[index]
|
||||||
|
what_gpt_answer = {}
|
||||||
|
what_gpt_answer["role"] = "CHATBOT"
|
||||||
|
what_gpt_answer["message"] = history[index+1]
|
||||||
|
if what_i_have_asked["message"] != "":
|
||||||
|
if what_gpt_answer["message"] == "": continue
|
||||||
|
if what_gpt_answer["message"] == timeout_bot_msg: continue
|
||||||
|
messages.append(what_i_have_asked)
|
||||||
|
messages.append(what_gpt_answer)
|
||||||
|
else:
|
||||||
|
messages[-1]['message'] = what_gpt_answer['message']
|
||||||
|
|
||||||
|
model = llm_kwargs['llm_model']
|
||||||
|
if model.startswith('cohere-'): model = model[len('cohere-'):]
|
||||||
|
payload = {
|
||||||
|
"model": model,
|
||||||
|
"message": inputs,
|
||||||
|
"chat_history": messages,
|
||||||
|
"temperature": llm_kwargs['temperature'], # 1.0,
|
||||||
|
"top_p": llm_kwargs['top_p'], # 1.0,
|
||||||
|
"n": 1,
|
||||||
|
"stream": stream,
|
||||||
|
"presence_penalty": 0,
|
||||||
|
"frequency_penalty": 0,
|
||||||
|
}
|
||||||
|
|
||||||
|
return headers,payload
|
||||||
|
|
||||||
|
|
||||||
@@ -7,7 +7,8 @@ import re
|
|||||||
import os
|
import os
|
||||||
import time
|
import time
|
||||||
from request_llms.com_google import GoogleChatInit
|
from request_llms.com_google import GoogleChatInit
|
||||||
from toolbox import get_conf, update_ui, update_ui_lastest_msg, have_any_recent_upload_image_files, trimmed_format_exc
|
from toolbox import ChatBotWithCookies
|
||||||
|
from toolbox import get_conf, update_ui, update_ui_lastest_msg, have_any_recent_upload_image_files, trimmed_format_exc, log_chat
|
||||||
|
|
||||||
proxies, TIMEOUT_SECONDS, MAX_RETRY = get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY')
|
proxies, TIMEOUT_SECONDS, MAX_RETRY = get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY')
|
||||||
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
||||||
@@ -20,7 +21,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
if get_conf("GEMINI_API_KEY") == "":
|
if get_conf("GEMINI_API_KEY") == "":
|
||||||
raise ValueError(f"请配置 GEMINI_API_KEY。")
|
raise ValueError(f"请配置 GEMINI_API_KEY。")
|
||||||
|
|
||||||
genai = GoogleChatInit()
|
genai = GoogleChatInit(llm_kwargs)
|
||||||
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
||||||
gpt_replying_buffer = ''
|
gpt_replying_buffer = ''
|
||||||
stream_response = genai.generate_chat(inputs, llm_kwargs, history, sys_prompt)
|
stream_response = genai.generate_chat(inputs, llm_kwargs, history, sys_prompt)
|
||||||
@@ -44,7 +45,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
return gpt_replying_buffer
|
return gpt_replying_buffer
|
||||||
|
|
||||||
|
|
||||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream=True, additional_fn=None):
|
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
|
||||||
|
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||||
# 检查API_KEY
|
# 检查API_KEY
|
||||||
if get_conf("GEMINI_API_KEY") == "":
|
if get_conf("GEMINI_API_KEY") == "":
|
||||||
yield from update_ui_lastest_msg(f"请配置 GEMINI_API_KEY。", chatbot=chatbot, history=history, delay=0)
|
yield from update_ui_lastest_msg(f"请配置 GEMINI_API_KEY。", chatbot=chatbot, history=history, delay=0)
|
||||||
@@ -57,6 +59,10 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
|
|
||||||
if "vision" in llm_kwargs["llm_model"]:
|
if "vision" in llm_kwargs["llm_model"]:
|
||||||
have_recent_file, image_paths = have_any_recent_upload_image_files(chatbot)
|
have_recent_file, image_paths = have_any_recent_upload_image_files(chatbot)
|
||||||
|
if not have_recent_file:
|
||||||
|
chatbot.append((inputs, "没有检测到任何近期上传的图像文件,请上传jpg格式的图片,此外,请注意拓展名需要小写"))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待图片") # 刷新界面
|
||||||
|
return
|
||||||
def make_media_input(inputs, image_paths):
|
def make_media_input(inputs, image_paths):
|
||||||
for image_path in image_paths:
|
for image_path in image_paths:
|
||||||
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'
|
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'
|
||||||
@@ -66,7 +72,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
|
|
||||||
chatbot.append((inputs, ""))
|
chatbot.append((inputs, ""))
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
genai = GoogleChatInit()
|
genai = GoogleChatInit(llm_kwargs)
|
||||||
retry = 0
|
retry = 0
|
||||||
while True:
|
while True:
|
||||||
try:
|
try:
|
||||||
@@ -93,6 +99,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
gpt_replying_buffer += paraphrase['text'] # 使用 json 解析库进行处理
|
gpt_replying_buffer += paraphrase['text'] # 使用 json 解析库进行处理
|
||||||
chatbot[-1] = (inputs, gpt_replying_buffer)
|
chatbot[-1] = (inputs, gpt_replying_buffer)
|
||||||
history[-1] = gpt_replying_buffer
|
history[-1] = gpt_replying_buffer
|
||||||
|
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
if error_match:
|
if error_match:
|
||||||
history = history[-2] # 错误的不纳入对话
|
history = history[-2] # 错误的不纳入对话
|
||||||
|
|||||||
@@ -1,10 +1,10 @@
|
|||||||
|
|
||||||
from transformers import AutoModel, AutoTokenizer
|
|
||||||
import time
|
import time
|
||||||
import threading
|
import threading
|
||||||
import importlib
|
import importlib
|
||||||
from toolbox import update_ui, get_conf
|
from toolbox import update_ui, get_conf
|
||||||
from multiprocessing import Process, Pipe
|
from multiprocessing import Process, Pipe
|
||||||
|
from transformers import AutoModel, AutoTokenizer
|
||||||
|
|
||||||
load_message = "jittorllms尚未加载,加载需要一段时间。注意,请避免混用多种jittor模型,否则可能导致显存溢出而造成卡顿,取决于`config.py`的配置,jittorllms消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
load_message = "jittorllms尚未加载,加载需要一段时间。注意,请避免混用多种jittor模型,否则可能导致显存溢出而造成卡顿,取决于`config.py`的配置,jittorllms消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
||||||
|
|
||||||
@@ -106,7 +106,8 @@ class GetGLMHandle(Process):
|
|||||||
global llama_glm_handle
|
global llama_glm_handle
|
||||||
llama_glm_handle = None
|
llama_glm_handle = None
|
||||||
#################################################################################
|
#################################################################################
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
|
observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
多线程方法
|
多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
|
|||||||
@@ -1,10 +1,10 @@
|
|||||||
|
|
||||||
from transformers import AutoModel, AutoTokenizer
|
|
||||||
import time
|
import time
|
||||||
import threading
|
import threading
|
||||||
import importlib
|
import importlib
|
||||||
from toolbox import update_ui, get_conf
|
from toolbox import update_ui, get_conf
|
||||||
from multiprocessing import Process, Pipe
|
from multiprocessing import Process, Pipe
|
||||||
|
from transformers import AutoModel, AutoTokenizer
|
||||||
|
|
||||||
load_message = "jittorllms尚未加载,加载需要一段时间。注意,请避免混用多种jittor模型,否则可能导致显存溢出而造成卡顿,取决于`config.py`的配置,jittorllms消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
load_message = "jittorllms尚未加载,加载需要一段时间。注意,请避免混用多种jittor模型,否则可能导致显存溢出而造成卡顿,取决于`config.py`的配置,jittorllms消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
||||||
|
|
||||||
@@ -106,7 +106,8 @@ class GetGLMHandle(Process):
|
|||||||
global pangu_glm_handle
|
global pangu_glm_handle
|
||||||
pangu_glm_handle = None
|
pangu_glm_handle = None
|
||||||
#################################################################################
|
#################################################################################
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
|
observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
多线程方法
|
多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
|
|||||||
@@ -106,7 +106,8 @@ class GetGLMHandle(Process):
|
|||||||
global rwkv_glm_handle
|
global rwkv_glm_handle
|
||||||
rwkv_glm_handle = None
|
rwkv_glm_handle = None
|
||||||
#################################################################################
|
#################################################################################
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
|
observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
多线程方法
|
多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
|
|||||||
197
request_llms/bridge_moonshot.py
Normal file
197
request_llms/bridge_moonshot.py
Normal file
@@ -0,0 +1,197 @@
|
|||||||
|
# encoding: utf-8
|
||||||
|
# @Time : 2024/3/3
|
||||||
|
# @Author : Spike
|
||||||
|
# @Descr :
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
import time
|
||||||
|
import logging
|
||||||
|
|
||||||
|
from toolbox import get_conf, update_ui, log_chat
|
||||||
|
from toolbox import ChatBotWithCookies
|
||||||
|
|
||||||
|
import requests
|
||||||
|
|
||||||
|
|
||||||
|
class MoonShotInit:
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
self.llm_model = None
|
||||||
|
self.url = 'https://api.moonshot.cn/v1/chat/completions'
|
||||||
|
self.api_key = get_conf('MOONSHOT_API_KEY')
|
||||||
|
|
||||||
|
def __converter_file(self, user_input: str):
|
||||||
|
what_ask = []
|
||||||
|
for f in user_input.splitlines():
|
||||||
|
if os.path.exists(f):
|
||||||
|
files = []
|
||||||
|
if os.path.isdir(f):
|
||||||
|
file_list = os.listdir(f)
|
||||||
|
files.extend([os.path.join(f, file) for file in file_list])
|
||||||
|
else:
|
||||||
|
files.append(f)
|
||||||
|
for file in files:
|
||||||
|
if file.split('.')[-1] in ['pdf']:
|
||||||
|
with open(file, 'r') as fp:
|
||||||
|
from crazy_functions.crazy_utils import read_and_clean_pdf_text
|
||||||
|
file_content, _ = read_and_clean_pdf_text(fp)
|
||||||
|
what_ask.append({"role": "system", "content": file_content})
|
||||||
|
return what_ask
|
||||||
|
|
||||||
|
def __converter_user(self, user_input: str):
|
||||||
|
what_i_ask_now = {"role": "user", "content": user_input}
|
||||||
|
return what_i_ask_now
|
||||||
|
|
||||||
|
def __conversation_history(self, history):
|
||||||
|
conversation_cnt = len(history) // 2
|
||||||
|
messages = []
|
||||||
|
if conversation_cnt:
|
||||||
|
for index in range(0, 2 * conversation_cnt, 2):
|
||||||
|
what_i_have_asked = {
|
||||||
|
"role": "user",
|
||||||
|
"content": str(history[index])
|
||||||
|
}
|
||||||
|
what_gpt_answer = {
|
||||||
|
"role": "assistant",
|
||||||
|
"content": str(history[index + 1])
|
||||||
|
}
|
||||||
|
if what_i_have_asked["content"] != "":
|
||||||
|
if what_gpt_answer["content"] == "": continue
|
||||||
|
messages.append(what_i_have_asked)
|
||||||
|
messages.append(what_gpt_answer)
|
||||||
|
else:
|
||||||
|
messages[-1]['content'] = what_gpt_answer['content']
|
||||||
|
return messages
|
||||||
|
|
||||||
|
def _analysis_content(self, chuck):
|
||||||
|
chunk_decoded = chuck.decode("utf-8")
|
||||||
|
chunk_json = {}
|
||||||
|
content = ""
|
||||||
|
try:
|
||||||
|
chunk_json = json.loads(chunk_decoded[6:])
|
||||||
|
content = chunk_json['choices'][0]["delta"].get("content", "")
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
return chunk_decoded, chunk_json, content
|
||||||
|
|
||||||
|
def generate_payload(self, inputs, llm_kwargs, history, system_prompt, stream):
|
||||||
|
self.llm_model = llm_kwargs['llm_model']
|
||||||
|
llm_kwargs.update({'use-key': self.api_key})
|
||||||
|
messages = []
|
||||||
|
if system_prompt:
|
||||||
|
messages.append({"role": "system", "content": system_prompt})
|
||||||
|
messages.extend(self.__converter_file(inputs))
|
||||||
|
for i in history[0::2]: # 历史文件继续上传
|
||||||
|
messages.extend(self.__converter_file(i))
|
||||||
|
messages.extend(self.__conversation_history(history))
|
||||||
|
messages.append(self.__converter_user(inputs))
|
||||||
|
header = {
|
||||||
|
"Content-Type": "application/json",
|
||||||
|
"Authorization": f"Bearer {self.api_key}",
|
||||||
|
}
|
||||||
|
payload = {
|
||||||
|
"model": self.llm_model,
|
||||||
|
"messages": messages,
|
||||||
|
"temperature": llm_kwargs.get('temperature', 0.3), # 1.0,
|
||||||
|
"top_p": llm_kwargs.get('top_p', 1.0), # 1.0,
|
||||||
|
"n": llm_kwargs.get('n_choices', 1),
|
||||||
|
"stream": stream
|
||||||
|
}
|
||||||
|
return payload, header
|
||||||
|
|
||||||
|
def generate_messages(self, inputs, llm_kwargs, history, system_prompt, stream):
|
||||||
|
payload, headers = self.generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
|
||||||
|
response = requests.post(self.url, headers=headers, json=payload, stream=stream)
|
||||||
|
|
||||||
|
chunk_content = ""
|
||||||
|
gpt_bro_result = ""
|
||||||
|
for chuck in response.iter_lines():
|
||||||
|
chunk_decoded, check_json, content = self._analysis_content(chuck)
|
||||||
|
chunk_content += chunk_decoded
|
||||||
|
if content:
|
||||||
|
gpt_bro_result += content
|
||||||
|
yield content, gpt_bro_result, ''
|
||||||
|
else:
|
||||||
|
error_msg = msg_handle_error(llm_kwargs, chunk_decoded)
|
||||||
|
if error_msg:
|
||||||
|
yield error_msg, gpt_bro_result, error_msg
|
||||||
|
break
|
||||||
|
|
||||||
|
|
||||||
|
def msg_handle_error(llm_kwargs, chunk_decoded):
|
||||||
|
use_ket = llm_kwargs.get('use-key', '')
|
||||||
|
api_key_encryption = use_ket[:8] + '****' + use_ket[-5:]
|
||||||
|
openai_website = f' 请登录OpenAI查看详情 https://platform.openai.com/signup api-key: `{api_key_encryption}`'
|
||||||
|
error_msg = ''
|
||||||
|
if "does not exist" in chunk_decoded:
|
||||||
|
error_msg = f"[Local Message] Model {llm_kwargs['llm_model']} does not exist. 模型不存在, 或者您没有获得体验资格."
|
||||||
|
elif "Incorrect API key" in chunk_decoded:
|
||||||
|
error_msg = f"[Local Message] Incorrect API key. OpenAI以提供了不正确的API_KEY为由, 拒绝服务." + openai_website
|
||||||
|
elif "exceeded your current quota" in chunk_decoded:
|
||||||
|
error_msg = "[Local Message] You exceeded your current quota. OpenAI以账户额度不足为由, 拒绝服务." + openai_website
|
||||||
|
elif "account is not active" in chunk_decoded:
|
||||||
|
error_msg = "[Local Message] Your account is not active. OpenAI以账户失效为由, 拒绝服务." + openai_website
|
||||||
|
elif "associated with a deactivated account" in chunk_decoded:
|
||||||
|
error_msg = "[Local Message] You are associated with a deactivated account. OpenAI以账户失效为由, 拒绝服务." + openai_website
|
||||||
|
elif "API key has been deactivated" in chunk_decoded:
|
||||||
|
error_msg = "[Local Message] API key has been deactivated. OpenAI以账户失效为由, 拒绝服务." + openai_website
|
||||||
|
elif "bad forward key" in chunk_decoded:
|
||||||
|
error_msg = "[Local Message] Bad forward key. API2D账户额度不足."
|
||||||
|
elif "Not enough point" in chunk_decoded:
|
||||||
|
error_msg = "[Local Message] Not enough point. API2D账户点数不足."
|
||||||
|
elif 'error' in str(chunk_decoded).lower():
|
||||||
|
try:
|
||||||
|
error_msg = json.dumps(json.loads(chunk_decoded[:6]), indent=4, ensure_ascii=False)
|
||||||
|
except:
|
||||||
|
error_msg = chunk_decoded
|
||||||
|
return error_msg
|
||||||
|
|
||||||
|
|
||||||
|
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
|
||||||
|
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||||
|
chatbot.append([inputs, ""])
|
||||||
|
|
||||||
|
if additional_fn is not None:
|
||||||
|
from core_functional import handle_core_functionality
|
||||||
|
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||||
|
gpt_bro_init = MoonShotInit()
|
||||||
|
history.extend([inputs, ''])
|
||||||
|
stream_response = gpt_bro_init.generate_messages(inputs, llm_kwargs, history, system_prompt, stream)
|
||||||
|
for content, gpt_bro_result, error_bro_meg in stream_response:
|
||||||
|
chatbot[-1] = [inputs, gpt_bro_result]
|
||||||
|
history[-1] = gpt_bro_result
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
if error_bro_meg:
|
||||||
|
chatbot[-1] = [inputs, error_bro_meg]
|
||||||
|
history = history[:-2]
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
break
|
||||||
|
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_bro_result)
|
||||||
|
|
||||||
|
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None,
|
||||||
|
console_slience=False):
|
||||||
|
gpt_bro_init = MoonShotInit()
|
||||||
|
watch_dog_patience = 60 # 看门狗的耐心, 设置10秒即可
|
||||||
|
stream_response = gpt_bro_init.generate_messages(inputs, llm_kwargs, history, sys_prompt, True)
|
||||||
|
moonshot_bro_result = ''
|
||||||
|
for content, moonshot_bro_result, error_bro_meg in stream_response:
|
||||||
|
moonshot_bro_result = moonshot_bro_result
|
||||||
|
if error_bro_meg:
|
||||||
|
if len(observe_window) >= 3:
|
||||||
|
observe_window[2] = error_bro_meg
|
||||||
|
return f'{moonshot_bro_result} 对话错误'
|
||||||
|
# 观测窗
|
||||||
|
if len(observe_window) >= 1:
|
||||||
|
observe_window[0] = moonshot_bro_result
|
||||||
|
if len(observe_window) >= 2:
|
||||||
|
if (time.time() - observe_window[1]) > watch_dog_patience:
|
||||||
|
observe_window[2] = "请求超时,程序终止。"
|
||||||
|
raise RuntimeError(f"{moonshot_bro_result} 程序终止。")
|
||||||
|
return moonshot_bro_result
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
moon_ai = MoonShotInit()
|
||||||
|
for g in moon_ai.generate_messages('hello', {'llm_model': 'moonshot-v1-8k'},
|
||||||
|
[], '', True):
|
||||||
|
print(g)
|
||||||
@@ -171,7 +171,8 @@ class GetGLMHandle(Process):
|
|||||||
global moss_handle
|
global moss_handle
|
||||||
moss_handle = None
|
moss_handle = None
|
||||||
#################################################################################
|
#################################################################################
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
|
observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
多线程方法
|
多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
|
|||||||
272
request_llms/bridge_ollama.py
Normal file
272
request_llms/bridge_ollama.py
Normal file
@@ -0,0 +1,272 @@
|
|||||||
|
# 借鉴自同目录下的bridge_chatgpt.py
|
||||||
|
|
||||||
|
"""
|
||||||
|
该文件中主要包含三个函数
|
||||||
|
|
||||||
|
不具备多线程能力的函数:
|
||||||
|
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
|
||||||
|
|
||||||
|
具备多线程调用能力的函数
|
||||||
|
2. predict_no_ui_long_connection:支持多线程
|
||||||
|
"""
|
||||||
|
|
||||||
|
import json
|
||||||
|
import time
|
||||||
|
import gradio as gr
|
||||||
|
import logging
|
||||||
|
import traceback
|
||||||
|
import requests
|
||||||
|
import importlib
|
||||||
|
import random
|
||||||
|
|
||||||
|
# config_private.py放自己的秘密如API和代理网址
|
||||||
|
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||||
|
from toolbox import get_conf, update_ui, trimmed_format_exc, is_the_upload_folder, read_one_api_model_name
|
||||||
|
proxies, TIMEOUT_SECONDS, MAX_RETRY = get_conf(
|
||||||
|
"proxies", "TIMEOUT_SECONDS", "MAX_RETRY"
|
||||||
|
)
|
||||||
|
|
||||||
|
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
||||||
|
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
|
||||||
|
|
||||||
|
def get_full_error(chunk, stream_response):
|
||||||
|
"""
|
||||||
|
获取完整的从Openai返回的报错
|
||||||
|
"""
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
chunk += next(stream_response)
|
||||||
|
except:
|
||||||
|
break
|
||||||
|
return chunk
|
||||||
|
|
||||||
|
def decode_chunk(chunk):
|
||||||
|
# 提前读取一些信息(用于判断异常)
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
chunkjson = None
|
||||||
|
is_last_chunk = False
|
||||||
|
try:
|
||||||
|
chunkjson = json.loads(chunk_decoded)
|
||||||
|
is_last_chunk = chunkjson.get("done", False)
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
return chunk_decoded, chunkjson, is_last_chunk
|
||||||
|
|
||||||
|
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
||||||
|
"""
|
||||||
|
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||||
|
inputs:
|
||||||
|
是本次问询的输入
|
||||||
|
sys_prompt:
|
||||||
|
系统静默prompt
|
||||||
|
llm_kwargs:
|
||||||
|
chatGPT的内部调优参数
|
||||||
|
history:
|
||||||
|
是之前的对话列表
|
||||||
|
observe_window = None:
|
||||||
|
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
||||||
|
"""
|
||||||
|
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
||||||
|
if inputs == "": inputs = "空空如也的输入栏"
|
||||||
|
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
|
||||||
|
retry = 0
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
# make a POST request to the API endpoint, stream=False
|
||||||
|
from .bridge_all import model_info
|
||||||
|
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||||
|
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
||||||
|
json=payload, stream=True, timeout=TIMEOUT_SECONDS); break
|
||||||
|
except requests.exceptions.ReadTimeout as e:
|
||||||
|
retry += 1
|
||||||
|
traceback.print_exc()
|
||||||
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
|
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||||
|
|
||||||
|
stream_response = response.iter_lines()
|
||||||
|
result = ''
|
||||||
|
while True:
|
||||||
|
try: chunk = next(stream_response)
|
||||||
|
except StopIteration:
|
||||||
|
break
|
||||||
|
except requests.exceptions.ConnectionError:
|
||||||
|
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||||
|
chunk_decoded, chunkjson, is_last_chunk = decode_chunk(chunk)
|
||||||
|
if chunk:
|
||||||
|
try:
|
||||||
|
if is_last_chunk:
|
||||||
|
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
||||||
|
logging.info(f'[response] {result}')
|
||||||
|
break
|
||||||
|
result += chunkjson['message']["content"]
|
||||||
|
if not console_slience: print(chunkjson['message']["content"], end='')
|
||||||
|
if observe_window is not None:
|
||||||
|
# 观测窗,把已经获取的数据显示出去
|
||||||
|
if len(observe_window) >= 1:
|
||||||
|
observe_window[0] += chunkjson['message']["content"]
|
||||||
|
# 看门狗,如果超过期限没有喂狗,则终止
|
||||||
|
if len(observe_window) >= 2:
|
||||||
|
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||||
|
raise RuntimeError("用户取消了程序。")
|
||||||
|
except Exception as e:
|
||||||
|
chunk = get_full_error(chunk, stream_response)
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
error_msg = chunk_decoded
|
||||||
|
print(error_msg)
|
||||||
|
raise RuntimeError("Json解析不合常规")
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||||
|
"""
|
||||||
|
发送至chatGPT,流式获取输出。
|
||||||
|
用于基础的对话功能。
|
||||||
|
inputs 是本次问询的输入
|
||||||
|
top_p, temperature是chatGPT的内部调优参数
|
||||||
|
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||||
|
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||||
|
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||||
|
"""
|
||||||
|
if inputs == "": inputs = "空空如也的输入栏"
|
||||||
|
user_input = inputs
|
||||||
|
if additional_fn is not None:
|
||||||
|
from core_functional import handle_core_functionality
|
||||||
|
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||||
|
|
||||||
|
raw_input = inputs
|
||||||
|
logging.info(f'[raw_input] {raw_input}')
|
||||||
|
chatbot.append((inputs, ""))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||||
|
|
||||||
|
# check mis-behavior
|
||||||
|
if is_the_upload_folder(user_input):
|
||||||
|
chatbot[-1] = (inputs, f"[Local Message] 检测到操作错误!当您上传文档之后,需点击“**函数插件区**”按钮进行处理,请勿点击“提交”按钮或者“基础功能区”按钮。")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="正常") # 刷新界面
|
||||||
|
time.sleep(2)
|
||||||
|
|
||||||
|
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
|
||||||
|
|
||||||
|
from .bridge_all import model_info
|
||||||
|
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||||
|
|
||||||
|
history.append(inputs); history.append("")
|
||||||
|
|
||||||
|
retry = 0
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
# make a POST request to the API endpoint, stream=True
|
||||||
|
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
||||||
|
json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
|
||||||
|
except:
|
||||||
|
retry += 1
|
||||||
|
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
|
||||||
|
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
|
||||||
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
|
|
||||||
|
gpt_replying_buffer = ""
|
||||||
|
|
||||||
|
if stream:
|
||||||
|
stream_response = response.iter_lines()
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
chunk = next(stream_response)
|
||||||
|
except StopIteration:
|
||||||
|
break
|
||||||
|
except requests.exceptions.ConnectionError:
|
||||||
|
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||||
|
|
||||||
|
# 提前读取一些信息 (用于判断异常)
|
||||||
|
chunk_decoded, chunkjson, is_last_chunk = decode_chunk(chunk)
|
||||||
|
|
||||||
|
if chunk:
|
||||||
|
try:
|
||||||
|
if is_last_chunk:
|
||||||
|
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
||||||
|
logging.info(f'[response] {gpt_replying_buffer}')
|
||||||
|
break
|
||||||
|
# 处理数据流的主体
|
||||||
|
try:
|
||||||
|
status_text = f"finish_reason: {chunkjson['error'].get('message', 'null')}"
|
||||||
|
except:
|
||||||
|
status_text = "finish_reason: null"
|
||||||
|
gpt_replying_buffer = gpt_replying_buffer + chunkjson['message']["content"]
|
||||||
|
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
|
||||||
|
history[-1] = gpt_replying_buffer
|
||||||
|
chatbot[-1] = (history[-2], history[-1])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
|
||||||
|
except Exception as e:
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
|
||||||
|
chunk = get_full_error(chunk, stream_response)
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
error_msg = chunk_decoded
|
||||||
|
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
|
||||||
|
print(error_msg)
|
||||||
|
return
|
||||||
|
|
||||||
|
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):
|
||||||
|
from .bridge_all import model_info
|
||||||
|
if "bad_request" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] 已经超过了模型的最大上下文或是模型格式错误,请尝试削减单次输入的文本量。")
|
||||||
|
elif "authentication_error" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. 请确保API key有效。")
|
||||||
|
elif "not_found" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], f"[Local Message] {llm_kwargs['llm_model']} 无效,请确保使用小写的模型名称。")
|
||||||
|
elif "rate_limit" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] 遇到了控制请求速率限制,请一分钟后重试。")
|
||||||
|
elif "system_busy" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] 系统繁忙,请一分钟后重试。")
|
||||||
|
else:
|
||||||
|
from toolbox import regular_txt_to_markdown
|
||||||
|
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||||
|
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}")
|
||||||
|
return chatbot, history
|
||||||
|
|
||||||
|
def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||||
|
"""
|
||||||
|
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
|
||||||
|
"""
|
||||||
|
|
||||||
|
headers = {
|
||||||
|
"Content-Type": "application/json",
|
||||||
|
}
|
||||||
|
|
||||||
|
conversation_cnt = len(history) // 2
|
||||||
|
|
||||||
|
messages = [{"role": "system", "content": system_prompt}]
|
||||||
|
if conversation_cnt:
|
||||||
|
for index in range(0, 2*conversation_cnt, 2):
|
||||||
|
what_i_have_asked = {}
|
||||||
|
what_i_have_asked["role"] = "user"
|
||||||
|
what_i_have_asked["content"] = history[index]
|
||||||
|
what_gpt_answer = {}
|
||||||
|
what_gpt_answer["role"] = "assistant"
|
||||||
|
what_gpt_answer["content"] = history[index+1]
|
||||||
|
if what_i_have_asked["content"] != "":
|
||||||
|
if what_gpt_answer["content"] == "": continue
|
||||||
|
if what_gpt_answer["content"] == timeout_bot_msg: continue
|
||||||
|
messages.append(what_i_have_asked)
|
||||||
|
messages.append(what_gpt_answer)
|
||||||
|
else:
|
||||||
|
messages[-1]['content'] = what_gpt_answer['content']
|
||||||
|
|
||||||
|
what_i_ask_now = {}
|
||||||
|
what_i_ask_now["role"] = "user"
|
||||||
|
what_i_ask_now["content"] = inputs
|
||||||
|
messages.append(what_i_ask_now)
|
||||||
|
model = llm_kwargs['llm_model']
|
||||||
|
if llm_kwargs['llm_model'].startswith('ollama-'):
|
||||||
|
model = llm_kwargs['llm_model'][len('ollama-'):]
|
||||||
|
model, _ = read_one_api_model_name(model)
|
||||||
|
options = {"temperature": llm_kwargs['temperature']}
|
||||||
|
payload = {
|
||||||
|
"model": model,
|
||||||
|
"messages": messages,
|
||||||
|
"options": options,
|
||||||
|
}
|
||||||
|
try:
|
||||||
|
print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]} ..........")
|
||||||
|
except:
|
||||||
|
print('输入中可能存在乱码。')
|
||||||
|
return headers,payload
|
||||||
@@ -82,6 +82,9 @@ def generate_from_baidu_qianfan(inputs, llm_kwargs, history, system_prompt):
|
|||||||
"ERNIE-Bot": "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions",
|
"ERNIE-Bot": "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions",
|
||||||
"ERNIE-Bot-turbo": "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/eb-instant",
|
"ERNIE-Bot-turbo": "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/eb-instant",
|
||||||
"BLOOMZ-7B": "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/bloomz_7b1",
|
"BLOOMZ-7B": "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/bloomz_7b1",
|
||||||
|
"ERNIE-Speed-128K": "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-speed-128k",
|
||||||
|
"ERNIE-Speed-8K": "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie_speed",
|
||||||
|
"ERNIE-Lite-8K": "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-lite-8k",
|
||||||
|
|
||||||
"Llama-2-70B-Chat": "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/llama_2_70b",
|
"Llama-2-70B-Chat": "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/llama_2_70b",
|
||||||
"Llama-2-13B-Chat": "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/llama_2_13b",
|
"Llama-2-13B-Chat": "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/llama_2_13b",
|
||||||
@@ -117,7 +120,8 @@ def generate_from_baidu_qianfan(inputs, llm_kwargs, history, system_prompt):
|
|||||||
raise RuntimeError(dec['error_msg'])
|
raise RuntimeError(dec['error_msg'])
|
||||||
|
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
|
observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
⭐多线程方法
|
⭐多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
@@ -146,9 +150,12 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
yield from update_ui(chatbot=chatbot, history=history)
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
# 开始接收回复
|
# 开始接收回复
|
||||||
try:
|
try:
|
||||||
|
response = f"[Local Message] 等待{model_name}响应中 ..."
|
||||||
for response in generate_from_baidu_qianfan(inputs, llm_kwargs, history, system_prompt):
|
for response in generate_from_baidu_qianfan(inputs, llm_kwargs, history, system_prompt):
|
||||||
chatbot[-1] = (inputs, response)
|
chatbot[-1] = (inputs, response)
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
history.extend([inputs, response])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
except ConnectionAbortedError as e:
|
except ConnectionAbortedError as e:
|
||||||
from .bridge_all import model_info
|
from .bridge_all import model_info
|
||||||
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
|
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
|
||||||
@@ -157,10 +164,8 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="异常") # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg="异常") # 刷新界面
|
||||||
return
|
return
|
||||||
|
except RuntimeError as e:
|
||||||
# 总结输出
|
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||||
response = f"[Local Message] {model_name}响应异常 ..."
|
chatbot[-1] = (chatbot[-1][0], tb_str)
|
||||||
if response == f"[Local Message] 等待{model_name}响应中 ...":
|
yield from update_ui(chatbot=chatbot, history=history, msg="异常") # 刷新界面
|
||||||
response = f"[Local Message] {model_name}响应异常 ..."
|
return
|
||||||
history.extend([inputs, response])
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
|
||||||
|
|||||||
@@ -5,7 +5,8 @@ from toolbox import check_packages, report_exception
|
|||||||
|
|
||||||
model_name = 'Qwen'
|
model_name = 'Qwen'
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
|
observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
⭐多线程方法
|
⭐多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
@@ -47,10 +48,13 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
if additional_fn is not None:
|
if additional_fn is not None:
|
||||||
from core_functional import handle_core_functionality
|
from core_functional import handle_core_functionality
|
||||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||||
|
chatbot[-1] = (inputs, "")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
|
||||||
# 开始接收回复
|
# 开始接收回复
|
||||||
from .com_qwenapi import QwenRequestInstance
|
from .com_qwenapi import QwenRequestInstance
|
||||||
sri = QwenRequestInstance()
|
sri = QwenRequestInstance()
|
||||||
|
response = f"[Local Message] 等待{model_name}响应中 ..."
|
||||||
for response in sri.generate(inputs, llm_kwargs, history, system_prompt):
|
for response in sri.generate(inputs, llm_kwargs, history, system_prompt):
|
||||||
chatbot[-1] = (inputs, response)
|
chatbot[-1] = (inputs, response)
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
|||||||
@@ -9,7 +9,8 @@ def validate_key():
|
|||||||
if YUNQUE_SECRET_KEY == '': return False
|
if YUNQUE_SECRET_KEY == '': return False
|
||||||
return True
|
return True
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
|
observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
⭐ 多线程方法
|
⭐ 多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
@@ -56,6 +57,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
# 开始接收回复
|
# 开始接收回复
|
||||||
from .com_skylark2api import YUNQUERequestInstance
|
from .com_skylark2api import YUNQUERequestInstance
|
||||||
sri = YUNQUERequestInstance()
|
sri = YUNQUERequestInstance()
|
||||||
|
response = f"[Local Message] 等待{model_name}响应中 ..."
|
||||||
for response in sri.generate(inputs, llm_kwargs, history, system_prompt):
|
for response in sri.generate(inputs, llm_kwargs, history, system_prompt):
|
||||||
chatbot[-1] = (inputs, response)
|
chatbot[-1] = (inputs, response)
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
|||||||
@@ -13,7 +13,8 @@ def validate_key():
|
|||||||
return False
|
return False
|
||||||
return True
|
return True
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
|
observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
⭐多线程方法
|
⭐多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
@@ -52,6 +53,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
# 开始接收回复
|
# 开始接收回复
|
||||||
from .com_sparkapi import SparkRequestInstance
|
from .com_sparkapi import SparkRequestInstance
|
||||||
sri = SparkRequestInstance()
|
sri = SparkRequestInstance()
|
||||||
|
response = f"[Local Message] 等待{model_name}响应中 ..."
|
||||||
for response in sri.generate(inputs, llm_kwargs, history, system_prompt, use_image_api=True):
|
for response in sri.generate(inputs, llm_kwargs, history, system_prompt, use_image_api=True):
|
||||||
chatbot[-1] = (inputs, response)
|
chatbot[-1] = (inputs, response)
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
|||||||
@@ -1,16 +1,24 @@
|
|||||||
|
|
||||||
import time
|
import time
|
||||||
from toolbox import update_ui, get_conf, update_ui_lastest_msg
|
import os
|
||||||
from toolbox import check_packages, report_exception
|
from toolbox import update_ui, get_conf, update_ui_lastest_msg, log_chat
|
||||||
|
from toolbox import check_packages, report_exception, have_any_recent_upload_image_files
|
||||||
|
from toolbox import ChatBotWithCookies
|
||||||
|
|
||||||
model_name = '智谱AI大模型'
|
model_name = '智谱AI大模型'
|
||||||
|
zhipuai_default_model = 'glm-4'
|
||||||
|
|
||||||
def validate_key():
|
def validate_key():
|
||||||
ZHIPUAI_API_KEY = get_conf("ZHIPUAI_API_KEY")
|
ZHIPUAI_API_KEY = get_conf("ZHIPUAI_API_KEY")
|
||||||
if ZHIPUAI_API_KEY == '': return False
|
if ZHIPUAI_API_KEY == '': return False
|
||||||
return True
|
return True
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def make_media_input(inputs, image_paths):
|
||||||
|
for image_path in image_paths:
|
||||||
|
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'
|
||||||
|
return inputs
|
||||||
|
|
||||||
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
|
observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
⭐多线程方法
|
⭐多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
@@ -18,31 +26,38 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
watch_dog_patience = 5
|
watch_dog_patience = 5
|
||||||
response = ""
|
response = ""
|
||||||
|
|
||||||
|
if llm_kwargs["llm_model"] == "zhipuai":
|
||||||
|
llm_kwargs["llm_model"] = zhipuai_default_model
|
||||||
|
|
||||||
if validate_key() is False:
|
if validate_key() is False:
|
||||||
raise RuntimeError('请配置ZHIPUAI_API_KEY')
|
raise RuntimeError('请配置ZHIPUAI_API_KEY')
|
||||||
|
|
||||||
from .com_zhipuapi import ZhipuRequestInstance
|
# 开始接收回复
|
||||||
sri = ZhipuRequestInstance()
|
from .com_zhipuglm import ZhipuChatInit
|
||||||
for response in sri.generate(inputs, llm_kwargs, history, sys_prompt):
|
zhipu_bro_init = ZhipuChatInit()
|
||||||
|
for chunk, response in zhipu_bro_init.generate_chat(inputs, llm_kwargs, history, sys_prompt):
|
||||||
if len(observe_window) >= 1:
|
if len(observe_window) >= 1:
|
||||||
observe_window[0] = response
|
observe_window[0] = response
|
||||||
if len(observe_window) >= 2:
|
if len(observe_window) >= 2:
|
||||||
if (time.time()-observe_window[1]) > watch_dog_patience: raise RuntimeError("程序终止。")
|
if (time.time() - observe_window[1]) > watch_dog_patience:
|
||||||
|
raise RuntimeError("程序终止。")
|
||||||
return response
|
return response
|
||||||
|
|
||||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
|
||||||
|
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
|
||||||
|
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||||
"""
|
"""
|
||||||
⭐单线程方法
|
⭐单线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
"""
|
"""
|
||||||
chatbot.append((inputs, ""))
|
chatbot.append([inputs, ""])
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
|
||||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||||
try:
|
try:
|
||||||
check_packages(["zhipuai"])
|
check_packages(["zhipuai"])
|
||||||
except:
|
except:
|
||||||
yield from update_ui_lastest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install zhipuai==1.0.7```。",
|
yield from update_ui_lastest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install --upgrade zhipuai```。",
|
||||||
chatbot=chatbot, history=history, delay=0)
|
chatbot=chatbot, history=history, delay=0)
|
||||||
return
|
return
|
||||||
|
|
||||||
@@ -53,16 +68,34 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
if additional_fn is not None:
|
if additional_fn is not None:
|
||||||
from core_functional import handle_core_functionality
|
from core_functional import handle_core_functionality
|
||||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||||
|
chatbot[-1] = [inputs, ""]
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
|
||||||
|
if llm_kwargs["llm_model"] == "zhipuai":
|
||||||
|
llm_kwargs["llm_model"] = zhipuai_default_model
|
||||||
|
|
||||||
|
if llm_kwargs["llm_model"] in ["glm-4v"]:
|
||||||
|
if (len(inputs) + sum(len(temp) for temp in history) + 1047) > 2000:
|
||||||
|
chatbot.append((inputs, "上下文长度超过glm-4v上限2000tokens,注意图片大约占用1,047个tokens"))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
return
|
||||||
|
have_recent_file, image_paths = have_any_recent_upload_image_files(chatbot)
|
||||||
|
if not have_recent_file:
|
||||||
|
chatbot.append((inputs, "没有检测到任何近期上传的图像文件,请上传jpg格式的图片,此外,请注意拓展名需要小写"))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待图片") # 刷新界面
|
||||||
|
return
|
||||||
|
if have_recent_file:
|
||||||
|
inputs = make_media_input(inputs, image_paths)
|
||||||
|
chatbot[-1] = [inputs, ""]
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
|
||||||
|
|
||||||
# 开始接收回复
|
# 开始接收回复
|
||||||
from .com_zhipuapi import ZhipuRequestInstance
|
from .com_zhipuglm import ZhipuChatInit
|
||||||
sri = ZhipuRequestInstance()
|
zhipu_bro_init = ZhipuChatInit()
|
||||||
for response in sri.generate(inputs, llm_kwargs, history, system_prompt):
|
for chunk, response in zhipu_bro_init.generate_chat(inputs, llm_kwargs, history, system_prompt):
|
||||||
chatbot[-1] = (inputs, response)
|
chatbot[-1] = [inputs, response]
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
|
||||||
# 总结输出
|
|
||||||
if response == f"[Local Message] 等待{model_name}响应中 ...":
|
|
||||||
response = f"[Local Message] {model_name}响应异常 ..."
|
|
||||||
history.extend([inputs, response])
|
history.extend([inputs, response])
|
||||||
|
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=response)
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
@@ -7,7 +7,7 @@ import os
|
|||||||
import re
|
import re
|
||||||
import requests
|
import requests
|
||||||
from typing import List, Dict, Tuple
|
from typing import List, Dict, Tuple
|
||||||
from toolbox import get_conf, encode_image, get_pictures_list
|
from toolbox import get_conf, encode_image, get_pictures_list, to_markdown_tabs
|
||||||
|
|
||||||
proxies, TIMEOUT_SECONDS = get_conf("proxies", "TIMEOUT_SECONDS")
|
proxies, TIMEOUT_SECONDS = get_conf("proxies", "TIMEOUT_SECONDS")
|
||||||
|
|
||||||
@@ -112,38 +112,12 @@ def html_local_img(__file, layout="left", max_width=None, max_height=None, md=Tr
|
|||||||
return a
|
return a
|
||||||
|
|
||||||
|
|
||||||
def to_markdown_tabs(head: list, tabs: list, alignment=":---:", column=False):
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
head: 表头:[]
|
|
||||||
tabs: 表值:[[列1], [列2], [列3], [列4]]
|
|
||||||
alignment: :--- 左对齐, :---: 居中对齐, ---: 右对齐
|
|
||||||
column: True to keep data in columns, False to keep data in rows (default).
|
|
||||||
Returns:
|
|
||||||
A string representation of the markdown table.
|
|
||||||
"""
|
|
||||||
if column:
|
|
||||||
transposed_tabs = list(map(list, zip(*tabs)))
|
|
||||||
else:
|
|
||||||
transposed_tabs = tabs
|
|
||||||
# Find the maximum length among the columns
|
|
||||||
max_len = max(len(column) for column in transposed_tabs)
|
|
||||||
|
|
||||||
tab_format = "| %s "
|
|
||||||
tabs_list = "".join([tab_format % i for i in head]) + "|\n"
|
|
||||||
tabs_list += "".join([tab_format % alignment for i in head]) + "|\n"
|
|
||||||
|
|
||||||
for i in range(max_len):
|
|
||||||
row_data = [tab[i] if i < len(tab) else "" for tab in transposed_tabs]
|
|
||||||
row_data = file_manifest_filter_html(row_data, filter_=None)
|
|
||||||
tabs_list += "".join([tab_format % i for i in row_data]) + "|\n"
|
|
||||||
|
|
||||||
return tabs_list
|
|
||||||
|
|
||||||
|
|
||||||
class GoogleChatInit:
|
class GoogleChatInit:
|
||||||
def __init__(self):
|
def __init__(self, llm_kwargs):
|
||||||
self.url_gemini = "https://generativelanguage.googleapis.com/v1beta/models/%m:streamGenerateContent?key=%k"
|
from .bridge_all import model_info
|
||||||
|
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||||
|
self.url_gemini = endpoint + "/%m:streamGenerateContent?key=%k"
|
||||||
|
|
||||||
def generate_chat(self, inputs, llm_kwargs, history, system_prompt):
|
def generate_chat(self, inputs, llm_kwargs, history, system_prompt):
|
||||||
headers, payload = self.generate_message_payload(
|
headers, payload = self.generate_message_payload(
|
||||||
|
|||||||
@@ -48,6 +48,10 @@ class QwenRequestInstance():
|
|||||||
for response in responses:
|
for response in responses:
|
||||||
if response.status_code == HTTPStatus.OK:
|
if response.status_code == HTTPStatus.OK:
|
||||||
if response.output.choices[0].finish_reason == 'stop':
|
if response.output.choices[0].finish_reason == 'stop':
|
||||||
|
try:
|
||||||
|
self.result_buf += response.output.choices[0].message.content
|
||||||
|
except:
|
||||||
|
pass
|
||||||
yield self.result_buf
|
yield self.result_buf
|
||||||
break
|
break
|
||||||
elif response.output.choices[0].finish_reason == 'length':
|
elif response.output.choices[0].finish_reason == 'length':
|
||||||
|
|||||||
@@ -65,6 +65,7 @@ class SparkRequestInstance():
|
|||||||
self.gpt_url = "ws://spark-api.xf-yun.com/v1.1/chat"
|
self.gpt_url = "ws://spark-api.xf-yun.com/v1.1/chat"
|
||||||
self.gpt_url_v2 = "ws://spark-api.xf-yun.com/v2.1/chat"
|
self.gpt_url_v2 = "ws://spark-api.xf-yun.com/v2.1/chat"
|
||||||
self.gpt_url_v3 = "ws://spark-api.xf-yun.com/v3.1/chat"
|
self.gpt_url_v3 = "ws://spark-api.xf-yun.com/v3.1/chat"
|
||||||
|
self.gpt_url_v35 = "wss://spark-api.xf-yun.com/v3.5/chat"
|
||||||
self.gpt_url_img = "wss://spark-api.cn-huabei-1.xf-yun.com/v2.1/image"
|
self.gpt_url_img = "wss://spark-api.cn-huabei-1.xf-yun.com/v2.1/image"
|
||||||
|
|
||||||
self.time_to_yield_event = threading.Event()
|
self.time_to_yield_event = threading.Event()
|
||||||
@@ -91,6 +92,8 @@ class SparkRequestInstance():
|
|||||||
gpt_url = self.gpt_url_v2
|
gpt_url = self.gpt_url_v2
|
||||||
elif llm_kwargs['llm_model'] == 'sparkv3':
|
elif llm_kwargs['llm_model'] == 'sparkv3':
|
||||||
gpt_url = self.gpt_url_v3
|
gpt_url = self.gpt_url_v3
|
||||||
|
elif llm_kwargs['llm_model'] == 'sparkv3.5':
|
||||||
|
gpt_url = self.gpt_url_v35
|
||||||
else:
|
else:
|
||||||
gpt_url = self.gpt_url
|
gpt_url = self.gpt_url
|
||||||
file_manifest = []
|
file_manifest = []
|
||||||
@@ -190,6 +193,7 @@ def gen_params(appid, inputs, llm_kwargs, history, system_prompt, file_manifest)
|
|||||||
"spark": "general",
|
"spark": "general",
|
||||||
"sparkv2": "generalv2",
|
"sparkv2": "generalv2",
|
||||||
"sparkv3": "generalv3",
|
"sparkv3": "generalv3",
|
||||||
|
"sparkv3.5": "generalv3.5",
|
||||||
}
|
}
|
||||||
domains_select = domains[llm_kwargs['llm_model']]
|
domains_select = domains[llm_kwargs['llm_model']]
|
||||||
if file_manifest: domains_select = 'image'
|
if file_manifest: domains_select = 'image'
|
||||||
|
|||||||
@@ -1,70 +0,0 @@
|
|||||||
from toolbox import get_conf
|
|
||||||
import threading
|
|
||||||
import logging
|
|
||||||
|
|
||||||
timeout_bot_msg = '[Local Message] Request timeout. Network error.'
|
|
||||||
|
|
||||||
class ZhipuRequestInstance():
|
|
||||||
def __init__(self):
|
|
||||||
|
|
||||||
self.time_to_yield_event = threading.Event()
|
|
||||||
self.time_to_exit_event = threading.Event()
|
|
||||||
|
|
||||||
self.result_buf = ""
|
|
||||||
|
|
||||||
def generate(self, inputs, llm_kwargs, history, system_prompt):
|
|
||||||
# import _thread as thread
|
|
||||||
import zhipuai
|
|
||||||
ZHIPUAI_API_KEY, ZHIPUAI_MODEL = get_conf("ZHIPUAI_API_KEY", "ZHIPUAI_MODEL")
|
|
||||||
zhipuai.api_key = ZHIPUAI_API_KEY
|
|
||||||
self.result_buf = ""
|
|
||||||
response = zhipuai.model_api.sse_invoke(
|
|
||||||
model=ZHIPUAI_MODEL,
|
|
||||||
prompt=generate_message_payload(inputs, llm_kwargs, history, system_prompt),
|
|
||||||
top_p=llm_kwargs['top_p']*0.7, # 智谱的API抽风,手动*0.7给做个线性变换
|
|
||||||
temperature=llm_kwargs['temperature']*0.95, # 智谱的API抽风,手动*0.7给做个线性变换
|
|
||||||
)
|
|
||||||
for event in response.events():
|
|
||||||
if event.event == "add":
|
|
||||||
# if self.result_buf == "" and event.data.startswith(" "):
|
|
||||||
# event.data = event.data.lstrip(" ") # 每次智谱为啥都要带个空格开头呢?
|
|
||||||
self.result_buf += event.data
|
|
||||||
yield self.result_buf
|
|
||||||
elif event.event == "error" or event.event == "interrupted":
|
|
||||||
raise RuntimeError("Unknown error:" + event.data)
|
|
||||||
elif event.event == "finish":
|
|
||||||
yield self.result_buf
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
raise RuntimeError("Unknown error:" + str(event))
|
|
||||||
if self.result_buf == "":
|
|
||||||
yield "智谱没有返回任何数据, 请检查ZHIPUAI_API_KEY和ZHIPUAI_MODEL是否填写正确."
|
|
||||||
logging.info(f'[raw_input] {inputs}')
|
|
||||||
logging.info(f'[response] {self.result_buf}')
|
|
||||||
return self.result_buf
|
|
||||||
|
|
||||||
def generate_message_payload(inputs, llm_kwargs, history, system_prompt):
|
|
||||||
conversation_cnt = len(history) // 2
|
|
||||||
messages = [{"role": "user", "content": system_prompt}, {"role": "assistant", "content": "Certainly!"}]
|
|
||||||
if conversation_cnt:
|
|
||||||
for index in range(0, 2*conversation_cnt, 2):
|
|
||||||
what_i_have_asked = {}
|
|
||||||
what_i_have_asked["role"] = "user"
|
|
||||||
what_i_have_asked["content"] = history[index]
|
|
||||||
what_gpt_answer = {}
|
|
||||||
what_gpt_answer["role"] = "assistant"
|
|
||||||
what_gpt_answer["content"] = history[index+1]
|
|
||||||
if what_i_have_asked["content"] != "":
|
|
||||||
if what_gpt_answer["content"] == "":
|
|
||||||
continue
|
|
||||||
if what_gpt_answer["content"] == timeout_bot_msg:
|
|
||||||
continue
|
|
||||||
messages.append(what_i_have_asked)
|
|
||||||
messages.append(what_gpt_answer)
|
|
||||||
else:
|
|
||||||
messages[-1]['content'] = what_gpt_answer['content']
|
|
||||||
what_i_ask_now = {}
|
|
||||||
what_i_ask_now["role"] = "user"
|
|
||||||
what_i_ask_now["content"] = inputs
|
|
||||||
messages.append(what_i_ask_now)
|
|
||||||
return messages
|
|
||||||
135
request_llms/com_zhipuglm.py
Normal file
135
request_llms/com_zhipuglm.py
Normal file
@@ -0,0 +1,135 @@
|
|||||||
|
# encoding: utf-8
|
||||||
|
# @Time : 2024/1/22
|
||||||
|
# @Author : Kilig947 & binary husky
|
||||||
|
# @Descr : 兼容最新的智谱Ai
|
||||||
|
from toolbox import get_conf
|
||||||
|
from zhipuai import ZhipuAI
|
||||||
|
from toolbox import get_conf, encode_image, get_pictures_list
|
||||||
|
import logging, os
|
||||||
|
|
||||||
|
|
||||||
|
def input_encode_handler(inputs:str, llm_kwargs:dict):
|
||||||
|
if llm_kwargs["most_recent_uploaded"].get("path"):
|
||||||
|
image_paths = get_pictures_list(llm_kwargs["most_recent_uploaded"]["path"])
|
||||||
|
md_encode = []
|
||||||
|
for md_path in image_paths:
|
||||||
|
type_ = os.path.splitext(md_path)[1].replace(".", "")
|
||||||
|
type_ = "jpeg" if type_ == "jpg" else type_
|
||||||
|
md_encode.append({"data": encode_image(md_path), "type": type_})
|
||||||
|
return inputs, md_encode
|
||||||
|
|
||||||
|
|
||||||
|
class ZhipuChatInit:
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
ZHIPUAI_API_KEY, ZHIPUAI_MODEL = get_conf("ZHIPUAI_API_KEY", "ZHIPUAI_MODEL")
|
||||||
|
if len(ZHIPUAI_MODEL) > 0:
|
||||||
|
logging.error('ZHIPUAI_MODEL 配置项选项已经弃用,请在LLM_MODEL中配置')
|
||||||
|
self.zhipu_bro = ZhipuAI(api_key=ZHIPUAI_API_KEY)
|
||||||
|
self.model = ''
|
||||||
|
|
||||||
|
def __conversation_user(self, user_input: str, llm_kwargs:dict):
|
||||||
|
if self.model not in ["glm-4v"]:
|
||||||
|
return {"role": "user", "content": user_input}
|
||||||
|
else:
|
||||||
|
input_, encode_img = input_encode_handler(user_input, llm_kwargs=llm_kwargs)
|
||||||
|
what_i_have_asked = {"role": "user", "content": []}
|
||||||
|
what_i_have_asked['content'].append({"type": 'text', "text": user_input})
|
||||||
|
if encode_img:
|
||||||
|
if len(encode_img) > 1:
|
||||||
|
logging.warning("glm-4v只支持一张图片,将只取第一张图片进行处理")
|
||||||
|
print("glm-4v只支持一张图片,将只取第一张图片进行处理")
|
||||||
|
img_d = {"type": "image_url",
|
||||||
|
"image_url": {
|
||||||
|
"url": encode_img[0]['data']
|
||||||
|
}
|
||||||
|
}
|
||||||
|
what_i_have_asked['content'].append(img_d)
|
||||||
|
return what_i_have_asked
|
||||||
|
|
||||||
|
def __conversation_history(self, history:list, llm_kwargs:dict):
|
||||||
|
messages = []
|
||||||
|
conversation_cnt = len(history) // 2
|
||||||
|
if conversation_cnt:
|
||||||
|
for index in range(0, 2 * conversation_cnt, 2):
|
||||||
|
what_i_have_asked = self.__conversation_user(history[index], llm_kwargs)
|
||||||
|
what_gpt_answer = {
|
||||||
|
"role": "assistant",
|
||||||
|
"content": history[index + 1]
|
||||||
|
}
|
||||||
|
messages.append(what_i_have_asked)
|
||||||
|
messages.append(what_gpt_answer)
|
||||||
|
return messages
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def preprocess_param(param, default=0.95, min_val=0.01, max_val=0.99):
|
||||||
|
"""预处理参数,保证其在允许范围内,并处理精度问题"""
|
||||||
|
try:
|
||||||
|
param = float(param)
|
||||||
|
except ValueError:
|
||||||
|
return default
|
||||||
|
|
||||||
|
if param <= min_val:
|
||||||
|
return min_val
|
||||||
|
elif param >= max_val:
|
||||||
|
return max_val
|
||||||
|
else:
|
||||||
|
return round(param, 2) # 可挑选精度,目前是两位小数
|
||||||
|
|
||||||
|
def __conversation_message_payload(self, inputs:str, llm_kwargs:dict, history:list, system_prompt:str):
|
||||||
|
messages = []
|
||||||
|
if system_prompt:
|
||||||
|
messages.append({"role": "system", "content": system_prompt})
|
||||||
|
self.model = llm_kwargs['llm_model']
|
||||||
|
messages.extend(self.__conversation_history(history, llm_kwargs)) # 处理 history
|
||||||
|
if inputs.strip() == "": # 处理空输入导致报错的问题 https://github.com/binary-husky/gpt_academic/issues/1640 提示 {"error":{"code":"1214","message":"messages[1]:content和tool_calls 字段不能同时为空"}
|
||||||
|
inputs = "." # 空格、换行、空字符串都会报错,所以用最没有意义的一个点代替
|
||||||
|
messages.append(self.__conversation_user(inputs, llm_kwargs)) # 处理用户对话
|
||||||
|
"""
|
||||||
|
采样温度,控制输出的随机性,必须为正数
|
||||||
|
取值范围是:(0.0, 1.0),不能等于 0,默认值为 0.95,
|
||||||
|
值越大,会使输出更随机,更具创造性;
|
||||||
|
值越小,输出会更加稳定或确定
|
||||||
|
建议您根据应用场景调整 top_p 或 temperature 参数,但不要同时调整两个参数
|
||||||
|
"""
|
||||||
|
temperature = self.preprocess_param(
|
||||||
|
param=llm_kwargs.get('temperature', 0.95),
|
||||||
|
default=0.95,
|
||||||
|
min_val=0.01,
|
||||||
|
max_val=0.99
|
||||||
|
)
|
||||||
|
"""
|
||||||
|
用温度取样的另一种方法,称为核取样
|
||||||
|
取值范围是:(0.0, 1.0) 开区间,
|
||||||
|
不能等于 0 或 1,默认值为 0.7
|
||||||
|
模型考虑具有 top_p 概率质量 tokens 的结果
|
||||||
|
例如:0.1 意味着模型解码器只考虑从前 10% 的概率的候选集中取 tokens
|
||||||
|
建议您根据应用场景调整 top_p 或 temperature 参数,
|
||||||
|
但不要同时调整两个参数
|
||||||
|
"""
|
||||||
|
top_p = self.preprocess_param(
|
||||||
|
param=llm_kwargs.get('top_p', 0.70),
|
||||||
|
default=0.70,
|
||||||
|
min_val=0.01,
|
||||||
|
max_val=0.99
|
||||||
|
)
|
||||||
|
response = self.zhipu_bro.chat.completions.create(
|
||||||
|
model=self.model, messages=messages, stream=True,
|
||||||
|
temperature=temperature,
|
||||||
|
top_p=top_p,
|
||||||
|
max_tokens=llm_kwargs.get('max_tokens', 1024 * 4),
|
||||||
|
)
|
||||||
|
return response
|
||||||
|
|
||||||
|
def generate_chat(self, inputs:str, llm_kwargs:dict, history:list, system_prompt:str):
|
||||||
|
self.model = llm_kwargs['llm_model']
|
||||||
|
response = self.__conversation_message_payload(inputs, llm_kwargs, history, system_prompt)
|
||||||
|
bro_results = ''
|
||||||
|
for chunk in response:
|
||||||
|
bro_results += chunk.choices[0].delta.content
|
||||||
|
yield chunk.choices[0].delta.content, bro_results
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
zhipu = ZhipuChatInit()
|
||||||
|
zhipu.generate_chat('你好', {'llm_model': 'glm-4'}, [], '你是WPSAi')
|
||||||
@@ -1,6 +1,7 @@
|
|||||||
import time
|
import time
|
||||||
import threading
|
import threading
|
||||||
from toolbox import update_ui, Singleton
|
from toolbox import update_ui, Singleton
|
||||||
|
from toolbox import ChatBotWithCookies
|
||||||
from multiprocessing import Process, Pipe
|
from multiprocessing import Process, Pipe
|
||||||
from contextlib import redirect_stdout
|
from contextlib import redirect_stdout
|
||||||
from request_llms.queued_pipe import create_queue_pipe
|
from request_llms.queued_pipe import create_queue_pipe
|
||||||
@@ -214,7 +215,7 @@ class LocalLLMHandle(Process):
|
|||||||
def get_local_llm_predict_fns(LLMSingletonClass, model_name, history_format='classic'):
|
def get_local_llm_predict_fns(LLMSingletonClass, model_name, history_format='classic'):
|
||||||
load_message = f"{model_name}尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,{model_name}消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
load_message = f"{model_name}尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,{model_name}消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
refer to request_llms/bridge_all.py
|
refer to request_llms/bridge_all.py
|
||||||
"""
|
"""
|
||||||
@@ -260,7 +261,8 @@ def get_local_llm_predict_fns(LLMSingletonClass, model_name, history_format='cla
|
|||||||
raise RuntimeError("程序终止。")
|
raise RuntimeError("程序终止。")
|
||||||
return response
|
return response
|
||||||
|
|
||||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream=True, additional_fn=None):
|
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
|
||||||
|
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||||
"""
|
"""
|
||||||
refer to request_llms/bridge_all.py
|
refer to request_llms/bridge_all.py
|
||||||
"""
|
"""
|
||||||
|
|||||||
401
request_llms/oai_std_model_template.py
Normal file
401
request_llms/oai_std_model_template.py
Normal file
@@ -0,0 +1,401 @@
|
|||||||
|
import json
|
||||||
|
import time
|
||||||
|
import logging
|
||||||
|
import traceback
|
||||||
|
import requests
|
||||||
|
|
||||||
|
# config_private.py放自己的秘密如API和代理网址
|
||||||
|
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||||
|
from toolbox import (
|
||||||
|
get_conf,
|
||||||
|
update_ui,
|
||||||
|
is_the_upload_folder,
|
||||||
|
)
|
||||||
|
|
||||||
|
proxies, TIMEOUT_SECONDS, MAX_RETRY = get_conf(
|
||||||
|
"proxies", "TIMEOUT_SECONDS", "MAX_RETRY"
|
||||||
|
)
|
||||||
|
|
||||||
|
timeout_bot_msg = (
|
||||||
|
"[Local Message] Request timeout. Network error. Please check proxy settings in config.py."
|
||||||
|
+ "网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_full_error(chunk, stream_response):
|
||||||
|
"""
|
||||||
|
尝试获取完整的错误信息
|
||||||
|
"""
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
chunk += next(stream_response)
|
||||||
|
except:
|
||||||
|
break
|
||||||
|
return chunk
|
||||||
|
|
||||||
|
|
||||||
|
def decode_chunk(chunk):
|
||||||
|
"""
|
||||||
|
用于解读"content"和"finish_reason"的内容
|
||||||
|
"""
|
||||||
|
chunk = chunk.decode()
|
||||||
|
respose = ""
|
||||||
|
finish_reason = "False"
|
||||||
|
try:
|
||||||
|
chunk = json.loads(chunk[6:])
|
||||||
|
except:
|
||||||
|
finish_reason = "JSON_ERROR"
|
||||||
|
# 错误处理部分
|
||||||
|
if "error" in chunk:
|
||||||
|
respose = "API_ERROR"
|
||||||
|
try:
|
||||||
|
chunk = json.loads(chunk)
|
||||||
|
finish_reason = chunk["error"]["code"]
|
||||||
|
except:
|
||||||
|
finish_reason = "API_ERROR"
|
||||||
|
return respose, finish_reason
|
||||||
|
|
||||||
|
try:
|
||||||
|
respose = chunk["choices"][0]["delta"]["content"]
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
try:
|
||||||
|
finish_reason = chunk["choices"][0]["finish_reason"]
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
return respose, finish_reason
|
||||||
|
|
||||||
|
|
||||||
|
def generate_message(input, model, key, history, max_output_token, system_prompt, temperature):
|
||||||
|
"""
|
||||||
|
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
|
||||||
|
"""
|
||||||
|
api_key = f"Bearer {key}"
|
||||||
|
|
||||||
|
headers = {"Content-Type": "application/json", "Authorization": api_key}
|
||||||
|
|
||||||
|
conversation_cnt = len(history) // 2
|
||||||
|
|
||||||
|
messages = [{"role": "system", "content": system_prompt}]
|
||||||
|
if conversation_cnt:
|
||||||
|
for index in range(0, 2 * conversation_cnt, 2):
|
||||||
|
what_i_have_asked = {}
|
||||||
|
what_i_have_asked["role"] = "user"
|
||||||
|
what_i_have_asked["content"] = history[index]
|
||||||
|
what_gpt_answer = {}
|
||||||
|
what_gpt_answer["role"] = "assistant"
|
||||||
|
what_gpt_answer["content"] = history[index + 1]
|
||||||
|
if what_i_have_asked["content"] != "":
|
||||||
|
if what_gpt_answer["content"] == "":
|
||||||
|
continue
|
||||||
|
if what_gpt_answer["content"] == timeout_bot_msg:
|
||||||
|
continue
|
||||||
|
messages.append(what_i_have_asked)
|
||||||
|
messages.append(what_gpt_answer)
|
||||||
|
else:
|
||||||
|
messages[-1]["content"] = what_gpt_answer["content"]
|
||||||
|
what_i_ask_now = {}
|
||||||
|
what_i_ask_now["role"] = "user"
|
||||||
|
what_i_ask_now["content"] = input
|
||||||
|
messages.append(what_i_ask_now)
|
||||||
|
playload = {
|
||||||
|
"model": model,
|
||||||
|
"messages": messages,
|
||||||
|
"temperature": temperature,
|
||||||
|
"stream": True,
|
||||||
|
"max_tokens": max_output_token,
|
||||||
|
}
|
||||||
|
try:
|
||||||
|
print(f" {model} : {conversation_cnt} : {input[:100]} ..........")
|
||||||
|
except:
|
||||||
|
print("输入中可能存在乱码。")
|
||||||
|
return headers, playload
|
||||||
|
|
||||||
|
|
||||||
|
def get_predict_function(
|
||||||
|
api_key_conf_name,
|
||||||
|
max_output_token,
|
||||||
|
disable_proxy = False
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
为openai格式的API生成响应函数,其中传入参数:
|
||||||
|
api_key_conf_name:
|
||||||
|
`config.py`中此模型的APIKEY的名字,例如"YIMODEL_API_KEY"
|
||||||
|
max_output_token:
|
||||||
|
每次请求的最大token数量,例如对于01万物的yi-34b-chat-200k,其最大请求数为4096
|
||||||
|
⚠️请不要与模型的最大token数量相混淆。
|
||||||
|
disable_proxy:
|
||||||
|
是否使用代理,True为不使用,False为使用。
|
||||||
|
"""
|
||||||
|
|
||||||
|
APIKEY = get_conf(api_key_conf_name)
|
||||||
|
|
||||||
|
def predict_no_ui_long_connection(
|
||||||
|
inputs,
|
||||||
|
llm_kwargs,
|
||||||
|
history=[],
|
||||||
|
sys_prompt="",
|
||||||
|
observe_window=None,
|
||||||
|
console_slience=False,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||||
|
inputs:
|
||||||
|
是本次问询的输入
|
||||||
|
sys_prompt:
|
||||||
|
系统静默prompt
|
||||||
|
llm_kwargs:
|
||||||
|
chatGPT的内部调优参数
|
||||||
|
history:
|
||||||
|
是之前的对话列表
|
||||||
|
observe_window = None:
|
||||||
|
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
||||||
|
"""
|
||||||
|
watch_dog_patience = 5 # 看门狗的耐心,设置5秒不准咬人(咬的也不是人
|
||||||
|
if len(APIKEY) == 0:
|
||||||
|
raise RuntimeError(f"APIKEY为空,请检查配置文件的{APIKEY}")
|
||||||
|
if inputs == "":
|
||||||
|
inputs = "你好👋"
|
||||||
|
headers, playload = generate_message(
|
||||||
|
input=inputs,
|
||||||
|
model=llm_kwargs["llm_model"],
|
||||||
|
key=APIKEY,
|
||||||
|
history=history,
|
||||||
|
max_output_token=max_output_token,
|
||||||
|
system_prompt=sys_prompt,
|
||||||
|
temperature=llm_kwargs["temperature"],
|
||||||
|
)
|
||||||
|
retry = 0
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
from .bridge_all import model_info
|
||||||
|
|
||||||
|
endpoint = model_info[llm_kwargs["llm_model"]]["endpoint"]
|
||||||
|
if not disable_proxy:
|
||||||
|
response = requests.post(
|
||||||
|
endpoint,
|
||||||
|
headers=headers,
|
||||||
|
proxies=proxies,
|
||||||
|
json=playload,
|
||||||
|
stream=True,
|
||||||
|
timeout=TIMEOUT_SECONDS,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
response = requests.post(
|
||||||
|
endpoint,
|
||||||
|
headers=headers,
|
||||||
|
json=playload,
|
||||||
|
stream=True,
|
||||||
|
timeout=TIMEOUT_SECONDS,
|
||||||
|
)
|
||||||
|
break
|
||||||
|
except:
|
||||||
|
retry += 1
|
||||||
|
traceback.print_exc()
|
||||||
|
if retry > MAX_RETRY:
|
||||||
|
raise TimeoutError
|
||||||
|
if MAX_RETRY != 0:
|
||||||
|
print(f"请求超时,正在重试 ({retry}/{MAX_RETRY}) ……")
|
||||||
|
|
||||||
|
stream_response = response.iter_lines()
|
||||||
|
result = ""
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
chunk = next(stream_response)
|
||||||
|
except StopIteration:
|
||||||
|
break
|
||||||
|
except requests.exceptions.ConnectionError:
|
||||||
|
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||||
|
response_text, finish_reason = decode_chunk(chunk)
|
||||||
|
# 返回的数据流第一次为空,继续等待
|
||||||
|
if response_text == "" and finish_reason != "False":
|
||||||
|
continue
|
||||||
|
if response_text == "API_ERROR" and (
|
||||||
|
finish_reason != "False" or finish_reason != "stop"
|
||||||
|
):
|
||||||
|
chunk = get_full_error(chunk, stream_response)
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
print(chunk_decoded)
|
||||||
|
raise RuntimeError(
|
||||||
|
f"API异常,请检测终端输出。可能的原因是:{finish_reason}"
|
||||||
|
)
|
||||||
|
if chunk:
|
||||||
|
try:
|
||||||
|
if finish_reason == "stop":
|
||||||
|
logging.info(f"[response] {result}")
|
||||||
|
break
|
||||||
|
result += response_text
|
||||||
|
if not console_slience:
|
||||||
|
print(response_text, end="")
|
||||||
|
if observe_window is not None:
|
||||||
|
# 观测窗,把已经获取的数据显示出去
|
||||||
|
if len(observe_window) >= 1:
|
||||||
|
observe_window[0] += response_text
|
||||||
|
# 看门狗,如果超过期限没有喂狗,则终止
|
||||||
|
if len(observe_window) >= 2:
|
||||||
|
if (time.time() - observe_window[1]) > watch_dog_patience:
|
||||||
|
raise RuntimeError("用户取消了程序。")
|
||||||
|
except Exception as e:
|
||||||
|
chunk = get_full_error(chunk, stream_response)
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
error_msg = chunk_decoded
|
||||||
|
print(error_msg)
|
||||||
|
raise RuntimeError("Json解析不合常规")
|
||||||
|
return result
|
||||||
|
|
||||||
|
def predict(
|
||||||
|
inputs,
|
||||||
|
llm_kwargs,
|
||||||
|
plugin_kwargs,
|
||||||
|
chatbot,
|
||||||
|
history=[],
|
||||||
|
system_prompt="",
|
||||||
|
stream=True,
|
||||||
|
additional_fn=None,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
发送至chatGPT,流式获取输出。
|
||||||
|
用于基础的对话功能。
|
||||||
|
inputs 是本次问询的输入
|
||||||
|
top_p, temperature是chatGPT的内部调优参数
|
||||||
|
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||||
|
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||||
|
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||||
|
"""
|
||||||
|
if len(APIKEY) == 0:
|
||||||
|
raise RuntimeError(f"APIKEY为空,请检查配置文件的{APIKEY}")
|
||||||
|
if inputs == "":
|
||||||
|
inputs = "你好👋"
|
||||||
|
if additional_fn is not None:
|
||||||
|
from core_functional import handle_core_functionality
|
||||||
|
|
||||||
|
inputs, history = handle_core_functionality(
|
||||||
|
additional_fn, inputs, history, chatbot
|
||||||
|
)
|
||||||
|
logging.info(f"[raw_input] {inputs}")
|
||||||
|
chatbot.append((inputs, ""))
|
||||||
|
yield from update_ui(
|
||||||
|
chatbot=chatbot, history=history, msg="等待响应"
|
||||||
|
) # 刷新界面
|
||||||
|
|
||||||
|
# check mis-behavior
|
||||||
|
if is_the_upload_folder(inputs):
|
||||||
|
chatbot[-1] = (
|
||||||
|
inputs,
|
||||||
|
f"[Local Message] 检测到操作错误!当您上传文档之后,需点击“**函数插件区**”按钮进行处理,请勿点击“提交”按钮或者“基础功能区”按钮。",
|
||||||
|
)
|
||||||
|
yield from update_ui(
|
||||||
|
chatbot=chatbot, history=history, msg="正常"
|
||||||
|
) # 刷新界面
|
||||||
|
time.sleep(2)
|
||||||
|
|
||||||
|
headers, playload = generate_message(
|
||||||
|
input=inputs,
|
||||||
|
model=llm_kwargs["llm_model"],
|
||||||
|
key=APIKEY,
|
||||||
|
history=history,
|
||||||
|
max_output_token=max_output_token,
|
||||||
|
system_prompt=system_prompt,
|
||||||
|
temperature=llm_kwargs["temperature"],
|
||||||
|
)
|
||||||
|
|
||||||
|
history.append(inputs)
|
||||||
|
history.append("")
|
||||||
|
retry = 0
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
from .bridge_all import model_info
|
||||||
|
|
||||||
|
endpoint = model_info[llm_kwargs["llm_model"]]["endpoint"]
|
||||||
|
if not disable_proxy:
|
||||||
|
response = requests.post(
|
||||||
|
endpoint,
|
||||||
|
headers=headers,
|
||||||
|
proxies=proxies,
|
||||||
|
json=playload,
|
||||||
|
stream=True,
|
||||||
|
timeout=TIMEOUT_SECONDS,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
response = requests.post(
|
||||||
|
endpoint,
|
||||||
|
headers=headers,
|
||||||
|
json=playload,
|
||||||
|
stream=True,
|
||||||
|
timeout=TIMEOUT_SECONDS,
|
||||||
|
)
|
||||||
|
break
|
||||||
|
except:
|
||||||
|
retry += 1
|
||||||
|
chatbot[-1] = (chatbot[-1][0], timeout_bot_msg)
|
||||||
|
retry_msg = (
|
||||||
|
f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
|
||||||
|
)
|
||||||
|
yield from update_ui(
|
||||||
|
chatbot=chatbot, history=history, msg="请求超时" + retry_msg
|
||||||
|
) # 刷新界面
|
||||||
|
if retry > MAX_RETRY:
|
||||||
|
raise TimeoutError
|
||||||
|
|
||||||
|
gpt_replying_buffer = ""
|
||||||
|
|
||||||
|
stream_response = response.iter_lines()
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
chunk = next(stream_response)
|
||||||
|
except StopIteration:
|
||||||
|
break
|
||||||
|
except requests.exceptions.ConnectionError:
|
||||||
|
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||||
|
response_text, finish_reason = decode_chunk(chunk)
|
||||||
|
# 返回的数据流第一次为空,继续等待
|
||||||
|
if response_text == "" and finish_reason != "False":
|
||||||
|
continue
|
||||||
|
if chunk:
|
||||||
|
try:
|
||||||
|
if response_text == "API_ERROR" and (
|
||||||
|
finish_reason != "False" or finish_reason != "stop"
|
||||||
|
):
|
||||||
|
chunk = get_full_error(chunk, stream_response)
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
chatbot[-1] = (
|
||||||
|
chatbot[-1][0],
|
||||||
|
"[Local Message] {finish_reason},获得以下报错信息:\n"
|
||||||
|
+ chunk_decoded,
|
||||||
|
)
|
||||||
|
yield from update_ui(
|
||||||
|
chatbot=chatbot,
|
||||||
|
history=history,
|
||||||
|
msg="API异常:" + chunk_decoded,
|
||||||
|
) # 刷新界面
|
||||||
|
print(chunk_decoded)
|
||||||
|
return
|
||||||
|
|
||||||
|
if finish_reason == "stop":
|
||||||
|
logging.info(f"[response] {gpt_replying_buffer}")
|
||||||
|
break
|
||||||
|
status_text = f"finish_reason: {finish_reason}"
|
||||||
|
gpt_replying_buffer += response_text
|
||||||
|
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
|
||||||
|
history[-1] = gpt_replying_buffer
|
||||||
|
chatbot[-1] = (history[-2], history[-1])
|
||||||
|
yield from update_ui(
|
||||||
|
chatbot=chatbot, history=history, msg=status_text
|
||||||
|
) # 刷新界面
|
||||||
|
except Exception as e:
|
||||||
|
yield from update_ui(
|
||||||
|
chatbot=chatbot, history=history, msg="Json解析不合常规"
|
||||||
|
) # 刷新界面
|
||||||
|
chunk = get_full_error(chunk, stream_response)
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
chatbot[-1] = (
|
||||||
|
chatbot[-1][0],
|
||||||
|
"[Local Message] 解析错误,获得以下报错信息:\n" + chunk_decoded,
|
||||||
|
)
|
||||||
|
yield from update_ui(
|
||||||
|
chatbot=chatbot, history=history, msg="Json异常" + chunk_decoded
|
||||||
|
) # 刷新界面
|
||||||
|
print(chunk_decoded)
|
||||||
|
return
|
||||||
|
|
||||||
|
return predict_no_ui_long_connection, predict
|
||||||
@@ -1,12 +1,15 @@
|
|||||||
https://fastly.jsdelivr.net/gh/binary-husky/gradio-fix@gpt-academic/release/gradio-3.32.7-py3-none-any.whl
|
https://public.agent-matrix.com/publish/gradio-3.32.10-py3-none-any.whl
|
||||||
|
fastapi==0.110
|
||||||
|
gradio-client==0.8
|
||||||
pypdf2==2.12.1
|
pypdf2==2.12.1
|
||||||
zhipuai<2
|
zhipuai==2.0.1
|
||||||
tiktoken>=0.3.3
|
tiktoken>=0.3.3
|
||||||
requests[socks]
|
requests[socks]
|
||||||
pydantic==1.10.11
|
pydantic==2.5.2
|
||||||
protobuf==3.18
|
protobuf==3.18
|
||||||
transformers>=4.27.1
|
transformers>=4.27.1
|
||||||
scipdf_parser>=0.52
|
scipdf_parser>=0.52
|
||||||
|
anthropic>=0.18.1
|
||||||
python-markdown-math
|
python-markdown-math
|
||||||
pymdown-extensions
|
pymdown-extensions
|
||||||
websocket-client
|
websocket-client
|
||||||
@@ -15,13 +18,15 @@ prompt_toolkit
|
|||||||
latex2mathml
|
latex2mathml
|
||||||
python-docx
|
python-docx
|
||||||
mdtex2html
|
mdtex2html
|
||||||
anthropic
|
dashscope
|
||||||
pyautogen
|
pyautogen
|
||||||
colorama
|
colorama
|
||||||
Markdown
|
Markdown
|
||||||
pygments
|
pygments
|
||||||
|
edge-tts
|
||||||
pymupdf
|
pymupdf
|
||||||
openai
|
openai
|
||||||
|
rjsmin
|
||||||
arxiv
|
arxiv
|
||||||
numpy
|
numpy
|
||||||
rich
|
rich
|
||||||
|
|||||||
@@ -207,6 +207,53 @@ def fix_code_segment_indent(txt):
|
|||||||
return txt
|
return txt
|
||||||
|
|
||||||
|
|
||||||
|
def markdown_convertion_for_file(txt):
|
||||||
|
"""
|
||||||
|
将Markdown格式的文本转换为HTML格式。如果包含数学公式,则先将公式转换为HTML格式。
|
||||||
|
"""
|
||||||
|
from themes.theme import advanced_css
|
||||||
|
pre = f"""
|
||||||
|
<!DOCTYPE html><head><meta charset="utf-8"><title>PDF文档翻译</title><style>{advanced_css}</style></head>
|
||||||
|
<body>
|
||||||
|
<div class="test_temp1" style="width:10%; height: 500px; float:left;"></div>
|
||||||
|
<div class="test_temp2" style="width:80%;padding: 40px;float:left;padding-left: 20px;padding-right: 20px;box-shadow: rgba(0, 0, 0, 0.2) 0px 0px 8px 8px;border-radius: 10px;">
|
||||||
|
<div class="markdown-body">
|
||||||
|
"""
|
||||||
|
suf = """
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
<div class="test_temp3" style="width:10%; height: 500px; float:left;"></div>
|
||||||
|
</body>
|
||||||
|
"""
|
||||||
|
|
||||||
|
if txt.startswith(pre) and txt.endswith(suf):
|
||||||
|
# print('警告,输入了已经经过转化的字符串,二次转化可能出问题')
|
||||||
|
return txt # 已经被转化过,不需要再次转化
|
||||||
|
|
||||||
|
find_equation_pattern = r'<script type="math/tex(?:.*?)>(.*?)</script>'
|
||||||
|
txt = fix_markdown_indent(txt)
|
||||||
|
# convert everything to html format
|
||||||
|
split = markdown.markdown(text="---")
|
||||||
|
convert_stage_1 = markdown.markdown(
|
||||||
|
text=txt,
|
||||||
|
extensions=[
|
||||||
|
"sane_lists",
|
||||||
|
"tables",
|
||||||
|
"mdx_math",
|
||||||
|
"pymdownx.superfences",
|
||||||
|
"pymdownx.highlight",
|
||||||
|
],
|
||||||
|
extension_configs={**markdown_extension_configs, **code_highlight_configs},
|
||||||
|
)
|
||||||
|
convert_stage_1 = markdown_bug_hunt(convert_stage_1)
|
||||||
|
|
||||||
|
# 2. convert to rendered equation
|
||||||
|
convert_stage_2_2, n = re.subn(
|
||||||
|
find_equation_pattern, replace_math_render, convert_stage_1, flags=re.DOTALL
|
||||||
|
)
|
||||||
|
# cat them together
|
||||||
|
return pre + convert_stage_2_2 + suf
|
||||||
|
|
||||||
@lru_cache(maxsize=128) # 使用 lru缓存 加快转换速度
|
@lru_cache(maxsize=128) # 使用 lru缓存 加快转换速度
|
||||||
def markdown_convertion(txt):
|
def markdown_convertion(txt):
|
||||||
"""
|
"""
|
||||||
|
|||||||
@@ -2,7 +2,7 @@ import importlib
|
|||||||
import time
|
import time
|
||||||
import os
|
import os
|
||||||
from functools import lru_cache
|
from functools import lru_cache
|
||||||
from colorful import print亮红, print亮绿, print亮蓝
|
from shared_utils.colorful import print亮红, print亮绿, print亮蓝
|
||||||
|
|
||||||
pj = os.path.join
|
pj = os.path.join
|
||||||
default_user_name = 'default_user'
|
default_user_name = 'default_user'
|
||||||
|
|||||||
@@ -15,13 +15,13 @@ import os
|
|||||||
|
|
||||||
def get_plugin_handle(plugin_name):
|
def get_plugin_handle(plugin_name):
|
||||||
"""
|
"""
|
||||||
e.g. plugin_name = 'crazy_functions.批量Markdown翻译->Markdown翻译指定语言'
|
e.g. plugin_name = 'crazy_functions.Markdown_Translate->Markdown翻译指定语言'
|
||||||
"""
|
"""
|
||||||
import importlib
|
import importlib
|
||||||
|
|
||||||
assert (
|
assert (
|
||||||
"->" in plugin_name
|
"->" in plugin_name
|
||||||
), "Example of plugin_name: crazy_functions.批量Markdown翻译->Markdown翻译指定语言"
|
), "Example of plugin_name: crazy_functions.Markdown_Translate->Markdown翻译指定语言"
|
||||||
module, fn_name = plugin_name.split("->")
|
module, fn_name = plugin_name.split("->")
|
||||||
f_hot_reload = getattr(importlib.import_module(module, fn_name), fn_name)
|
f_hot_reload = getattr(importlib.import_module(module, fn_name), fn_name)
|
||||||
return f_hot_reload
|
return f_hot_reload
|
||||||
|
|||||||
144
shared_utils/cookie_manager.py
Normal file
144
shared_utils/cookie_manager.py
Normal file
@@ -0,0 +1,144 @@
|
|||||||
|
import json
|
||||||
|
import base64
|
||||||
|
from typing import Callable
|
||||||
|
|
||||||
|
def load_web_cookie_cache__fn_builder(customize_btns, cookies, predefined_btns)->Callable:
|
||||||
|
def load_web_cookie_cache(persistent_cookie_, cookies_):
|
||||||
|
import gradio as gr
|
||||||
|
from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, assign_user_uuid
|
||||||
|
|
||||||
|
ret = {}
|
||||||
|
for k in customize_btns:
|
||||||
|
ret.update({customize_btns[k]: gr.update(visible=False, value="")})
|
||||||
|
|
||||||
|
try: persistent_cookie_ = from_cookie_str(persistent_cookie_) # persistent cookie to dict
|
||||||
|
except: return ret
|
||||||
|
|
||||||
|
customize_fn_overwrite_ = persistent_cookie_.get("custom_bnt", {})
|
||||||
|
cookies_['customize_fn_overwrite'] = customize_fn_overwrite_
|
||||||
|
ret.update({cookies: cookies_})
|
||||||
|
|
||||||
|
for k,v in persistent_cookie_["custom_bnt"].items():
|
||||||
|
if v['Title'] == "": continue
|
||||||
|
if k in customize_btns: ret.update({customize_btns[k]: gr.update(visible=True, value=v['Title'])})
|
||||||
|
else: ret.update({predefined_btns[k]: gr.update(visible=True, value=v['Title'])})
|
||||||
|
return ret
|
||||||
|
return load_web_cookie_cache
|
||||||
|
|
||||||
|
def assign_btn__fn_builder(customize_btns, predefined_btns, cookies, web_cookie_cache)->Callable:
|
||||||
|
def assign_btn(persistent_cookie_, cookies_, basic_btn_dropdown_, basic_fn_title, basic_fn_prefix, basic_fn_suffix, clean_up=False):
|
||||||
|
import gradio as gr
|
||||||
|
from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, assign_user_uuid
|
||||||
|
ret = {}
|
||||||
|
# 读取之前的自定义按钮
|
||||||
|
customize_fn_overwrite_ = cookies_['customize_fn_overwrite']
|
||||||
|
# 更新新的自定义按钮
|
||||||
|
customize_fn_overwrite_.update({
|
||||||
|
basic_btn_dropdown_:
|
||||||
|
{
|
||||||
|
"Title":basic_fn_title,
|
||||||
|
"Prefix":basic_fn_prefix,
|
||||||
|
"Suffix":basic_fn_suffix,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
if clean_up:
|
||||||
|
customize_fn_overwrite_ = {}
|
||||||
|
cookies_.update(customize_fn_overwrite_) # 更新cookie
|
||||||
|
visible = (not clean_up) and (basic_fn_title != "")
|
||||||
|
if basic_btn_dropdown_ in customize_btns:
|
||||||
|
# 是自定义按钮,不是预定义按钮
|
||||||
|
ret.update({customize_btns[basic_btn_dropdown_]: gr.update(visible=visible, value=basic_fn_title)})
|
||||||
|
else:
|
||||||
|
# 是预定义按钮
|
||||||
|
ret.update({predefined_btns[basic_btn_dropdown_]: gr.update(visible=visible, value=basic_fn_title)})
|
||||||
|
ret.update({cookies: cookies_})
|
||||||
|
try: persistent_cookie_ = from_cookie_str(persistent_cookie_) # persistent cookie to dict
|
||||||
|
except: persistent_cookie_ = {}
|
||||||
|
persistent_cookie_["custom_bnt"] = customize_fn_overwrite_ # dict update new value
|
||||||
|
persistent_cookie_ = to_cookie_str(persistent_cookie_) # persistent cookie to dict
|
||||||
|
ret.update({web_cookie_cache: persistent_cookie_}) # write persistent cookie
|
||||||
|
return ret
|
||||||
|
return assign_btn
|
||||||
|
|
||||||
|
# cookies, web_cookie_cache = make_cookie_cache()
|
||||||
|
def make_cookie_cache():
|
||||||
|
# 定义 后端state(cookies)、前端(web_cookie_cache)两兄弟
|
||||||
|
import gradio as gr
|
||||||
|
from toolbox import load_chat_cookies
|
||||||
|
# 定义cookies的后端state
|
||||||
|
cookies = gr.State(load_chat_cookies())
|
||||||
|
# 定义cookies的一个孪生的前端存储区(隐藏)
|
||||||
|
web_cookie_cache = gr.Textbox(visible=False, elem_id="web_cookie_cache")
|
||||||
|
return cookies, web_cookie_cache
|
||||||
|
|
||||||
|
# history, history_cache, history_cache_update = make_history_cache()
|
||||||
|
def make_history_cache():
|
||||||
|
# 定义 后端state(history)、前端(history_cache)、后端setter(history_cache_update)三兄弟
|
||||||
|
import gradio as gr
|
||||||
|
# 定义history的后端state
|
||||||
|
history = gr.State([])
|
||||||
|
# 定义history的一个孪生的前端存储区(隐藏)
|
||||||
|
history_cache = gr.Textbox(visible=False, elem_id="history_cache")
|
||||||
|
# 定义history_cache->history的更新方法(隐藏)。在触发这个按钮时,会先执行js代码更新history_cache,然后再执行python代码更新history
|
||||||
|
def process_history_cache(history_cache):
|
||||||
|
return json.loads(history_cache)
|
||||||
|
# 另一种更简单的setter方法
|
||||||
|
history_cache_update = gr.Button("", elem_id="elem_update_history", visible=False).click(
|
||||||
|
process_history_cache, inputs=[history_cache], outputs=[history])
|
||||||
|
return history, history_cache, history_cache_update
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# """
|
||||||
|
# with gr.Row():
|
||||||
|
# txt = gr.Textbox(show_label=False, placeholder="Input question here.", elem_id='user_input_main').style(container=False)
|
||||||
|
# txtx = gr.Textbox(show_label=False, placeholder="Input question here.", elem_id='user_input_main').style(container=False)
|
||||||
|
# with gr.Row():
|
||||||
|
# btn_value = "Test"
|
||||||
|
# elem_id = "TestCase"
|
||||||
|
# variant = "primary"
|
||||||
|
# input_list = [txt, txtx]
|
||||||
|
# output_list = [txt, txtx]
|
||||||
|
# input_name_list = ["txt(input)", "txtx(input)"]
|
||||||
|
# output_name_list = ["txt", "txtx"]
|
||||||
|
# js_callback = """(txt, txtx)=>{console.log(txt); console.log(txtx);}"""
|
||||||
|
# def function(txt, txtx):
|
||||||
|
# return "booo", "goooo"
|
||||||
|
# create_button_with_javascript_callback(btn_value, elem_id, variant, js_callback, input_list, output_list, function, input_name_list, output_name_list)
|
||||||
|
# """
|
||||||
|
def create_button_with_javascript_callback(btn_value, elem_id, variant, js_callback, input_list, output_list, function, input_name_list, output_name_list):
|
||||||
|
import gradio as gr
|
||||||
|
middle_ware_component = gr.Textbox(visible=False, elem_id=elem_id+'_buffer')
|
||||||
|
def get_fn_wrap():
|
||||||
|
def fn_wrap(*args):
|
||||||
|
summary_dict = {}
|
||||||
|
for name, value in zip(input_name_list, args):
|
||||||
|
summary_dict.update({name: value})
|
||||||
|
|
||||||
|
res = function(*args)
|
||||||
|
|
||||||
|
for name, value in zip(output_name_list, res):
|
||||||
|
summary_dict.update({name: value})
|
||||||
|
|
||||||
|
summary = base64.b64encode(json.dumps(summary_dict).encode('utf8')).decode("utf-8")
|
||||||
|
return (*res, summary)
|
||||||
|
return fn_wrap
|
||||||
|
|
||||||
|
btn = gr.Button(btn_value, elem_id=elem_id, variant=variant)
|
||||||
|
call_args = ""
|
||||||
|
for name in output_name_list:
|
||||||
|
call_args += f"""Data["{name}"],"""
|
||||||
|
call_args = call_args.rstrip(",")
|
||||||
|
_js_callback = """
|
||||||
|
(base64MiddleString)=>{
|
||||||
|
console.log('hello')
|
||||||
|
const stringData = atob(base64MiddleString);
|
||||||
|
let Data = JSON.parse(stringData);
|
||||||
|
call = JS_CALLBACK_GEN;
|
||||||
|
call(CALL_ARGS);
|
||||||
|
}
|
||||||
|
""".replace("JS_CALLBACK_GEN", js_callback).replace("CALL_ARGS", call_args)
|
||||||
|
|
||||||
|
btn.click(get_fn_wrap(), input_list, output_list+[middle_ware_component]).then(None, [middle_ware_component], None, _js=_js_callback)
|
||||||
|
return btn
|
||||||
277
shared_utils/fastapi_server.py
Normal file
277
shared_utils/fastapi_server.py
Normal file
@@ -0,0 +1,277 @@
|
|||||||
|
"""
|
||||||
|
Tests:
|
||||||
|
|
||||||
|
- custom_path false / no user auth:
|
||||||
|
-- upload file(yes)
|
||||||
|
-- download file(yes)
|
||||||
|
-- websocket(yes)
|
||||||
|
-- block __pycache__ access(yes)
|
||||||
|
-- rel (yes)
|
||||||
|
-- abs (yes)
|
||||||
|
-- block user access(fail) http://localhost:45013/file=gpt_log/admin/chat_secrets.log
|
||||||
|
-- fix(commit f6bf05048c08f5cd84593f7fdc01e64dec1f584a)-> block successful
|
||||||
|
|
||||||
|
- custom_path yes("/cc/gptac") / no user auth:
|
||||||
|
-- upload file(yes)
|
||||||
|
-- download file(yes)
|
||||||
|
-- websocket(yes)
|
||||||
|
-- block __pycache__ access(yes)
|
||||||
|
-- block user access(yes)
|
||||||
|
|
||||||
|
- custom_path yes("/cc/gptac/") / no user auth:
|
||||||
|
-- upload file(yes)
|
||||||
|
-- download file(yes)
|
||||||
|
-- websocket(yes)
|
||||||
|
-- block user access(yes)
|
||||||
|
|
||||||
|
- custom_path yes("/cc/gptac/") / + user auth:
|
||||||
|
-- upload file(yes)
|
||||||
|
-- download file(yes)
|
||||||
|
-- websocket(yes)
|
||||||
|
-- block user access(yes)
|
||||||
|
-- block user-wise access (yes)
|
||||||
|
|
||||||
|
- custom_path no + user auth:
|
||||||
|
-- upload file(yes)
|
||||||
|
-- download file(yes)
|
||||||
|
-- websocket(yes)
|
||||||
|
-- block user access(yes)
|
||||||
|
-- block user-wise access (yes)
|
||||||
|
|
||||||
|
queue cocurrent effectiveness
|
||||||
|
-- upload file(yes)
|
||||||
|
-- download file(yes)
|
||||||
|
-- websocket(yes)
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os, requests, threading, time
|
||||||
|
import uvicorn
|
||||||
|
|
||||||
|
def validate_path_safety(path_or_url, user):
|
||||||
|
from toolbox import get_conf, default_user_name
|
||||||
|
from toolbox import FriendlyException
|
||||||
|
PATH_PRIVATE_UPLOAD, PATH_LOGGING = get_conf('PATH_PRIVATE_UPLOAD', 'PATH_LOGGING')
|
||||||
|
sensitive_path = None
|
||||||
|
path_or_url = os.path.relpath(path_or_url)
|
||||||
|
if path_or_url.startswith(PATH_LOGGING): # 日志文件(按用户划分)
|
||||||
|
sensitive_path = PATH_LOGGING
|
||||||
|
elif path_or_url.startswith(PATH_PRIVATE_UPLOAD): # 用户的上传目录(按用户划分)
|
||||||
|
sensitive_path = PATH_PRIVATE_UPLOAD
|
||||||
|
elif path_or_url.startswith('tests'): # 一个常用的测试目录
|
||||||
|
return True
|
||||||
|
else:
|
||||||
|
raise FriendlyException(f"输入文件的路径 ({path_or_url}) 存在,但位置非法。请将文件上传后再执行该任务。") # return False
|
||||||
|
if sensitive_path:
|
||||||
|
allowed_users = [user, 'autogen', default_user_name] # three user path that can be accessed
|
||||||
|
for user_allowed in allowed_users:
|
||||||
|
if f"{os.sep}".join(path_or_url.split(os.sep)[:2]) == os.path.join(sensitive_path, user_allowed):
|
||||||
|
return True
|
||||||
|
raise FriendlyException(f"输入文件的路径 ({path_or_url}) 存在,但属于其他用户。请将文件上传后再执行该任务。") # return False
|
||||||
|
return True
|
||||||
|
|
||||||
|
def _authorize_user(path_or_url, request, gradio_app):
|
||||||
|
from toolbox import get_conf, default_user_name
|
||||||
|
PATH_PRIVATE_UPLOAD, PATH_LOGGING = get_conf('PATH_PRIVATE_UPLOAD', 'PATH_LOGGING')
|
||||||
|
sensitive_path = None
|
||||||
|
path_or_url = os.path.relpath(path_or_url)
|
||||||
|
if path_or_url.startswith(PATH_LOGGING):
|
||||||
|
sensitive_path = PATH_LOGGING
|
||||||
|
if path_or_url.startswith(PATH_PRIVATE_UPLOAD):
|
||||||
|
sensitive_path = PATH_PRIVATE_UPLOAD
|
||||||
|
if sensitive_path:
|
||||||
|
token = request.cookies.get("access-token") or request.cookies.get("access-token-unsecure")
|
||||||
|
user = gradio_app.tokens.get(token) # get user
|
||||||
|
allowed_users = [user, 'autogen', default_user_name] # three user path that can be accessed
|
||||||
|
for user_allowed in allowed_users:
|
||||||
|
# exact match
|
||||||
|
if f"{os.sep}".join(path_or_url.split(os.sep)[:2]) == os.path.join(sensitive_path, user_allowed):
|
||||||
|
return True
|
||||||
|
return False # "越权访问!"
|
||||||
|
return True
|
||||||
|
|
||||||
|
|
||||||
|
class Server(uvicorn.Server):
|
||||||
|
# A server that runs in a separate thread
|
||||||
|
def install_signal_handlers(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def run_in_thread(self):
|
||||||
|
self.thread = threading.Thread(target=self.run, daemon=True)
|
||||||
|
self.thread.start()
|
||||||
|
while not self.started:
|
||||||
|
time.sleep(1e-3)
|
||||||
|
|
||||||
|
def close(self):
|
||||||
|
self.should_exit = True
|
||||||
|
self.thread.join()
|
||||||
|
|
||||||
|
|
||||||
|
def start_app(app_block, CONCURRENT_COUNT, AUTHENTICATION, PORT, SSL_KEYFILE, SSL_CERTFILE):
|
||||||
|
import uvicorn
|
||||||
|
import fastapi
|
||||||
|
import gradio as gr
|
||||||
|
from fastapi import FastAPI
|
||||||
|
from gradio.routes import App
|
||||||
|
from toolbox import get_conf
|
||||||
|
CUSTOM_PATH, PATH_LOGGING = get_conf('CUSTOM_PATH', 'PATH_LOGGING')
|
||||||
|
|
||||||
|
# --- --- configurate gradio app block --- ---
|
||||||
|
app_block:gr.Blocks
|
||||||
|
app_block.ssl_verify = False
|
||||||
|
app_block.auth_message = '请登录'
|
||||||
|
app_block.favicon_path = os.path.join(os.path.dirname(os.path.dirname(__file__)), "docs/logo.png")
|
||||||
|
app_block.auth = AUTHENTICATION if len(AUTHENTICATION) != 0 else None
|
||||||
|
app_block.blocked_paths = ["config.py", "__pycache__", "config_private.py", "docker-compose.yml", "Dockerfile", f"{PATH_LOGGING}/admin"]
|
||||||
|
app_block.dev_mode = False
|
||||||
|
app_block.config = app_block.get_config_file()
|
||||||
|
app_block.enable_queue = True
|
||||||
|
app_block.queue(concurrency_count=CONCURRENT_COUNT)
|
||||||
|
app_block.validate_queue_settings()
|
||||||
|
app_block.show_api = False
|
||||||
|
app_block.config = app_block.get_config_file()
|
||||||
|
max_threads = 40
|
||||||
|
app_block.max_threads = max(
|
||||||
|
app_block._queue.max_thread_count if app_block.enable_queue else 0, max_threads
|
||||||
|
)
|
||||||
|
app_block.is_colab = False
|
||||||
|
app_block.is_kaggle = False
|
||||||
|
app_block.is_sagemaker = False
|
||||||
|
|
||||||
|
gradio_app = App.create_app(app_block)
|
||||||
|
|
||||||
|
# --- --- replace gradio endpoint to forbid access to sensitive files --- ---
|
||||||
|
if len(AUTHENTICATION) > 0:
|
||||||
|
dependencies = []
|
||||||
|
endpoint = None
|
||||||
|
for route in list(gradio_app.router.routes):
|
||||||
|
if route.path == "/file/{path:path}":
|
||||||
|
gradio_app.router.routes.remove(route)
|
||||||
|
if route.path == "/file={path_or_url:path}":
|
||||||
|
dependencies = route.dependencies
|
||||||
|
endpoint = route.endpoint
|
||||||
|
gradio_app.router.routes.remove(route)
|
||||||
|
@gradio_app.get("/file/{path:path}", dependencies=dependencies)
|
||||||
|
@gradio_app.head("/file={path_or_url:path}", dependencies=dependencies)
|
||||||
|
@gradio_app.get("/file={path_or_url:path}", dependencies=dependencies)
|
||||||
|
async def file(path_or_url: str, request: fastapi.Request):
|
||||||
|
if len(AUTHENTICATION) > 0:
|
||||||
|
if not _authorize_user(path_or_url, request, gradio_app):
|
||||||
|
return "越权访问!"
|
||||||
|
return await endpoint(path_or_url, request)
|
||||||
|
|
||||||
|
TTS_TYPE = get_conf("TTS_TYPE")
|
||||||
|
if TTS_TYPE != "DISABLE":
|
||||||
|
# audio generation functionality
|
||||||
|
import httpx
|
||||||
|
from fastapi import FastAPI, Request, HTTPException
|
||||||
|
from starlette.responses import Response
|
||||||
|
async def forward_request(request: Request, method: str) -> Response:
|
||||||
|
async with httpx.AsyncClient() as client:
|
||||||
|
try:
|
||||||
|
# Forward the request to the target service
|
||||||
|
if TTS_TYPE == "EDGE_TTS":
|
||||||
|
import tempfile
|
||||||
|
import edge_tts
|
||||||
|
import wave
|
||||||
|
import uuid
|
||||||
|
from pydub import AudioSegment
|
||||||
|
json = await request.json()
|
||||||
|
voice = get_conf("EDGE_TTS_VOICE")
|
||||||
|
tts = edge_tts.Communicate(text=json['text'], voice=voice)
|
||||||
|
temp_folder = tempfile.gettempdir()
|
||||||
|
temp_file_name = str(uuid.uuid4().hex)
|
||||||
|
temp_file = os.path.join(temp_folder, f'{temp_file_name}.mp3')
|
||||||
|
await tts.save(temp_file)
|
||||||
|
try:
|
||||||
|
mp3_audio = AudioSegment.from_file(temp_file, format="mp3")
|
||||||
|
mp3_audio.export(temp_file, format="wav")
|
||||||
|
with open(temp_file, 'rb') as wav_file: t = wav_file.read()
|
||||||
|
os.remove(temp_file)
|
||||||
|
return Response(content=t)
|
||||||
|
except:
|
||||||
|
raise RuntimeError("ffmpeg未安装,无法处理EdgeTTS音频。安装方法见`https://github.com/jiaaro/pydub#getting-ffmpeg-set-up`")
|
||||||
|
if TTS_TYPE == "LOCAL_SOVITS_API":
|
||||||
|
# Forward the request to the target service
|
||||||
|
TARGET_URL = get_conf("GPT_SOVITS_URL")
|
||||||
|
body = await request.body()
|
||||||
|
resp = await client.post(TARGET_URL, content=body, timeout=60)
|
||||||
|
# Return the response from the target service
|
||||||
|
return Response(content=resp.content, status_code=resp.status_code, headers=dict(resp.headers))
|
||||||
|
except httpx.RequestError as e:
|
||||||
|
raise HTTPException(status_code=400, detail=f"Request to the target service failed: {str(e)}")
|
||||||
|
@gradio_app.post("/vits")
|
||||||
|
async def forward_post_request(request: Request):
|
||||||
|
return await forward_request(request, "POST")
|
||||||
|
|
||||||
|
# --- --- app_lifespan --- ---
|
||||||
|
from contextlib import asynccontextmanager
|
||||||
|
@asynccontextmanager
|
||||||
|
async def app_lifespan(app):
|
||||||
|
async def startup_gradio_app():
|
||||||
|
if gradio_app.get_blocks().enable_queue:
|
||||||
|
gradio_app.get_blocks().startup_events()
|
||||||
|
async def shutdown_gradio_app():
|
||||||
|
pass
|
||||||
|
await startup_gradio_app() # startup logic here
|
||||||
|
yield # The application will serve requests after this point
|
||||||
|
await shutdown_gradio_app() # cleanup/shutdown logic here
|
||||||
|
|
||||||
|
# --- --- FastAPI --- ---
|
||||||
|
fastapi_app = FastAPI(lifespan=app_lifespan)
|
||||||
|
fastapi_app.mount(CUSTOM_PATH, gradio_app)
|
||||||
|
|
||||||
|
# --- --- favicon --- ---
|
||||||
|
if CUSTOM_PATH != '/':
|
||||||
|
from fastapi.responses import FileResponse
|
||||||
|
@fastapi_app.get("/favicon.ico")
|
||||||
|
async def favicon():
|
||||||
|
return FileResponse(app_block.favicon_path)
|
||||||
|
|
||||||
|
# --- --- uvicorn.Config --- ---
|
||||||
|
ssl_keyfile = None if SSL_KEYFILE == "" else SSL_KEYFILE
|
||||||
|
ssl_certfile = None if SSL_CERTFILE == "" else SSL_CERTFILE
|
||||||
|
server_name = "0.0.0.0"
|
||||||
|
config = uvicorn.Config(
|
||||||
|
fastapi_app,
|
||||||
|
host=server_name,
|
||||||
|
port=PORT,
|
||||||
|
reload=False,
|
||||||
|
log_level="warning",
|
||||||
|
ssl_keyfile=ssl_keyfile,
|
||||||
|
ssl_certfile=ssl_certfile,
|
||||||
|
)
|
||||||
|
server = Server(config)
|
||||||
|
url_host_name = "localhost" if server_name == "0.0.0.0" else server_name
|
||||||
|
if ssl_keyfile is not None:
|
||||||
|
if ssl_certfile is None:
|
||||||
|
raise ValueError(
|
||||||
|
"ssl_certfile must be provided if ssl_keyfile is provided."
|
||||||
|
)
|
||||||
|
path_to_local_server = f"https://{url_host_name}:{PORT}/"
|
||||||
|
else:
|
||||||
|
path_to_local_server = f"http://{url_host_name}:{PORT}/"
|
||||||
|
if CUSTOM_PATH != '/':
|
||||||
|
path_to_local_server += CUSTOM_PATH.lstrip('/').rstrip('/') + '/'
|
||||||
|
# --- --- begin --- ---
|
||||||
|
server.run_in_thread()
|
||||||
|
|
||||||
|
# --- --- after server launch --- ---
|
||||||
|
app_block.server = server
|
||||||
|
app_block.server_name = server_name
|
||||||
|
app_block.local_url = path_to_local_server
|
||||||
|
app_block.protocol = (
|
||||||
|
"https"
|
||||||
|
if app_block.local_url.startswith("https") or app_block.is_colab
|
||||||
|
else "http"
|
||||||
|
)
|
||||||
|
|
||||||
|
if app_block.enable_queue:
|
||||||
|
app_block._queue.set_url(path_to_local_server)
|
||||||
|
|
||||||
|
forbid_proxies = {
|
||||||
|
"http": "",
|
||||||
|
"https": "",
|
||||||
|
}
|
||||||
|
requests.get(f"{app_block.local_url}startup-events", verify=app_block.ssl_verify, proxies=forbid_proxies)
|
||||||
|
app_block.is_running = True
|
||||||
|
app_block.block_thread()
|
||||||
145
shared_utils/handle_upload.py
Normal file
145
shared_utils/handle_upload.py
Normal file
@@ -0,0 +1,145 @@
|
|||||||
|
import importlib
|
||||||
|
import time
|
||||||
|
import inspect
|
||||||
|
import re
|
||||||
|
import os
|
||||||
|
import base64
|
||||||
|
import gradio
|
||||||
|
import shutil
|
||||||
|
import glob
|
||||||
|
from shared_utils.config_loader import get_conf
|
||||||
|
|
||||||
|
def html_local_file(file):
|
||||||
|
base_path = os.path.dirname(__file__) # 项目目录
|
||||||
|
if os.path.exists(str(file)):
|
||||||
|
file = f'file={file.replace(base_path, ".")}'
|
||||||
|
return file
|
||||||
|
|
||||||
|
|
||||||
|
def html_local_img(__file, layout="left", max_width=None, max_height=None, md=True):
|
||||||
|
style = ""
|
||||||
|
if max_width is not None:
|
||||||
|
style += f"max-width: {max_width};"
|
||||||
|
if max_height is not None:
|
||||||
|
style += f"max-height: {max_height};"
|
||||||
|
__file = html_local_file(__file)
|
||||||
|
a = f'<div align="{layout}"><img src="{__file}" style="{style}"></div>'
|
||||||
|
if md:
|
||||||
|
a = f""
|
||||||
|
return a
|
||||||
|
|
||||||
|
|
||||||
|
def file_manifest_filter_type(file_list, filter_: list = None):
|
||||||
|
new_list = []
|
||||||
|
if not filter_:
|
||||||
|
filter_ = ["png", "jpg", "jpeg"]
|
||||||
|
for file in file_list:
|
||||||
|
if str(os.path.basename(file)).split(".")[-1] in filter_:
|
||||||
|
new_list.append(html_local_img(file, md=False))
|
||||||
|
else:
|
||||||
|
new_list.append(file)
|
||||||
|
return new_list
|
||||||
|
|
||||||
|
|
||||||
|
def zip_extract_member_new(self, member, targetpath, pwd):
|
||||||
|
# 修复中文乱码的问题
|
||||||
|
"""Extract the ZipInfo object 'member' to a physical
|
||||||
|
file on the path targetpath.
|
||||||
|
"""
|
||||||
|
import zipfile
|
||||||
|
if not isinstance(member, zipfile.ZipInfo):
|
||||||
|
member = self.getinfo(member)
|
||||||
|
|
||||||
|
# build the destination pathname, replacing
|
||||||
|
# forward slashes to platform specific separators.
|
||||||
|
arcname = member.filename.replace('/', os.path.sep)
|
||||||
|
arcname = arcname.encode('cp437', errors='replace').decode('gbk', errors='replace')
|
||||||
|
|
||||||
|
if os.path.altsep:
|
||||||
|
arcname = arcname.replace(os.path.altsep, os.path.sep)
|
||||||
|
# interpret absolute pathname as relative, remove drive letter or
|
||||||
|
# UNC path, redundant separators, "." and ".." components.
|
||||||
|
arcname = os.path.splitdrive(arcname)[1]
|
||||||
|
invalid_path_parts = ('', os.path.curdir, os.path.pardir)
|
||||||
|
arcname = os.path.sep.join(x for x in arcname.split(os.path.sep)
|
||||||
|
if x not in invalid_path_parts)
|
||||||
|
if os.path.sep == '\\':
|
||||||
|
# filter illegal characters on Windows
|
||||||
|
arcname = self._sanitize_windows_name(arcname, os.path.sep)
|
||||||
|
|
||||||
|
targetpath = os.path.join(targetpath, arcname)
|
||||||
|
targetpath = os.path.normpath(targetpath)
|
||||||
|
|
||||||
|
# Create all upper directories if necessary.
|
||||||
|
upperdirs = os.path.dirname(targetpath)
|
||||||
|
if upperdirs and not os.path.exists(upperdirs):
|
||||||
|
os.makedirs(upperdirs)
|
||||||
|
|
||||||
|
if member.is_dir():
|
||||||
|
if not os.path.isdir(targetpath):
|
||||||
|
os.mkdir(targetpath)
|
||||||
|
return targetpath
|
||||||
|
|
||||||
|
with self.open(member, pwd=pwd) as source, \
|
||||||
|
open(targetpath, "wb") as target:
|
||||||
|
shutil.copyfileobj(source, target)
|
||||||
|
|
||||||
|
return targetpath
|
||||||
|
|
||||||
|
|
||||||
|
def extract_archive(file_path, dest_dir):
|
||||||
|
import zipfile
|
||||||
|
import tarfile
|
||||||
|
import os
|
||||||
|
|
||||||
|
# Get the file extension of the input file
|
||||||
|
file_extension = os.path.splitext(file_path)[1]
|
||||||
|
|
||||||
|
# Extract the archive based on its extension
|
||||||
|
if file_extension == ".zip":
|
||||||
|
with zipfile.ZipFile(file_path, "r") as zipobj:
|
||||||
|
zipobj._extract_member = lambda a,b,c: zip_extract_member_new(zipobj, a,b,c) # 修复中文乱码的问题
|
||||||
|
zipobj.extractall(path=dest_dir)
|
||||||
|
print("Successfully extracted zip archive to {}".format(dest_dir))
|
||||||
|
|
||||||
|
elif file_extension in [".tar", ".gz", ".bz2"]:
|
||||||
|
with tarfile.open(file_path, "r:*") as tarobj:
|
||||||
|
# 清理提取路径,移除任何不安全的元素
|
||||||
|
for member in tarobj.getmembers():
|
||||||
|
member_path = os.path.normpath(member.name)
|
||||||
|
full_path = os.path.join(dest_dir, member_path)
|
||||||
|
full_path = os.path.abspath(full_path)
|
||||||
|
if not full_path.startswith(os.path.abspath(dest_dir) + os.sep):
|
||||||
|
raise Exception(f"Attempted Path Traversal in {member.name}")
|
||||||
|
|
||||||
|
tarobj.extractall(path=dest_dir)
|
||||||
|
print("Successfully extracted tar archive to {}".format(dest_dir))
|
||||||
|
|
||||||
|
# 第三方库,需要预先pip install rarfile
|
||||||
|
# 此外,Windows上还需要安装winrar软件,配置其Path环境变量,如"C:\Program Files\WinRAR"才可以
|
||||||
|
elif file_extension == ".rar":
|
||||||
|
try:
|
||||||
|
import rarfile
|
||||||
|
|
||||||
|
with rarfile.RarFile(file_path) as rf:
|
||||||
|
rf.extractall(path=dest_dir)
|
||||||
|
print("Successfully extracted rar archive to {}".format(dest_dir))
|
||||||
|
except:
|
||||||
|
print("Rar format requires additional dependencies to install")
|
||||||
|
return "\n\n解压失败! 需要安装pip install rarfile来解压rar文件。建议:使用zip压缩格式。"
|
||||||
|
|
||||||
|
# 第三方库,需要预先pip install py7zr
|
||||||
|
elif file_extension == ".7z":
|
||||||
|
try:
|
||||||
|
import py7zr
|
||||||
|
|
||||||
|
with py7zr.SevenZipFile(file_path, mode="r") as f:
|
||||||
|
f.extractall(path=dest_dir)
|
||||||
|
print("Successfully extracted 7z archive to {}".format(dest_dir))
|
||||||
|
except:
|
||||||
|
print("7z format requires additional dependencies to install")
|
||||||
|
return "\n\n解压失败! 需要安装pip install py7zr来解压7z文件"
|
||||||
|
else:
|
||||||
|
return ""
|
||||||
|
return ""
|
||||||
|
|
||||||
@@ -14,7 +14,7 @@ def is_openai_api_key(key):
|
|||||||
if len(CUSTOM_API_KEY_PATTERN) != 0:
|
if len(CUSTOM_API_KEY_PATTERN) != 0:
|
||||||
API_MATCH_ORIGINAL = re.match(CUSTOM_API_KEY_PATTERN, key)
|
API_MATCH_ORIGINAL = re.match(CUSTOM_API_KEY_PATTERN, key)
|
||||||
else:
|
else:
|
||||||
API_MATCH_ORIGINAL = re.match(r"sk-[a-zA-Z0-9]{48}$", key)
|
API_MATCH_ORIGINAL = re.match(r"sk-[a-zA-Z0-9]{48}$|sk-proj-[a-zA-Z0-9]{48}$|sess-[a-zA-Z0-9]{40}$", key)
|
||||||
return bool(API_MATCH_ORIGINAL)
|
return bool(API_MATCH_ORIGINAL)
|
||||||
|
|
||||||
|
|
||||||
@@ -28,6 +28,11 @@ def is_api2d_key(key):
|
|||||||
return bool(API_MATCH_API2D)
|
return bool(API_MATCH_API2D)
|
||||||
|
|
||||||
|
|
||||||
|
def is_cohere_api_key(key):
|
||||||
|
API_MATCH_AZURE = re.match(r"[a-zA-Z0-9]{40}$", key)
|
||||||
|
return bool(API_MATCH_AZURE)
|
||||||
|
|
||||||
|
|
||||||
def is_any_api_key(key):
|
def is_any_api_key(key):
|
||||||
if ',' in key:
|
if ',' in key:
|
||||||
keys = key.split(',')
|
keys = key.split(',')
|
||||||
@@ -35,7 +40,7 @@ def is_any_api_key(key):
|
|||||||
if is_any_api_key(k): return True
|
if is_any_api_key(k): return True
|
||||||
return False
|
return False
|
||||||
else:
|
else:
|
||||||
return is_openai_api_key(key) or is_api2d_key(key) or is_azure_api_key(key)
|
return is_openai_api_key(key) or is_api2d_key(key) or is_azure_api_key(key) or is_cohere_api_key(key)
|
||||||
|
|
||||||
|
|
||||||
def what_keys(keys):
|
def what_keys(keys):
|
||||||
@@ -62,7 +67,7 @@ def select_api_key(keys, llm_model):
|
|||||||
avail_key_list = []
|
avail_key_list = []
|
||||||
key_list = keys.split(',')
|
key_list = keys.split(',')
|
||||||
|
|
||||||
if llm_model.startswith('gpt-'):
|
if llm_model.startswith('gpt-') or llm_model.startswith('one-api-'):
|
||||||
for k in key_list:
|
for k in key_list:
|
||||||
if is_openai_api_key(k): avail_key_list.append(k)
|
if is_openai_api_key(k): avail_key_list.append(k)
|
||||||
|
|
||||||
@@ -74,8 +79,12 @@ def select_api_key(keys, llm_model):
|
|||||||
for k in key_list:
|
for k in key_list:
|
||||||
if is_azure_api_key(k): avail_key_list.append(k)
|
if is_azure_api_key(k): avail_key_list.append(k)
|
||||||
|
|
||||||
|
if llm_model.startswith('cohere-'):
|
||||||
|
for k in key_list:
|
||||||
|
if is_cohere_api_key(k): avail_key_list.append(k)
|
||||||
|
|
||||||
if len(avail_key_list) == 0:
|
if len(avail_key_list) == 0:
|
||||||
raise RuntimeError(f"您提供的api-key不满足要求,不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源(右下角更换模型菜单中可切换openai,azure,claude,api2d等请求源)。")
|
raise RuntimeError(f"您提供的api-key不满足要求,不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源(左上角更换模型菜单中可切换openai,azure,claude,cohere等请求源)。")
|
||||||
|
|
||||||
api_key = random.choice(avail_key_list) # 随机负载均衡
|
api_key = random.choice(avail_key_list) # 随机负载均衡
|
||||||
return api_key
|
return api_key
|
||||||
|
|||||||
34
shared_utils/map_names.py
Normal file
34
shared_utils/map_names.py
Normal file
@@ -0,0 +1,34 @@
|
|||||||
|
import re
|
||||||
|
mapping_dic = {
|
||||||
|
# "qianfan": "qianfan(文心一言大模型)",
|
||||||
|
# "zhipuai": "zhipuai(智谱GLM4超级模型🔥)",
|
||||||
|
# "gpt-4-1106-preview": "gpt-4-1106-preview(新调优版本GPT-4🔥)",
|
||||||
|
# "gpt-4-vision-preview": "gpt-4-vision-preview(识图模型GPT-4V)",
|
||||||
|
}
|
||||||
|
|
||||||
|
rev_mapping_dic = {}
|
||||||
|
for k, v in mapping_dic.items():
|
||||||
|
rev_mapping_dic[v] = k
|
||||||
|
|
||||||
|
def map_model_to_friendly_names(m):
|
||||||
|
if m in mapping_dic:
|
||||||
|
return mapping_dic[m]
|
||||||
|
return m
|
||||||
|
|
||||||
|
def map_friendly_names_to_model(m):
|
||||||
|
if m in rev_mapping_dic:
|
||||||
|
return rev_mapping_dic[m]
|
||||||
|
return m
|
||||||
|
|
||||||
|
def read_one_api_model_name(model: str):
|
||||||
|
"""return real model name and max_token.
|
||||||
|
"""
|
||||||
|
max_token_pattern = r"\(max_token=(\d+)\)"
|
||||||
|
match = re.search(max_token_pattern, model)
|
||||||
|
if match:
|
||||||
|
max_token_tmp = match.group(1) # 获取 max_token 的值
|
||||||
|
max_token_tmp = int(max_token_tmp)
|
||||||
|
model = re.sub(max_token_pattern, "", model) # 从原字符串中删除 "(max_token=...)"
|
||||||
|
else:
|
||||||
|
max_token_tmp = 4096
|
||||||
|
return model, max_token_tmp
|
||||||
@@ -26,6 +26,8 @@ def apply_gpt_academic_string_mask(string, mode="show_all"):
|
|||||||
当字符串中有掩码tag时(<gpt_academic_string_mask><show_...>),根据字符串要给谁看(大模型,还是web渲染),对字符串进行处理,返回处理后的字符串
|
当字符串中有掩码tag时(<gpt_academic_string_mask><show_...>),根据字符串要给谁看(大模型,还是web渲染),对字符串进行处理,返回处理后的字符串
|
||||||
示意图:https://mermaid.live/edit#pako:eNqlkUtLw0AUhf9KuOta0iaTplkIPlpduFJwoZEwJGNbzItpita2O6tF8QGKogXFtwu7cSHiq3-mk_oznFR8IYLgrGbuOd9hDrcCpmcR0GDW9ubNPKaBMDauuwI_A9M6YN-3y0bODwxsYos4BdMoBrTg5gwHF-d0mBH6-vqFQe58ed5m9XPW2uteX3Tubrj0ljLYcwxxR3h1zB43WeMs3G19yEM9uapDMe_NG9i2dagKw1Fee4c1D9nGEbtc-5n6HbNtJ8IyHOs8tbs7V2HrlDX2w2Y7XD_5haHEtQiNsOwfMVa_7TzsvrWIuJGo02qTrdwLk9gukQylHv3Afv1ML270s-HZUndrmW1tdA-WfvbM_jMFYuAQ6uCCxVdciTJ1CPLEITpo_GphypeouzXuw6XAmyi7JmgBLZEYlHwLB2S4gHMUO-9DH7tTnvf1CVoFFkBLSOk4QmlRTqpIlaWUHINyNFXjaQWpCYRURUKiWovBYo8X4ymEJFlECQUpqaQkJmuvWygPpg
|
示意图:https://mermaid.live/edit#pako:eNqlkUtLw0AUhf9KuOta0iaTplkIPlpduFJwoZEwJGNbzItpita2O6tF8QGKogXFtwu7cSHiq3-mk_oznFR8IYLgrGbuOd9hDrcCpmcR0GDW9ubNPKaBMDauuwI_A9M6YN-3y0bODwxsYos4BdMoBrTg5gwHF-d0mBH6-vqFQe58ed5m9XPW2uteX3Tubrj0ljLYcwxxR3h1zB43WeMs3G19yEM9uapDMe_NG9i2dagKw1Fee4c1D9nGEbtc-5n6HbNtJ8IyHOs8tbs7V2HrlDX2w2Y7XD_5haHEtQiNsOwfMVa_7TzsvrWIuJGo02qTrdwLk9gukQylHv3Afv1ML270s-HZUndrmW1tdA-WfvbM_jMFYuAQ6uCCxVdciTJ1CPLEITpo_GphypeouzXuw6XAmyi7JmgBLZEYlHwLB2S4gHMUO-9DH7tTnvf1CVoFFkBLSOk4QmlRTqpIlaWUHINyNFXjaQWpCYRURUKiWovBYo8X4ymEJFlECQUpqaQkJmuvWygPpg
|
||||||
"""
|
"""
|
||||||
|
if not string:
|
||||||
|
return string
|
||||||
if "<gpt_academic_string_mask>" not in string: # No need to process
|
if "<gpt_academic_string_mask>" not in string: # No need to process
|
||||||
return string
|
return string
|
||||||
|
|
||||||
|
|||||||
41
tests/test_key_pattern_manager.py
Normal file
41
tests/test_key_pattern_manager.py
Normal file
@@ -0,0 +1,41 @@
|
|||||||
|
import unittest
|
||||||
|
|
||||||
|
def validate_path():
|
||||||
|
import os, sys
|
||||||
|
|
||||||
|
os.path.dirname(__file__)
|
||||||
|
root_dir_assume = os.path.abspath(os.path.dirname(__file__) + "/..")
|
||||||
|
os.chdir(root_dir_assume)
|
||||||
|
sys.path.append(root_dir_assume)
|
||||||
|
|
||||||
|
|
||||||
|
validate_path() # validate path so you can run from base directory
|
||||||
|
|
||||||
|
from shared_utils.key_pattern_manager import is_openai_api_key
|
||||||
|
|
||||||
|
class TestKeyPatternManager(unittest.TestCase):
|
||||||
|
def test_is_openai_api_key_with_valid_key(self):
|
||||||
|
key = "sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
|
||||||
|
self.assertTrue(is_openai_api_key(key))
|
||||||
|
|
||||||
|
key = "sx-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
|
||||||
|
self.assertFalse(is_openai_api_key(key))
|
||||||
|
|
||||||
|
key = "sess-wg61ZafYHpNz7FFwIH7HGZlbVqUVaeV5tatHCWpl"
|
||||||
|
self.assertTrue(is_openai_api_key(key))
|
||||||
|
|
||||||
|
key = "sess-wg61ZafYHpNz7FFwIH7HGZlbVqUVa5tatHCWpl"
|
||||||
|
self.assertFalse(is_openai_api_key(key))
|
||||||
|
|
||||||
|
|
||||||
|
def test_is_openai_api_key_with_invalid_key(self):
|
||||||
|
key = "invalid_key"
|
||||||
|
self.assertFalse(is_openai_api_key(key))
|
||||||
|
|
||||||
|
def test_is_openai_api_key_with_custom_pattern(self):
|
||||||
|
# Assuming you have set a custom pattern in your configuration
|
||||||
|
key = "custom-pattern-key"
|
||||||
|
self.assertFalse(is_openai_api_key(key))
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
||||||
@@ -11,6 +11,28 @@ def validate_path():
|
|||||||
|
|
||||||
|
|
||||||
validate_path() # validate path so you can run from base directory
|
validate_path() # validate path so you can run from base directory
|
||||||
|
|
||||||
|
if "在线模型":
|
||||||
|
if __name__ == "__main__":
|
||||||
|
from request_llms.bridge_cohere import predict_no_ui_long_connection
|
||||||
|
# from request_llms.bridge_spark import predict_no_ui_long_connection
|
||||||
|
# from request_llms.bridge_zhipu import predict_no_ui_long_connection
|
||||||
|
# from request_llms.bridge_chatglm3 import predict_no_ui_long_connection
|
||||||
|
llm_kwargs = {
|
||||||
|
"llm_model": "command-r-plus",
|
||||||
|
"max_length": 4096,
|
||||||
|
"top_p": 1,
|
||||||
|
"temperature": 1,
|
||||||
|
}
|
||||||
|
|
||||||
|
result = predict_no_ui_long_connection(
|
||||||
|
inputs="请问什么是质子?", llm_kwargs=llm_kwargs, history=["你好", "我好!"], sys_prompt="系统"
|
||||||
|
)
|
||||||
|
print("final result:", result)
|
||||||
|
print("final result:", result)
|
||||||
|
|
||||||
|
|
||||||
|
if "本地模型":
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
# from request_llms.bridge_newbingfree import predict_no_ui_long_connection
|
# from request_llms.bridge_newbingfree import predict_no_ui_long_connection
|
||||||
# from request_llms.bridge_moss import predict_no_ui_long_connection
|
# from request_llms.bridge_moss import predict_no_ui_long_connection
|
||||||
@@ -20,19 +42,14 @@ if __name__ == "__main__":
|
|||||||
# from request_llms.bridge_internlm import predict_no_ui_long_connection
|
# from request_llms.bridge_internlm import predict_no_ui_long_connection
|
||||||
# from request_llms.bridge_deepseekcoder import predict_no_ui_long_connection
|
# from request_llms.bridge_deepseekcoder import predict_no_ui_long_connection
|
||||||
# from request_llms.bridge_qwen_7B import predict_no_ui_long_connection
|
# from request_llms.bridge_qwen_7B import predict_no_ui_long_connection
|
||||||
from request_llms.bridge_qwen_local import predict_no_ui_long_connection
|
# from request_llms.bridge_qwen_local import predict_no_ui_long_connection
|
||||||
|
|
||||||
# from request_llms.bridge_spark import predict_no_ui_long_connection
|
|
||||||
# from request_llms.bridge_zhipu import predict_no_ui_long_connection
|
|
||||||
# from request_llms.bridge_chatglm3 import predict_no_ui_long_connection
|
|
||||||
|
|
||||||
llm_kwargs = {
|
llm_kwargs = {
|
||||||
"max_length": 4096,
|
"max_length": 4096,
|
||||||
"top_p": 1,
|
"top_p": 1,
|
||||||
"temperature": 1,
|
"temperature": 1,
|
||||||
}
|
}
|
||||||
|
|
||||||
result = predict_no_ui_long_connection(
|
result = predict_no_ui_long_connection(
|
||||||
inputs="请问什么是质子?", llm_kwargs=llm_kwargs, history=["你好", "我好!"], sys_prompt=""
|
inputs="请问什么是质子?", llm_kwargs=llm_kwargs, history=["你好", "我好!"], sys_prompt=""
|
||||||
)
|
)
|
||||||
print("final result:", result)
|
print("final result:", result)
|
||||||
|
|
||||||
|
|||||||
@@ -43,8 +43,10 @@ def validate_path():
|
|||||||
|
|
||||||
validate_path() # validate path so you can run from base directory
|
validate_path() # validate path so you can run from base directory
|
||||||
from toolbox import markdown_convertion
|
from toolbox import markdown_convertion
|
||||||
|
from shared_utils.advanced_markdown_format import markdown_convertion_for_file
|
||||||
html = markdown_convertion(md)
|
with open("gpt_log/default_user/shared/2024-04-22-01-27-43.zip.extract/translated_markdown.md", "r", encoding="utf-8") as f:
|
||||||
|
md = f.read()
|
||||||
|
html = markdown_convertion_for_file(md)
|
||||||
# print(html)
|
# print(html)
|
||||||
with open("test.html", "w", encoding="utf-8") as f:
|
with open("test.html", "w", encoding="utf-8") as f:
|
||||||
f.write(html)
|
f.write(html)
|
||||||
|
|||||||
@@ -18,14 +18,18 @@ validate_path() # 返回项目根路径
|
|||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
from tests.test_utils import plugin_test
|
from tests.test_utils import plugin_test
|
||||||
|
|
||||||
|
plugin_test(plugin='crazy_functions.Internet_GPT->连接网络回答问题', main_input="谁是应急食品?")
|
||||||
|
|
||||||
# plugin_test(plugin='crazy_functions.函数动态生成->函数动态生成', main_input='交换图像的蓝色通道和红色通道', advanced_arg={"file_path_arg": "./build/ants.jpg"})
|
# plugin_test(plugin='crazy_functions.函数动态生成->函数动态生成', main_input='交换图像的蓝色通道和红色通道', advanced_arg={"file_path_arg": "./build/ants.jpg"})
|
||||||
|
|
||||||
# plugin_test(plugin='crazy_functions.Latex输出PDF结果->Latex翻译中文并重新编译PDF', main_input="2307.07522")
|
# plugin_test(plugin='crazy_functions.Latex_Function->Latex翻译中文并重新编译PDF', main_input="2307.07522")
|
||||||
|
|
||||||
plugin_test(
|
# plugin_test(plugin='crazy_functions.PDF_Translate->批量翻译PDF文档', main_input='build/pdf/t1.pdf')
|
||||||
plugin="crazy_functions.Latex输出PDF结果->Latex翻译中文并重新编译PDF",
|
|
||||||
main_input="G:/SEAFILE_LOCAL/50503047/我的资料库/学位/paperlatex/aaai/Fu_8368_with_appendix",
|
# plugin_test(
|
||||||
)
|
# plugin="crazy_functions.Latex_Function->Latex翻译中文并重新编译PDF",
|
||||||
|
# main_input="G:/SEAFILE_LOCAL/50503047/我的资料库/学位/paperlatex/aaai/Fu_8368_with_appendix",
|
||||||
|
# )
|
||||||
|
|
||||||
# plugin_test(plugin='crazy_functions.虚空终端->虚空终端', main_input='修改api-key为sk-jhoejriotherjep')
|
# plugin_test(plugin='crazy_functions.虚空终端->虚空终端', main_input='修改api-key为sk-jhoejriotherjep')
|
||||||
|
|
||||||
@@ -41,9 +45,9 @@ if __name__ == "__main__":
|
|||||||
|
|
||||||
# plugin_test(plugin='crazy_functions.Latex全文润色->Latex英文润色', main_input="crazy_functions/test_project/latex/attention")
|
# plugin_test(plugin='crazy_functions.Latex全文润色->Latex英文润色', main_input="crazy_functions/test_project/latex/attention")
|
||||||
|
|
||||||
# plugin_test(plugin='crazy_functions.批量Markdown翻译->Markdown中译英', main_input="README.md")
|
# plugin_test(plugin='crazy_functions.Markdown_Translate->Markdown中译英', main_input="README.md")
|
||||||
|
|
||||||
# plugin_test(plugin='crazy_functions.批量翻译PDF文档_多线程->批量翻译PDF文档', main_input='crazy_functions/test_project/pdf_and_word/aaai.pdf')
|
# plugin_test(plugin='crazy_functions.PDF_Translate->批量翻译PDF文档', main_input='crazy_functions/test_project/pdf_and_word/aaai.pdf')
|
||||||
|
|
||||||
# plugin_test(plugin='crazy_functions.谷歌检索小助手->谷歌检索小助手', main_input="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=auto+reinforcement+learning&btnG=")
|
# plugin_test(plugin='crazy_functions.谷歌检索小助手->谷歌检索小助手', main_input="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=auto+reinforcement+learning&btnG=")
|
||||||
|
|
||||||
@@ -58,7 +62,7 @@ if __name__ == "__main__":
|
|||||||
# plugin_test(plugin='crazy_functions.数学动画生成manim->动画生成', main_input="A ball split into 2, and then split into 4, and finally split into 8.")
|
# plugin_test(plugin='crazy_functions.数学动画生成manim->动画生成', main_input="A ball split into 2, and then split into 4, and finally split into 8.")
|
||||||
|
|
||||||
# for lang in ["English", "French", "Japanese", "Korean", "Russian", "Italian", "German", "Portuguese", "Arabic"]:
|
# for lang in ["English", "French", "Japanese", "Korean", "Russian", "Italian", "German", "Portuguese", "Arabic"]:
|
||||||
# plugin_test(plugin='crazy_functions.批量Markdown翻译->Markdown翻译指定语言', main_input="README.md", advanced_arg={"advanced_arg": lang})
|
# plugin_test(plugin='crazy_functions.Markdown_Translate->Markdown翻译指定语言', main_input="README.md", advanced_arg={"advanced_arg": lang})
|
||||||
|
|
||||||
# plugin_test(plugin='crazy_functions.知识库文件注入->知识库文件注入', main_input="./")
|
# plugin_test(plugin='crazy_functions.知识库文件注入->知识库文件注入', main_input="./")
|
||||||
|
|
||||||
@@ -66,7 +70,7 @@ if __name__ == "__main__":
|
|||||||
|
|
||||||
# plugin_test(plugin='crazy_functions.知识库文件注入->读取知识库作答', main_input="远程云服务器部署?")
|
# plugin_test(plugin='crazy_functions.知识库文件注入->读取知识库作答', main_input="远程云服务器部署?")
|
||||||
|
|
||||||
# plugin_test(plugin='crazy_functions.Latex输出PDF结果->Latex翻译中文并重新编译PDF', main_input="2210.03629")
|
# plugin_test(plugin='crazy_functions.Latex_Function->Latex翻译中文并重新编译PDF', main_input="2210.03629")
|
||||||
|
|
||||||
# advanced_arg = {"advanced_arg":"--llm_to_learn=gpt-3.5-turbo --prompt_prefix='根据下面的服装类型提示,想象一个穿着者,对这个人外貌、身处的环境、内心世界、人设进行描写。要求:100字以内,用第二人称。' --system_prompt=''" }
|
# advanced_arg = {"advanced_arg":"--llm_to_learn=gpt-3.5-turbo --prompt_prefix='根据下面的服装类型提示,想象一个穿着者,对这个人外貌、身处的环境、内心世界、人设进行描写。要求:100字以内,用第二人称。' --system_prompt=''" }
|
||||||
# plugin_test(plugin='crazy_functions.chatglm微调工具->微调数据集生成', main_input='build/dev.json', advanced_arg=advanced_arg)
|
# plugin_test(plugin='crazy_functions.chatglm微调工具->微调数据集生成', main_input='build/dev.json', advanced_arg=advanced_arg)
|
||||||
|
|||||||
@@ -1,296 +1 @@
|
|||||||
/**
|
// we have moved mermaid-related code to gradio-fix repository: binary-husky/gradio-fix@32150d0
|
||||||
* base64.ts
|
|
||||||
*
|
|
||||||
* Licensed under the BSD 3-Clause License.
|
|
||||||
* http://opensource.org/licenses/BSD-3-Clause
|
|
||||||
*
|
|
||||||
* References:
|
|
||||||
* http://en.wikipedia.org/wiki/Base64
|
|
||||||
*
|
|
||||||
* @author Dan Kogai (https://github.com/dankogai)
|
|
||||||
*/
|
|
||||||
const version = '3.7.2';
|
|
||||||
/**
|
|
||||||
* @deprecated use lowercase `version`.
|
|
||||||
*/
|
|
||||||
const VERSION = version;
|
|
||||||
const _hasatob = typeof atob === 'function';
|
|
||||||
const _hasbtoa = typeof btoa === 'function';
|
|
||||||
const _hasBuffer = typeof Buffer === 'function';
|
|
||||||
const _TD = typeof TextDecoder === 'function' ? new TextDecoder() : undefined;
|
|
||||||
const _TE = typeof TextEncoder === 'function' ? new TextEncoder() : undefined;
|
|
||||||
const b64ch = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=';
|
|
||||||
const b64chs = Array.prototype.slice.call(b64ch);
|
|
||||||
const b64tab = ((a) => {
|
|
||||||
let tab = {};
|
|
||||||
a.forEach((c, i) => tab[c] = i);
|
|
||||||
return tab;
|
|
||||||
})(b64chs);
|
|
||||||
const b64re = /^(?:[A-Za-z\d+\/]{4})*?(?:[A-Za-z\d+\/]{2}(?:==)?|[A-Za-z\d+\/]{3}=?)?$/;
|
|
||||||
const _fromCC = String.fromCharCode.bind(String);
|
|
||||||
const _U8Afrom = typeof Uint8Array.from === 'function'
|
|
||||||
? Uint8Array.from.bind(Uint8Array)
|
|
||||||
: (it, fn = (x) => x) => new Uint8Array(Array.prototype.slice.call(it, 0).map(fn));
|
|
||||||
const _mkUriSafe = (src) => src
|
|
||||||
.replace(/=/g, '').replace(/[+\/]/g, (m0) => m0 == '+' ? '-' : '_');
|
|
||||||
const _tidyB64 = (s) => s.replace(/[^A-Za-z0-9\+\/]/g, '');
|
|
||||||
/**
|
|
||||||
* polyfill version of `btoa`
|
|
||||||
*/
|
|
||||||
const btoaPolyfill = (bin) => {
|
|
||||||
// console.log('polyfilled');
|
|
||||||
let u32, c0, c1, c2, asc = '';
|
|
||||||
const pad = bin.length % 3;
|
|
||||||
for (let i = 0; i < bin.length;) {
|
|
||||||
if ((c0 = bin.charCodeAt(i++)) > 255 ||
|
|
||||||
(c1 = bin.charCodeAt(i++)) > 255 ||
|
|
||||||
(c2 = bin.charCodeAt(i++)) > 255)
|
|
||||||
throw new TypeError('invalid character found');
|
|
||||||
u32 = (c0 << 16) | (c1 << 8) | c2;
|
|
||||||
asc += b64chs[u32 >> 18 & 63]
|
|
||||||
+ b64chs[u32 >> 12 & 63]
|
|
||||||
+ b64chs[u32 >> 6 & 63]
|
|
||||||
+ b64chs[u32 & 63];
|
|
||||||
}
|
|
||||||
return pad ? asc.slice(0, pad - 3) + "===".substring(pad) : asc;
|
|
||||||
};
|
|
||||||
/**
|
|
||||||
* does what `window.btoa` of web browsers do.
|
|
||||||
* @param {String} bin binary string
|
|
||||||
* @returns {string} Base64-encoded string
|
|
||||||
*/
|
|
||||||
const _btoa = _hasbtoa ? (bin) => btoa(bin)
|
|
||||||
: _hasBuffer ? (bin) => Buffer.from(bin, 'binary').toString('base64')
|
|
||||||
: btoaPolyfill;
|
|
||||||
const _fromUint8Array = _hasBuffer
|
|
||||||
? (u8a) => Buffer.from(u8a).toString('base64')
|
|
||||||
: (u8a) => {
|
|
||||||
// cf. https://stackoverflow.com/questions/12710001/how-to-convert-uint8-array-to-base64-encoded-string/12713326#12713326
|
|
||||||
const maxargs = 0x1000;
|
|
||||||
let strs = [];
|
|
||||||
for (let i = 0, l = u8a.length; i < l; i += maxargs) {
|
|
||||||
strs.push(_fromCC.apply(null, u8a.subarray(i, i + maxargs)));
|
|
||||||
}
|
|
||||||
return _btoa(strs.join(''));
|
|
||||||
};
|
|
||||||
/**
|
|
||||||
* converts a Uint8Array to a Base64 string.
|
|
||||||
* @param {boolean} [urlsafe] URL-and-filename-safe a la RFC4648 §5
|
|
||||||
* @returns {string} Base64 string
|
|
||||||
*/
|
|
||||||
const fromUint8Array = (u8a, urlsafe = false) => urlsafe ? _mkUriSafe(_fromUint8Array(u8a)) : _fromUint8Array(u8a);
|
|
||||||
// This trick is found broken https://github.com/dankogai/js-base64/issues/130
|
|
||||||
// const utob = (src: string) => unescape(encodeURIComponent(src));
|
|
||||||
// reverting good old fationed regexp
|
|
||||||
const cb_utob = (c) => {
|
|
||||||
if (c.length < 2) {
|
|
||||||
var cc = c.charCodeAt(0);
|
|
||||||
return cc < 0x80 ? c
|
|
||||||
: cc < 0x800 ? (_fromCC(0xc0 | (cc >>> 6))
|
|
||||||
+ _fromCC(0x80 | (cc & 0x3f)))
|
|
||||||
: (_fromCC(0xe0 | ((cc >>> 12) & 0x0f))
|
|
||||||
+ _fromCC(0x80 | ((cc >>> 6) & 0x3f))
|
|
||||||
+ _fromCC(0x80 | (cc & 0x3f)));
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
var cc = 0x10000
|
|
||||||
+ (c.charCodeAt(0) - 0xD800) * 0x400
|
|
||||||
+ (c.charCodeAt(1) - 0xDC00);
|
|
||||||
return (_fromCC(0xf0 | ((cc >>> 18) & 0x07))
|
|
||||||
+ _fromCC(0x80 | ((cc >>> 12) & 0x3f))
|
|
||||||
+ _fromCC(0x80 | ((cc >>> 6) & 0x3f))
|
|
||||||
+ _fromCC(0x80 | (cc & 0x3f)));
|
|
||||||
}
|
|
||||||
};
|
|
||||||
const re_utob = /[\uD800-\uDBFF][\uDC00-\uDFFFF]|[^\x00-\x7F]/g;
|
|
||||||
/**
|
|
||||||
* @deprecated should have been internal use only.
|
|
||||||
* @param {string} src UTF-8 string
|
|
||||||
* @returns {string} UTF-16 string
|
|
||||||
*/
|
|
||||||
const utob = (u) => u.replace(re_utob, cb_utob);
|
|
||||||
//
|
|
||||||
const _encode = _hasBuffer
|
|
||||||
? (s) => Buffer.from(s, 'utf8').toString('base64')
|
|
||||||
: _TE
|
|
||||||
? (s) => _fromUint8Array(_TE.encode(s))
|
|
||||||
: (s) => _btoa(utob(s));
|
|
||||||
/**
|
|
||||||
* converts a UTF-8-encoded string to a Base64 string.
|
|
||||||
* @param {boolean} [urlsafe] if `true` make the result URL-safe
|
|
||||||
* @returns {string} Base64 string
|
|
||||||
*/
|
|
||||||
const encode = (src, urlsafe = false) => urlsafe
|
|
||||||
? _mkUriSafe(_encode(src))
|
|
||||||
: _encode(src);
|
|
||||||
/**
|
|
||||||
* converts a UTF-8-encoded string to URL-safe Base64 RFC4648 §5.
|
|
||||||
* @returns {string} Base64 string
|
|
||||||
*/
|
|
||||||
const encodeURI = (src) => encode(src, true);
|
|
||||||
// This trick is found broken https://github.com/dankogai/js-base64/issues/130
|
|
||||||
// const btou = (src: string) => decodeURIComponent(escape(src));
|
|
||||||
// reverting good old fationed regexp
|
|
||||||
const re_btou = /[\xC0-\xDF][\x80-\xBF]|[\xE0-\xEF][\x80-\xBF]{2}|[\xF0-\xF7][\x80-\xBF]{3}/g;
|
|
||||||
const cb_btou = (cccc) => {
|
|
||||||
switch (cccc.length) {
|
|
||||||
case 4:
|
|
||||||
var cp = ((0x07 & cccc.charCodeAt(0)) << 18)
|
|
||||||
| ((0x3f & cccc.charCodeAt(1)) << 12)
|
|
||||||
| ((0x3f & cccc.charCodeAt(2)) << 6)
|
|
||||||
| (0x3f & cccc.charCodeAt(3)), offset = cp - 0x10000;
|
|
||||||
return (_fromCC((offset >>> 10) + 0xD800)
|
|
||||||
+ _fromCC((offset & 0x3FF) + 0xDC00));
|
|
||||||
case 3:
|
|
||||||
return _fromCC(((0x0f & cccc.charCodeAt(0)) << 12)
|
|
||||||
| ((0x3f & cccc.charCodeAt(1)) << 6)
|
|
||||||
| (0x3f & cccc.charCodeAt(2)));
|
|
||||||
default:
|
|
||||||
return _fromCC(((0x1f & cccc.charCodeAt(0)) << 6)
|
|
||||||
| (0x3f & cccc.charCodeAt(1)));
|
|
||||||
}
|
|
||||||
};
|
|
||||||
/**
|
|
||||||
* @deprecated should have been internal use only.
|
|
||||||
* @param {string} src UTF-16 string
|
|
||||||
* @returns {string} UTF-8 string
|
|
||||||
*/
|
|
||||||
const btou = (b) => b.replace(re_btou, cb_btou);
|
|
||||||
/**
|
|
||||||
* polyfill version of `atob`
|
|
||||||
*/
|
|
||||||
const atobPolyfill = (asc) => {
|
|
||||||
// console.log('polyfilled');
|
|
||||||
asc = asc.replace(/\s+/g, '');
|
|
||||||
if (!b64re.test(asc))
|
|
||||||
throw new TypeError('malformed base64.');
|
|
||||||
asc += '=='.slice(2 - (asc.length & 3));
|
|
||||||
let u24, bin = '', r1, r2;
|
|
||||||
for (let i = 0; i < asc.length;) {
|
|
||||||
u24 = b64tab[asc.charAt(i++)] << 18
|
|
||||||
| b64tab[asc.charAt(i++)] << 12
|
|
||||||
| (r1 = b64tab[asc.charAt(i++)]) << 6
|
|
||||||
| (r2 = b64tab[asc.charAt(i++)]);
|
|
||||||
bin += r1 === 64 ? _fromCC(u24 >> 16 & 255)
|
|
||||||
: r2 === 64 ? _fromCC(u24 >> 16 & 255, u24 >> 8 & 255)
|
|
||||||
: _fromCC(u24 >> 16 & 255, u24 >> 8 & 255, u24 & 255);
|
|
||||||
}
|
|
||||||
return bin;
|
|
||||||
};
|
|
||||||
/**
|
|
||||||
* does what `window.atob` of web browsers do.
|
|
||||||
* @param {String} asc Base64-encoded string
|
|
||||||
* @returns {string} binary string
|
|
||||||
*/
|
|
||||||
const _atob = _hasatob ? (asc) => atob(_tidyB64(asc))
|
|
||||||
: _hasBuffer ? (asc) => Buffer.from(asc, 'base64').toString('binary')
|
|
||||||
: atobPolyfill;
|
|
||||||
//
|
|
||||||
const _toUint8Array = _hasBuffer
|
|
||||||
? (a) => _U8Afrom(Buffer.from(a, 'base64'))
|
|
||||||
: (a) => _U8Afrom(_atob(a), c => c.charCodeAt(0));
|
|
||||||
/**
|
|
||||||
* converts a Base64 string to a Uint8Array.
|
|
||||||
*/
|
|
||||||
const toUint8Array = (a) => _toUint8Array(_unURI(a));
|
|
||||||
//
|
|
||||||
const _decode = _hasBuffer
|
|
||||||
? (a) => Buffer.from(a, 'base64').toString('utf8')
|
|
||||||
: _TD
|
|
||||||
? (a) => _TD.decode(_toUint8Array(a))
|
|
||||||
: (a) => btou(_atob(a));
|
|
||||||
const _unURI = (a) => _tidyB64(a.replace(/[-_]/g, (m0) => m0 == '-' ? '+' : '/'));
|
|
||||||
/**
|
|
||||||
* converts a Base64 string to a UTF-8 string.
|
|
||||||
* @param {String} src Base64 string. Both normal and URL-safe are supported
|
|
||||||
* @returns {string} UTF-8 string
|
|
||||||
*/
|
|
||||||
const decode = (src) => _decode(_unURI(src));
|
|
||||||
/**
|
|
||||||
* check if a value is a valid Base64 string
|
|
||||||
* @param {String} src a value to check
|
|
||||||
*/
|
|
||||||
const isValid = (src) => {
|
|
||||||
if (typeof src !== 'string')
|
|
||||||
return false;
|
|
||||||
const s = src.replace(/\s+/g, '').replace(/={0,2}$/, '');
|
|
||||||
return !/[^\s0-9a-zA-Z\+/]/.test(s) || !/[^\s0-9a-zA-Z\-_]/.test(s);
|
|
||||||
};
|
|
||||||
//
|
|
||||||
const _noEnum = (v) => {
|
|
||||||
return {
|
|
||||||
value: v, enumerable: false, writable: true, configurable: true
|
|
||||||
};
|
|
||||||
};
|
|
||||||
/**
|
|
||||||
* extend String.prototype with relevant methods
|
|
||||||
*/
|
|
||||||
const extendString = function () {
|
|
||||||
const _add = (name, body) => Object.defineProperty(String.prototype, name, _noEnum(body));
|
|
||||||
_add('fromBase64', function () { return decode(this); });
|
|
||||||
_add('toBase64', function (urlsafe) { return encode(this, urlsafe); });
|
|
||||||
_add('toBase64URI', function () { return encode(this, true); });
|
|
||||||
_add('toBase64URL', function () { return encode(this, true); });
|
|
||||||
_add('toUint8Array', function () { return toUint8Array(this); });
|
|
||||||
};
|
|
||||||
/**
|
|
||||||
* extend Uint8Array.prototype with relevant methods
|
|
||||||
*/
|
|
||||||
const extendUint8Array = function () {
|
|
||||||
const _add = (name, body) => Object.defineProperty(Uint8Array.prototype, name, _noEnum(body));
|
|
||||||
_add('toBase64', function (urlsafe) { return fromUint8Array(this, urlsafe); });
|
|
||||||
_add('toBase64URI', function () { return fromUint8Array(this, true); });
|
|
||||||
_add('toBase64URL', function () { return fromUint8Array(this, true); });
|
|
||||||
};
|
|
||||||
/**
|
|
||||||
* extend Builtin prototypes with relevant methods
|
|
||||||
*/
|
|
||||||
const extendBuiltins = () => {
|
|
||||||
extendString();
|
|
||||||
extendUint8Array();
|
|
||||||
};
|
|
||||||
const gBase64 = {
|
|
||||||
version: version,
|
|
||||||
VERSION: VERSION,
|
|
||||||
atob: _atob,
|
|
||||||
atobPolyfill: atobPolyfill,
|
|
||||||
btoa: _btoa,
|
|
||||||
btoaPolyfill: btoaPolyfill,
|
|
||||||
fromBase64: decode,
|
|
||||||
toBase64: encode,
|
|
||||||
encode: encode,
|
|
||||||
encodeURI: encodeURI,
|
|
||||||
encodeURL: encodeURI,
|
|
||||||
utob: utob,
|
|
||||||
btou: btou,
|
|
||||||
decode: decode,
|
|
||||||
isValid: isValid,
|
|
||||||
fromUint8Array: fromUint8Array,
|
|
||||||
toUint8Array: toUint8Array,
|
|
||||||
extendString: extendString,
|
|
||||||
extendUint8Array: extendUint8Array,
|
|
||||||
extendBuiltins: extendBuiltins,
|
|
||||||
};
|
|
||||||
// makecjs:CUT //
|
|
||||||
export { version };
|
|
||||||
export { VERSION };
|
|
||||||
export { _atob as atob };
|
|
||||||
export { atobPolyfill };
|
|
||||||
export { _btoa as btoa };
|
|
||||||
export { btoaPolyfill };
|
|
||||||
export { decode as fromBase64 };
|
|
||||||
export { encode as toBase64 };
|
|
||||||
export { utob };
|
|
||||||
export { encode };
|
|
||||||
export { encodeURI };
|
|
||||||
export { encodeURI as encodeURL };
|
|
||||||
export { btou };
|
|
||||||
export { decode };
|
|
||||||
export { isValid };
|
|
||||||
export { fromUint8Array };
|
|
||||||
export { toUint8Array };
|
|
||||||
export { extendString };
|
|
||||||
export { extendUint8Array };
|
|
||||||
export { extendBuiltins };
|
|
||||||
// and finally,
|
|
||||||
export { gBase64 as Base64 };
|
|
||||||
|
|||||||
@@ -1,3 +1,9 @@
|
|||||||
|
#plugin_arg_menu {
|
||||||
|
transform: translate(-50%, -50%);
|
||||||
|
border: dashed;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
/* hide remove all button */
|
/* hide remove all button */
|
||||||
.remove-all.svelte-aqlk7e.svelte-aqlk7e.svelte-aqlk7e {
|
.remove-all.svelte-aqlk7e.svelte-aqlk7e.svelte-aqlk7e {
|
||||||
visibility: hidden;
|
visibility: hidden;
|
||||||
@@ -38,6 +44,7 @@
|
|||||||
left: calc(100% + 3px);
|
left: calc(100% + 3px);
|
||||||
top: 0;
|
top: 0;
|
||||||
display: flex;
|
display: flex;
|
||||||
|
flex-direction: column;
|
||||||
justify-content: space-between;
|
justify-content: space-between;
|
||||||
}
|
}
|
||||||
/* .message-btn-row-leading, .message-btn-row-trailing {
|
/* .message-btn-row-leading, .message-btn-row-trailing {
|
||||||
@@ -59,6 +66,7 @@
|
|||||||
|
|
||||||
/* Scrollbar Width */
|
/* Scrollbar Width */
|
||||||
::-webkit-scrollbar {
|
::-webkit-scrollbar {
|
||||||
|
height: 12px;
|
||||||
width: 12px;
|
width: 12px;
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -107,6 +115,7 @@
|
|||||||
border-width: thin;
|
border-width: thin;
|
||||||
user-select: none;
|
user-select: none;
|
||||||
padding-left: 2%;
|
padding-left: 2%;
|
||||||
|
text-align: center;
|
||||||
}
|
}
|
||||||
|
|
||||||
.floating-component #input-panel2 {
|
.floating-component #input-panel2 {
|
||||||
@@ -116,3 +125,20 @@
|
|||||||
border-width: thin;
|
border-width: thin;
|
||||||
border-top-width: 0;
|
border-top-width: 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
.floating-component #plugin_arg_panel {
|
||||||
|
border-top-left-radius: 0px;
|
||||||
|
border-top-right-radius: 0px;
|
||||||
|
border: solid;
|
||||||
|
border-width: thin;
|
||||||
|
border-top-width: 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
.floating-component #edit-panel {
|
||||||
|
border-top-left-radius: 0px;
|
||||||
|
border-top-right-radius: 0px;
|
||||||
|
border: solid;
|
||||||
|
border-width: thin;
|
||||||
|
border-top-width: 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
|||||||
1036
themes/common.js
1036
themes/common.js
File diff suppressed because it is too large
Load Diff
@@ -1,21 +1,44 @@
|
|||||||
from toolbox import get_conf
|
from toolbox import get_conf
|
||||||
CODE_HIGHLIGHT, ADD_WAIFU, LAYOUT = get_conf("CODE_HIGHLIGHT", "ADD_WAIFU", "LAYOUT")
|
CODE_HIGHLIGHT, ADD_WAIFU, LAYOUT = get_conf("CODE_HIGHLIGHT", "ADD_WAIFU", "LAYOUT")
|
||||||
|
|
||||||
|
def minimize_js(common_js_path):
|
||||||
|
try:
|
||||||
|
import rjsmin, hashlib, glob, os
|
||||||
|
# clean up old minimized js files, matching `common_js_path + '.min.*'`
|
||||||
|
for old_min_js in glob.glob(common_js_path + '.min.*.js'):
|
||||||
|
os.remove(old_min_js)
|
||||||
|
# use rjsmin to minimize `common_js_path`
|
||||||
|
c_jsmin = rjsmin.jsmin
|
||||||
|
with open(common_js_path, "r") as f:
|
||||||
|
js_content = f.read()
|
||||||
|
minimized_js_content = c_jsmin(js_content)
|
||||||
|
# compute sha256 hash of minimized js content
|
||||||
|
sha_hash = hashlib.sha256(minimized_js_content.encode()).hexdigest()[:8]
|
||||||
|
minimized_js_path = common_js_path + '.min.' + sha_hash + '.js'
|
||||||
|
# save to minimized js file
|
||||||
|
with open(minimized_js_path, "w") as f:
|
||||||
|
f.write(minimized_js_content)
|
||||||
|
# return minimized js file path
|
||||||
|
return minimized_js_path
|
||||||
|
except:
|
||||||
|
return common_js_path
|
||||||
|
|
||||||
def get_common_html_javascript_code():
|
def get_common_html_javascript_code():
|
||||||
js = "\n"
|
js = "\n"
|
||||||
|
common_js_path = "themes/common.js"
|
||||||
|
minimized_js_path = minimize_js(common_js_path)
|
||||||
for jsf in [
|
for jsf in [
|
||||||
"file=themes/common.js",
|
f"file={minimized_js_path}",
|
||||||
"file=themes/mermaid.min.js",
|
|
||||||
"file=themes/mermaid_loader.js",
|
|
||||||
]:
|
]:
|
||||||
js += f"""<script src="{jsf}"></script>\n"""
|
js += f"""<script src="{jsf}"></script>\n"""
|
||||||
|
|
||||||
# 添加Live2D
|
# 添加Live2D
|
||||||
if ADD_WAIFU:
|
if ADD_WAIFU:
|
||||||
for jsf in [
|
for jsf in [
|
||||||
"file=docs/waifu_plugin/jquery.min.js",
|
"file=themes/waifu_plugin/jquery.min.js",
|
||||||
"file=docs/waifu_plugin/jquery-ui.min.js",
|
"file=themes/waifu_plugin/jquery-ui.min.js",
|
||||||
"file=docs/waifu_plugin/autoload.js",
|
|
||||||
]:
|
]:
|
||||||
js += f"""<script src="{jsf}"></script>\n"""
|
js += f"""<script src="{jsf}"></script>\n"""
|
||||||
|
else:
|
||||||
|
js += """<script>window.loadLive2D = function(){};</script>\n"""
|
||||||
return js
|
return js
|
||||||
@@ -1,4 +1,3 @@
|
|||||||
import logging
|
|
||||||
import os
|
import os
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
from toolbox import get_conf, ProxyNetworkActivate
|
from toolbox import get_conf, ProxyNetworkActivate
|
||||||
@@ -10,12 +9,15 @@ theme_dir = os.path.dirname(__file__)
|
|||||||
def dynamic_set_theme(THEME):
|
def dynamic_set_theme(THEME):
|
||||||
set_theme = gr.themes.ThemeClass()
|
set_theme = gr.themes.ThemeClass()
|
||||||
with ProxyNetworkActivate("Download_Gradio_Theme"):
|
with ProxyNetworkActivate("Download_Gradio_Theme"):
|
||||||
logging.info("正在下载Gradio主题,请稍等。")
|
print("正在下载Gradio主题,请稍等。")
|
||||||
|
try:
|
||||||
if THEME.startswith("Huggingface-"):
|
if THEME.startswith("Huggingface-"):
|
||||||
THEME = THEME.lstrip("Huggingface-")
|
THEME = THEME.lstrip("Huggingface-")
|
||||||
if THEME.startswith("huggingface-"):
|
if THEME.startswith("huggingface-"):
|
||||||
THEME = THEME.lstrip("huggingface-")
|
THEME = THEME.lstrip("huggingface-")
|
||||||
set_theme = set_theme.from_hub(THEME.lower())
|
set_theme = set_theme.from_hub(THEME.lower())
|
||||||
|
except:
|
||||||
|
print("下载Gradio主题时出现异常。")
|
||||||
return set_theme
|
return set_theme
|
||||||
|
|
||||||
|
|
||||||
@@ -23,13 +25,16 @@ def adjust_theme():
|
|||||||
try:
|
try:
|
||||||
set_theme = gr.themes.ThemeClass()
|
set_theme = gr.themes.ThemeClass()
|
||||||
with ProxyNetworkActivate("Download_Gradio_Theme"):
|
with ProxyNetworkActivate("Download_Gradio_Theme"):
|
||||||
logging.info("正在下载Gradio主题,请稍等。")
|
print("正在下载Gradio主题,请稍等。")
|
||||||
|
try:
|
||||||
THEME = get_conf("THEME")
|
THEME = get_conf("THEME")
|
||||||
if THEME.startswith("Huggingface-"):
|
if THEME.startswith("Huggingface-"):
|
||||||
THEME = THEME.lstrip("Huggingface-")
|
THEME = THEME.lstrip("Huggingface-")
|
||||||
if THEME.startswith("huggingface-"):
|
if THEME.startswith("huggingface-"):
|
||||||
THEME = THEME.lstrip("huggingface-")
|
THEME = THEME.lstrip("huggingface-")
|
||||||
set_theme = set_theme.from_hub(THEME.lower())
|
set_theme = set_theme.from_hub(THEME.lower())
|
||||||
|
except:
|
||||||
|
print("下载Gradio主题时出现异常。")
|
||||||
|
|
||||||
from themes.common import get_common_html_javascript_code
|
from themes.common import get_common_html_javascript_code
|
||||||
js = get_common_html_javascript_code()
|
js = get_common_html_javascript_code()
|
||||||
@@ -49,9 +54,7 @@ def adjust_theme():
|
|||||||
)
|
)
|
||||||
except Exception:
|
except Exception:
|
||||||
set_theme = None
|
set_theme = None
|
||||||
from toolbox import trimmed_format_exc
|
print("gradio版本较旧, 不能自定义字体和颜色。")
|
||||||
|
|
||||||
logging.error("gradio版本较旧, 不能自定义字体和颜色:", trimmed_format_exc())
|
|
||||||
return set_theme
|
return set_theme
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
48
themes/gui_advanced_plugin_class.py
Normal file
48
themes/gui_advanced_plugin_class.py
Normal file
@@ -0,0 +1,48 @@
|
|||||||
|
import gradio as gr
|
||||||
|
import json
|
||||||
|
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, DummyWith
|
||||||
|
|
||||||
|
def define_gui_advanced_plugin_class(plugins):
|
||||||
|
# 定义新一代插件的高级参数区
|
||||||
|
with gr.Floating(init_x="50%", init_y="50%", visible=False, width="30%", drag="top", elem_id="plugin_arg_menu"):
|
||||||
|
with gr.Accordion("选择插件参数", open=True, elem_id="plugin_arg_panel"):
|
||||||
|
for u in range(8):
|
||||||
|
with gr.Row():
|
||||||
|
gr.Textbox(show_label=True, label="T1", placeholder="请输入", lines=1, visible=False, elem_id=f"plugin_arg_txt_{u}").style(container=False)
|
||||||
|
for u in range(8):
|
||||||
|
with gr.Row(): # PLUGIN_ARG_MENU
|
||||||
|
gr.Dropdown(label="T1", value="请选择", choices=[], visible=True, elem_id=f"plugin_arg_drop_{u}", interactive=True)
|
||||||
|
|
||||||
|
with gr.Row():
|
||||||
|
# 这个隐藏textbox负责装入当前弹出插件的属性
|
||||||
|
gr.Textbox(show_label=False, placeholder="请输入", lines=1, visible=False,
|
||||||
|
elem_id=f"invisible_current_pop_up_plugin_arg").style(container=False)
|
||||||
|
usr_confirmed_arg = gr.Textbox(show_label=False, placeholder="请输入", lines=1, visible=False,
|
||||||
|
elem_id=f"invisible_current_pop_up_plugin_arg_final").style(container=False)
|
||||||
|
|
||||||
|
arg_confirm_btn = gr.Button("确认参数并执行", variant="stop")
|
||||||
|
arg_confirm_btn.style(size="sm")
|
||||||
|
|
||||||
|
arg_cancel_btn = gr.Button("取消", variant="stop")
|
||||||
|
arg_cancel_btn.click(None, None, None, _js="""()=>close_current_pop_up_plugin()""")
|
||||||
|
arg_cancel_btn.style(size="sm")
|
||||||
|
|
||||||
|
arg_confirm_btn.click(None, None, None, _js="""()=>execute_current_pop_up_plugin()""")
|
||||||
|
invisible_callback_btn_for_plugin_exe = gr.Button(r"未选定任何插件", variant="secondary", visible=False, elem_id="invisible_callback_btn_for_plugin_exe").style(size="sm")
|
||||||
|
# 随变按钮的回调函数注册
|
||||||
|
def route_switchy_bt_with_arg(request: gr.Request, input_order, *arg):
|
||||||
|
arguments = {k:v for k,v in zip(input_order, arg)}
|
||||||
|
which_plugin = arguments.pop('new_plugin_callback')
|
||||||
|
if which_plugin in [r"未选定任何插件"]: return
|
||||||
|
usr_confirmed_arg = arguments.pop('usr_confirmed_arg')
|
||||||
|
arg_confirm: dict = {}
|
||||||
|
usr_confirmed_arg_dict = json.loads(usr_confirmed_arg)
|
||||||
|
for arg_name in usr_confirmed_arg_dict:
|
||||||
|
arg_confirm.update({arg_name: str(usr_confirmed_arg_dict[arg_name]['user_confirmed_value'])})
|
||||||
|
plugin_obj = plugins[which_plugin]["Class"]
|
||||||
|
arguments['plugin_advanced_arg'] = arg_confirm
|
||||||
|
if arg_confirm.get('main_input', None) is not None:
|
||||||
|
arguments['txt'] = arg_confirm['main_input']
|
||||||
|
yield from ArgsGeneralWrapper(plugin_obj.execute)(request, *arguments.values())
|
||||||
|
return invisible_callback_btn_for_plugin_exe, route_switchy_bt_with_arg, usr_confirmed_arg
|
||||||
|
|
||||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user