Compare commits
22 Commits
frontier
...
0055ea2df7
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
0055ea2df7 | ||
|
|
4a79aa6a93 | ||
|
|
5dffe8627f | ||
|
|
2aefef26db | ||
|
|
957da731db | ||
|
|
155e7e0deb | ||
|
|
add29eba08 | ||
|
|
163e59c0f3 | ||
|
|
07ece29c7c | ||
|
|
991a903fa9 | ||
|
|
cf7c81170c | ||
|
|
6dda2061dd | ||
|
|
e9de41b7e8 | ||
|
|
b34c79a94b | ||
|
|
8a0d96afd3 | ||
|
|
37f9b94dee | ||
|
|
95284d859b | ||
|
|
a552592b5a | ||
|
|
e305f1b4a8 | ||
| a88497c3ab | |||
|
|
0f1d2e0e48 | ||
|
|
936e2f5206 |
31
README.md
31
README.md
@@ -1,14 +1,14 @@
|
||||
> [!IMPORTANT]
|
||||
> `master主分支`最新动态(2025.2.4): 增加deepseek-r1支持;增加字体自定义功能
|
||||
> `master主分支`最新动态(2025.2.2): 三分钟快速接入最强qwen2.5-max[视频](https://www.bilibili.com/video/BV1LeFuerEG4)
|
||||
> `master主分支`最新动态(2025.3.2): 修复大量代码typo / 联网组件支持Jina的api / 增加deepseek-r1支持
|
||||
> `frontier开发分支`最新动态(2024.12.9): 更新对话时间线功能,优化xelatex论文翻译
|
||||
> `wiki文档`最新动态(2024.12.5): 更新ollama接入指南
|
||||
>
|
||||
> 2025.2.2: 三分钟快速接入最强qwen2.5-max[视频](https://www.bilibili.com/video/BV1LeFuerEG4)
|
||||
> 2025.2.1: 支持自定义字体
|
||||
> 2024.10.10: 突发停电,紧急恢复了提供[whl包](https://drive.google.com/drive/folders/14kR-3V-lIbvGxri4AHc8TpiA1fqsw7SK?usp=sharing)的文件服务器
|
||||
> 2024.10.8: 版本3.90加入对llama-index的初步支持,版本3.80加入插件二级菜单功能(详见wiki)
|
||||
> 2024.5.1: 加入Doc2x翻译PDF论文的功能,[查看详情](https://github.com/binary-husky/gpt_academic/wiki/Doc2x)
|
||||
> 2024.3.11: 全力支持Qwen、GLM、DeepseekCoder等中文大语言模型! SoVits语音克隆模块,[查看详情](https://www.bilibili.com/video/BV1Rp421S7tF/)
|
||||
> 2024.1.17: 安装依赖时,请选择`requirements.txt`中**指定的版本**。 安装命令:`pip install -r requirements.txt`。本项目完全开源免费,您可通过订阅[在线服务](https://github.com/binary-husky/gpt_academic/wiki/online)的方式鼓励本项目的发展。
|
||||
> 2024.1.17: 安装依赖时,请选择`requirements.txt`中**指定的版本**。 安装命令:`pip install -r requirements.txt`。
|
||||
|
||||
<br>
|
||||
|
||||
@@ -129,20 +129,20 @@ Latex论文一键校对 | [插件] 仿Grammarly对Latex文章进行语法、拼
|
||||
|
||||
```mermaid
|
||||
flowchart TD
|
||||
A{"安装方法"} --> W1("I. 🔑直接运行 (Windows, Linux or MacOS)")
|
||||
W1 --> W11["1. Python pip包管理依赖"]
|
||||
W1 --> W12["2. Anaconda包管理依赖(推荐⭐)"]
|
||||
A{"安装方法"} --> W1("I 🔑直接运行 (Windows, Linux or MacOS)")
|
||||
W1 --> W11["1 Python pip包管理依赖"]
|
||||
W1 --> W12["2 Anaconda包管理依赖(推荐⭐)"]
|
||||
|
||||
A --> W2["II. 🐳使用Docker (Windows, Linux or MacOS)"]
|
||||
A --> W2["II 🐳使用Docker (Windows, Linux or MacOS)"]
|
||||
|
||||
W2 --> k1["1. 部署项目全部能力的大镜像(推荐⭐)"]
|
||||
W2 --> k2["2. 仅在线模型(GPT, GLM4等)镜像"]
|
||||
W2 --> k3["3. 在线模型 + Latex的大镜像"]
|
||||
W2 --> k1["1 部署项目全部能力的大镜像(推荐⭐)"]
|
||||
W2 --> k2["2 仅在线模型(GPT, GLM4等)镜像"]
|
||||
W2 --> k3["3 在线模型 + Latex的大镜像"]
|
||||
|
||||
A --> W4["IV. 🚀其他部署方法"]
|
||||
W4 --> C1["1. Windows/MacOS 一键安装运行脚本(推荐⭐)"]
|
||||
W4 --> C2["2. Huggingface, Sealos远程部署"]
|
||||
W4 --> C4["3. ... 其他 ..."]
|
||||
A --> W4["IV 🚀其他部署方法"]
|
||||
W4 --> C1["1 Windows/MacOS 一键安装运行脚本(推荐⭐)"]
|
||||
W4 --> C2["2 Huggingface, Sealos远程部署"]
|
||||
W4 --> C4["3 其他 ..."]
|
||||
```
|
||||
|
||||
### 安装方法I:直接运行 (Windows, Linux or MacOS)
|
||||
@@ -428,7 +428,6 @@ timeline LR
|
||||
1. `master` 分支: 主分支,稳定版
|
||||
2. `frontier` 分支: 开发分支,测试版
|
||||
3. 如何[接入其他大模型](request_llms/README.md)
|
||||
4. 访问GPT-Academic的[在线服务并支持我们](https://github.com/binary-husky/gpt_academic/wiki/online)
|
||||
|
||||
### V:参考与学习
|
||||
|
||||
|
||||
@@ -81,7 +81,7 @@ API_URL_REDIRECT = {}
|
||||
|
||||
# 多线程函数插件中,默认允许多少路线程同时访问OpenAI。Free trial users的限制是每分钟3次,Pay-as-you-go users的限制是每分钟3500次
|
||||
# 一言以蔽之:免费(5刀)用户填3,OpenAI绑了信用卡的用户可以填 16 或者更高。提高限制请查询:https://platform.openai.com/docs/guides/rate-limits/overview
|
||||
DEFAULT_WORKER_NUM = 3
|
||||
DEFAULT_WORKER_NUM = 8
|
||||
|
||||
|
||||
# 色彩主题, 可选 ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast"]
|
||||
@@ -103,6 +103,7 @@ AVAIL_FONTS = [
|
||||
"华文中宋(STZhongsong)",
|
||||
"华文新魏(STXinwei)",
|
||||
"华文隶书(STLiti)",
|
||||
# 备注:以下字体需要网络支持,您可以自定义任意您喜欢的字体,如下所示,需要满足的格式为 "字体昵称(字体英文真名@字体css下载链接)"
|
||||
"思源宋体(Source Han Serif CN VF@https://chinese-fonts-cdn.deno.dev/packages/syst/dist/SourceHanSerifCN/result.css)",
|
||||
"月星楷(Moon Stars Kai HW@https://chinese-fonts-cdn.deno.dev/packages/moon-stars-kai/dist/MoonStarsKaiHW-Regular/result.css)",
|
||||
"珠圆体(MaokenZhuyuanTi@https://chinese-fonts-cdn.deno.dev/packages/mkzyt/dist/猫啃珠圆体/result.css)",
|
||||
@@ -343,6 +344,8 @@ NUM_CUSTOM_BASIC_BTN = 4
|
||||
DAAS_SERVER_URLS = [ f"https://niuziniu-biligpt{i}.hf.space/stream" for i in range(1,5) ]
|
||||
|
||||
|
||||
# 在互联网搜索组件中,负责将搜索结果整理成干净的Markdown
|
||||
JINA_API_KEY = ""
|
||||
|
||||
"""
|
||||
--------------- 配置关联关系说明 ---------------
|
||||
|
||||
444
config_private.py
Normal file
444
config_private.py
Normal file
@@ -0,0 +1,444 @@
|
||||
"""
|
||||
以下所有配置也都支持利用环境变量覆写,环境变量配置格式见docker-compose.yml。
|
||||
读取优先级:环境变量 > config_private.py > config.py
|
||||
--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
|
||||
All the following configurations also support using environment variables to override,
|
||||
and the environment variable configuration format can be seen in docker-compose.yml.
|
||||
Configuration reading priority: environment variable > config_private.py > config.py
|
||||
"""
|
||||
|
||||
# [step 1-1]>> ( 接入GPT等模型 ) API_KEY = "sk-123456789xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx123456789"。极少数情况下,还需要填写组织(格式如org-123456789abcdefghijklmno的),请向下翻,找 API_ORG 设置项
|
||||
API_KEY = "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" # 可同时填写多个API-KEY,用英文逗号分割,例如API_KEY = "sk-openaikey1,sk-openaikey2,fkxxxx-api2dkey1,fkxxxx-api2dkey2"
|
||||
|
||||
# [step 1-2]>> ( 接入通义 qwen-max ) 接入通义千问在线大模型,api-key获取地址 https://dashscope.console.aliyun.com/
|
||||
DASHSCOPE_API_KEY = "" # 阿里灵积云API_KEY
|
||||
|
||||
# [step 1-3]>> ( 接入 deepseek-reasoner, 即 deepseek-r1 ) 深度求索(DeepSeek) API KEY,默认请求地址为"https://api.deepseek.com/v1/chat/completions"
|
||||
DEEPSEEK_API_KEY = "sk-d99b8cc6b7414cc88a5d950a3ff7585e"
|
||||
|
||||
# [step 2]>> 改为True应用代理。如果使用本地或无地域限制的大模型时,此处不修改;如果直接在海外服务器部署,此处不修改
|
||||
USE_PROXY = True
|
||||
if USE_PROXY:
|
||||
proxies = {
|
||||
"http":"socks5h://192.168.8.9:1070", # 再例如 "http": "http://127.0.0.1:7890",
|
||||
"https":"socks5h://192.168.8.9:1070", # 再例如 "https": "http://127.0.0.1:7890",
|
||||
}
|
||||
else:
|
||||
proxies = None
|
||||
DEFAULT_WORKER_NUM = 256
|
||||
|
||||
# [step 3]>> 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
|
||||
LLM_MODEL = "gpt-4-32k" # 可选 ↓↓↓
|
||||
AVAIL_LLM_MODELS = ["deepseek-chat", "deepseek-coder", "deepseek-reasoner",
|
||||
"gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-preview",
|
||||
"gpt-4o", "gpt-4o-mini", "gpt-4-turbo", "gpt-4-turbo-2024-04-09",
|
||||
"gpt-3.5-turbo-1106", "gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
|
||||
"gpt-4", "gpt-4-32k", "azure-gpt-4", "glm-4", "glm-4v", "glm-3-turbo",
|
||||
"gemini-1.5-pro", "chatglm3", "chatglm4",
|
||||
]
|
||||
|
||||
EMBEDDING_MODEL = "text-embedding-3-small"
|
||||
|
||||
# --- --- --- ---
|
||||
# P.S. 其他可用的模型还包括
|
||||
# AVAIL_LLM_MODELS = [
|
||||
# "glm-4-0520", "glm-4-air", "glm-4-airx", "glm-4-flash",
|
||||
# "qianfan", "deepseekcoder",
|
||||
# "spark", "sparkv2", "sparkv3", "sparkv3.5", "sparkv4",
|
||||
# "qwen-turbo", "qwen-plus", "qwen-local",
|
||||
# "moonshot-v1-128k", "moonshot-v1-32k", "moonshot-v1-8k",
|
||||
# "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-turbo-0125", "gpt-4o-2024-05-13"
|
||||
# "claude-3-haiku-20240307","claude-3-sonnet-20240229","claude-3-opus-20240229", "claude-2.1", "claude-instant-1.2",
|
||||
# "moss", "llama2", "chatglm_onnx", "internlm", "jittorllms_pangualpha", "jittorllms_llama",
|
||||
# "deepseek-chat" ,"deepseek-coder",
|
||||
# "gemini-1.5-flash",
|
||||
# "yi-34b-chat-0205","yi-34b-chat-200k","yi-large","yi-medium","yi-spark","yi-large-turbo","yi-large-preview",
|
||||
# "grok-beta",
|
||||
# ]
|
||||
# --- --- --- ---
|
||||
# 此外,您还可以在接入one-api/vllm/ollama/Openroute时,
|
||||
# 使用"one-api-*","vllm-*","ollama-*","openrouter-*"前缀直接使用非标准方式接入的模型,例如
|
||||
# AVAIL_LLM_MODELS = ["one-api-claude-3-sonnet-20240229(max_token=100000)", "ollama-phi3(max_token=4096)","openrouter-openai/gpt-4o-mini","openrouter-openai/chatgpt-4o-latest"]
|
||||
# --- --- --- ---
|
||||
|
||||
|
||||
# --------------- 以下配置可以优化体验 ---------------
|
||||
|
||||
# 重新URL重新定向,实现更换API_URL的作用(高危设置! 常规情况下不要修改! 通过修改此设置,您将把您的API-KEY和对话隐私完全暴露给您设定的中间人!)
|
||||
# 格式: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "在这里填写重定向的api.openai.com的URL"}
|
||||
# 举例: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "https://reverse-proxy-url/v1/chat/completions", "http://localhost:11434/api/chat": "在这里填写您ollama的URL"}
|
||||
API_URL_REDIRECT = {}
|
||||
|
||||
|
||||
# 多线程函数插件中,默认允许多少路线程同时访问OpenAI。Free trial users的限制是每分钟3次,Pay-as-you-go users的限制是每分钟3500次
|
||||
# 一言以蔽之:免费(5刀)用户填3,OpenAI绑了信用卡的用户可以填 16 或者更高。提高限制请查询:https://platform.openai.com/docs/guides/rate-limits/overview
|
||||
DEFAULT_WORKER_NUM = 64
|
||||
|
||||
|
||||
# 色彩主题, 可选 ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast"]
|
||||
# 更多主题, 请查阅Gradio主题商店: https://huggingface.co/spaces/gradio/theme-gallery 可选 ["Gstaff/Xkcd", "NoCrypt/Miku", ...]
|
||||
THEME = "Default"
|
||||
AVAIL_THEMES = ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast", "Gstaff/Xkcd", "NoCrypt/Miku"]
|
||||
|
||||
FONT = "Theme-Default-Font"
|
||||
AVAIL_FONTS = [
|
||||
"默认值(Theme-Default-Font)",
|
||||
"宋体(SimSun)",
|
||||
"黑体(SimHei)",
|
||||
"楷体(KaiTi)",
|
||||
"仿宋(FangSong)",
|
||||
"华文细黑(STHeiti Light)",
|
||||
"华文楷体(STKaiti)",
|
||||
"华文仿宋(STFangsong)",
|
||||
"华文宋体(STSong)",
|
||||
"华文中宋(STZhongsong)",
|
||||
"华文新魏(STXinwei)",
|
||||
"华文隶书(STLiti)",
|
||||
"思源宋体(Source Han Serif CN VF@https://chinese-fonts-cdn.deno.dev/packages/syst/dist/SourceHanSerifCN/result.css)",
|
||||
"月星楷(Moon Stars Kai HW@https://chinese-fonts-cdn.deno.dev/packages/moon-stars-kai/dist/MoonStarsKaiHW-Regular/result.css)",
|
||||
"珠圆体(MaokenZhuyuanTi@https://chinese-fonts-cdn.deno.dev/packages/mkzyt/dist/猫啃珠圆体/result.css)",
|
||||
"平方萌萌哒(PING FANG MENG MNEG DA@https://chinese-fonts-cdn.deno.dev/packages/pfmmd/dist/平方萌萌哒/result.css)",
|
||||
"Helvetica",
|
||||
"ui-sans-serif",
|
||||
"sans-serif",
|
||||
"system-ui"
|
||||
]
|
||||
|
||||
|
||||
# 默认的系统提示词(system prompt)
|
||||
INIT_SYS_PROMPT = "Serve me as a writing and programming assistant."
|
||||
|
||||
|
||||
# 对话窗的高度 (仅在LAYOUT="TOP-DOWN"时生效)
|
||||
CHATBOT_HEIGHT = 1115
|
||||
|
||||
|
||||
# 代码高亮
|
||||
CODE_HIGHLIGHT = True
|
||||
|
||||
|
||||
# 窗口布局
|
||||
LAYOUT = "LEFT-RIGHT" # "LEFT-RIGHT"(左右布局) # "TOP-DOWN"(上下布局)
|
||||
|
||||
|
||||
# 暗色模式 / 亮色模式
|
||||
DARK_MODE = True
|
||||
|
||||
|
||||
# 发送请求到OpenAI后,等待多久判定为超时
|
||||
TIMEOUT_SECONDS = 60
|
||||
|
||||
|
||||
# 网页的端口, -1代表随机端口
|
||||
WEB_PORT = 19998
|
||||
|
||||
# 是否自动打开浏览器页面
|
||||
AUTO_OPEN_BROWSER = True
|
||||
|
||||
|
||||
# 如果OpenAI不响应(网络卡顿、代理失败、KEY失效),重试的次数限制
|
||||
MAX_RETRY = 5
|
||||
|
||||
|
||||
# 插件分类默认选项
|
||||
DEFAULT_FN_GROUPS = ['对话', '编程', '学术', '智能体']
|
||||
|
||||
|
||||
# 定义界面上“询问多个GPT模型”插件应该使用哪些模型,请从AVAIL_LLM_MODELS中选择,并在不同模型之间用`&`间隔,例如"gpt-3.5-turbo&chatglm3&azure-gpt-4"
|
||||
MULTI_QUERY_LLM_MODELS = "gpt-3.5-turbo&chatglm3"
|
||||
|
||||
|
||||
# 选择本地模型变体(只有当AVAIL_LLM_MODELS包含了对应本地模型时,才会起作用)
|
||||
# 如果你选择Qwen系列的模型,那么请在下面的QWEN_MODEL_SELECTION中指定具体的模型
|
||||
# 也可以是具体的模型路径
|
||||
QWEN_LOCAL_MODEL_SELECTION = "Qwen/Qwen-1_8B-Chat-Int8"
|
||||
|
||||
|
||||
# 百度千帆(LLM_MODEL="qianfan")
|
||||
BAIDU_CLOUD_API_KEY = ''
|
||||
BAIDU_CLOUD_SECRET_KEY = ''
|
||||
BAIDU_CLOUD_QIANFAN_MODEL = 'ERNIE-Bot' # 可选 "ERNIE-Bot-4"(文心大模型4.0), "ERNIE-Bot"(文心一言), "ERNIE-Bot-turbo", "BLOOMZ-7B", "Llama-2-70B-Chat", "Llama-2-13B-Chat", "Llama-2-7B-Chat", "ERNIE-Speed-128K", "ERNIE-Speed-8K", "ERNIE-Lite-8K"
|
||||
|
||||
|
||||
# 如果使用ChatGLM3或ChatGLM4本地模型,请把 LLM_MODEL="chatglm3" 或LLM_MODEL="chatglm4",并在此处指定模型路径
|
||||
CHATGLM_LOCAL_MODEL_PATH = "THUDM/glm-4-9b-chat" # 例如"/home/hmp/ChatGLM3-6B/"
|
||||
|
||||
# 如果使用ChatGLM2微调模型,请把 LLM_MODEL="chatglmft",并在此处指定模型路径
|
||||
CHATGLM_PTUNING_CHECKPOINT = "" # 例如"/home/hmp/ChatGLM2-6B/ptuning/output/6b-pt-128-1e-2/checkpoint-100"
|
||||
|
||||
|
||||
# 本地LLM模型如ChatGLM的执行方式 CPU/GPU
|
||||
LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
|
||||
LOCAL_MODEL_QUANT = "FP16" # 默认 "FP16" "INT4" 启用量化INT4版本 "INT8" 启用量化INT8版本
|
||||
|
||||
|
||||
# 设置gradio的并行线程数(不需要修改)
|
||||
CONCURRENT_COUNT = 100
|
||||
|
||||
|
||||
# 是否在提交时自动清空输入框
|
||||
AUTO_CLEAR_TXT = False
|
||||
|
||||
|
||||
# 加一个live2d装饰
|
||||
ADD_WAIFU = False
|
||||
|
||||
|
||||
# 设置用户名和密码(不需要修改)(相关功能不稳定,与gradio版本和网络都相关,如果本地使用不建议加这个)
|
||||
# [("username", "password"), ("username2", "password2"), ...]
|
||||
AUTHENTICATION = [("van", "L807878712"),("林", "L807878712"),("源", "L807878712"),("欣", "L807878712"),("z", "czh123456789")]
|
||||
|
||||
|
||||
# 如果需要在二级路径下运行(常规情况下,不要修改!!)
|
||||
# (举例 CUSTOM_PATH = "/gpt_academic",可以让软件运行在 http://ip:port/gpt_academic/ 下。)
|
||||
CUSTOM_PATH = "/"
|
||||
|
||||
|
||||
# HTTPS 秘钥和证书(不需要修改)
|
||||
SSL_KEYFILE = ""
|
||||
SSL_CERTFILE = ""
|
||||
|
||||
|
||||
# 极少数情况下,openai的官方KEY需要伴随组织编码(格式如org-xxxxxxxxxxxxxxxxxxxxxxxx)使用
|
||||
API_ORG = ""
|
||||
|
||||
|
||||
# 如果需要使用Slack Claude,使用教程详情见 request_llms/README.md
|
||||
SLACK_CLAUDE_BOT_ID = ''
|
||||
SLACK_CLAUDE_USER_TOKEN = ''
|
||||
|
||||
|
||||
# 如果需要使用AZURE(方法一:单个azure模型部署)详情请见额外文档 docs\use_azure.md
|
||||
AZURE_ENDPOINT = "https://你亲手写的api名称.openai.azure.com/"
|
||||
AZURE_API_KEY = "填入azure openai api的密钥" # 建议直接在API_KEY处填写,该选项即将被弃用
|
||||
AZURE_ENGINE = "填入你亲手写的部署名" # 读 docs\use_azure.md
|
||||
|
||||
|
||||
# 如果需要使用AZURE(方法二:多个azure模型部署+动态切换)详情请见额外文档 docs\use_azure.md
|
||||
AZURE_CFG_ARRAY = {}
|
||||
|
||||
|
||||
# 阿里云实时语音识别 配置难度较高
|
||||
# 参考 https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md
|
||||
ENABLE_AUDIO = False
|
||||
ALIYUN_TOKEN="" # 例如 f37f30e0f9934c34a992f6f64f7eba4f
|
||||
ALIYUN_APPKEY="" # 例如 RoPlZrM88DnAFkZK
|
||||
ALIYUN_ACCESSKEY="" # (无需填写)
|
||||
ALIYUN_SECRET="" # (无需填写)
|
||||
|
||||
|
||||
# GPT-SOVITS 文本转语音服务的运行地址(将语言模型的生成文本朗读出来)
|
||||
TTS_TYPE = "DISABLE" # EDGE_TTS / LOCAL_SOVITS_API / DISABLE
|
||||
GPT_SOVITS_URL = ""
|
||||
EDGE_TTS_VOICE = "zh-CN-XiaoxiaoNeural"
|
||||
|
||||
|
||||
# 接入讯飞星火大模型 https://console.xfyun.cn/services/iat
|
||||
XFYUN_APPID = "00000000"
|
||||
XFYUN_API_SECRET = "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"
|
||||
XFYUN_API_KEY = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
|
||||
|
||||
|
||||
# 接入智谱大模型
|
||||
ZHIPUAI_API_KEY = ""
|
||||
ZHIPUAI_MODEL = "" # 此选项已废弃,不再需要填写
|
||||
|
||||
|
||||
# Claude API KEY
|
||||
ANTHROPIC_API_KEY = ""
|
||||
|
||||
|
||||
# 月之暗面 API KEY
|
||||
MOONSHOT_API_KEY = ""
|
||||
|
||||
|
||||
# 零一万物(Yi Model) API KEY
|
||||
YIMODEL_API_KEY = ""
|
||||
|
||||
|
||||
# 紫东太初大模型 https://ai-maas.wair.ac.cn
|
||||
TAICHU_API_KEY = ""
|
||||
|
||||
# Grok API KEY
|
||||
GROK_API_KEY = ""
|
||||
|
||||
# Mathpix 拥有执行PDF的OCR功能,但是需要注册账号
|
||||
MATHPIX_APPID = ""
|
||||
MATHPIX_APPKEY = ""
|
||||
|
||||
|
||||
# DOC2X的PDF解析服务,注册账号并获取API KEY: https://doc2x.noedgeai.com/login
|
||||
DOC2X_API_KEY = ""
|
||||
|
||||
|
||||
# 自定义API KEY格式
|
||||
CUSTOM_API_KEY_PATTERN = ""
|
||||
|
||||
|
||||
# Google Gemini API-Key
|
||||
GEMINI_API_KEY = ''
|
||||
|
||||
|
||||
# HUGGINGFACE的TOKEN,下载LLAMA时起作用 https://huggingface.co/docs/hub/security-tokens
|
||||
HUGGINGFACE_ACCESS_TOKEN = "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"
|
||||
|
||||
|
||||
# GROBID服务器地址(填写多个可以均衡负载),用于高质量地读取PDF文档
|
||||
# 获取方法:复制以下空间https://huggingface.co/spaces/qingxu98/grobid,设为public,然后GROBID_URL = "https://(你的hf用户名如qingxu98)-(你的填写的空间名如grobid).hf.space"
|
||||
GROBID_URLS = [
|
||||
"https://qingxu98-grobid.hf.space","https://qingxu98-grobid2.hf.space","https://qingxu98-grobid3.hf.space",
|
||||
"https://qingxu98-grobid4.hf.space","https://qingxu98-grobid5.hf.space", "https://qingxu98-grobid6.hf.space",
|
||||
"https://qingxu98-grobid7.hf.space", "https://qingxu98-grobid8.hf.space",
|
||||
]
|
||||
|
||||
|
||||
# Searxng互联网检索服务(这是一个huggingface空间,请前往huggingface复制该空间,然后把自己新的空间地址填在这里)
|
||||
SEARXNG_URLS = [ f"https://kaletianlre-beardvs{i}dd.hf.space/" for i in range(1,5) ]
|
||||
|
||||
|
||||
# 是否允许通过自然语言描述修改本页的配置,该功能具有一定的危险性,默认关闭
|
||||
ALLOW_RESET_CONFIG = False
|
||||
|
||||
|
||||
# 在使用AutoGen插件时,是否使用Docker容器运行代码
|
||||
AUTOGEN_USE_DOCKER = False
|
||||
|
||||
|
||||
# 临时的上传文件夹位置,请尽量不要修改
|
||||
PATH_PRIVATE_UPLOAD = "private_upload"
|
||||
|
||||
|
||||
# 日志文件夹的位置,请尽量不要修改
|
||||
PATH_LOGGING = "gpt_log"
|
||||
|
||||
|
||||
# 存储翻译好的arxiv论文的路径,请尽量不要修改
|
||||
ARXIV_CACHE_DIR = "gpt_log/arxiv_cache"
|
||||
|
||||
|
||||
# 除了连接OpenAI之外,还有哪些场合允许使用代理,请尽量不要修改
|
||||
WHEN_TO_USE_PROXY = ["Connect_OpenAI", "Download_LLM", "Download_Gradio_Theme", "Connect_Grobid",
|
||||
"Warmup_Modules", "Nougat_Download", "AutoGen", "Connect_OpenAI_Embedding"]
|
||||
|
||||
|
||||
# 启用插件热加载
|
||||
PLUGIN_HOT_RELOAD = False
|
||||
|
||||
|
||||
# 自定义按钮的最大数量限制
|
||||
NUM_CUSTOM_BASIC_BTN = 4
|
||||
|
||||
|
||||
# 媒体智能体的服务地址(这是一个huggingface空间,请前往huggingface复制该空间,然后把自己新的空间地址填在这里)
|
||||
DAAS_SERVER_URLS = [ f"https://niuziniu-biligpt{i}.hf.space/stream" for i in range(1,5) ]
|
||||
|
||||
|
||||
|
||||
"""
|
||||
--------------- 配置关联关系说明 ---------------
|
||||
|
||||
在线大模型配置关联关系示意图
|
||||
│
|
||||
├── "gpt-3.5-turbo" 等openai模型
|
||||
│ ├── API_KEY
|
||||
│ ├── CUSTOM_API_KEY_PATTERN(不常用)
|
||||
│ ├── API_ORG(不常用)
|
||||
│ └── API_URL_REDIRECT(不常用)
|
||||
│
|
||||
├── "azure-gpt-3.5" 等azure模型(单个azure模型,不需要动态切换)
|
||||
│ ├── API_KEY
|
||||
│ ├── AZURE_ENDPOINT
|
||||
│ ├── AZURE_API_KEY
|
||||
│ ├── AZURE_ENGINE
|
||||
│ └── API_URL_REDIRECT
|
||||
│
|
||||
├── "azure-gpt-3.5" 等azure模型(多个azure模型,需要动态切换,高优先级)
|
||||
│ └── AZURE_CFG_ARRAY
|
||||
│
|
||||
├── "spark" 星火认知大模型 spark & sparkv2
|
||||
│ ├── XFYUN_APPID
|
||||
│ ├── XFYUN_API_SECRET
|
||||
│ └── XFYUN_API_KEY
|
||||
│
|
||||
├── "claude-3-opus-20240229" 等claude模型
|
||||
│ └── ANTHROPIC_API_KEY
|
||||
│
|
||||
├── "stack-claude"
|
||||
│ ├── SLACK_CLAUDE_BOT_ID
|
||||
│ └── SLACK_CLAUDE_USER_TOKEN
|
||||
│
|
||||
├── "qianfan" 百度千帆大模型库
|
||||
│ ├── BAIDU_CLOUD_QIANFAN_MODEL
|
||||
│ ├── BAIDU_CLOUD_API_KEY
|
||||
│ └── BAIDU_CLOUD_SECRET_KEY
|
||||
│
|
||||
├── "glm-4", "glm-3-turbo", "zhipuai" 智谱AI大模型
|
||||
│ └── ZHIPUAI_API_KEY
|
||||
│
|
||||
├── "yi-34b-chat-0205", "yi-34b-chat-200k" 等零一万物(Yi Model)大模型
|
||||
│ └── YIMODEL_API_KEY
|
||||
│
|
||||
├── "qwen-turbo" 等通义千问大模型
|
||||
│ └── DASHSCOPE_API_KEY
|
||||
│
|
||||
├── "Gemini"
|
||||
│ └── GEMINI_API_KEY
|
||||
│
|
||||
└── "one-api-...(max_token=...)" 用一种更方便的方式接入one-api多模型管理界面
|
||||
├── AVAIL_LLM_MODELS
|
||||
├── API_KEY
|
||||
└── API_URL_REDIRECT
|
||||
|
||||
|
||||
本地大模型示意图
|
||||
│
|
||||
├── "chatglm4"
|
||||
├── "chatglm3"
|
||||
├── "chatglm"
|
||||
├── "chatglm_onnx"
|
||||
├── "chatglmft"
|
||||
├── "internlm"
|
||||
├── "moss"
|
||||
├── "jittorllms_pangualpha"
|
||||
├── "jittorllms_llama"
|
||||
├── "deepseekcoder"
|
||||
├── "qwen-local"
|
||||
├── RWKV的支持见Wiki
|
||||
└── "llama2"
|
||||
|
||||
|
||||
用户图形界面布局依赖关系示意图
|
||||
│
|
||||
├── CHATBOT_HEIGHT 对话窗的高度
|
||||
├── CODE_HIGHLIGHT 代码高亮
|
||||
├── LAYOUT 窗口布局
|
||||
├── DARK_MODE 暗色模式 / 亮色模式
|
||||
├── DEFAULT_FN_GROUPS 插件分类默认选项
|
||||
├── THEME 色彩主题
|
||||
├── AUTO_CLEAR_TXT 是否在提交时自动清空输入框
|
||||
├── ADD_WAIFU 加一个live2d装饰
|
||||
└── ALLOW_RESET_CONFIG 是否允许通过自然语言描述修改本页的配置,该功能具有一定的危险性
|
||||
|
||||
|
||||
插件在线服务配置依赖关系示意图
|
||||
│
|
||||
├── 互联网检索
|
||||
│ └── SEARXNG_URLS
|
||||
│
|
||||
├── 语音功能
|
||||
│ ├── ENABLE_AUDIO
|
||||
│ ├── ALIYUN_TOKEN
|
||||
│ ├── ALIYUN_APPKEY
|
||||
│ ├── ALIYUN_ACCESSKEY
|
||||
│ └── ALIYUN_SECRET
|
||||
│
|
||||
└── PDF文档精准解析
|
||||
├── GROBID_URLS
|
||||
├── MATHPIX_APPID
|
||||
└── MATHPIX_APPKEY
|
||||
|
||||
|
||||
"""
|
||||
|
||||
|
||||
|
||||
@@ -113,7 +113,7 @@ def get_crazy_functions():
|
||||
"Group": "学术",
|
||||
"Color": "stop",
|
||||
"AsButton": True,
|
||||
"Info": "Arixv论文精细翻译 | 输入参数arxiv论文的ID,比如1812.10695",
|
||||
"Info": "ArXiv论文精细翻译 | 输入参数arxiv论文的ID,比如1812.10695",
|
||||
"Function": HotReload(Latex翻译中文并重新编译PDF), # 当注册Class后,Function旧接口仅会在“虚空终端”中起作用
|
||||
"Class": Arxiv_Localize, # 新一代插件需要注册Class
|
||||
},
|
||||
@@ -352,7 +352,7 @@ def get_crazy_functions():
|
||||
"ArgsReminder": r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
|
||||
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
|
||||
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
||||
"Info": "Arixv论文精细翻译 | 输入参数arxiv论文的ID,比如1812.10695",
|
||||
"Info": "ArXiv论文精细翻译 | 输入参数arxiv论文的ID,比如1812.10695",
|
||||
"Function": HotReload(Latex翻译中文并重新编译PDF), # 当注册Class后,Function旧接口仅会在“虚空终端”中起作用
|
||||
"Class": Arxiv_Localize, # 新一代插件需要注册Class
|
||||
},
|
||||
@@ -434,36 +434,6 @@ def get_crazy_functions():
|
||||
logger.error(trimmed_format_exc())
|
||||
logger.error("Load function plugin failed")
|
||||
|
||||
# try:
|
||||
# from crazy_functions.联网的ChatGPT import 连接网络回答问题
|
||||
|
||||
# function_plugins.update(
|
||||
# {
|
||||
# "连接网络回答问题(输入问题后点击该插件,需要访问谷歌)": {
|
||||
# "Group": "对话",
|
||||
# "Color": "stop",
|
||||
# "AsButton": False, # 加入下拉菜单中
|
||||
# # "Info": "连接网络回答问题(需要访问谷歌)| 输入参数是一个问题",
|
||||
# "Function": HotReload(连接网络回答问题),
|
||||
# }
|
||||
# }
|
||||
# )
|
||||
# from crazy_functions.联网的ChatGPT_bing版 import 连接bing搜索回答问题
|
||||
|
||||
# function_plugins.update(
|
||||
# {
|
||||
# "连接网络回答问题(中文Bing版,输入问题后点击该插件)": {
|
||||
# "Group": "对话",
|
||||
# "Color": "stop",
|
||||
# "AsButton": False, # 加入下拉菜单中
|
||||
# "Info": "连接网络回答问题(需要访问中文Bing)| 输入参数是一个问题",
|
||||
# "Function": HotReload(连接bing搜索回答问题),
|
||||
# }
|
||||
# }
|
||||
# )
|
||||
# except:
|
||||
# logger.error(trimmed_format_exc())
|
||||
# logger.error("Load function plugin failed")
|
||||
|
||||
try:
|
||||
from crazy_functions.SourceCode_Analyse import 解析任意code项目
|
||||
@@ -771,6 +741,9 @@ def get_multiplex_button_functions():
|
||||
"常规对话":
|
||||
"",
|
||||
|
||||
"查互联网后回答":
|
||||
"查互联网后回答",
|
||||
|
||||
"多模型对话":
|
||||
"询问多个GPT模型", # 映射到上面的 `询问多个GPT模型` 插件
|
||||
|
||||
|
||||
@@ -7,7 +7,7 @@ from bs4 import BeautifulSoup
|
||||
from functools import lru_cache
|
||||
from itertools import zip_longest
|
||||
from check_proxy import check_proxy
|
||||
from toolbox import CatchException, update_ui, get_conf, update_ui_lastest_msg
|
||||
from toolbox import CatchException, update_ui, get_conf, update_ui_latest_msg
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
|
||||
from request_llms.bridge_all import model_info
|
||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||
@@ -49,7 +49,7 @@ def search_optimizer(
|
||||
mutable = ["", time.time(), ""]
|
||||
llm_kwargs["temperature"] = 0.8
|
||||
try:
|
||||
querys_json = predict_no_ui_long_connection(
|
||||
query_json = predict_no_ui_long_connection(
|
||||
inputs=query,
|
||||
llm_kwargs=llm_kwargs,
|
||||
history=[],
|
||||
@@ -57,31 +57,31 @@ def search_optimizer(
|
||||
observe_window=mutable,
|
||||
)
|
||||
except Exception:
|
||||
querys_json = "1234"
|
||||
query_json = "null"
|
||||
#* 尝试解码优化后的搜索结果
|
||||
querys_json = re.sub(r"```json|```", "", querys_json)
|
||||
query_json = re.sub(r"```json|```", "", query_json)
|
||||
try:
|
||||
querys = json.loads(querys_json)
|
||||
queries = json.loads(query_json)
|
||||
except Exception:
|
||||
#* 如果解码失败,降低温度再试一次
|
||||
try:
|
||||
llm_kwargs["temperature"] = 0.4
|
||||
querys_json = predict_no_ui_long_connection(
|
||||
query_json = predict_no_ui_long_connection(
|
||||
inputs=query,
|
||||
llm_kwargs=llm_kwargs,
|
||||
history=[],
|
||||
sys_prompt=sys_prompt,
|
||||
observe_window=mutable,
|
||||
)
|
||||
querys_json = re.sub(r"```json|```", "", querys_json)
|
||||
querys = json.loads(querys_json)
|
||||
query_json = re.sub(r"```json|```", "", query_json)
|
||||
queries = json.loads(query_json)
|
||||
except Exception:
|
||||
#* 如果再次失败,直接返回原始问题
|
||||
querys = [query]
|
||||
queries = [query]
|
||||
links = []
|
||||
success = 0
|
||||
Exceptions = ""
|
||||
for q in querys:
|
||||
for q in queries:
|
||||
try:
|
||||
link = searxng_request(q, proxies, categories, searxng_url, engines=engines)
|
||||
if len(link) > 0:
|
||||
@@ -175,10 +175,17 @@ def scrape_text(url, proxies) -> str:
|
||||
Returns:
|
||||
str: The scraped text
|
||||
"""
|
||||
from loguru import logger
|
||||
headers = {
|
||||
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36',
|
||||
'Content-Type': 'text/plain',
|
||||
}
|
||||
|
||||
# 首先采用Jina进行文本提取
|
||||
if get_conf("JINA_API_KEY"):
|
||||
try: return jina_scrape_text(url)
|
||||
except: logger.debug("Jina API 请求失败,回到旧方法")
|
||||
|
||||
try:
|
||||
response = requests.get(url, headers=headers, proxies=proxies, timeout=8)
|
||||
if response.encoding == "ISO-8859-1": response.encoding = response.apparent_encoding
|
||||
@@ -193,21 +200,39 @@ def scrape_text(url, proxies) -> str:
|
||||
text = "\n".join(chunk for chunk in chunks if chunk)
|
||||
return text
|
||||
|
||||
|
||||
def jina_scrape_text(url) -> str:
|
||||
"jina_39727421c8fa4e4fa9bd698e5211feaaDyGeVFESNrRaepWiLT0wmHYJSh-d"
|
||||
headers = {
|
||||
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36',
|
||||
'Content-Type': 'text/plain',
|
||||
"X-Retain-Images": "none",
|
||||
"Authorization": f'Bearer {get_conf("JINA_API_KEY")}'
|
||||
}
|
||||
response = requests.get("https://r.jina.ai/" + url, headers=headers, proxies=None, timeout=8)
|
||||
if response.status_code != 200:
|
||||
raise ValueError("Jina API 请求失败,开始尝试旧方法!" + response.text)
|
||||
if response.encoding == "ISO-8859-1": response.encoding = response.apparent_encoding
|
||||
result = response.text
|
||||
result = result.replace("\\[", "[").replace("\\]", "]").replace("\\(", "(").replace("\\)", ")")
|
||||
return response.text
|
||||
|
||||
|
||||
def internet_search_with_analysis_prompt(prompt, analysis_prompt, llm_kwargs, chatbot):
|
||||
from toolbox import get_conf
|
||||
proxies = get_conf('proxies')
|
||||
categories = 'general'
|
||||
searxng_url = None # 使用默认的searxng_url
|
||||
engines = None # 使用默认的搜索引擎
|
||||
yield from update_ui_lastest_msg(lastmsg=f"检索中: {prompt} ...", chatbot=chatbot, history=[], delay=1)
|
||||
yield from update_ui_latest_msg(lastmsg=f"检索中: {prompt} ...", chatbot=chatbot, history=[], delay=1)
|
||||
urls = searxng_request(prompt, proxies, categories, searxng_url, engines=engines)
|
||||
yield from update_ui_lastest_msg(lastmsg=f"依次访问搜索到的网站 ...", chatbot=chatbot, history=[], delay=1)
|
||||
yield from update_ui_latest_msg(lastmsg=f"依次访问搜索到的网站 ...", chatbot=chatbot, history=[], delay=1)
|
||||
if len(urls) == 0:
|
||||
return None
|
||||
max_search_result = 5 # 最多收纳多少个网页的结果
|
||||
history = []
|
||||
for index, url in enumerate(urls[:max_search_result]):
|
||||
yield from update_ui_lastest_msg(lastmsg=f"依次访问搜索到的网站: {url['link']} ...", chatbot=chatbot, history=[], delay=1)
|
||||
yield from update_ui_latest_msg(lastmsg=f"依次访问搜索到的网站: {url['link']} ...", chatbot=chatbot, history=[], delay=1)
|
||||
res = scrape_text(url['link'], proxies)
|
||||
prefix = f"第{index}份搜索结果 [源自{url['source'][0]}搜索] ({url['title'][:25]}):"
|
||||
history.extend([prefix, res])
|
||||
@@ -222,7 +247,7 @@ def internet_search_with_analysis_prompt(prompt, analysis_prompt, llm_kwargs, ch
|
||||
llm_kwargs=llm_kwargs,
|
||||
history=history,
|
||||
sys_prompt="请从搜索结果中抽取信息,对最相关的两个搜索结果进行总结,然后回答问题。",
|
||||
console_slience=False,
|
||||
console_silence=False,
|
||||
)
|
||||
return gpt_say
|
||||
|
||||
@@ -246,23 +271,52 @@ def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
urls = search_optimizer(txt, proxies, optimizer_history, llm_kwargs, optimizer, categories, searxng_url, engines)
|
||||
history = []
|
||||
if len(urls) == 0:
|
||||
chatbot.append((f"结论:{txt}",
|
||||
"[Local Message] 受到限制,无法从searxng获取信息!请尝试更换搜索引擎。"))
|
||||
chatbot.append((f"结论:{txt}", "[Local Message] 受到限制,无法从searxng获取信息!请尝试更换搜索引擎。"))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# ------------- < 第2步:依次访问网页 > -------------
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from textwrap import dedent
|
||||
max_search_result = 5 # 最多收纳多少个网页的结果
|
||||
if optimizer == "开启(增强)":
|
||||
max_search_result = 8
|
||||
chatbot.append(["联网检索中 ...", None])
|
||||
template = dedent("""
|
||||
<details>
|
||||
<summary>{TITLE}</summary>
|
||||
<div class="search_result">{URL}</div>
|
||||
<div class="search_result">{CONTENT}</div>
|
||||
</details>
|
||||
""")
|
||||
|
||||
buffer = ""
|
||||
|
||||
# 创建线程池
|
||||
with ThreadPoolExecutor(max_workers=5) as executor:
|
||||
# 提交任务到线程池
|
||||
futures = []
|
||||
for index, url in enumerate(urls[:max_search_result]):
|
||||
res = scrape_text(url['link'], proxies)
|
||||
prefix = f"第{index}份搜索结果 [源自{url['source'][0]}搜索] ({url['title'][:25]}):"
|
||||
future = executor.submit(scrape_text, url['link'], proxies)
|
||||
futures.append((index, future, url))
|
||||
|
||||
# 处理完成的任务
|
||||
for index, future, url in futures:
|
||||
# 开始
|
||||
prefix = f"正在加载 第{index+1}份搜索结果 [源自{url['source'][0]}搜索] ({url['title'][:25]}):"
|
||||
string_structure = template.format(TITLE=prefix, URL=url['link'], CONTENT="正在加载,请稍后 ......")
|
||||
yield from update_ui_latest_msg(lastmsg=(buffer + string_structure), chatbot=chatbot, history=history, delay=0.1) # 刷新界面
|
||||
|
||||
# 获取结果
|
||||
res = future.result()
|
||||
|
||||
# 显示结果
|
||||
prefix = f"第{index+1}份搜索结果 [源自{url['source'][0]}搜索] ({url['title'][:25]}):"
|
||||
string_structure = template.format(TITLE=prefix, URL=url['link'], CONTENT=res[:1000] + "......")
|
||||
buffer += string_structure
|
||||
|
||||
# 更新历史
|
||||
history.extend([prefix, res])
|
||||
res_squeeze = res.replace('\n', '...')
|
||||
chatbot[-1] = [prefix + "\n\n" + res_squeeze[:500] + "......", None]
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
yield from update_ui_latest_msg(lastmsg=buffer, chatbot=chatbot, history=history, delay=0.1) # 刷新界面
|
||||
|
||||
# ------------- < 第3步:ChatGPT综合 > -------------
|
||||
if (optimizer != "开启(增强)"):
|
||||
|
||||
@@ -38,11 +38,12 @@ class NetworkGPT_Wrap(GptAcademicPluginTemplate):
|
||||
}
|
||||
return gui_definition
|
||||
|
||||
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
def execute(txt, llm_kwargs, plugin_kwargs:dict, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
执行插件
|
||||
"""
|
||||
if plugin_kwargs["categories"] == "网页": plugin_kwargs["categories"] = "general"
|
||||
if plugin_kwargs["categories"] == "学术论文": plugin_kwargs["categories"] = "science"
|
||||
if plugin_kwargs.get("categories", None) == "网页": plugin_kwargs["categories"] = "general"
|
||||
elif plugin_kwargs.get("categories", None) == "学术论文": plugin_kwargs["categories"] = "science"
|
||||
else: plugin_kwargs["categories"] = "general"
|
||||
yield from 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from toolbox import update_ui, trimmed_format_exc, get_conf, get_log_folder, promote_file_to_downloadzone, check_repeat_upload, map_file_to_sha256
|
||||
from toolbox import CatchException, report_exception, update_ui_lastest_msg, zip_result, gen_time_str
|
||||
from toolbox import CatchException, report_exception, update_ui_latest_msg, zip_result, gen_time_str
|
||||
from functools import partial
|
||||
from loguru import logger
|
||||
|
||||
@@ -41,7 +41,7 @@ def switch_prompt(pfg, mode, more_requirement):
|
||||
return inputs_array, sys_prompt_array
|
||||
|
||||
|
||||
def desend_to_extracted_folder_if_exist(project_folder):
|
||||
def descend_to_extracted_folder_if_exist(project_folder):
|
||||
"""
|
||||
Descend into the extracted folder if it exists, otherwise return the original folder.
|
||||
|
||||
@@ -130,7 +130,7 @@ def arxiv_download(chatbot, history, txt, allow_cache=True):
|
||||
|
||||
if not txt.startswith('https://arxiv.org/abs/'):
|
||||
msg = f"解析arxiv网址失败, 期望格式例如: https://arxiv.org/abs/1707.06690。实际得到格式: {url_}。"
|
||||
yield from update_ui_lastest_msg(msg, chatbot=chatbot, history=history) # 刷新界面
|
||||
yield from update_ui_latest_msg(msg, chatbot=chatbot, history=history) # 刷新界面
|
||||
return msg, None
|
||||
# <-------------- set format ------------->
|
||||
arxiv_id = url_.split('/abs/')[-1]
|
||||
@@ -156,16 +156,16 @@ def arxiv_download(chatbot, history, txt, allow_cache=True):
|
||||
return False
|
||||
|
||||
if os.path.exists(dst) and allow_cache:
|
||||
yield from update_ui_lastest_msg(f"调用缓存 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
|
||||
yield from update_ui_latest_msg(f"调用缓存 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
|
||||
success = True
|
||||
else:
|
||||
yield from update_ui_lastest_msg(f"开始下载 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
|
||||
yield from update_ui_latest_msg(f"开始下载 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
|
||||
success = fix_url_and_download()
|
||||
yield from update_ui_lastest_msg(f"下载完成 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
|
||||
yield from update_ui_latest_msg(f"下载完成 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
|
||||
if not success:
|
||||
yield from update_ui_lastest_msg(f"下载失败 {arxiv_id}", chatbot=chatbot, history=history)
|
||||
yield from update_ui_latest_msg(f"下载失败 {arxiv_id}", chatbot=chatbot, history=history)
|
||||
raise tarfile.ReadError(f"论文下载失败 {arxiv_id}")
|
||||
|
||||
# <-------------- extract file ------------->
|
||||
@@ -288,7 +288,7 @@ def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, histo
|
||||
return
|
||||
|
||||
# <-------------- if is a zip/tar file ------------->
|
||||
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
||||
project_folder = descend_to_extracted_folder_if_exist(project_folder)
|
||||
|
||||
# <-------------- move latex project away from temp folder ------------->
|
||||
from shared_utils.fastapi_server import validate_path_safety
|
||||
@@ -365,7 +365,7 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
|
||||
try:
|
||||
txt, arxiv_id = yield from arxiv_download(chatbot, history, txt, allow_cache)
|
||||
except tarfile.ReadError as e:
|
||||
yield from update_ui_lastest_msg(
|
||||
yield from update_ui_latest_msg(
|
||||
"无法自动下载该论文的Latex源码,请前往arxiv打开此论文下载页面,点other Formats,然后download source手动下载latex源码包。接下来调用本地Latex翻译插件即可。",
|
||||
chatbot=chatbot, history=history)
|
||||
return
|
||||
@@ -404,7 +404,7 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
|
||||
return
|
||||
|
||||
# <-------------- if is a zip/tar file ------------->
|
||||
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
||||
project_folder = descend_to_extracted_folder_if_exist(project_folder)
|
||||
|
||||
# <-------------- move latex project away from temp folder ------------->
|
||||
from shared_utils.fastapi_server import validate_path_safety
|
||||
@@ -518,7 +518,7 @@ def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, h
|
||||
# repeat, project_folder = check_repeat_upload(file_manifest[0], hash_tag)
|
||||
|
||||
# if repeat:
|
||||
# yield from update_ui_lastest_msg(f"发现重复上传,请查收结果(压缩包)...", chatbot=chatbot, history=history)
|
||||
# yield from update_ui_latest_msg(f"发现重复上传,请查收结果(压缩包)...", chatbot=chatbot, history=history)
|
||||
# try:
|
||||
# translate_pdf = [f for f in glob.glob(f'{project_folder}/**/merge_translate_zh.pdf', recursive=True)][0]
|
||||
# promote_file_to_downloadzone(translate_pdf, rename_file=None, chatbot=chatbot)
|
||||
@@ -531,7 +531,7 @@ def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, h
|
||||
# report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"发现重复上传,但是无法找到相关文件")
|
||||
# yield from update_ui(chatbot=chatbot, history=history)
|
||||
# else:
|
||||
# yield from update_ui_lastest_msg(f"未发现重复上传", chatbot=chatbot, history=history)
|
||||
# yield from update_ui_latest_msg(f"未发现重复上传", chatbot=chatbot, history=history)
|
||||
|
||||
# <-------------- convert pdf into tex ------------->
|
||||
chatbot.append([f"解析项目: {txt}", "正在将PDF转换为tex项目,请耐心等待..."])
|
||||
@@ -543,7 +543,7 @@ def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, h
|
||||
return False
|
||||
|
||||
# <-------------- translate latex file into Chinese ------------->
|
||||
yield from update_ui_lastest_msg("正在tex项目将翻译为中文...", chatbot=chatbot, history=history)
|
||||
yield from update_ui_latest_msg("正在tex项目将翻译为中文...", chatbot=chatbot, history=history)
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex文件: {txt}")
|
||||
@@ -551,7 +551,7 @@ def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, h
|
||||
return
|
||||
|
||||
# <-------------- if is a zip/tar file ------------->
|
||||
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
||||
project_folder = descend_to_extracted_folder_if_exist(project_folder)
|
||||
|
||||
# <-------------- move latex project away from temp folder ------------->
|
||||
from shared_utils.fastapi_server import validate_path_safety
|
||||
@@ -571,7 +571,7 @@ def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, h
|
||||
switch_prompt=_switch_prompt_)
|
||||
|
||||
# <-------------- compile PDF ------------->
|
||||
yield from update_ui_lastest_msg("正在将翻译好的项目tex项目编译为PDF...", chatbot=chatbot, history=history)
|
||||
yield from update_ui_latest_msg("正在将翻译好的项目tex项目编译为PDF...", chatbot=chatbot, history=history)
|
||||
success = yield from 编译Latex(chatbot, history, main_file_original='merge',
|
||||
main_file_modified='merge_translate_zh', mode='translate_zh',
|
||||
work_folder_original=project_folder, work_folder_modified=project_folder,
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from toolbox import CatchException, check_packages, get_conf
|
||||
from toolbox import update_ui, update_ui_lastest_msg, disable_auto_promotion
|
||||
from toolbox import update_ui, update_ui_latest_msg, disable_auto_promotion
|
||||
from toolbox import trimmed_format_exc_markdown
|
||||
from crazy_functions.crazy_utils import get_files_from_everything
|
||||
from crazy_functions.pdf_fns.parse_pdf import get_avail_grobid_url
|
||||
@@ -57,9 +57,9 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
||||
yield from 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url)
|
||||
return
|
||||
|
||||
if method == "ClASSIC":
|
||||
if method == "Classic":
|
||||
# ------- 第三种方法,早期代码,效果不理想 -------
|
||||
yield from update_ui_lastest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
|
||||
yield from update_ui_latest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
|
||||
yield from 解析PDF_简单拆解(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
return
|
||||
|
||||
@@ -77,7 +77,7 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
||||
if grobid_url is not None:
|
||||
yield from 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url)
|
||||
return
|
||||
yield from update_ui_lastest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
|
||||
yield from update_ui_latest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
|
||||
yield from 解析PDF_简单拆解(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
return
|
||||
|
||||
|
||||
@@ -19,7 +19,7 @@ class PDF_Tran(GptAcademicPluginTemplate):
|
||||
"additional_prompt":
|
||||
ArgProperty(title="额外提示词", description="例如:对专有名词、翻译语气等方面的要求", default_value="", type="string").model_dump_json(), # 高级参数输入区,自动同步
|
||||
"pdf_parse_method":
|
||||
ArgProperty(title="PDF解析方法", options=["DOC2X", "GROBID", "ClASSIC"], description="无", default_value="GROBID", type="dropdown").model_dump_json(),
|
||||
ArgProperty(title="PDF解析方法", options=["DOC2X", "GROBID", "Classic"], description="无", default_value="GROBID", type="dropdown").model_dump_json(),
|
||||
}
|
||||
return gui_definition
|
||||
|
||||
|
||||
@@ -4,7 +4,7 @@ from typing import List
|
||||
from shared_utils.fastapi_server import validate_path_safety
|
||||
|
||||
from toolbox import report_exception
|
||||
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_lastest_msg
|
||||
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_latest_msg
|
||||
from shared_utils.fastapi_server import validate_path_safety
|
||||
from crazy_functions.crazy_utils import input_clipping
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
@@ -92,7 +92,7 @@ def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, u
|
||||
chatbot.append([txt, f'正在清空 ({current_context}) ...'])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
rag_worker.purge_vector_store()
|
||||
yield from update_ui_lastest_msg('已清空', chatbot, history, delay=0) # 刷新界面
|
||||
yield from update_ui_latest_msg('已清空', chatbot, history, delay=0) # 刷新界面
|
||||
return
|
||||
|
||||
# 3. Normal Q&A processing
|
||||
@@ -109,10 +109,10 @@ def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, u
|
||||
|
||||
# 5. If input is clipped, add input to vector store before retrieve
|
||||
if input_is_clipped_flag:
|
||||
yield from update_ui_lastest_msg('检测到长输入, 正在向量化 ...', chatbot, history, delay=0) # 刷新界面
|
||||
yield from update_ui_latest_msg('检测到长输入, 正在向量化 ...', chatbot, history, delay=0) # 刷新界面
|
||||
# Save input to vector store
|
||||
rag_worker.add_text_to_vector_store(txt_origin)
|
||||
yield from update_ui_lastest_msg('向量化完成 ...', chatbot, history, delay=0) # 刷新界面
|
||||
yield from update_ui_latest_msg('向量化完成 ...', chatbot, history, delay=0) # 刷新界面
|
||||
|
||||
if len(txt_origin) > REMEMBER_PREVIEW:
|
||||
HALF = REMEMBER_PREVIEW // 2
|
||||
@@ -142,7 +142,7 @@ def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, u
|
||||
)
|
||||
|
||||
# 8. Remember Q&A
|
||||
yield from update_ui_lastest_msg(
|
||||
yield from update_ui_latest_msg(
|
||||
model_say + '</br></br>' + f'对话记忆中, 请稍等 ({current_context}) ...',
|
||||
chatbot, history, delay=0.5
|
||||
)
|
||||
@@ -150,4 +150,4 @@ def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, u
|
||||
history.extend([i_say, model_say])
|
||||
|
||||
# 9. Final UI Update
|
||||
yield from update_ui_lastest_msg(model_say, chatbot, history, delay=0, msg=tip)
|
||||
yield from update_ui_latest_msg(model_say, chatbot, history, delay=0, msg=tip)
|
||||
@@ -1,5 +1,5 @@
|
||||
import pickle, os, random
|
||||
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_lastest_msg
|
||||
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_latest_msg
|
||||
from crazy_functions.crazy_utils import input_clipping
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||
@@ -9,7 +9,7 @@ from loguru import logger
|
||||
from typing import List
|
||||
|
||||
|
||||
SOCIAL_NETWOK_WORKER_REGISTER = {}
|
||||
SOCIAL_NETWORK_WORKER_REGISTER = {}
|
||||
|
||||
class SocialNetwork():
|
||||
def __init__(self):
|
||||
@@ -78,7 +78,7 @@ class SocialNetworkWorker(SaveAndLoad):
|
||||
for f in friend.friends_list:
|
||||
self.add_friend(f)
|
||||
msg = f"成功添加{len(friend.friends_list)}个联系人: {str(friend.friends_list)}"
|
||||
yield from update_ui_lastest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=0)
|
||||
yield from update_ui_latest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=0)
|
||||
|
||||
|
||||
def run(self, txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
@@ -104,12 +104,12 @@ class SocialNetworkWorker(SaveAndLoad):
|
||||
}
|
||||
|
||||
try:
|
||||
Explaination = '\n'.join([f'{k}: {v["explain_to_llm"]}' for k, v in self.tools_to_select.items()])
|
||||
Explanation = '\n'.join([f'{k}: {v["explain_to_llm"]}' for k, v in self.tools_to_select.items()])
|
||||
class UserSociaIntention(BaseModel):
|
||||
intention_type: str = Field(
|
||||
description=
|
||||
f"The type of user intention. You must choose from {self.tools_to_select.keys()}.\n\n"
|
||||
f"Explaination:\n{Explaination}",
|
||||
f"Explanation:\n{Explanation}",
|
||||
default="SocialAdvice"
|
||||
)
|
||||
pydantic_cls_instance, err_msg = select_tool(
|
||||
@@ -118,7 +118,7 @@ class SocialNetworkWorker(SaveAndLoad):
|
||||
pydantic_cls=UserSociaIntention
|
||||
)
|
||||
except Exception as e:
|
||||
yield from update_ui_lastest_msg(
|
||||
yield from update_ui_latest_msg(
|
||||
lastmsg=f"无法理解用户意图 {err_msg}",
|
||||
chatbot=chatbot,
|
||||
history=history,
|
||||
@@ -150,10 +150,10 @@ def I人助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt,
|
||||
# 1. we retrieve worker from global context
|
||||
user_name = chatbot.get_user()
|
||||
checkpoint_dir=get_log_folder(user_name, plugin_name='experimental_rag')
|
||||
if user_name in SOCIAL_NETWOK_WORKER_REGISTER:
|
||||
social_network_worker = SOCIAL_NETWOK_WORKER_REGISTER[user_name]
|
||||
if user_name in SOCIAL_NETWORK_WORKER_REGISTER:
|
||||
social_network_worker = SOCIAL_NETWORK_WORKER_REGISTER[user_name]
|
||||
else:
|
||||
social_network_worker = SOCIAL_NETWOK_WORKER_REGISTER[user_name] = SocialNetworkWorker(
|
||||
social_network_worker = SOCIAL_NETWORK_WORKER_REGISTER[user_name] = SocialNetworkWorker(
|
||||
user_name,
|
||||
llm_kwargs,
|
||||
checkpoint_dir=checkpoint_dir,
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
import os, copy, time
|
||||
from toolbox import CatchException, report_exception, update_ui, zip_result, promote_file_to_downloadzone, update_ui_lastest_msg, get_conf, generate_file_link
|
||||
from toolbox import CatchException, report_exception, update_ui, zip_result, promote_file_to_downloadzone, update_ui_latest_msg, get_conf, generate_file_link
|
||||
from shared_utils.fastapi_server import validate_path_safety
|
||||
from crazy_functions.crazy_utils import input_clipping
|
||||
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||
@@ -117,7 +117,7 @@ def 注释源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
||||
logger.error(f"文件: {fp} 的注释结果未能成功")
|
||||
file_links = generate_file_link(preview_html_list)
|
||||
|
||||
yield from update_ui_lastest_msg(
|
||||
yield from update_ui_latest_msg(
|
||||
f"当前任务: <br/>{'<br/>'.join(tasks)}.<br/>" +
|
||||
f"剩余源文件数量: {remain}.<br/>" +
|
||||
f"已完成的文件: {sum(worker_done)}.<br/>" +
|
||||
|
||||
@@ -7,7 +7,7 @@ from bs4 import BeautifulSoup
|
||||
from functools import lru_cache
|
||||
from itertools import zip_longest
|
||||
from check_proxy import check_proxy
|
||||
from toolbox import CatchException, update_ui, get_conf, promote_file_to_downloadzone, update_ui_lastest_msg, generate_file_link
|
||||
from toolbox import CatchException, update_ui, get_conf, promote_file_to_downloadzone, update_ui_latest_msg, generate_file_link
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
|
||||
from request_llms.bridge_all import model_info
|
||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||
@@ -46,7 +46,7 @@ def download_video(bvid, user_name, chatbot, history):
|
||||
# pause a while
|
||||
tic_time = 8
|
||||
for i in range(tic_time):
|
||||
yield from update_ui_lastest_msg(
|
||||
yield from update_ui_latest_msg(
|
||||
lastmsg=f"即将下载音频。等待{tic_time-i}秒后自动继续, 点击“停止”键取消此操作。",
|
||||
chatbot=chatbot, history=[], delay=1)
|
||||
|
||||
@@ -61,13 +61,13 @@ def download_video(bvid, user_name, chatbot, history):
|
||||
# preview
|
||||
preview_list = [promote_file_to_downloadzone(fp) for fp in downloaded_files]
|
||||
file_links = generate_file_link(preview_list)
|
||||
yield from update_ui_lastest_msg(f"已完成的文件: <br/>" + file_links, chatbot=chatbot, history=history, delay=0)
|
||||
yield from update_ui_latest_msg(f"已完成的文件: <br/>" + file_links, chatbot=chatbot, history=history, delay=0)
|
||||
chatbot.append((None, f"即将下载视频。"))
|
||||
|
||||
# pause a while
|
||||
tic_time = 16
|
||||
for i in range(tic_time):
|
||||
yield from update_ui_lastest_msg(
|
||||
yield from update_ui_latest_msg(
|
||||
lastmsg=f"即将下载视频。等待{tic_time-i}秒后自动继续, 点击“停止”键取消此操作。",
|
||||
chatbot=chatbot, history=[], delay=1)
|
||||
|
||||
@@ -78,7 +78,7 @@ def download_video(bvid, user_name, chatbot, history):
|
||||
# preview
|
||||
preview_list = [promote_file_to_downloadzone(fp) for fp in downloaded_files_part2]
|
||||
file_links = generate_file_link(preview_list)
|
||||
yield from update_ui_lastest_msg(f"已完成的文件: <br/>" + file_links, chatbot=chatbot, history=history, delay=0)
|
||||
yield from update_ui_latest_msg(f"已完成的文件: <br/>" + file_links, chatbot=chatbot, history=history, delay=0)
|
||||
|
||||
# return
|
||||
return downloaded_files + downloaded_files_part2
|
||||
@@ -110,7 +110,7 @@ def 多媒体任务(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
||||
# 结构化生成
|
||||
internet_search_keyword = user_wish
|
||||
|
||||
yield from update_ui_lastest_msg(lastmsg=f"发起互联网检索: {internet_search_keyword} ...", chatbot=chatbot, history=[], delay=1)
|
||||
yield from update_ui_latest_msg(lastmsg=f"发起互联网检索: {internet_search_keyword} ...", chatbot=chatbot, history=[], delay=1)
|
||||
from crazy_functions.Internet_GPT import internet_search_with_analysis_prompt
|
||||
result = yield from internet_search_with_analysis_prompt(
|
||||
prompt=internet_search_keyword,
|
||||
@@ -119,7 +119,7 @@ def 多媒体任务(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
||||
chatbot=chatbot
|
||||
)
|
||||
|
||||
yield from update_ui_lastest_msg(lastmsg=f"互联网检索结论: {result} \n\n 正在生成进一步检索方案 ...", chatbot=chatbot, history=[], delay=1)
|
||||
yield from update_ui_latest_msg(lastmsg=f"互联网检索结论: {result} \n\n 正在生成进一步检索方案 ...", chatbot=chatbot, history=[], delay=1)
|
||||
rf_req = dedent(f"""
|
||||
The user wish to get the following resource:
|
||||
{user_wish}
|
||||
@@ -132,7 +132,7 @@ def 多媒体任务(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
||||
rf_req = dedent(f"""
|
||||
The user wish to get the following resource:
|
||||
{user_wish}
|
||||
Generate reseach keywords (less than 5 keywords) accordingly.
|
||||
Generate research keywords (less than 5 keywords) accordingly.
|
||||
""")
|
||||
gpt_json_io = GptJsonIO(Query)
|
||||
inputs = rf_req + gpt_json_io.format_instructions
|
||||
@@ -146,12 +146,12 @@ def 多媒体任务(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 获取候选资源
|
||||
candadate_dictionary: dict = get_video_resource(video_engine_keywords)
|
||||
candadate_dictionary_as_str = json.dumps(candadate_dictionary, ensure_ascii=False, indent=4)
|
||||
candidate_dictionary: dict = get_video_resource(video_engine_keywords)
|
||||
candidate_dictionary_as_str = json.dumps(candidate_dictionary, ensure_ascii=False, indent=4)
|
||||
|
||||
# 展示候选资源
|
||||
candadate_display = "\n".join([f"{i+1}. {it['title']}" for i, it in enumerate(candadate_dictionary)])
|
||||
chatbot.append((None, f"候选:\n\n{candadate_display}"))
|
||||
candidate_display = "\n".join([f"{i+1}. {it['title']}" for i, it in enumerate(candidate_dictionary)])
|
||||
chatbot.append((None, f"候选:\n\n{candidate_display}"))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 结构化生成
|
||||
@@ -160,7 +160,7 @@ def 多媒体任务(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
||||
{user_wish}
|
||||
|
||||
Select the most relevant and suitable video resource from the following search results:
|
||||
{candadate_dictionary_as_str}
|
||||
{candidate_dictionary_as_str}
|
||||
|
||||
Note:
|
||||
1. The first several search video results are more likely to satisfy the user's wish.
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, ProxyNetworkActivate
|
||||
from toolbox import report_exception, get_log_folder, update_ui_lastest_msg, Singleton
|
||||
from toolbox import report_exception, get_log_folder, update_ui_latest_msg, Singleton
|
||||
from crazy_functions.agent_fns.pipe import PluginMultiprocessManager, PipeCom
|
||||
from crazy_functions.agent_fns.general import AutoGenGeneral
|
||||
|
||||
|
||||
@@ -8,7 +8,7 @@ class EchoDemo(PluginMultiprocessManager):
|
||||
while True:
|
||||
msg = self.child_conn.recv() # PipeCom
|
||||
if msg.cmd == "user_input":
|
||||
# wait futher user input
|
||||
# wait father user input
|
||||
self.child_conn.send(PipeCom("show", msg.content))
|
||||
wait_success = self.subprocess_worker_wait_user_feedback(wait_msg="我准备好处理下一个问题了.")
|
||||
if not wait_success:
|
||||
|
||||
@@ -27,7 +27,7 @@ def gpt_academic_generate_oai_reply(
|
||||
llm_kwargs=llm_config,
|
||||
history=history,
|
||||
sys_prompt=self._oai_system_message[0]['content'],
|
||||
console_slience=True
|
||||
console_silence=True
|
||||
)
|
||||
assumed_done = reply.endswith('\nTERMINATE')
|
||||
return True, reply
|
||||
|
||||
@@ -10,7 +10,7 @@ from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_
|
||||
# TODO: 解决缩进问题
|
||||
|
||||
find_function_end_prompt = '''
|
||||
Below is a page of code that you need to read. This page may not yet complete, you job is to split this page to sperate functions, class functions etc.
|
||||
Below is a page of code that you need to read. This page may not yet complete, you job is to split this page to separate functions, class functions etc.
|
||||
- Provide the line number where the first visible function ends.
|
||||
- Provide the line number where the next visible function begins.
|
||||
- If there are no other functions in this page, you should simply return the line number of the last line.
|
||||
@@ -59,7 +59,7 @@ OUTPUT:
|
||||
|
||||
|
||||
|
||||
revise_funtion_prompt = '''
|
||||
revise_function_prompt = '''
|
||||
You need to read the following code, and revise the source code ({FILE_BASENAME}) according to following instructions:
|
||||
1. You should analyze the purpose of the functions (if there are any).
|
||||
2. You need to add docstring for the provided functions (if there are any).
|
||||
@@ -117,7 +117,7 @@ def zip_result(folder):
|
||||
'''
|
||||
|
||||
|
||||
revise_funtion_prompt_chinese = '''
|
||||
revise_function_prompt_chinese = '''
|
||||
您需要阅读以下代码,并根据以下说明修订源代码({FILE_BASENAME}):
|
||||
1. 如果源代码中包含函数的话, 你应该分析给定函数实现了什么功能
|
||||
2. 如果源代码中包含函数的话, 你需要为函数添加docstring, docstring必须使用中文
|
||||
@@ -188,9 +188,9 @@ class PythonCodeComment():
|
||||
self.language = language
|
||||
self.observe_window_update = observe_window_update
|
||||
if self.language == "chinese":
|
||||
self.core_prompt = revise_funtion_prompt_chinese
|
||||
self.core_prompt = revise_function_prompt_chinese
|
||||
else:
|
||||
self.core_prompt = revise_funtion_prompt
|
||||
self.core_prompt = revise_function_prompt
|
||||
self.path = None
|
||||
self.file_basename = None
|
||||
self.file_brief = ""
|
||||
@@ -222,7 +222,7 @@ class PythonCodeComment():
|
||||
history=[],
|
||||
sys_prompt="",
|
||||
observe_window=[],
|
||||
console_slience=True
|
||||
console_silence=True
|
||||
)
|
||||
|
||||
def extract_number(text):
|
||||
@@ -316,7 +316,7 @@ class PythonCodeComment():
|
||||
def tag_code(self, fn, hint):
|
||||
code = fn
|
||||
_, n_indent = self.dedent(code)
|
||||
indent_reminder = "" if n_indent == 0 else "(Reminder: as you can see, this piece of code has indent made up with {n_indent} whitespace, please preseve them in the OUTPUT.)"
|
||||
indent_reminder = "" if n_indent == 0 else "(Reminder: as you can see, this piece of code has indent made up with {n_indent} whitespace, please preserve them in the OUTPUT.)"
|
||||
brief_reminder = "" if self.file_brief == "" else f"({self.file_basename} abstract: {self.file_brief})"
|
||||
hint_reminder = "" if hint is None else f"(Reminder: do not ignore or modify code such as `{hint}`, provide complete code in the OUTPUT.)"
|
||||
self.llm_kwargs['temperature'] = 0
|
||||
@@ -333,7 +333,7 @@ class PythonCodeComment():
|
||||
history=[],
|
||||
sys_prompt="",
|
||||
observe_window=[],
|
||||
console_slience=True
|
||||
console_silence=True
|
||||
)
|
||||
|
||||
def get_code_block(reply):
|
||||
@@ -400,7 +400,7 @@ class PythonCodeComment():
|
||||
return revised
|
||||
|
||||
def begin_comment_source_code(self, chatbot=None, history=None):
|
||||
# from toolbox import update_ui_lastest_msg
|
||||
# from toolbox import update_ui_latest_msg
|
||||
assert self.path is not None
|
||||
assert '.py' in self.path # must be python source code
|
||||
# write_target = self.path + '.revised.py'
|
||||
@@ -409,10 +409,10 @@ class PythonCodeComment():
|
||||
# with open(self.path + '.revised.py', 'w+', encoding='utf8') as f:
|
||||
while True:
|
||||
try:
|
||||
# yield from update_ui_lastest_msg(f"({self.file_basename}) 正在读取下一段代码片段:\n", chatbot=chatbot, history=history, delay=0)
|
||||
# yield from update_ui_latest_msg(f"({self.file_basename}) 正在读取下一段代码片段:\n", chatbot=chatbot, history=history, delay=0)
|
||||
next_batch, line_no_start, line_no_end = self.get_next_batch()
|
||||
self.observe_window_update(f"正在处理{self.file_basename} - {line_no_start}/{len(self.full_context)}\n")
|
||||
# yield from update_ui_lastest_msg(f"({self.file_basename}) 处理代码片段:\n\n{next_batch}", chatbot=chatbot, history=history, delay=0)
|
||||
# yield from update_ui_latest_msg(f"({self.file_basename}) 处理代码片段:\n\n{next_batch}", chatbot=chatbot, history=history, delay=0)
|
||||
|
||||
hint = None
|
||||
MAX_ATTEMPT = 2
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import os
|
||||
import threading
|
||||
from loguru import logger
|
||||
from shared_utils.char_visual_effect import scolling_visual_effect
|
||||
from shared_utils.char_visual_effect import scrolling_visual_effect
|
||||
from toolbox import update_ui, get_conf, trimmed_format_exc, get_max_token, Singleton
|
||||
|
||||
def input_clipping(inputs, history, max_token_limit, return_clip_flags=False):
|
||||
@@ -256,7 +256,7 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
# 【第一种情况】:顺利完成
|
||||
gpt_say = predict_no_ui_long_connection(
|
||||
inputs=inputs, llm_kwargs=llm_kwargs, history=history,
|
||||
sys_prompt=sys_prompt, observe_window=mutable[index], console_slience=True
|
||||
sys_prompt=sys_prompt, observe_window=mutable[index], console_silence=True
|
||||
)
|
||||
mutable[index][2] = "已成功"
|
||||
return gpt_say
|
||||
@@ -326,7 +326,7 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
mutable[thread_index][1] = time.time()
|
||||
# 在前端打印些好玩的东西
|
||||
for thread_index, _ in enumerate(worker_done):
|
||||
print_something_really_funny = f"[ ...`{scolling_visual_effect(mutable[thread_index][0], scroller_max_len)}`... ]"
|
||||
print_something_really_funny = f"[ ...`{scrolling_visual_effect(mutable[thread_index][0], scroller_max_len)}`... ]"
|
||||
observe_win.append(print_something_really_funny)
|
||||
# 在前端打印些好玩的东西
|
||||
stat_str = ''.join([f'`{mutable[thread_index][2]}`: {obs}\n\n'
|
||||
@@ -389,11 +389,11 @@ def read_and_clean_pdf_text(fp):
|
||||
"""
|
||||
提取文本块主字体
|
||||
"""
|
||||
fsize_statiscs = {}
|
||||
fsize_statistics = {}
|
||||
for wtf in l['spans']:
|
||||
if wtf['size'] not in fsize_statiscs: fsize_statiscs[wtf['size']] = 0
|
||||
fsize_statiscs[wtf['size']] += len(wtf['text'])
|
||||
return max(fsize_statiscs, key=fsize_statiscs.get)
|
||||
if wtf['size'] not in fsize_statistics: fsize_statistics[wtf['size']] = 0
|
||||
fsize_statistics[wtf['size']] += len(wtf['text'])
|
||||
return max(fsize_statistics, key=fsize_statistics.get)
|
||||
|
||||
def ffsize_same(a,b):
|
||||
"""
|
||||
@@ -433,11 +433,11 @@ def read_and_clean_pdf_text(fp):
|
||||
|
||||
############################## <第 2 步,获取正文主字体> ##################################
|
||||
try:
|
||||
fsize_statiscs = {}
|
||||
fsize_statistics = {}
|
||||
for span in meta_span:
|
||||
if span[1] not in fsize_statiscs: fsize_statiscs[span[1]] = 0
|
||||
fsize_statiscs[span[1]] += span[2]
|
||||
main_fsize = max(fsize_statiscs, key=fsize_statiscs.get)
|
||||
if span[1] not in fsize_statistics: fsize_statistics[span[1]] = 0
|
||||
fsize_statistics[span[1]] += span[2]
|
||||
main_fsize = max(fsize_statistics, key=fsize_statistics.get)
|
||||
if REMOVE_FOOT_NOTE:
|
||||
give_up_fize_threshold = main_fsize * REMOVE_FOOT_FFSIZE_PERCENT
|
||||
except:
|
||||
@@ -610,9 +610,9 @@ class nougat_interface():
|
||||
|
||||
|
||||
def NOUGAT_parse_pdf(self, fp, chatbot, history):
|
||||
from toolbox import update_ui_lastest_msg
|
||||
from toolbox import update_ui_latest_msg
|
||||
|
||||
yield from update_ui_lastest_msg("正在解析论文, 请稍候。进度:正在排队, 等待线程锁...",
|
||||
yield from update_ui_latest_msg("正在解析论文, 请稍候。进度:正在排队, 等待线程锁...",
|
||||
chatbot=chatbot, history=history, delay=0)
|
||||
self.threadLock.acquire()
|
||||
import glob, threading, os
|
||||
@@ -620,7 +620,7 @@ class nougat_interface():
|
||||
dst = os.path.join(get_log_folder(plugin_name='nougat'), gen_time_str())
|
||||
os.makedirs(dst)
|
||||
|
||||
yield from update_ui_lastest_msg("正在解析论文, 请稍候。进度:正在加载NOUGAT... (提示:首次运行需要花费较长时间下载NOUGAT参数)",
|
||||
yield from update_ui_latest_msg("正在解析论文, 请稍候。进度:正在加载NOUGAT... (提示:首次运行需要花费较长时间下载NOUGAT参数)",
|
||||
chatbot=chatbot, history=history, delay=0)
|
||||
command = ['nougat', '--out', os.path.abspath(dst), os.path.abspath(fp)]
|
||||
self.nougat_with_timeout(command, cwd=os.getcwd(), timeout=3600)
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from toolbox import CatchException, update_ui, update_ui_lastest_msg
|
||||
from toolbox import CatchException, update_ui, update_ui_latest_msg
|
||||
from crazy_functions.multi_stage.multi_stage_utils import GptAcademicGameBaseState
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||
@@ -13,7 +13,7 @@ class MiniGame_ASCII_Art(GptAcademicGameBaseState):
|
||||
else:
|
||||
if prompt.strip() == 'exit':
|
||||
self.delete_game = True
|
||||
yield from update_ui_lastest_msg(lastmsg=f"谜底是{self.obj},游戏结束。", chatbot=chatbot, history=history, delay=0.)
|
||||
yield from update_ui_latest_msg(lastmsg=f"谜底是{self.obj},游戏结束。", chatbot=chatbot, history=history, delay=0.)
|
||||
return
|
||||
chatbot.append([prompt, ""])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
@@ -31,12 +31,12 @@ class MiniGame_ASCII_Art(GptAcademicGameBaseState):
|
||||
self.cur_task = 'identify user guess'
|
||||
res = get_code_block(raw_res)
|
||||
history += ['', f'the answer is {self.obj}', inputs, res]
|
||||
yield from update_ui_lastest_msg(lastmsg=res, chatbot=chatbot, history=history, delay=0.)
|
||||
yield from update_ui_latest_msg(lastmsg=res, chatbot=chatbot, history=history, delay=0.)
|
||||
|
||||
elif self.cur_task == 'identify user guess':
|
||||
if is_same_thing(self.obj, prompt, self.llm_kwargs):
|
||||
self.delete_game = True
|
||||
yield from update_ui_lastest_msg(lastmsg="你猜对了!", chatbot=chatbot, history=history, delay=0.)
|
||||
yield from update_ui_latest_msg(lastmsg="你猜对了!", chatbot=chatbot, history=history, delay=0.)
|
||||
else:
|
||||
self.cur_task = 'identify user guess'
|
||||
yield from update_ui_lastest_msg(lastmsg="猜错了,再试试,输入“exit”获取答案。", chatbot=chatbot, history=history, delay=0.)
|
||||
yield from update_ui_latest_msg(lastmsg="猜错了,再试试,输入“exit”获取答案。", chatbot=chatbot, history=history, delay=0.)
|
||||
@@ -63,7 +63,7 @@ prompts_terminate = """小说的前文回顾:
|
||||
"""
|
||||
|
||||
|
||||
from toolbox import CatchException, update_ui, update_ui_lastest_msg
|
||||
from toolbox import CatchException, update_ui, update_ui_latest_msg
|
||||
from crazy_functions.multi_stage.multi_stage_utils import GptAcademicGameBaseState
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||
@@ -112,7 +112,7 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
|
||||
if prompt.strip() == 'exit' or prompt.strip() == '结束剧情':
|
||||
# should we terminate game here?
|
||||
self.delete_game = True
|
||||
yield from update_ui_lastest_msg(lastmsg=f"游戏结束。", chatbot=chatbot, history=history, delay=0.)
|
||||
yield from update_ui_latest_msg(lastmsg=f"游戏结束。", chatbot=chatbot, history=history, delay=0.)
|
||||
return
|
||||
if '剧情收尾' in prompt:
|
||||
self.cur_task = 'story_terminate'
|
||||
@@ -137,8 +137,8 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
|
||||
)
|
||||
self.story.append(story_paragraph)
|
||||
# # 配图
|
||||
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>正在生成插图中 ...', chatbot=chatbot, history=history, delay=0.)
|
||||
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>'+ self.generate_story_image(story_paragraph), chatbot=chatbot, history=history, delay=0.)
|
||||
yield from update_ui_latest_msg(lastmsg=story_paragraph + '<br/>正在生成插图中 ...', chatbot=chatbot, history=history, delay=0.)
|
||||
yield from update_ui_latest_msg(lastmsg=story_paragraph + '<br/>'+ self.generate_story_image(story_paragraph), chatbot=chatbot, history=history, delay=0.)
|
||||
|
||||
# # 构建后续剧情引导
|
||||
previously_on_story = ""
|
||||
@@ -171,8 +171,8 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
|
||||
)
|
||||
self.story.append(story_paragraph)
|
||||
# # 配图
|
||||
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>正在生成插图中 ...', chatbot=chatbot, history=history, delay=0.)
|
||||
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>'+ self.generate_story_image(story_paragraph), chatbot=chatbot, history=history, delay=0.)
|
||||
yield from update_ui_latest_msg(lastmsg=story_paragraph + '<br/>正在生成插图中 ...', chatbot=chatbot, history=history, delay=0.)
|
||||
yield from update_ui_latest_msg(lastmsg=story_paragraph + '<br/>'+ self.generate_story_image(story_paragraph), chatbot=chatbot, history=history, delay=0.)
|
||||
|
||||
# # 构建后续剧情引导
|
||||
previously_on_story = ""
|
||||
@@ -204,8 +204,8 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
|
||||
chatbot, history_, self.sys_prompt_
|
||||
)
|
||||
# # 配图
|
||||
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>正在生成插图中 ...', chatbot=chatbot, history=history, delay=0.)
|
||||
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>'+ self.generate_story_image(story_paragraph), chatbot=chatbot, history=history, delay=0.)
|
||||
yield from update_ui_latest_msg(lastmsg=story_paragraph + '<br/>正在生成插图中 ...', chatbot=chatbot, history=history, delay=0.)
|
||||
yield from update_ui_latest_msg(lastmsg=story_paragraph + '<br/>'+ self.generate_story_image(story_paragraph), chatbot=chatbot, history=history, delay=0.)
|
||||
|
||||
# terminate game
|
||||
self.delete_game = True
|
||||
|
||||
@@ -2,7 +2,7 @@ import time
|
||||
import importlib
|
||||
from toolbox import trimmed_format_exc, gen_time_str, get_log_folder
|
||||
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, is_the_upload_folder
|
||||
from toolbox import promote_file_to_downloadzone, get_log_folder, update_ui_lastest_msg
|
||||
from toolbox import promote_file_to_downloadzone, get_log_folder, update_ui_latest_msg
|
||||
import multiprocessing
|
||||
|
||||
def get_class_name(class_string):
|
||||
|
||||
@@ -102,10 +102,10 @@ class GptJsonIO():
|
||||
logging.info(f'Repairing json:{response}')
|
||||
repair_prompt = self.generate_repair_prompt(broken_json = response, error=repr(e))
|
||||
result = self.generate_output(gpt_gen_fn(repair_prompt, self.format_instructions))
|
||||
logging.info('Repaire json success.')
|
||||
logging.info('Repair json success.')
|
||||
except Exception as e:
|
||||
# 没辙了,放弃治疗
|
||||
logging.info('Repaire json fail.')
|
||||
logging.info('Repair json fail.')
|
||||
raise JsonStringError('Cannot repair json.', str(e))
|
||||
return result
|
||||
|
||||
|
||||
@@ -3,7 +3,7 @@ import re
|
||||
import shutil
|
||||
import numpy as np
|
||||
from loguru import logger
|
||||
from toolbox import update_ui, update_ui_lastest_msg, get_log_folder, gen_time_str
|
||||
from toolbox import update_ui, update_ui_latest_msg, get_log_folder, gen_time_str
|
||||
from toolbox import get_conf, promote_file_to_downloadzone
|
||||
from crazy_functions.latex_fns.latex_toolbox import PRESERVE, TRANSFORM
|
||||
from crazy_functions.latex_fns.latex_toolbox import set_forbidden_text, set_forbidden_text_begin_end, set_forbidden_text_careful_brace
|
||||
@@ -20,7 +20,7 @@ def split_subprocess(txt, project_folder, return_dict, opts):
|
||||
"""
|
||||
break down latex file to a linked list,
|
||||
each node use a preserve flag to indicate whether it should
|
||||
be proccessed by GPT.
|
||||
be processed by GPT.
|
||||
"""
|
||||
text = txt
|
||||
mask = np.zeros(len(txt), dtype=np.uint8) + TRANSFORM
|
||||
@@ -85,14 +85,14 @@ class LatexPaperSplit():
|
||||
"""
|
||||
break down latex file to a linked list,
|
||||
each node use a preserve flag to indicate whether it should
|
||||
be proccessed by GPT.
|
||||
be processed by GPT.
|
||||
"""
|
||||
def __init__(self) -> None:
|
||||
self.nodes = None
|
||||
self.msg = "*{\\scriptsize\\textbf{警告:该PDF由GPT-Academic开源项目调用大语言模型+Latex翻译插件一键生成," + \
|
||||
"版权归原文作者所有。翻译内容可靠性无保障,请仔细鉴别并以原文为准。" + \
|
||||
"项目Github地址 \\url{https://github.com/binary-husky/gpt_academic/}。"
|
||||
# 请您不要删除或修改这行警告,除非您是论文的原作者(如果您是论文原作者,欢迎加REAME中的QQ联系开发者)
|
||||
# 请您不要删除或修改这行警告,除非您是论文的原作者(如果您是论文原作者,欢迎加README中的QQ联系开发者)
|
||||
self.msg_declare = "为了防止大语言模型的意外谬误产生扩散影响,禁止移除或修改此警告。}}\\\\"
|
||||
self.title = "unknown"
|
||||
self.abstract = "unknown"
|
||||
@@ -151,7 +151,7 @@ class LatexPaperSplit():
|
||||
"""
|
||||
break down latex file to a linked list,
|
||||
each node use a preserve flag to indicate whether it should
|
||||
be proccessed by GPT.
|
||||
be processed by GPT.
|
||||
P.S. use multiprocessing to avoid timeout error
|
||||
"""
|
||||
import multiprocessing
|
||||
@@ -351,7 +351,7 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
||||
max_try = 32
|
||||
chatbot.append([f"正在编译PDF文档", f'编译已经开始。当前工作路径为{work_folder},如果程序停顿5分钟以上,请直接去该路径下取回翻译结果,或者重启之后再度尝试 ...']); yield from update_ui(chatbot=chatbot, history=history)
|
||||
chatbot.append([f"正在编译PDF文档", '...']); yield from update_ui(chatbot=chatbot, history=history); time.sleep(1); chatbot[-1] = list(chatbot[-1]) # 刷新界面
|
||||
yield from update_ui_lastest_msg('编译已经开始...', chatbot, history) # 刷新Gradio前端界面
|
||||
yield from update_ui_latest_msg('编译已经开始...', chatbot, history) # 刷新Gradio前端界面
|
||||
# 检查是否需要使用xelatex
|
||||
def check_if_need_xelatex(tex_path):
|
||||
try:
|
||||
@@ -396,32 +396,32 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
||||
shutil.copyfile(may_exist_bbl, target_bbl)
|
||||
|
||||
# https://stackoverflow.com/questions/738755/dont-make-me-manually-abort-a-latex-compile-when-theres-an-error
|
||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译原始PDF ...', chatbot, history) # 刷新Gradio前端界面
|
||||
yield from update_ui_latest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译原始PDF ...', chatbot, history) # 刷新Gradio前端界面
|
||||
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_original), work_folder_original)
|
||||
|
||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译转化后的PDF ...', chatbot, history) # 刷新Gradio前端界面
|
||||
yield from update_ui_latest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译转化后的PDF ...', chatbot, history) # 刷新Gradio前端界面
|
||||
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_modified), work_folder_modified)
|
||||
|
||||
if ok and os.path.exists(pj(work_folder_modified, f'{main_file_modified}.pdf')):
|
||||
# 只有第二步成功,才能继续下面的步骤
|
||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译BibTex ...', chatbot, history) # 刷新Gradio前端界面
|
||||
yield from update_ui_latest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译BibTex ...', chatbot, history) # 刷新Gradio前端界面
|
||||
if not os.path.exists(pj(work_folder_original, f'{main_file_original}.bbl')):
|
||||
ok = compile_latex_with_timeout(f'bibtex {main_file_original}.aux', work_folder_original)
|
||||
if not os.path.exists(pj(work_folder_modified, f'{main_file_modified}.bbl')):
|
||||
ok = compile_latex_with_timeout(f'bibtex {main_file_modified}.aux', work_folder_modified)
|
||||
|
||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译文献交叉引用 ...', chatbot, history) # 刷新Gradio前端界面
|
||||
yield from update_ui_latest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译文献交叉引用 ...', chatbot, history) # 刷新Gradio前端界面
|
||||
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_original), work_folder_original)
|
||||
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_modified), work_folder_modified)
|
||||
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_original), work_folder_original)
|
||||
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_modified), work_folder_modified)
|
||||
|
||||
if mode!='translate_zh':
|
||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 使用latexdiff生成论文转化前后对比 ...', chatbot, history) # 刷新Gradio前端界面
|
||||
yield from update_ui_latest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 使用latexdiff生成论文转化前后对比 ...', chatbot, history) # 刷新Gradio前端界面
|
||||
logger.info( f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex')
|
||||
ok = compile_latex_with_timeout(f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex', os.getcwd())
|
||||
|
||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 正在编译对比PDF ...', chatbot, history) # 刷新Gradio前端界面
|
||||
yield from update_ui_latest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 正在编译对比PDF ...', chatbot, history) # 刷新Gradio前端界面
|
||||
ok = compile_latex_with_timeout(get_compile_command(compiler, 'merge_diff'), work_folder)
|
||||
ok = compile_latex_with_timeout(f'bibtex merge_diff.aux', work_folder)
|
||||
ok = compile_latex_with_timeout(get_compile_command(compiler, 'merge_diff'), work_folder)
|
||||
@@ -435,13 +435,13 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
||||
results_ += f"原始PDF编译是否成功: {original_pdf_success};"
|
||||
results_ += f"转化PDF编译是否成功: {modified_pdf_success};"
|
||||
results_ += f"对比PDF编译是否成功: {diff_pdf_success};"
|
||||
yield from update_ui_lastest_msg(f'第{n_fix}编译结束:<br/>{results_}...', chatbot, history) # 刷新Gradio前端界面
|
||||
yield from update_ui_latest_msg(f'第{n_fix}编译结束:<br/>{results_}...', chatbot, history) # 刷新Gradio前端界面
|
||||
|
||||
if diff_pdf_success:
|
||||
result_pdf = pj(work_folder_modified, f'merge_diff.pdf') # get pdf path
|
||||
promote_file_to_downloadzone(result_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
|
||||
if modified_pdf_success:
|
||||
yield from update_ui_lastest_msg(f'转化PDF编译已经成功, 正在尝试生成对比PDF, 请稍候 ...', chatbot, history) # 刷新Gradio前端界面
|
||||
yield from update_ui_latest_msg(f'转化PDF编译已经成功, 正在尝试生成对比PDF, 请稍候 ...', chatbot, history) # 刷新Gradio前端界面
|
||||
result_pdf = pj(work_folder_modified, f'{main_file_modified}.pdf') # get pdf path
|
||||
origin_pdf = pj(work_folder_original, f'{main_file_original}.pdf') # get pdf path
|
||||
if os.path.exists(pj(work_folder, '..', 'translation')):
|
||||
@@ -472,7 +472,7 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
||||
work_folder_modified=work_folder_modified,
|
||||
fixed_line=fixed_line
|
||||
)
|
||||
yield from update_ui_lastest_msg(f'由于最为关键的转化PDF编译失败, 将根据报错信息修正tex源文件并重试, 当前报错的latex代码处于第{buggy_lines}行 ...', chatbot, history) # 刷新Gradio前端界面
|
||||
yield from update_ui_latest_msg(f'由于最为关键的转化PDF编译失败, 将根据报错信息修正tex源文件并重试, 当前报错的latex代码处于第{buggy_lines}行 ...', chatbot, history) # 刷新Gradio前端界面
|
||||
if not can_retry: break
|
||||
|
||||
return False # 失败啦
|
||||
|
||||
@@ -168,7 +168,7 @@ def set_forbidden_text(text, mask, pattern, flags=0):
|
||||
def reverse_forbidden_text(text, mask, pattern, flags=0, forbid_wrapper=True):
|
||||
"""
|
||||
Move area out of preserve area (make text editable for GPT)
|
||||
count the number of the braces so as to catch compelete text area.
|
||||
count the number of the braces so as to catch complete text area.
|
||||
e.g.
|
||||
\begin{abstract} blablablablablabla. \end{abstract}
|
||||
"""
|
||||
@@ -188,7 +188,7 @@ def reverse_forbidden_text(text, mask, pattern, flags=0, forbid_wrapper=True):
|
||||
def set_forbidden_text_careful_brace(text, mask, pattern, flags=0):
|
||||
"""
|
||||
Add a preserve text area in this paper (text become untouchable for GPT).
|
||||
count the number of the braces so as to catch compelete text area.
|
||||
count the number of the braces so as to catch complete text area.
|
||||
e.g.
|
||||
\caption{blablablablabla\texbf{blablabla}blablabla.}
|
||||
"""
|
||||
@@ -214,7 +214,7 @@ def reverse_forbidden_text_careful_brace(
|
||||
):
|
||||
"""
|
||||
Move area out of preserve area (make text editable for GPT)
|
||||
count the number of the braces so as to catch compelete text area.
|
||||
count the number of the braces so as to catch complete text area.
|
||||
e.g.
|
||||
\caption{blablablablabla\texbf{blablabla}blablabla.}
|
||||
"""
|
||||
@@ -287,23 +287,23 @@ def find_main_tex_file(file_manifest, mode):
|
||||
在多Tex文档中,寻找主文件,必须包含documentclass,返回找到的第一个。
|
||||
P.S. 但愿没人把latex模板放在里面传进来 (6.25 加入判定latex模板的代码)
|
||||
"""
|
||||
canidates = []
|
||||
candidates = []
|
||||
for texf in file_manifest:
|
||||
if os.path.basename(texf).startswith("merge"):
|
||||
continue
|
||||
with open(texf, "r", encoding="utf8", errors="ignore") as f:
|
||||
file_content = f.read()
|
||||
if r"\documentclass" in file_content:
|
||||
canidates.append(texf)
|
||||
candidates.append(texf)
|
||||
else:
|
||||
continue
|
||||
|
||||
if len(canidates) == 0:
|
||||
if len(candidates) == 0:
|
||||
raise RuntimeError("无法找到一个主Tex文件(包含documentclass关键字)")
|
||||
elif len(canidates) == 1:
|
||||
return canidates[0]
|
||||
else: # if len(canidates) >= 2 通过一些Latex模板中常见(但通常不会出现在正文)的单词,对不同latex源文件扣分,取评分最高者返回
|
||||
canidates_score = []
|
||||
elif len(candidates) == 1:
|
||||
return candidates[0]
|
||||
else: # if len(candidates) >= 2 通过一些Latex模板中常见(但通常不会出现在正文)的单词,对不同latex源文件扣分,取评分最高者返回
|
||||
candidates_score = []
|
||||
# 给出一些判定模板文档的词作为扣分项
|
||||
unexpected_words = [
|
||||
"\\LaTeX",
|
||||
@@ -316,19 +316,19 @@ def find_main_tex_file(file_manifest, mode):
|
||||
"reviewers",
|
||||
]
|
||||
expected_words = ["\\input", "\\ref", "\\cite"]
|
||||
for texf in canidates:
|
||||
canidates_score.append(0)
|
||||
for texf in candidates:
|
||||
candidates_score.append(0)
|
||||
with open(texf, "r", encoding="utf8", errors="ignore") as f:
|
||||
file_content = f.read()
|
||||
file_content = rm_comments(file_content)
|
||||
for uw in unexpected_words:
|
||||
if uw in file_content:
|
||||
canidates_score[-1] -= 1
|
||||
candidates_score[-1] -= 1
|
||||
for uw in expected_words:
|
||||
if uw in file_content:
|
||||
canidates_score[-1] += 1
|
||||
select = np.argmax(canidates_score) # 取评分最高者返回
|
||||
return canidates[select]
|
||||
candidates_score[-1] += 1
|
||||
select = np.argmax(candidates_score) # 取评分最高者返回
|
||||
return candidates[select]
|
||||
|
||||
|
||||
def rm_comments(main_file):
|
||||
@@ -374,7 +374,7 @@ def find_tex_file_ignore_case(fp):
|
||||
|
||||
def merge_tex_files_(project_foler, main_file, mode):
|
||||
"""
|
||||
Merge Tex project recrusively
|
||||
Merge Tex project recursively
|
||||
"""
|
||||
main_file = rm_comments(main_file)
|
||||
for s in reversed([q for q in re.finditer(r"\\input\{(.*?)\}", main_file, re.M)]):
|
||||
@@ -429,7 +429,7 @@ def find_title_and_abs(main_file):
|
||||
|
||||
def merge_tex_files(project_foler, main_file, mode):
|
||||
"""
|
||||
Merge Tex project recrusively
|
||||
Merge Tex project recursively
|
||||
P.S. 顺便把CTEX塞进去以支持中文
|
||||
P.S. 顺便把Latex的注释去除
|
||||
"""
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from toolbox import update_ui, get_conf, promote_file_to_downloadzone, update_ui_lastest_msg, generate_file_link
|
||||
from toolbox import update_ui, get_conf, promote_file_to_downloadzone, update_ui_latest_msg, generate_file_link
|
||||
from shared_utils.docker_as_service_api import stream_daas
|
||||
from shared_utils.docker_as_service_api import DockerServiceApiComModel
|
||||
import random
|
||||
@@ -25,7 +25,7 @@ def download_video(video_id, only_audio, user_name, chatbot, history):
|
||||
status_buf += "\n\n"
|
||||
status_buf += "DaaS file attach: \n\n"
|
||||
status_buf += str(output_manifest['server_file_attach'])
|
||||
yield from update_ui_lastest_msg(status_buf, chatbot, history)
|
||||
yield from update_ui_latest_msg(status_buf, chatbot, history)
|
||||
|
||||
return output_manifest['server_file_attach']
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import List
|
||||
from toolbox import update_ui_lastest_msg, disable_auto_promotion
|
||||
from toolbox import update_ui_latest_msg, disable_auto_promotion
|
||||
from toolbox import CatchException, update_ui, get_conf, select_api_key, get_log_folder
|
||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
|
||||
|
||||
@@ -113,7 +113,7 @@ def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_fi
|
||||
return [txt]
|
||||
else:
|
||||
# raw_token_num > TOKEN_LIMIT_PER_FRAGMENT
|
||||
# find a smooth token limit to achieve even seperation
|
||||
# find a smooth token limit to achieve even separation
|
||||
count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
|
||||
token_limit_smooth = raw_token_num // count + count
|
||||
return breakdown_text_to_satisfy_token_limit(txt, limit=token_limit_smooth, llm_model=llm_kwargs['llm_model'])
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import os
|
||||
from toolbox import CatchException, report_exception, get_log_folder, gen_time_str, check_packages
|
||||
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
|
||||
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_latest_msg, disable_auto_promotion
|
||||
from toolbox import write_history_to_file, promote_file_to_downloadzone, get_conf, extract_archive
|
||||
from crazy_functions.pdf_fns.parse_pdf import parse_pdf, translate_pdf
|
||||
|
||||
|
||||
@@ -14,17 +14,17 @@ def extract_text_from_files(txt, chatbot, history):
|
||||
final_result(list):文本内容
|
||||
page_one(list):第一页内容/摘要
|
||||
file_manifest(list):文件路径
|
||||
excption(string):需要用户手动处理的信息,如没出错则保持为空
|
||||
exception(string):需要用户手动处理的信息,如没出错则保持为空
|
||||
"""
|
||||
|
||||
final_result = []
|
||||
page_one = []
|
||||
file_manifest = []
|
||||
excption = ""
|
||||
exception = ""
|
||||
|
||||
if txt == "":
|
||||
final_result.append(txt)
|
||||
return False, final_result, page_one, file_manifest, excption #如输入区内容不是文件则直接返回输入区内容
|
||||
return False, final_result, page_one, file_manifest, exception #如输入区内容不是文件则直接返回输入区内容
|
||||
|
||||
#查找输入区内容中的文件
|
||||
file_pdf,pdf_manifest,folder_pdf = get_files_from_everything(txt, '.pdf')
|
||||
@@ -33,20 +33,20 @@ def extract_text_from_files(txt, chatbot, history):
|
||||
file_doc,doc_manifest,folder_doc = get_files_from_everything(txt, '.doc')
|
||||
|
||||
if file_doc:
|
||||
excption = "word"
|
||||
return False, final_result, page_one, file_manifest, excption
|
||||
exception = "word"
|
||||
return False, final_result, page_one, file_manifest, exception
|
||||
|
||||
file_num = len(pdf_manifest) + len(md_manifest) + len(word_manifest)
|
||||
if file_num == 0:
|
||||
final_result.append(txt)
|
||||
return False, final_result, page_one, file_manifest, excption #如输入区内容不是文件则直接返回输入区内容
|
||||
return False, final_result, page_one, file_manifest, exception #如输入区内容不是文件则直接返回输入区内容
|
||||
|
||||
if file_pdf:
|
||||
try: # 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
import fitz
|
||||
except:
|
||||
excption = "pdf"
|
||||
return False, final_result, page_one, file_manifest, excption
|
||||
exception = "pdf"
|
||||
return False, final_result, page_one, file_manifest, exception
|
||||
for index, fp in enumerate(pdf_manifest):
|
||||
file_content, pdf_one = read_and_clean_pdf_text(fp) # (尝试)按照章节切割PDF
|
||||
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||||
@@ -72,8 +72,8 @@ def extract_text_from_files(txt, chatbot, history):
|
||||
try: # 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
from docx import Document
|
||||
except:
|
||||
excption = "word_pip"
|
||||
return False, final_result, page_one, file_manifest, excption
|
||||
exception = "word_pip"
|
||||
return False, final_result, page_one, file_manifest, exception
|
||||
for index, fp in enumerate(word_manifest):
|
||||
doc = Document(fp)
|
||||
file_content = '\n'.join([p.text for p in doc.paragraphs])
|
||||
@@ -82,4 +82,4 @@ def extract_text_from_files(txt, chatbot, history):
|
||||
final_result.append(file_content)
|
||||
file_manifest.append(os.path.relpath(fp, folder_word))
|
||||
|
||||
return True, final_result, page_one, file_manifest, excption
|
||||
return True, final_result, page_one, file_manifest, exception
|
||||
@@ -60,7 +60,7 @@ def similarity_search_with_score_by_vector(
|
||||
self, embedding: List[float], k: int = 4
|
||||
) -> List[Tuple[Document, float]]:
|
||||
|
||||
def seperate_list(ls: List[int]) -> List[List[int]]:
|
||||
def separate_list(ls: List[int]) -> List[List[int]]:
|
||||
lists = []
|
||||
ls1 = [ls[0]]
|
||||
for i in range(1, len(ls)):
|
||||
@@ -82,7 +82,7 @@ def similarity_search_with_score_by_vector(
|
||||
continue
|
||||
_id = self.index_to_docstore_id[i]
|
||||
doc = self.docstore.search(_id)
|
||||
if not self.chunk_conent:
|
||||
if not self.chunk_content:
|
||||
if not isinstance(doc, Document):
|
||||
raise ValueError(f"Could not find document for id {_id}, got {doc}")
|
||||
doc.metadata["score"] = int(scores[0][j])
|
||||
@@ -104,12 +104,12 @@ def similarity_search_with_score_by_vector(
|
||||
id_set.add(l)
|
||||
if break_flag:
|
||||
break
|
||||
if not self.chunk_conent:
|
||||
if not self.chunk_content:
|
||||
return docs
|
||||
if len(id_set) == 0 and self.score_threshold > 0:
|
||||
return []
|
||||
id_list = sorted(list(id_set))
|
||||
id_lists = seperate_list(id_list)
|
||||
id_lists = separate_list(id_list)
|
||||
for id_seq in id_lists:
|
||||
for id in id_seq:
|
||||
if id == id_seq[0]:
|
||||
@@ -132,7 +132,7 @@ class LocalDocQA:
|
||||
embeddings: object = None
|
||||
top_k: int = VECTOR_SEARCH_TOP_K
|
||||
chunk_size: int = CHUNK_SIZE
|
||||
chunk_conent: bool = True
|
||||
chunk_content: bool = True
|
||||
score_threshold: int = VECTOR_SEARCH_SCORE_THRESHOLD
|
||||
|
||||
def init_cfg(self,
|
||||
@@ -209,16 +209,16 @@ class LocalDocQA:
|
||||
|
||||
# query 查询内容
|
||||
# vs_path 知识库路径
|
||||
# chunk_conent 是否启用上下文关联
|
||||
# chunk_content 是否启用上下文关联
|
||||
# score_threshold 搜索匹配score阈值
|
||||
# vector_search_top_k 搜索知识库内容条数,默认搜索5条结果
|
||||
# chunk_sizes 匹配单段内容的连接上下文长度
|
||||
def get_knowledge_based_conent_test(self, query, vs_path, chunk_conent,
|
||||
def get_knowledge_based_content_test(self, query, vs_path, chunk_content,
|
||||
score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD,
|
||||
vector_search_top_k=VECTOR_SEARCH_TOP_K, chunk_size=CHUNK_SIZE,
|
||||
text2vec=None):
|
||||
self.vector_store = FAISS.load_local(vs_path, text2vec)
|
||||
self.vector_store.chunk_conent = chunk_conent
|
||||
self.vector_store.chunk_content = chunk_content
|
||||
self.vector_store.score_threshold = score_threshold
|
||||
self.vector_store.chunk_size = chunk_size
|
||||
|
||||
@@ -241,7 +241,7 @@ class LocalDocQA:
|
||||
|
||||
|
||||
|
||||
def construct_vector_store(vs_id, vs_path, files, sentence_size, history, one_conent, one_content_segmentation, text2vec):
|
||||
def construct_vector_store(vs_id, vs_path, files, sentence_size, history, one_content, one_content_segmentation, text2vec):
|
||||
for file in files:
|
||||
assert os.path.exists(file), "输入文件不存在:" + file
|
||||
import nltk
|
||||
@@ -297,7 +297,7 @@ class knowledge_archive_interface():
|
||||
files=file_manifest,
|
||||
sentence_size=100,
|
||||
history=[],
|
||||
one_conent="",
|
||||
one_content="",
|
||||
one_content_segmentation="",
|
||||
text2vec = self.get_chinese_text2vec(),
|
||||
)
|
||||
@@ -319,19 +319,19 @@ class knowledge_archive_interface():
|
||||
files=[],
|
||||
sentence_size=100,
|
||||
history=[],
|
||||
one_conent="",
|
||||
one_content="",
|
||||
one_content_segmentation="",
|
||||
text2vec = self.get_chinese_text2vec(),
|
||||
)
|
||||
VECTOR_SEARCH_SCORE_THRESHOLD = 0
|
||||
VECTOR_SEARCH_TOP_K = 4
|
||||
CHUNK_SIZE = 512
|
||||
resp, prompt = self.qa_handle.get_knowledge_based_conent_test(
|
||||
resp, prompt = self.qa_handle.get_knowledge_based_content_test(
|
||||
query = txt,
|
||||
vs_path = self.kai_path,
|
||||
score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD,
|
||||
vector_search_top_k=VECTOR_SEARCH_TOP_K,
|
||||
chunk_conent=True,
|
||||
chunk_content=True,
|
||||
chunk_size=CHUNK_SIZE,
|
||||
text2vec = self.get_chinese_text2vec(),
|
||||
)
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import List
|
||||
from toolbox import update_ui_lastest_msg, disable_auto_promotion
|
||||
from toolbox import update_ui_latest_msg, disable_auto_promotion
|
||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
|
||||
import copy, json, pickle, os, sys, time
|
||||
@@ -9,14 +9,14 @@ import copy, json, pickle, os, sys, time
|
||||
def read_avail_plugin_enum():
|
||||
from crazy_functional import get_crazy_functions
|
||||
plugin_arr = get_crazy_functions()
|
||||
# remove plugins with out explaination
|
||||
# remove plugins with out explanation
|
||||
plugin_arr = {k:v for k, v in plugin_arr.items() if ('Info' in v) and ('Function' in v)}
|
||||
plugin_arr_info = {"F_{:04d}".format(i):v["Info"] for i, v in enumerate(plugin_arr.values(), start=1)}
|
||||
plugin_arr_dict = {"F_{:04d}".format(i):v for i, v in enumerate(plugin_arr.values(), start=1)}
|
||||
plugin_arr_dict_parse = {"F_{:04d}".format(i):v for i, v in enumerate(plugin_arr.values(), start=1)}
|
||||
plugin_arr_dict_parse.update({f"F_{i}":v for i, v in enumerate(plugin_arr.values(), start=1)})
|
||||
prompt = json.dumps(plugin_arr_info, ensure_ascii=False, indent=2)
|
||||
prompt = "\n\nThe defination of PluginEnum:\nPluginEnum=" + prompt
|
||||
prompt = "\n\nThe definition of PluginEnum:\nPluginEnum=" + prompt
|
||||
return prompt, plugin_arr_dict, plugin_arr_dict_parse
|
||||
|
||||
def wrap_code(txt):
|
||||
@@ -55,7 +55,7 @@ def execute_plugin(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prom
|
||||
plugin_selection: str = Field(description="The most related plugin from one of the PluginEnum.", default="F_0000")
|
||||
reason_of_selection: str = Field(description="The reason why you should select this plugin.", default="This plugin satisfy user requirement most")
|
||||
# ⭐ ⭐ ⭐ 选择插件
|
||||
yield from update_ui_lastest_msg(lastmsg=f"正在执行任务: {txt}\n\n查找可用插件中...", chatbot=chatbot, history=history, delay=0)
|
||||
yield from update_ui_latest_msg(lastmsg=f"正在执行任务: {txt}\n\n查找可用插件中...", chatbot=chatbot, history=history, delay=0)
|
||||
gpt_json_io = GptJsonIO(Plugin)
|
||||
gpt_json_io.format_instructions = "The format of your output should be a json that can be parsed by json.loads.\n"
|
||||
gpt_json_io.format_instructions += """Output example: {"plugin_selection":"F_1234", "reason_of_selection":"F_1234 plugin satisfy user requirement most"}\n"""
|
||||
@@ -74,13 +74,13 @@ def execute_plugin(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prom
|
||||
msg += "请求的Prompt为:\n" + wrap_code(get_inputs_show_user(inputs, plugin_arr_enum_prompt))
|
||||
msg += "语言模型回复为:\n" + wrap_code(gpt_reply)
|
||||
msg += "\n但您可以尝试再试一次\n"
|
||||
yield from update_ui_lastest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=2)
|
||||
yield from update_ui_latest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=2)
|
||||
return
|
||||
if plugin_sel.plugin_selection not in plugin_arr_dict_parse:
|
||||
msg = f"抱歉, 找不到合适插件执行该任务, 或者{llm_kwargs['llm_model']}无法理解您的需求。"
|
||||
msg += f"语言模型{llm_kwargs['llm_model']}选择了不存在的插件:\n" + wrap_code(gpt_reply)
|
||||
msg += "\n但您可以尝试再试一次\n"
|
||||
yield from update_ui_lastest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=2)
|
||||
yield from update_ui_latest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=2)
|
||||
return
|
||||
|
||||
# ⭐ ⭐ ⭐ 确认插件参数
|
||||
@@ -90,7 +90,7 @@ def execute_plugin(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prom
|
||||
appendix_info = get_recent_file_prompt_support(chatbot)
|
||||
|
||||
plugin = plugin_arr_dict_parse[plugin_sel.plugin_selection]
|
||||
yield from update_ui_lastest_msg(lastmsg=f"正在执行任务: {txt}\n\n提取插件参数...", chatbot=chatbot, history=history, delay=0)
|
||||
yield from update_ui_latest_msg(lastmsg=f"正在执行任务: {txt}\n\n提取插件参数...", chatbot=chatbot, history=history, delay=0)
|
||||
class PluginExplicit(BaseModel):
|
||||
plugin_selection: str = plugin_sel.plugin_selection
|
||||
plugin_arg: str = Field(description="The argument of the plugin.", default="")
|
||||
@@ -109,6 +109,6 @@ def execute_plugin(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prom
|
||||
fn = plugin['Function']
|
||||
fn_name = fn.__name__
|
||||
msg = f'{llm_kwargs["llm_model"]}为您选择了插件: `{fn_name}`\n\n插件说明:{plugin["Info"]}\n\n插件参数:{plugin_sel.plugin_arg}\n\n假如偏离了您的要求,按停止键终止。'
|
||||
yield from update_ui_lastest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=2)
|
||||
yield from update_ui_latest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=2)
|
||||
yield from fn(plugin_sel.plugin_arg, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, -1)
|
||||
return
|
||||
@@ -1,6 +1,6 @@
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import List
|
||||
from toolbox import update_ui_lastest_msg, get_conf
|
||||
from toolbox import update_ui_latest_msg, get_conf
|
||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||
from crazy_functions.json_fns.pydantic_io import GptJsonIO
|
||||
import copy, json, pickle, os, sys
|
||||
@@ -9,7 +9,7 @@ import copy, json, pickle, os, sys
|
||||
def modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_intention):
|
||||
ALLOW_RESET_CONFIG = get_conf('ALLOW_RESET_CONFIG')
|
||||
if not ALLOW_RESET_CONFIG:
|
||||
yield from update_ui_lastest_msg(
|
||||
yield from update_ui_latest_msg(
|
||||
lastmsg=f"当前配置不允许被修改!如需激活本功能,请在config.py中设置ALLOW_RESET_CONFIG=True后重启软件。",
|
||||
chatbot=chatbot, history=history, delay=2
|
||||
)
|
||||
@@ -30,7 +30,7 @@ def modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
new_option_value: str = Field(description="the new value of the option", default=None)
|
||||
|
||||
# ⭐ ⭐ ⭐ 分析用户意图
|
||||
yield from update_ui_lastest_msg(lastmsg=f"正在执行任务: {txt}\n\n读取新配置中", chatbot=chatbot, history=history, delay=0)
|
||||
yield from update_ui_latest_msg(lastmsg=f"正在执行任务: {txt}\n\n读取新配置中", chatbot=chatbot, history=history, delay=0)
|
||||
gpt_json_io = GptJsonIO(ModifyConfigurationIntention)
|
||||
inputs = "Analyze how to change configuration according to following user input, answer me with json: \n\n" + \
|
||||
">> " + txt.rstrip('\n').replace('\n','\n>> ') + '\n\n' + \
|
||||
@@ -44,11 +44,11 @@ def modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
|
||||
ok = (explicit_conf in txt)
|
||||
if ok:
|
||||
yield from update_ui_lastest_msg(
|
||||
yield from update_ui_latest_msg(
|
||||
lastmsg=f"正在执行任务: {txt}\n\n新配置{explicit_conf}={user_intention.new_option_value}",
|
||||
chatbot=chatbot, history=history, delay=1
|
||||
)
|
||||
yield from update_ui_lastest_msg(
|
||||
yield from update_ui_latest_msg(
|
||||
lastmsg=f"正在执行任务: {txt}\n\n新配置{explicit_conf}={user_intention.new_option_value}\n\n正在修改配置中",
|
||||
chatbot=chatbot, history=history, delay=2
|
||||
)
|
||||
@@ -57,25 +57,25 @@ def modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
from toolbox import set_conf
|
||||
set_conf(explicit_conf, user_intention.new_option_value)
|
||||
|
||||
yield from update_ui_lastest_msg(
|
||||
yield from update_ui_latest_msg(
|
||||
lastmsg=f"正在执行任务: {txt}\n\n配置修改完成,重新页面即可生效。", chatbot=chatbot, history=history, delay=1
|
||||
)
|
||||
else:
|
||||
yield from update_ui_lastest_msg(
|
||||
yield from update_ui_latest_msg(
|
||||
lastmsg=f"失败,如果需要配置{explicit_conf},您需要明确说明并在指令中提到它。", chatbot=chatbot, history=history, delay=5
|
||||
)
|
||||
|
||||
def modify_configuration_reboot(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_intention):
|
||||
ALLOW_RESET_CONFIG = get_conf('ALLOW_RESET_CONFIG')
|
||||
if not ALLOW_RESET_CONFIG:
|
||||
yield from update_ui_lastest_msg(
|
||||
yield from update_ui_latest_msg(
|
||||
lastmsg=f"当前配置不允许被修改!如需激活本功能,请在config.py中设置ALLOW_RESET_CONFIG=True后重启软件。",
|
||||
chatbot=chatbot, history=history, delay=2
|
||||
)
|
||||
return
|
||||
|
||||
yield from modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_intention)
|
||||
yield from update_ui_lastest_msg(
|
||||
yield from update_ui_latest_msg(
|
||||
lastmsg=f"正在执行任务: {txt}\n\n配置修改完成,五秒后即将重启!若出现报错请无视即可。", chatbot=chatbot, history=history, delay=5
|
||||
)
|
||||
os.execl(sys.executable, sys.executable, *sys.argv)
|
||||
|
||||
@@ -5,7 +5,7 @@ class VoidTerminalState():
|
||||
self.reset_state()
|
||||
|
||||
def reset_state(self):
|
||||
self.has_provided_explaination = False
|
||||
self.has_provided_explanation = False
|
||||
|
||||
def lock_plugin(self, chatbot):
|
||||
chatbot._cookies['lock_plugin'] = 'crazy_functions.虚空终端->虚空终端'
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from toolbox import CatchException, update_ui, update_ui_lastest_msg
|
||||
from toolbox import CatchException, update_ui, update_ui_latest_msg
|
||||
from crazy_functions.multi_stage.multi_stage_utils import GptAcademicGameBaseState
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||
|
||||
@@ -15,7 +15,7 @@ Testing:
|
||||
|
||||
|
||||
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, is_the_upload_folder
|
||||
from toolbox import promote_file_to_downloadzone, get_log_folder, update_ui_lastest_msg
|
||||
from toolbox import promote_file_to_downloadzone, get_log_folder, update_ui_latest_msg
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_plugin_arg
|
||||
from crazy_functions.crazy_utils import input_clipping, try_install_deps
|
||||
from crazy_functions.gen_fns.gen_fns_shared import is_function_successfully_generated
|
||||
@@ -27,7 +27,7 @@ import time
|
||||
import glob
|
||||
import multiprocessing
|
||||
|
||||
templete = """
|
||||
template = """
|
||||
```python
|
||||
import ... # Put dependencies here, e.g. import numpy as np.
|
||||
|
||||
@@ -77,10 +77,10 @@ def gpt_interact_multi_step(txt, file_type, llm_kwargs, chatbot, history):
|
||||
|
||||
# 第二步
|
||||
prompt_compose = [
|
||||
"If previous stage is successful, rewrite the function you have just written to satisfy following templete: \n",
|
||||
templete
|
||||
"If previous stage is successful, rewrite the function you have just written to satisfy following template: \n",
|
||||
template
|
||||
]
|
||||
i_say = "".join(prompt_compose); inputs_show_user = "If previous stage is successful, rewrite the function you have just written to satisfy executable templete. "
|
||||
i_say = "".join(prompt_compose); inputs_show_user = "If previous stage is successful, rewrite the function you have just written to satisfy executable template. "
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say, inputs_show_user=inputs_show_user,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||
@@ -164,18 +164,18 @@ def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
||||
if get_plugin_arg(plugin_kwargs, key="file_path_arg", default=False):
|
||||
file_path = get_plugin_arg(plugin_kwargs, key="file_path_arg", default=None)
|
||||
file_list.append(file_path)
|
||||
yield from update_ui_lastest_msg(f"当前文件: {file_path}", chatbot, history, 1)
|
||||
yield from update_ui_latest_msg(f"当前文件: {file_path}", chatbot, history, 1)
|
||||
elif have_any_recent_upload_files(chatbot):
|
||||
file_dir = get_recent_file_prompt_support(chatbot)
|
||||
file_list = glob.glob(os.path.join(file_dir, '**/*'), recursive=True)
|
||||
yield from update_ui_lastest_msg(f"当前文件处理列表: {file_list}", chatbot, history, 1)
|
||||
yield from update_ui_latest_msg(f"当前文件处理列表: {file_list}", chatbot, history, 1)
|
||||
else:
|
||||
chatbot.append(["文件检索", "没有发现任何近期上传的文件。"])
|
||||
yield from update_ui_lastest_msg("没有发现任何近期上传的文件。", chatbot, history, 1)
|
||||
yield from update_ui_latest_msg("没有发现任何近期上传的文件。", chatbot, history, 1)
|
||||
return # 2. 如果没有文件
|
||||
if len(file_list) == 0:
|
||||
chatbot.append(["文件检索", "没有发现任何近期上传的文件。"])
|
||||
yield from update_ui_lastest_msg("没有发现任何近期上传的文件。", chatbot, history, 1)
|
||||
yield from update_ui_latest_msg("没有发现任何近期上传的文件。", chatbot, history, 1)
|
||||
return # 2. 如果没有文件
|
||||
|
||||
# 读取文件
|
||||
@@ -183,7 +183,7 @@ def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
||||
|
||||
# 粗心检查
|
||||
if is_the_upload_folder(txt):
|
||||
yield from update_ui_lastest_msg(f"请在输入框内填写需求, 然后再次点击该插件! 至于您的文件,不用担心, 文件路径 {txt} 已经被记忆. ", chatbot, history, 1)
|
||||
yield from update_ui_latest_msg(f"请在输入框内填写需求, 然后再次点击该插件! 至于您的文件,不用担心, 文件路径 {txt} 已经被记忆. ", chatbot, history, 1)
|
||||
return
|
||||
|
||||
# 开始干正事
|
||||
@@ -195,7 +195,7 @@ def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
||||
code, installation_advance, txt, file_type, llm_kwargs, chatbot, history = \
|
||||
yield from gpt_interact_multi_step(txt, file_type, llm_kwargs, chatbot, history)
|
||||
chatbot.append(["代码生成阶段结束", ""])
|
||||
yield from update_ui_lastest_msg(f"正在验证上述代码的有效性 ...", chatbot, history, 1)
|
||||
yield from update_ui_latest_msg(f"正在验证上述代码的有效性 ...", chatbot, history, 1)
|
||||
# ⭐ 分离代码块
|
||||
code = get_code_block(code)
|
||||
# ⭐ 检查模块
|
||||
@@ -206,11 +206,11 @@ def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
||||
if not traceback: traceback = trimmed_format_exc()
|
||||
# 处理异常
|
||||
if not traceback: traceback = trimmed_format_exc()
|
||||
yield from update_ui_lastest_msg(f"第 {j+1}/{MAX_TRY} 次代码生成尝试, 失败了~ 别担心, 我们5秒后再试一次... \n\n此次我们的错误追踪是\n```\n{traceback}\n```\n", chatbot, history, 5)
|
||||
yield from update_ui_latest_msg(f"第 {j+1}/{MAX_TRY} 次代码生成尝试, 失败了~ 别担心, 我们5秒后再试一次... \n\n此次我们的错误追踪是\n```\n{traceback}\n```\n", chatbot, history, 5)
|
||||
|
||||
# 代码生成结束, 开始执行
|
||||
TIME_LIMIT = 15
|
||||
yield from update_ui_lastest_msg(f"开始创建新进程并执行代码! 时间限制 {TIME_LIMIT} 秒. 请等待任务完成... ", chatbot, history, 1)
|
||||
yield from update_ui_latest_msg(f"开始创建新进程并执行代码! 时间限制 {TIME_LIMIT} 秒. 请等待任务完成... ", chatbot, history, 1)
|
||||
manager = multiprocessing.Manager()
|
||||
return_dict = manager.dict()
|
||||
|
||||
|
||||
@@ -8,7 +8,7 @@
|
||||
|
||||
import time
|
||||
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, ProxyNetworkActivate
|
||||
from toolbox import get_conf, select_api_key, update_ui_lastest_msg, Singleton
|
||||
from toolbox import get_conf, select_api_key, update_ui_latest_msg, Singleton
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_plugin_arg
|
||||
from crazy_functions.crazy_utils import input_clipping, try_install_deps
|
||||
from crazy_functions.agent_fns.persistent import GradioMultiuserManagerForPersistentClasses
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from toolbox import CatchException, report_exception, get_log_folder, gen_time_str
|
||||
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
|
||||
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_latest_msg, disable_auto_promotion
|
||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||
|
||||
@@ -166,7 +166,7 @@ class PointWithTrace(Scene):
|
||||
|
||||
```
|
||||
|
||||
# do not use get_graph, this funciton is deprecated
|
||||
# do not use get_graph, this function is deprecated
|
||||
|
||||
class ExampleFunctionGraph(Scene):
|
||||
def construct(self):
|
||||
|
||||
@@ -324,16 +324,16 @@ def 生成多种Mermaid图表(
|
||||
if os.path.exists(txt): # 如输入区无内容则直接解析历史记录
|
||||
from crazy_functions.pdf_fns.parse_word import extract_text_from_files
|
||||
|
||||
file_exist, final_result, page_one, file_manifest, excption = (
|
||||
file_exist, final_result, page_one, file_manifest, exception = (
|
||||
extract_text_from_files(txt, chatbot, history)
|
||||
)
|
||||
else:
|
||||
file_exist = False
|
||||
excption = ""
|
||||
exception = ""
|
||||
file_manifest = []
|
||||
|
||||
if excption != "":
|
||||
if excption == "word":
|
||||
if exception != "":
|
||||
if exception == "word":
|
||||
report_exception(
|
||||
chatbot,
|
||||
history,
|
||||
@@ -341,7 +341,7 @@ def 生成多种Mermaid图表(
|
||||
b=f"找到了.doc文件,但是该文件格式不被支持,请先转化为.docx格式。",
|
||||
)
|
||||
|
||||
elif excption == "pdf":
|
||||
elif exception == "pdf":
|
||||
report_exception(
|
||||
chatbot,
|
||||
history,
|
||||
@@ -349,7 +349,7 @@ def 生成多种Mermaid图表(
|
||||
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。",
|
||||
)
|
||||
|
||||
elif excption == "word_pip":
|
||||
elif exception == "word_pip":
|
||||
report_exception(
|
||||
chatbot,
|
||||
history,
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from toolbox import CatchException, update_ui, ProxyNetworkActivate, update_ui_lastest_msg, get_log_folder, get_user
|
||||
from toolbox import CatchException, update_ui, ProxyNetworkActivate, update_ui_latest_msg, get_log_folder, get_user
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_files_from_everything
|
||||
from loguru import logger
|
||||
install_msg ="""
|
||||
@@ -42,7 +42,7 @@ def 知识库文件注入(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
# from crazy_functions.crazy_utils import try_install_deps
|
||||
# try_install_deps(['zh_langchain==0.2.1', 'pypinyin'], reload_m=['pypinyin', 'zh_langchain'])
|
||||
# yield from update_ui_lastest_msg("安装完成,您可以再次重试。", chatbot, history)
|
||||
# yield from update_ui_latest_msg("安装完成,您可以再次重试。", chatbot, history)
|
||||
return
|
||||
|
||||
# < --------------------读取文件--------------- >
|
||||
@@ -95,7 +95,7 @@ def 读取知识库作答(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
# from crazy_functions.crazy_utils import try_install_deps
|
||||
# try_install_deps(['zh_langchain==0.2.1', 'pypinyin'], reload_m=['pypinyin', 'zh_langchain'])
|
||||
# yield from update_ui_lastest_msg("安装完成,您可以再次重试。", chatbot, history)
|
||||
# yield from update_ui_latest_msg("安装完成,您可以再次重试。", chatbot, history)
|
||||
return
|
||||
|
||||
# < ------------------- --------------- >
|
||||
|
||||
@@ -47,7 +47,7 @@ explain_msg = """
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import List
|
||||
from toolbox import CatchException, update_ui, is_the_upload_folder
|
||||
from toolbox import update_ui_lastest_msg, disable_auto_promotion
|
||||
from toolbox import update_ui_latest_msg, disable_auto_promotion
|
||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from crazy_functions.crazy_utils import input_clipping
|
||||
@@ -113,19 +113,19 @@ def 虚空终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
|
||||
# 用简单的关键词检测用户意图
|
||||
is_certain, _ = analyze_intention_with_simple_rules(txt)
|
||||
if is_the_upload_folder(txt):
|
||||
state.set_state(chatbot=chatbot, key='has_provided_explaination', value=False)
|
||||
state.set_state(chatbot=chatbot, key='has_provided_explanation', value=False)
|
||||
appendix_msg = "\n\n**很好,您已经上传了文件**,现在请您描述您的需求。"
|
||||
|
||||
if is_certain or (state.has_provided_explaination):
|
||||
if is_certain or (state.has_provided_explanation):
|
||||
# 如果意图明确,跳过提示环节
|
||||
state.set_state(chatbot=chatbot, key='has_provided_explaination', value=True)
|
||||
state.set_state(chatbot=chatbot, key='has_provided_explanation', value=True)
|
||||
state.unlock_plugin(chatbot=chatbot)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
yield from 虚空终端主路由(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||
return
|
||||
else:
|
||||
# 如果意图模糊,提示
|
||||
state.set_state(chatbot=chatbot, key='has_provided_explaination', value=True)
|
||||
state.set_state(chatbot=chatbot, key='has_provided_explanation', value=True)
|
||||
state.lock_plugin(chatbot=chatbot)
|
||||
chatbot.append(("虚空终端状态:", explain_msg+appendix_msg))
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
@@ -141,7 +141,7 @@ def 虚空终端主路由(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
||||
# ⭐ ⭐ ⭐ 分析用户意图
|
||||
is_certain, user_intention = analyze_intention_with_simple_rules(txt)
|
||||
if not is_certain:
|
||||
yield from update_ui_lastest_msg(
|
||||
yield from update_ui_latest_msg(
|
||||
lastmsg=f"正在执行任务: {txt}\n\n分析用户意图中", chatbot=chatbot, history=history, delay=0)
|
||||
gpt_json_io = GptJsonIO(UserIntention)
|
||||
rf_req = "\nchoose from ['ModifyConfiguration', 'ExecutePlugin', 'Chat']"
|
||||
@@ -154,13 +154,13 @@ def 虚空终端主路由(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
||||
user_intention = gpt_json_io.generate_output_auto_repair(analyze_res, run_gpt_fn)
|
||||
lastmsg=f"正在执行任务: {txt}\n\n用户意图理解: 意图={explain_intention_to_user[user_intention.intention_type]}",
|
||||
except JsonStringError as e:
|
||||
yield from update_ui_lastest_msg(
|
||||
yield from update_ui_latest_msg(
|
||||
lastmsg=f"正在执行任务: {txt}\n\n用户意图理解: 失败 当前语言模型({llm_kwargs['llm_model']})不能理解您的意图", chatbot=chatbot, history=history, delay=0)
|
||||
return
|
||||
else:
|
||||
pass
|
||||
|
||||
yield from update_ui_lastest_msg(
|
||||
yield from update_ui_latest_msg(
|
||||
lastmsg=f"正在执行任务: {txt}\n\n用户意图理解: 意图={explain_intention_to_user[user_intention.intention_type]}",
|
||||
chatbot=chatbot, history=history, delay=0)
|
||||
|
||||
|
||||
@@ -42,7 +42,7 @@ class AsyncGptTask():
|
||||
MAX_TOKEN_ALLO = 2560
|
||||
i_say, history = input_clipping(i_say, history, max_token_limit=MAX_TOKEN_ALLO)
|
||||
gpt_say_partial = predict_no_ui_long_connection(inputs=i_say, llm_kwargs=llm_kwargs, history=history, sys_prompt=sys_prompt,
|
||||
observe_window=observe_window[index], console_slience=True)
|
||||
observe_window=observe_window[index], console_silence=True)
|
||||
except ConnectionAbortedError as token_exceed_err:
|
||||
logger.error('至少一个线程任务Token溢出而失败', e)
|
||||
except Exception as e:
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from toolbox import CatchException, report_exception, promote_file_to_downloadzone
|
||||
from toolbox import update_ui, update_ui_lastest_msg, disable_auto_promotion, write_history_to_file
|
||||
from toolbox import update_ui, update_ui_latest_msg, disable_auto_promotion, write_history_to_file
|
||||
import logging
|
||||
import requests
|
||||
import time
|
||||
@@ -156,7 +156,7 @@ def 谷歌检索小助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
||||
history = []
|
||||
meta_paper_info_list = yield from get_meta_information(txt, chatbot, history)
|
||||
if len(meta_paper_info_list) == 0:
|
||||
yield from update_ui_lastest_msg(lastmsg='获取文献失败,可能触发了google反爬虫机制。',chatbot=chatbot, history=history, delay=0)
|
||||
yield from update_ui_latest_msg(lastmsg='获取文献失败,可能触发了google反爬虫机制。',chatbot=chatbot, history=history, delay=0)
|
||||
return
|
||||
batchsize = 5
|
||||
for batch in range(math.ceil(len(meta_paper_info_list)/batchsize)):
|
||||
|
||||
@@ -1141,7 +1141,7 @@
|
||||
"内容太长了都会触发token数量溢出的错误": "An error of token overflow will be triggered if the content is too long",
|
||||
"chatbot 为WebUI中显示的对话列表": "chatbot is the conversation list displayed in WebUI",
|
||||
"修改它": "Modify it",
|
||||
"然后yeild出去": "Then yield it out",
|
||||
"然后yield出去": "Then yield it out",
|
||||
"可以直接修改对话界面内容": "You can directly modify the conversation interface content",
|
||||
"additional_fn代表点击的哪个按钮": "additional_fn represents which button is clicked",
|
||||
"按钮见functional.py": "See functional.py for buttons",
|
||||
@@ -1732,7 +1732,7 @@
|
||||
"或者重启之后再度尝试": "Or try again after restarting",
|
||||
"免费": "Free",
|
||||
"仅在Windows系统进行了测试": "Tested only on Windows system",
|
||||
"欢迎加REAME中的QQ联系开发者": "Feel free to contact the developer via QQ in REAME",
|
||||
"欢迎加README中的QQ联系开发者": "Feel free to contact the developer via QQ in README",
|
||||
"当前知识库内的有效文件": "Valid files in the current knowledge base",
|
||||
"您可以到Github Issue区": "You can go to the Github Issue area",
|
||||
"刷新Gradio前端界面": "Refresh the Gradio frontend interface",
|
||||
@@ -1759,7 +1759,7 @@
|
||||
"报错信息如下. 如果是与网络相关的问题": "Error message as follows. If it is related to network issues",
|
||||
"功能描述": "Function description",
|
||||
"禁止移除或修改此警告": "Removal or modification of this warning is prohibited",
|
||||
"Arixv翻译": "Arixv translation",
|
||||
"ArXiv翻译": "ArXiv translation",
|
||||
"读取优先级": "Read priority",
|
||||
"包含documentclass关键字": "Contains the documentclass keyword",
|
||||
"根据文本使用GPT模型生成相应的图像": "Generate corresponding images using GPT model based on the text",
|
||||
@@ -1998,7 +1998,7 @@
|
||||
"开始最终总结": "Start final summary",
|
||||
"openai的官方KEY需要伴随组织编码": "Openai's official KEY needs to be accompanied by organizational code",
|
||||
"将子线程的gpt结果写入chatbot": "Write the GPT result of the sub-thread into the chatbot",
|
||||
"Arixv论文精细翻译": "Fine translation of Arixv paper",
|
||||
"ArXiv论文精细翻译": "Fine translation of ArXiv paper",
|
||||
"开始接收chatglmft的回复": "Start receiving replies from chatglmft",
|
||||
"请先将.doc文档转换为.docx文档": "Please convert .doc documents to .docx documents first",
|
||||
"避免多用户干扰": "Avoid multiple user interference",
|
||||
@@ -2360,7 +2360,7 @@
|
||||
"请在config.py中设置ALLOW_RESET_CONFIG=True后重启软件": "Please set ALLOW_RESET_CONFIG=True in config.py and restart the software",
|
||||
"按照自然语言描述生成一个动画 | 输入参数是一段话": "Generate an animation based on natural language description | Input parameter is a sentence",
|
||||
"你的hf用户名如qingxu98": "Your hf username is qingxu98",
|
||||
"Arixv论文精细翻译 | 输入参数arxiv论文的ID": "Fine translation of Arixv paper | Input parameter is the ID of arxiv paper",
|
||||
"ArXiv论文精细翻译 | 输入参数arxiv论文的ID": "Fine translation of ArXiv paper | Input parameter is the ID of arxiv paper",
|
||||
"无法获取 abstract": "Unable to retrieve abstract",
|
||||
"尽可能地仅用一行命令解决我的要求": "Try to solve my request using only one command",
|
||||
"提取插件参数": "Extract plugin parameters",
|
||||
|
||||
@@ -753,7 +753,7 @@
|
||||
"手动指定和筛选源代码文件类型": "ソースコードファイルタイプを手動で指定およびフィルタリングする",
|
||||
"更多函数插件": "その他の関数プラグイン",
|
||||
"看门狗的耐心": "監視犬の忍耐力",
|
||||
"然后yeild出去": "そして出力する",
|
||||
"然后yield出去": "そして出力する",
|
||||
"拆分过长的IPynb文件": "長すぎるIPynbファイルを分割する",
|
||||
"1. 把input的余量留出来": "1. 入力の余裕を残す",
|
||||
"请求超时": "リクエストがタイムアウトしました",
|
||||
@@ -1803,7 +1803,7 @@
|
||||
"默认值为1000": "デフォルト値は1000です",
|
||||
"写出文件": "ファイルに書き出す",
|
||||
"生成的视频文件路径": "生成されたビデオファイルのパス",
|
||||
"Arixv论文精细翻译": "Arixv論文の詳細な翻訳",
|
||||
"ArXiv论文精细翻译": "ArXiv論文の詳細な翻訳",
|
||||
"用latex编译为PDF对修正处做高亮": "LaTeXでコンパイルしてPDFに修正をハイライトする",
|
||||
"点击“停止”键可终止程序": "「停止」ボタンをクリックしてプログラムを終了できます",
|
||||
"否则将导致每个人的Claude问询历史互相渗透": "さもないと、各人のClaudeの問い合わせ履歴が相互に侵入します",
|
||||
@@ -1987,7 +1987,7 @@
|
||||
"前面是中文逗号": "前面是中文逗号",
|
||||
"的依赖": "的依赖",
|
||||
"材料如下": "材料如下",
|
||||
"欢迎加REAME中的QQ联系开发者": "欢迎加REAME中的QQ联系开发者",
|
||||
"欢迎加README中的QQ联系开发者": "欢迎加README中的QQ联系开发者",
|
||||
"开始下载": "開始ダウンロード",
|
||||
"100字以内": "100文字以内",
|
||||
"创建request": "リクエストの作成",
|
||||
|
||||
@@ -771,7 +771,7 @@
|
||||
"查询代理的地理位置": "查詢代理的地理位置",
|
||||
"是否在输入过长时": "是否在輸入過長時",
|
||||
"chatGPT分析报告": "chatGPT分析報告",
|
||||
"然后yeild出去": "然後yield出去",
|
||||
"然后yield出去": "然後yield出去",
|
||||
"用户取消了程序": "使用者取消了程式",
|
||||
"琥珀色": "琥珀色",
|
||||
"这里是特殊函数插件的高级参数输入区": "這裡是特殊函數插件的高級參數輸入區",
|
||||
@@ -1587,7 +1587,7 @@
|
||||
"否则将导致每个人的Claude问询历史互相渗透": "否則將導致每個人的Claude問詢歷史互相滲透",
|
||||
"提问吧! 但注意": "提問吧!但注意",
|
||||
"待处理的word文档路径": "待處理的word文檔路徑",
|
||||
"欢迎加REAME中的QQ联系开发者": "歡迎加REAME中的QQ聯繫開發者",
|
||||
"欢迎加README中的QQ联系开发者": "歡迎加README中的QQ聯繫開發者",
|
||||
"建议暂时不要使用": "建議暫時不要使用",
|
||||
"Latex没有安装": "Latex沒有安裝",
|
||||
"在这里放一些网上搜集的demo": "在這裡放一些網上搜集的demo",
|
||||
@@ -1989,7 +1989,7 @@
|
||||
"请耐心等待": "請耐心等待",
|
||||
"在执行完成之后": "在執行完成之後",
|
||||
"参数简单": "參數簡單",
|
||||
"Arixv论文精细翻译": "Arixv論文精細翻譯",
|
||||
"ArXiv论文精细翻译": "ArXiv論文精細翻譯",
|
||||
"备份和下载": "備份和下載",
|
||||
"当前报错的latex代码处于第": "當前報錯的latex代碼處於第",
|
||||
"Markdown翻译": "Markdown翻譯",
|
||||
|
||||
9
main.py
9
main.py
@@ -1,10 +1,7 @@
|
||||
import os; os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
|
||||
|
||||
help_menu_description = \
|
||||
"""Github源代码开源和更新[地址🚀](https://github.com/binary-husky/gpt_academic),
|
||||
感谢热情的[开发者们❤️](https://github.com/binary-husky/gpt_academic/graphs/contributors).
|
||||
</br></br>常见问题请查阅[项目Wiki](https://github.com/binary-husky/gpt_academic/wiki),
|
||||
如遇到Bug请前往[Bug反馈](https://github.com/binary-husky/gpt_academic/issues).
|
||||
"""
|
||||
</br></br>普通对话使用说明: 1. 输入问题; 2. 点击提交
|
||||
</br></br>基础功能区使用说明: 1. 输入文本; 2. 点击任意基础功能区按钮
|
||||
</br></br>函数插件区使用说明: 1. 输入路径/问题, 或者上传文件; 2. 点击任意函数插件区按钮
|
||||
@@ -57,7 +54,7 @@ def main():
|
||||
# 如果WEB_PORT是-1, 则随机选取WEB端口
|
||||
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
|
||||
from check_proxy import get_current_version
|
||||
from themes.theme import adjust_theme, advanced_css, theme_declaration, js_code_clear, js_code_show_or_hide, js_code_show_or_hide_group2
|
||||
from themes.theme import adjust_theme, advanced_css, theme_declaration, js_code_clear, js_code_show_or_hide
|
||||
from themes.theme import js_code_for_toggle_darkmode
|
||||
from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, assign_user_uuid
|
||||
title_html = f"<h1 align=\"center\">GPT 学术优化 {get_current_version()}</h1>{theme_declaration}"
|
||||
@@ -210,7 +207,7 @@ def main():
|
||||
ret.update({area_customize: gr.update(visible=("自定义菜单" in a))})
|
||||
return ret
|
||||
checkboxes_2.select(fn_area_visibility_2, [checkboxes_2], [area_customize] )
|
||||
checkboxes_2.select(None, [checkboxes_2], None, _js=js_code_show_or_hide_group2)
|
||||
checkboxes_2.select(None, [checkboxes_2], None, _js="""apply_checkbox_change_for_group2""")
|
||||
|
||||
# 整理反复出现的控件句柄组合
|
||||
input_combo = [cookies, max_length_sl, md_dropdown, txt, txt2, top_p, temperature, chatbot, history, system_prompt, plugin_advanced_arg]
|
||||
|
||||
@@ -1072,7 +1072,7 @@ if "zhipuai" in AVAIL_LLM_MODELS: # zhipuai 是glm-4的别名,向后兼容
|
||||
})
|
||||
except:
|
||||
logger.error(trimmed_format_exc())
|
||||
# -=-=-=-=-=-=- 幻方-深度求索大模型 -=-=-=-=-=-=-
|
||||
# -=-=-=-=-=-=- 幻方-深度求索本地大模型 -=-=-=-=-=-=-
|
||||
if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
|
||||
try:
|
||||
from .bridge_deepseekcoder import predict_no_ui_long_connection as deepseekcoder_noui
|
||||
@@ -1265,9 +1265,9 @@ def LLM_CATCH_EXCEPTION(f):
|
||||
"""
|
||||
装饰器函数,将错误显示出来
|
||||
"""
|
||||
def decorated(inputs:str, llm_kwargs:dict, history:list, sys_prompt:str, observe_window:list, console_slience:bool):
|
||||
def decorated(inputs:str, llm_kwargs:dict, history:list, sys_prompt:str, observe_window:list, console_silence:bool):
|
||||
try:
|
||||
return f(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience)
|
||||
return f(inputs, llm_kwargs, history, sys_prompt, observe_window, console_silence)
|
||||
except Exception as e:
|
||||
tb_str = '\n```\n' + trimmed_format_exc() + '\n```\n'
|
||||
observe_window[0] = tb_str
|
||||
@@ -1275,7 +1275,7 @@ def LLM_CATCH_EXCEPTION(f):
|
||||
return decorated
|
||||
|
||||
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list, sys_prompt:str, observe_window:list=[], console_slience:bool=False):
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list, sys_prompt:str, observe_window:list=[], console_silence:bool=False):
|
||||
"""
|
||||
发送至LLM,等待回复,一次性完成,不显示中间过程。但内部(尽可能地)用stream的方法避免中途网线被掐。
|
||||
inputs:
|
||||
@@ -1297,7 +1297,7 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list, sys
|
||||
if '&' not in model:
|
||||
# 如果只询问“一个”大语言模型(多数情况):
|
||||
method = model_info[model]["fn_without_ui"]
|
||||
return method(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience)
|
||||
return method(inputs, llm_kwargs, history, sys_prompt, observe_window, console_silence)
|
||||
else:
|
||||
# 如果同时询问“多个”大语言模型,这个稍微啰嗦一点,但思路相同,您不必读这个else分支
|
||||
executor = ThreadPoolExecutor(max_workers=4)
|
||||
@@ -1314,7 +1314,7 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list, sys
|
||||
method = model_info[model]["fn_without_ui"]
|
||||
llm_kwargs_feedin = copy.deepcopy(llm_kwargs)
|
||||
llm_kwargs_feedin['llm_model'] = model
|
||||
future = executor.submit(LLM_CATCH_EXCEPTION(method), inputs, llm_kwargs_feedin, history, sys_prompt, window_mutex[i], console_slience)
|
||||
future = executor.submit(LLM_CATCH_EXCEPTION(method), inputs, llm_kwargs_feedin, history, sys_prompt, window_mutex[i], console_silence)
|
||||
futures.append(future)
|
||||
|
||||
def mutex_manager(window_mutex, observe_window):
|
||||
|
||||
@@ -139,7 +139,7 @@ global glmft_handle
|
||||
glmft_handle = None
|
||||
#################################################################################
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||
observe_window:list=[], console_slience:bool=False):
|
||||
observe_window:list=[], console_silence:bool=False):
|
||||
"""
|
||||
多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
|
||||
@@ -125,7 +125,7 @@ def verify_endpoint(endpoint):
|
||||
raise ValueError("Endpoint不正确, 请检查AZURE_ENDPOINT的配置! 当前的Endpoint为:" + endpoint)
|
||||
return endpoint
|
||||
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_slience:bool=False):
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_silence:bool=False):
|
||||
"""
|
||||
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||
inputs:
|
||||
@@ -203,7 +203,7 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
|
||||
if (not has_content) and (not has_role): continue # raise RuntimeError("发现不标准的第三方接口:"+delta)
|
||||
if has_content: # has_role = True/False
|
||||
result += delta["content"]
|
||||
if not console_slience: print(delta["content"], end='')
|
||||
if not console_silence: print(delta["content"], end='')
|
||||
if observe_window is not None:
|
||||
# 观测窗,把已经获取的数据显示出去
|
||||
if len(observe_window) >= 1:
|
||||
@@ -231,7 +231,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
||||
inputs 是本次问询的输入
|
||||
top_p, temperature是chatGPT的内部调优参数
|
||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yield出去,可以直接修改对话界面内容
|
||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||
"""
|
||||
from request_llms.bridge_all import model_info
|
||||
|
||||
@@ -16,7 +16,7 @@ import base64
|
||||
import glob
|
||||
from loguru import logger
|
||||
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc, is_the_upload_folder, \
|
||||
update_ui_lastest_msg, get_max_token, encode_image, have_any_recent_upload_image_files, log_chat
|
||||
update_ui_latest_msg, get_max_token, encode_image, have_any_recent_upload_image_files, log_chat
|
||||
|
||||
|
||||
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
|
||||
@@ -67,7 +67,7 @@ def verify_endpoint(endpoint):
|
||||
"""
|
||||
return endpoint
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_silence=False):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
@@ -183,7 +183,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
if ('data: [DONE]' in chunk_decoded) or (len(chunkjson['choices'][0]["delta"]) == 0):
|
||||
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
||||
lastmsg = chatbot[-1][-1] + f"\n\n\n\n「{llm_kwargs['llm_model']}调用结束,该模型不具备上下文对话能力,如需追问,请及时切换模型。」"
|
||||
yield from update_ui_lastest_msg(lastmsg, chatbot, history, delay=1)
|
||||
yield from update_ui_latest_msg(lastmsg, chatbot, history, delay=1)
|
||||
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
||||
break
|
||||
# 处理数据流的主体
|
||||
|
||||
@@ -69,7 +69,7 @@ def decode_chunk(chunk):
|
||||
return need_to_pass, chunkjson, is_last_chunk
|
||||
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_silence=False):
|
||||
"""
|
||||
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||
inputs:
|
||||
@@ -151,7 +151,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
inputs 是本次问询的输入
|
||||
top_p, temperature是chatGPT的内部调优参数
|
||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yield出去,可以直接修改对话界面内容
|
||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||
"""
|
||||
if inputs == "": inputs = "空空如也的输入栏"
|
||||
|
||||
@@ -68,7 +68,7 @@ def verify_endpoint(endpoint):
|
||||
raise ValueError("Endpoint不正确, 请检查AZURE_ENDPOINT的配置! 当前的Endpoint为:" + endpoint)
|
||||
return endpoint
|
||||
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_slience:bool=False):
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_silence:bool=False):
|
||||
"""
|
||||
发送,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||
inputs:
|
||||
@@ -111,7 +111,7 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
|
||||
if chunkjson['event_type'] == 'stream-start': continue
|
||||
if chunkjson['event_type'] == 'text-generation':
|
||||
result += chunkjson["text"]
|
||||
if not console_slience: print(chunkjson["text"], end='')
|
||||
if not console_silence: print(chunkjson["text"], end='')
|
||||
if observe_window is not None:
|
||||
# 观测窗,把已经获取的数据显示出去
|
||||
if len(observe_window) >= 1:
|
||||
@@ -132,7 +132,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
||||
inputs 是本次问询的输入
|
||||
top_p, temperature是chatGPT的内部调优参数
|
||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yield出去,可以直接修改对话界面内容
|
||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||
"""
|
||||
# if is_any_api_key(inputs):
|
||||
|
||||
@@ -6,7 +6,6 @@ from toolbox import get_conf
|
||||
from request_llms.local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
|
||||
from threading import Thread
|
||||
from loguru import logger
|
||||
import torch
|
||||
import os
|
||||
|
||||
def download_huggingface_model(model_name, max_retry, local_dir):
|
||||
@@ -29,6 +28,7 @@ class GetCoderLMHandle(LocalLLMHandle):
|
||||
self.cmd_to_install = cmd_to_install
|
||||
|
||||
def load_model_and_tokenizer(self):
|
||||
import torch
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
with ProxyNetworkActivate('Download_LLM'):
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
||||
|
||||
@@ -8,7 +8,7 @@ import os
|
||||
import time
|
||||
from request_llms.com_google import GoogleChatInit
|
||||
from toolbox import ChatBotWithCookies
|
||||
from toolbox import get_conf, update_ui, update_ui_lastest_msg, have_any_recent_upload_image_files, trimmed_format_exc, log_chat, encode_image
|
||||
from toolbox import get_conf, update_ui, update_ui_latest_msg, have_any_recent_upload_image_files, trimmed_format_exc, log_chat, encode_image
|
||||
|
||||
proxies, TIMEOUT_SECONDS, MAX_RETRY = get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY')
|
||||
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
||||
@@ -16,7 +16,7 @@ timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check
|
||||
|
||||
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=[],
|
||||
console_slience:bool=False):
|
||||
console_silence:bool=False):
|
||||
# 检查API_KEY
|
||||
if get_conf("GEMINI_API_KEY") == "":
|
||||
raise ValueError(f"请配置 GEMINI_API_KEY。")
|
||||
@@ -60,7 +60,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
||||
|
||||
# 检查API_KEY
|
||||
if get_conf("GEMINI_API_KEY") == "":
|
||||
yield from update_ui_lastest_msg(f"请配置 GEMINI_API_KEY。", chatbot=chatbot, history=history, delay=0)
|
||||
yield from update_ui_latest_msg(f"请配置 GEMINI_API_KEY。", chatbot=chatbot, history=history, delay=0)
|
||||
return
|
||||
|
||||
# 适配润色区域
|
||||
|
||||
@@ -55,7 +55,7 @@ class GetGLMHandle(Process):
|
||||
if self.jittorllms_model is None:
|
||||
device = get_conf('LOCAL_MODEL_DEVICE')
|
||||
from .jittorllms.models import get_model
|
||||
# availabel_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
|
||||
# available_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
|
||||
args_dict = {'model': 'llama'}
|
||||
print('self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))')
|
||||
self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))
|
||||
@@ -107,7 +107,7 @@ global llama_glm_handle
|
||||
llama_glm_handle = None
|
||||
#################################################################################
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||
observe_window:list=[], console_slience:bool=False):
|
||||
observe_window:list=[], console_silence:bool=False):
|
||||
"""
|
||||
多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
|
||||
@@ -55,7 +55,7 @@ class GetGLMHandle(Process):
|
||||
if self.jittorllms_model is None:
|
||||
device = get_conf('LOCAL_MODEL_DEVICE')
|
||||
from .jittorllms.models import get_model
|
||||
# availabel_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
|
||||
# available_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
|
||||
args_dict = {'model': 'pangualpha'}
|
||||
print('self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))')
|
||||
self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))
|
||||
@@ -107,7 +107,7 @@ global pangu_glm_handle
|
||||
pangu_glm_handle = None
|
||||
#################################################################################
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||
observe_window:list=[], console_slience:bool=False):
|
||||
observe_window:list=[], console_silence:bool=False):
|
||||
"""
|
||||
多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
|
||||
@@ -55,7 +55,7 @@ class GetGLMHandle(Process):
|
||||
if self.jittorllms_model is None:
|
||||
device = get_conf('LOCAL_MODEL_DEVICE')
|
||||
from .jittorllms.models import get_model
|
||||
# availabel_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
|
||||
# available_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
|
||||
args_dict = {'model': 'chatrwkv'}
|
||||
print('self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))')
|
||||
self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))
|
||||
@@ -107,7 +107,7 @@ global rwkv_glm_handle
|
||||
rwkv_glm_handle = None
|
||||
#################################################################################
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||
observe_window:list=[], console_slience:bool=False):
|
||||
observe_window:list=[], console_silence:bool=False):
|
||||
"""
|
||||
多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
|
||||
@@ -46,8 +46,8 @@ class GetLlamaHandle(LocalLLMHandle):
|
||||
top_p = kwargs['top_p']
|
||||
temperature = kwargs['temperature']
|
||||
history = kwargs['history']
|
||||
console_slience = kwargs.get('console_slience', True)
|
||||
return query, max_length, top_p, temperature, history, console_slience
|
||||
console_silence = kwargs.get('console_silence', True)
|
||||
return query, max_length, top_p, temperature, history, console_silence
|
||||
|
||||
def convert_messages_to_prompt(query, history):
|
||||
prompt = ""
|
||||
@@ -57,7 +57,7 @@ class GetLlamaHandle(LocalLLMHandle):
|
||||
prompt += f"\n[INST]{query}[/INST]"
|
||||
return prompt
|
||||
|
||||
query, max_length, top_p, temperature, history, console_slience = adaptor(kwargs)
|
||||
query, max_length, top_p, temperature, history, console_silence = adaptor(kwargs)
|
||||
prompt = convert_messages_to_prompt(query, history)
|
||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-
|
||||
# code from transformers.llama
|
||||
@@ -72,9 +72,9 @@ class GetLlamaHandle(LocalLLMHandle):
|
||||
generated_text = ""
|
||||
for new_text in streamer:
|
||||
generated_text += new_text
|
||||
if not console_slience: print(new_text, end='')
|
||||
if not console_silence: print(new_text, end='')
|
||||
yield generated_text.lstrip(prompt_tk_back).rstrip("</s>")
|
||||
if not console_slience: print()
|
||||
if not console_silence: print()
|
||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-
|
||||
|
||||
def try_to_import_special_deps(self, **kwargs):
|
||||
|
||||
@@ -169,7 +169,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
||||
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_bro_result)
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None,
|
||||
console_slience=False):
|
||||
console_silence=False):
|
||||
gpt_bro_init = MoonShotInit()
|
||||
watch_dog_patience = 60 # 看门狗的耐心, 设置10秒即可
|
||||
stream_response = gpt_bro_init.generate_messages(inputs, llm_kwargs, history, sys_prompt, True)
|
||||
|
||||
@@ -95,7 +95,7 @@ class GetGLMHandle(Process):
|
||||
- Its responses must not be vague, accusatory, rude, controversial, off-topic, or defensive.
|
||||
- It should avoid giving subjective opinions but rely on objective facts or phrases like \"in this context a human might say...\", \"some people might think...\", etc.
|
||||
- Its responses must also be positive, polite, interesting, entertaining, and engaging.
|
||||
- It can provide additional relevant details to answer in-depth and comprehensively covering mutiple aspects.
|
||||
- It can provide additional relevant details to answer in-depth and comprehensively covering multiple aspects.
|
||||
- It apologizes and accepts the user's suggestion if the user corrects the incorrect answer generated by MOSS.
|
||||
Capabilities and tools that MOSS can possess.
|
||||
"""
|
||||
@@ -172,7 +172,7 @@ global moss_handle
|
||||
moss_handle = None
|
||||
#################################################################################
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||
observe_window:list=[], console_slience:bool=False):
|
||||
observe_window:list=[], console_silence:bool=False):
|
||||
"""
|
||||
多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
|
||||
@@ -209,7 +209,7 @@ def predict_no_ui_long_connection(
|
||||
history=[],
|
||||
sys_prompt="",
|
||||
observe_window=[],
|
||||
console_slience=False,
|
||||
console_silence=False,
|
||||
):
|
||||
"""
|
||||
多线程方法
|
||||
|
||||
@@ -52,7 +52,7 @@ def decode_chunk(chunk):
|
||||
pass
|
||||
return chunk_decoded, chunkjson, is_last_chunk
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_silence=False):
|
||||
"""
|
||||
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||
inputs:
|
||||
@@ -99,7 +99,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
logger.info(f'[response] {result}')
|
||||
break
|
||||
result += chunkjson['message']["content"]
|
||||
if not console_slience: print(chunkjson['message']["content"], end='')
|
||||
if not console_silence: print(chunkjson['message']["content"], end='')
|
||||
if observe_window is not None:
|
||||
# 观测窗,把已经获取的数据显示出去
|
||||
if len(observe_window) >= 1:
|
||||
@@ -124,7 +124,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
inputs 是本次问询的输入
|
||||
top_p, temperature是chatGPT的内部调优参数
|
||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yield出去,可以直接修改对话界面内容
|
||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||
"""
|
||||
if inputs == "": inputs = "空空如也的输入栏"
|
||||
|
||||
@@ -119,7 +119,7 @@ def verify_endpoint(endpoint):
|
||||
raise ValueError("Endpoint不正确, 请检查AZURE_ENDPOINT的配置! 当前的Endpoint为:" + endpoint)
|
||||
return endpoint
|
||||
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_slience:bool=False):
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_silence:bool=False):
|
||||
"""
|
||||
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||
inputs:
|
||||
@@ -188,7 +188,7 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
|
||||
if (not has_content) and (not has_role): continue # raise RuntimeError("发现不标准的第三方接口:"+delta)
|
||||
if has_content: # has_role = True/False
|
||||
result += delta["content"]
|
||||
if not console_slience: print(delta["content"], end='')
|
||||
if not console_silence: print(delta["content"], end='')
|
||||
if observe_window is not None:
|
||||
# 观测窗,把已经获取的数据显示出去
|
||||
if len(observe_window) >= 1:
|
||||
@@ -213,7 +213,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
||||
inputs 是本次问询的输入
|
||||
top_p, temperature是chatGPT的内部调优参数
|
||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yield出去,可以直接修改对话界面内容
|
||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||
"""
|
||||
from request_llms.bridge_all import model_info
|
||||
@@ -512,7 +512,7 @@ def generate_payload(inputs:str, llm_kwargs:dict, history:list, system_prompt:st
|
||||
model, _ = read_one_api_model_name(model)
|
||||
if llm_kwargs['llm_model'].startswith('openrouter-'):
|
||||
model = llm_kwargs['llm_model'][len('openrouter-'):]
|
||||
model= read_one_api_model_name(model)
|
||||
model, _= read_one_api_model_name(model)
|
||||
if model == "gpt-3.5-random": # 随机选择, 绕过openai访问频率限制
|
||||
model = random.choice([
|
||||
"gpt-3.5-turbo",
|
||||
|
||||
@@ -121,7 +121,7 @@ def generate_from_baidu_qianfan(inputs, llm_kwargs, history, system_prompt):
|
||||
|
||||
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||
observe_window:list=[], console_slience:bool=False):
|
||||
observe_window:list=[], console_silence:bool=False):
|
||||
"""
|
||||
⭐多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
|
||||
@@ -1,12 +1,12 @@
|
||||
import time
|
||||
import os
|
||||
from toolbox import update_ui, get_conf, update_ui_lastest_msg
|
||||
from toolbox import update_ui, get_conf, update_ui_latest_msg
|
||||
from toolbox import check_packages, report_exception, log_chat
|
||||
|
||||
model_name = 'Qwen'
|
||||
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||
observe_window:list=[], console_slience:bool=False):
|
||||
observe_window:list=[], console_silence:bool=False):
|
||||
"""
|
||||
⭐多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
@@ -35,13 +35,13 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
try:
|
||||
check_packages(["dashscope"])
|
||||
except:
|
||||
yield from update_ui_lastest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install --upgrade dashscope```。",
|
||||
yield from update_ui_latest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install --upgrade dashscope```。",
|
||||
chatbot=chatbot, history=history, delay=0)
|
||||
return
|
||||
|
||||
# 检查DASHSCOPE_API_KEY
|
||||
if get_conf("DASHSCOPE_API_KEY") == "":
|
||||
yield from update_ui_lastest_msg(f"请配置 DASHSCOPE_API_KEY。",
|
||||
yield from update_ui_latest_msg(f"请配置 DASHSCOPE_API_KEY。",
|
||||
chatbot=chatbot, history=history, delay=0)
|
||||
return
|
||||
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
import time
|
||||
from toolbox import update_ui, get_conf, update_ui_lastest_msg
|
||||
from toolbox import update_ui, get_conf, update_ui_latest_msg
|
||||
from toolbox import check_packages, report_exception
|
||||
|
||||
model_name = '云雀大模型'
|
||||
@@ -10,7 +10,7 @@ def validate_key():
|
||||
return True
|
||||
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||
observe_window:list=[], console_slience:bool=False):
|
||||
observe_window:list=[], console_silence:bool=False):
|
||||
"""
|
||||
⭐ 多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
@@ -42,12 +42,12 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
try:
|
||||
check_packages(["zhipuai"])
|
||||
except:
|
||||
yield from update_ui_lastest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install --upgrade zhipuai```。",
|
||||
yield from update_ui_latest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install --upgrade zhipuai```。",
|
||||
chatbot=chatbot, history=history, delay=0)
|
||||
return
|
||||
|
||||
if validate_key() is False:
|
||||
yield from update_ui_lastest_msg(lastmsg="[Local Message] 请配置HUOSHAN_API_KEY", chatbot=chatbot, history=history, delay=0)
|
||||
yield from update_ui_latest_msg(lastmsg="[Local Message] 请配置HUOSHAN_API_KEY", chatbot=chatbot, history=history, delay=0)
|
||||
return
|
||||
|
||||
if additional_fn is not None:
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
import time
|
||||
import threading
|
||||
import importlib
|
||||
from toolbox import update_ui, get_conf, update_ui_lastest_msg
|
||||
from toolbox import update_ui, get_conf, update_ui_latest_msg
|
||||
from multiprocessing import Process, Pipe
|
||||
|
||||
model_name = '星火认知大模型'
|
||||
@@ -14,7 +14,7 @@ def validate_key():
|
||||
return True
|
||||
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||
observe_window:list=[], console_slience:bool=False):
|
||||
observe_window:list=[], console_silence:bool=False):
|
||||
"""
|
||||
⭐多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
@@ -43,7 +43,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
if validate_key() is False:
|
||||
yield from update_ui_lastest_msg(lastmsg="[Local Message] 请配置讯飞星火大模型的XFYUN_APPID, XFYUN_API_KEY, XFYUN_API_SECRET", chatbot=chatbot, history=history, delay=0)
|
||||
yield from update_ui_latest_msg(lastmsg="[Local Message] 请配置讯飞星火大模型的XFYUN_APPID, XFYUN_API_KEY, XFYUN_API_SECRET", chatbot=chatbot, history=history, delay=0)
|
||||
return
|
||||
|
||||
if additional_fn is not None:
|
||||
|
||||
@@ -225,7 +225,7 @@ def predict_no_ui_long_connection(
|
||||
history=[],
|
||||
sys_prompt="",
|
||||
observe_window=None,
|
||||
console_slience=False,
|
||||
console_silence=False,
|
||||
):
|
||||
"""
|
||||
多线程方法
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import time
|
||||
import os
|
||||
from toolbox import update_ui, get_conf, update_ui_lastest_msg, log_chat
|
||||
from toolbox import update_ui, get_conf, update_ui_latest_msg, log_chat
|
||||
from toolbox import check_packages, report_exception, have_any_recent_upload_image_files
|
||||
from toolbox import ChatBotWithCookies
|
||||
|
||||
@@ -13,7 +13,7 @@ def validate_key():
|
||||
return True
|
||||
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||
observe_window:list=[], console_slience:bool=False):
|
||||
observe_window:list=[], console_silence:bool=False):
|
||||
"""
|
||||
⭐多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
@@ -49,7 +49,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
if validate_key() is False:
|
||||
yield from update_ui_lastest_msg(lastmsg="[Local Message] 请配置ZHIPUAI_API_KEY", chatbot=chatbot, history=history, delay=0)
|
||||
yield from update_ui_latest_msg(lastmsg="[Local Message] 请配置ZHIPUAI_API_KEY", chatbot=chatbot, history=history, delay=0)
|
||||
return
|
||||
|
||||
if additional_fn is not None:
|
||||
|
||||
@@ -91,7 +91,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
inputs 是本次问询的输入
|
||||
top_p, temperature是chatGPT的内部调优参数
|
||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yield出去,可以直接修改对话界面内容
|
||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||
"""
|
||||
if additional_fn is not None:
|
||||
@@ -112,7 +112,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
|
||||
|
||||
mutable = ["", time.time()]
|
||||
def run_coorotine(mutable):
|
||||
def run_coroutine(mutable):
|
||||
async def get_result(mutable):
|
||||
# "tgui:galactica-1.3b@localhost:7860"
|
||||
|
||||
@@ -126,7 +126,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
break
|
||||
asyncio.run(get_result(mutable))
|
||||
|
||||
thread_listen = threading.Thread(target=run_coorotine, args=(mutable,), daemon=True)
|
||||
thread_listen = threading.Thread(target=run_coroutine, args=(mutable,), daemon=True)
|
||||
thread_listen.start()
|
||||
|
||||
while thread_listen.is_alive():
|
||||
@@ -142,7 +142,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
|
||||
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience=False):
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, observe_window, console_silence=False):
|
||||
raw_input = "What I would like to say is the following: " + inputs
|
||||
prompt = raw_input
|
||||
tgui_say = ""
|
||||
@@ -151,7 +151,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
|
||||
addr, port = addr_port.split(':')
|
||||
|
||||
|
||||
def run_coorotine(observe_window):
|
||||
def run_coroutine(observe_window):
|
||||
async def get_result(observe_window):
|
||||
async for response in run(context=prompt, max_token=llm_kwargs['max_length'],
|
||||
temperature=llm_kwargs['temperature'],
|
||||
@@ -162,6 +162,6 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
|
||||
print('exit when no listener')
|
||||
break
|
||||
asyncio.run(get_result(observe_window))
|
||||
thread_listen = threading.Thread(target=run_coorotine, args=(observe_window,))
|
||||
thread_listen = threading.Thread(target=run_coroutine, args=(observe_window,))
|
||||
thread_listen.start()
|
||||
return observe_window[0]
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import time
|
||||
import os
|
||||
from toolbox import update_ui, get_conf, update_ui_lastest_msg, log_chat
|
||||
from toolbox import update_ui, get_conf, update_ui_latest_msg, log_chat
|
||||
from toolbox import check_packages, report_exception, have_any_recent_upload_image_files
|
||||
from toolbox import ChatBotWithCookies
|
||||
|
||||
@@ -18,7 +18,7 @@ def make_media_input(inputs, image_paths):
|
||||
return inputs
|
||||
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||
observe_window:list=[], console_slience:bool=False):
|
||||
observe_window:list=[], console_silence:bool=False):
|
||||
"""
|
||||
⭐多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
@@ -57,12 +57,12 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
||||
try:
|
||||
check_packages(["zhipuai"])
|
||||
except:
|
||||
yield from update_ui_lastest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install --upgrade zhipuai```。",
|
||||
yield from update_ui_latest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install --upgrade zhipuai```。",
|
||||
chatbot=chatbot, history=history, delay=0)
|
||||
return
|
||||
|
||||
if validate_key() is False:
|
||||
yield from update_ui_lastest_msg(lastmsg="[Local Message] 请配置ZHIPUAI_API_KEY", chatbot=chatbot, history=history, delay=0)
|
||||
yield from update_ui_latest_msg(lastmsg="[Local Message] 请配置ZHIPUAI_API_KEY", chatbot=chatbot, history=history, delay=0)
|
||||
return
|
||||
|
||||
if additional_fn is not None:
|
||||
|
||||
@@ -216,7 +216,7 @@ class LocalLLMHandle(Process):
|
||||
def get_local_llm_predict_fns(LLMSingletonClass, model_name, history_format='classic'):
|
||||
load_message = f"{model_name}尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,{model_name}消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
||||
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=[], console_slience:bool=False):
|
||||
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=[], console_silence:bool=False):
|
||||
"""
|
||||
refer to request_llms/bridge_all.py
|
||||
"""
|
||||
|
||||
@@ -2,15 +2,9 @@ import json
|
||||
import time
|
||||
import traceback
|
||||
import requests
|
||||
from loguru import logger
|
||||
|
||||
# config_private.py放自己的秘密如API和代理网址
|
||||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||
from toolbox import (
|
||||
get_conf,
|
||||
update_ui,
|
||||
is_the_upload_folder,
|
||||
)
|
||||
from loguru import logger
|
||||
from toolbox import get_conf, is_the_upload_folder, update_ui, update_ui_latest_msg
|
||||
|
||||
proxies, TIMEOUT_SECONDS, MAX_RETRY = get_conf(
|
||||
"proxies", "TIMEOUT_SECONDS", "MAX_RETRY"
|
||||
@@ -39,27 +33,35 @@ def decode_chunk(chunk):
|
||||
用于解读"content"和"finish_reason"的内容(如果支持思维链也会返回"reasoning_content"内容)
|
||||
"""
|
||||
chunk = chunk.decode()
|
||||
respose = ""
|
||||
response = ""
|
||||
reasoning_content = ""
|
||||
finish_reason = "False"
|
||||
|
||||
# 考虑返回类型是 text/json 和 text/event-stream 两种
|
||||
if chunk.startswith("data: "):
|
||||
chunk = chunk[6:]
|
||||
else:
|
||||
chunk = chunk
|
||||
|
||||
try:
|
||||
chunk = json.loads(chunk[6:])
|
||||
chunk = json.loads(chunk)
|
||||
except:
|
||||
respose = ""
|
||||
response = ""
|
||||
finish_reason = chunk
|
||||
|
||||
# 错误处理部分
|
||||
if "error" in chunk:
|
||||
respose = "API_ERROR"
|
||||
response = "API_ERROR"
|
||||
try:
|
||||
chunk = json.loads(chunk)
|
||||
finish_reason = chunk["error"]["code"]
|
||||
except:
|
||||
finish_reason = "API_ERROR"
|
||||
return respose, finish_reason
|
||||
return response, reasoning_content, finish_reason
|
||||
|
||||
try:
|
||||
if chunk["choices"][0]["delta"]["content"] is not None:
|
||||
respose = chunk["choices"][0]["delta"]["content"]
|
||||
response = chunk["choices"][0]["delta"]["content"]
|
||||
except:
|
||||
pass
|
||||
try:
|
||||
@@ -71,7 +73,7 @@ def decode_chunk(chunk):
|
||||
finish_reason = chunk["choices"][0]["finish_reason"]
|
||||
except:
|
||||
pass
|
||||
return respose, reasoning_content, finish_reason
|
||||
return response, reasoning_content, finish_reason, str(chunk)
|
||||
|
||||
|
||||
def generate_message(input, model, key, history, max_output_token, system_prompt, temperature):
|
||||
@@ -106,7 +108,7 @@ def generate_message(input, model, key, history, max_output_token, system_prompt
|
||||
what_i_ask_now["role"] = "user"
|
||||
what_i_ask_now["content"] = input
|
||||
messages.append(what_i_ask_now)
|
||||
playload = {
|
||||
payload = {
|
||||
"model": model,
|
||||
"messages": messages,
|
||||
"temperature": temperature,
|
||||
@@ -114,7 +116,7 @@ def generate_message(input, model, key, history, max_output_token, system_prompt
|
||||
"max_tokens": max_output_token,
|
||||
}
|
||||
|
||||
return headers, playload
|
||||
return headers, payload
|
||||
|
||||
|
||||
def get_predict_function(
|
||||
@@ -141,7 +143,7 @@ def get_predict_function(
|
||||
history=[],
|
||||
sys_prompt="",
|
||||
observe_window=None,
|
||||
console_slience=False,
|
||||
console_silence=False,
|
||||
):
|
||||
"""
|
||||
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||
@@ -157,12 +159,12 @@ def get_predict_function(
|
||||
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
||||
"""
|
||||
from .bridge_all import model_info
|
||||
watch_dog_patience = 5 # 看门狗的耐心,设置5秒不准咬人(咬的也不是人
|
||||
watch_dog_patience = 5 # 看门狗的耐心,设置5秒不准咬人 (咬的也不是人)
|
||||
if len(APIKEY) == 0:
|
||||
raise RuntimeError(f"APIKEY为空,请检查配置文件的{APIKEY}")
|
||||
if inputs == "":
|
||||
inputs = "你好👋"
|
||||
headers, playload = generate_message(
|
||||
headers, payload = generate_message(
|
||||
input=inputs,
|
||||
model=llm_kwargs["llm_model"],
|
||||
key=APIKEY,
|
||||
@@ -182,7 +184,7 @@ def get_predict_function(
|
||||
endpoint,
|
||||
headers=headers,
|
||||
proxies=None if disable_proxy else proxies,
|
||||
json=playload,
|
||||
json=payload,
|
||||
stream=True,
|
||||
timeout=TIMEOUT_SECONDS,
|
||||
)
|
||||
@@ -198,7 +200,7 @@ def get_predict_function(
|
||||
result = ""
|
||||
finish_reason = ""
|
||||
if reasoning:
|
||||
resoning_buffer = ""
|
||||
reasoning_buffer = ""
|
||||
|
||||
stream_response = response.iter_lines()
|
||||
while True:
|
||||
@@ -210,7 +212,7 @@ def get_predict_function(
|
||||
break
|
||||
except requests.exceptions.ConnectionError:
|
||||
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||
response_text, reasoning_content, finish_reason = decode_chunk(chunk)
|
||||
response_text, reasoning_content, finish_reason, decoded_chunk = decode_chunk(chunk)
|
||||
# 返回的数据流第一次为空,继续等待
|
||||
if response_text == "" and (reasoning == False or reasoning_content == "") and finish_reason != "False":
|
||||
continue
|
||||
@@ -226,12 +228,12 @@ def get_predict_function(
|
||||
if chunk:
|
||||
try:
|
||||
if finish_reason == "stop":
|
||||
if not console_slience:
|
||||
if not console_silence:
|
||||
print(f"[response] {result}")
|
||||
break
|
||||
result += response_text
|
||||
if reasoning:
|
||||
resoning_buffer += reasoning_content
|
||||
reasoning_buffer += reasoning_content
|
||||
if observe_window is not None:
|
||||
# 观测窗,把已经获取的数据显示出去
|
||||
if len(observe_window) >= 1:
|
||||
@@ -247,9 +249,8 @@ def get_predict_function(
|
||||
logger.error(error_msg)
|
||||
raise RuntimeError("Json解析不合常规")
|
||||
if reasoning:
|
||||
# reasoning 的部分加上框 (>)
|
||||
return '\n'.join(map(lambda x: '> ' + x, resoning_buffer.split('\n'))) + \
|
||||
'\n\n' + result
|
||||
paragraphs = ''.join([f'<p style="margin: 1.25em 0;">{line}</p>' for line in reasoning_buffer.split('\n')])
|
||||
return f'''<div class="reasoning_process" >{paragraphs}</div>\n\n''' + result
|
||||
return result
|
||||
|
||||
def predict(
|
||||
@@ -268,7 +269,7 @@ def get_predict_function(
|
||||
inputs 是本次问询的输入
|
||||
top_p, temperature是chatGPT的内部调优参数
|
||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yield出去,可以直接修改对话界面内容
|
||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||
"""
|
||||
from .bridge_all import model_info
|
||||
@@ -299,7 +300,7 @@ def get_predict_function(
|
||||
) # 刷新界面
|
||||
time.sleep(2)
|
||||
|
||||
headers, playload = generate_message(
|
||||
headers, payload = generate_message(
|
||||
input=inputs,
|
||||
model=llm_kwargs["llm_model"],
|
||||
key=APIKEY,
|
||||
@@ -321,7 +322,7 @@ def get_predict_function(
|
||||
endpoint,
|
||||
headers=headers,
|
||||
proxies=None if disable_proxy else proxies,
|
||||
json=playload,
|
||||
json=payload,
|
||||
stream=True,
|
||||
timeout=TIMEOUT_SECONDS,
|
||||
)
|
||||
@@ -343,14 +344,21 @@ def get_predict_function(
|
||||
gpt_reasoning_buffer = ""
|
||||
|
||||
stream_response = response.iter_lines()
|
||||
wait_counter = 0
|
||||
while True:
|
||||
try:
|
||||
chunk = next(stream_response)
|
||||
except StopIteration:
|
||||
if wait_counter != 0 and gpt_replying_buffer == "":
|
||||
yield from update_ui_latest_msg(lastmsg="模型调用失败 ...", chatbot=chatbot, history=history, msg="failed")
|
||||
break
|
||||
except requests.exceptions.ConnectionError:
|
||||
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||
response_text, reasoning_content, finish_reason = decode_chunk(chunk)
|
||||
response_text, reasoning_content, finish_reason, decoded_chunk = decode_chunk(chunk)
|
||||
if decoded_chunk == ': keep-alive':
|
||||
wait_counter += 1
|
||||
yield from update_ui_latest_msg(lastmsg="等待中 " + "".join(["."] * (wait_counter%10)), chatbot=chatbot, history=history, msg="waiting ...")
|
||||
continue
|
||||
# 返回的数据流第一次为空,继续等待
|
||||
if response_text == "" and (reasoning == False or reasoning_content == "") and finish_reason != "False":
|
||||
status_text = f"finish_reason: {finish_reason}"
|
||||
@@ -367,7 +375,7 @@ def get_predict_function(
|
||||
chunk_decoded = chunk.decode()
|
||||
chatbot[-1] = (
|
||||
chatbot[-1][0],
|
||||
"[Local Message] {finish_reason},获得以下报错信息:\n"
|
||||
f"[Local Message] {finish_reason}, 获得以下报错信息:\n"
|
||||
+ chunk_decoded,
|
||||
)
|
||||
yield from update_ui(
|
||||
@@ -385,7 +393,8 @@ def get_predict_function(
|
||||
if reasoning:
|
||||
gpt_replying_buffer += response_text
|
||||
gpt_reasoning_buffer += reasoning_content
|
||||
history[-1] = '\n'.join(map(lambda x: '> ' + x, gpt_reasoning_buffer.split('\n'))) + '\n\n' + gpt_replying_buffer
|
||||
paragraphs = ''.join([f'<p style="margin: 1.25em 0;">{line}</p>' for line in gpt_reasoning_buffer.split('\n')])
|
||||
history[-1] = f'<div class="reasoning_process">{paragraphs}</div>\n\n---\n\n' + gpt_replying_buffer
|
||||
else:
|
||||
gpt_replying_buffer += response_text
|
||||
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
|
||||
|
||||
@@ -8,7 +8,7 @@ def is_full_width_char(ch):
|
||||
return True # CJK标点符号
|
||||
return False
|
||||
|
||||
def scolling_visual_effect(text, scroller_max_len):
|
||||
def scrolling_visual_effect(text, scroller_max_len):
|
||||
text = text.\
|
||||
replace('\n', '').replace('`', '.').replace(' ', '.').replace('<br/>', '.....').replace('$', '.')
|
||||
place_take_cnt = 0
|
||||
|
||||
@@ -85,7 +85,7 @@ def get_chat_default_kwargs():
|
||||
"history": [],
|
||||
"sys_prompt": "You are AI assistant",
|
||||
"observe_window": None,
|
||||
"console_slience": False,
|
||||
"console_silence": False,
|
||||
}
|
||||
|
||||
return default_chat_kwargs
|
||||
|
||||
@@ -88,6 +88,32 @@ def zip_extract_member_new(self, member, targetpath, pwd):
|
||||
return targetpath
|
||||
|
||||
|
||||
|
||||
def safe_extract_rar(file_path, dest_dir):
|
||||
import rarfile
|
||||
import posixpath
|
||||
with rarfile.RarFile(file_path) as rf:
|
||||
os.makedirs(dest_dir, exist_ok=True)
|
||||
base_path = os.path.abspath(dest_dir)
|
||||
for file_info in rf.infolist():
|
||||
orig_filename = file_info.filename
|
||||
filename = posixpath.normpath(orig_filename).lstrip('/')
|
||||
# 路径遍历防护
|
||||
if '..' in filename or filename.startswith('../'):
|
||||
raise Exception(f"Attempted Path Traversal in {orig_filename}")
|
||||
# 符号链接防护
|
||||
if hasattr(file_info, 'is_symlink') and file_info.is_symlink():
|
||||
raise Exception(f"Attempted Symlink in {orig_filename}")
|
||||
# 构造完整目标路径
|
||||
target_path = os.path.join(base_path, filename)
|
||||
final_path = os.path.normpath(target_path)
|
||||
# 最终路径校验
|
||||
if not final_path.startswith(base_path):
|
||||
raise Exception(f"Attempted Path Traversal in {orig_filename}")
|
||||
rf.extractall(dest_dir)
|
||||
|
||||
|
||||
|
||||
def extract_archive(file_path, dest_dir):
|
||||
import zipfile
|
||||
import tarfile
|
||||
@@ -111,6 +137,8 @@ def extract_archive(file_path, dest_dir):
|
||||
member_path = os.path.normpath(member.name)
|
||||
full_path = os.path.join(dest_dir, member_path)
|
||||
full_path = os.path.abspath(full_path)
|
||||
if member.islnk() or member.issym():
|
||||
raise Exception(f"Attempted Symlink in {member.name}")
|
||||
if not full_path.startswith(os.path.abspath(dest_dir) + os.sep):
|
||||
raise Exception(f"Attempted Path Traversal in {member.name}")
|
||||
|
||||
@@ -130,14 +158,11 @@ def extract_archive(file_path, dest_dir):
|
||||
# 此外,Windows上还需要安装winrar软件,配置其Path环境变量,如"C:\Program Files\WinRAR"才可以
|
||||
elif file_extension == ".rar":
|
||||
try:
|
||||
import rarfile
|
||||
|
||||
with rarfile.RarFile(file_path) as rf:
|
||||
rf.extractall(path=dest_dir)
|
||||
logger.info("Successfully extracted rar archive to {}".format(dest_dir))
|
||||
import rarfile # 用来检查rarfile是否安装,不要删除
|
||||
safe_extract_rar(file_path, dest_dir)
|
||||
except:
|
||||
logger.info("Rar format requires additional dependencies to install")
|
||||
return "\n\n解压失败! 需要安装pip install rarfile来解压rar文件。建议:使用zip压缩格式。"
|
||||
return "<br/><br/>解压失败! 需要安装pip install rarfile来解压rar文件。建议:使用zip压缩格式。"
|
||||
|
||||
# 第三方库,需要预先pip install py7zr
|
||||
elif file_extension == ".7z":
|
||||
@@ -149,7 +174,7 @@ def extract_archive(file_path, dest_dir):
|
||||
logger.info("Successfully extracted 7z archive to {}".format(dest_dir))
|
||||
except:
|
||||
logger.info("7z format requires additional dependencies to install")
|
||||
return "\n\n解压失败! 需要安装pip install py7zr来解压7z文件"
|
||||
return "<br/><br/>解压失败! 需要安装pip install py7zr来解压7z文件"
|
||||
else:
|
||||
return ""
|
||||
return ""
|
||||
|
||||
11
start.sh
Normal file
11
start.sh
Normal file
@@ -0,0 +1,11 @@
|
||||
#!/bin/bash
|
||||
GPT_COMMAND="/home/van/.env/python3.12-venv/bin/python main.py"
|
||||
LOG_FILE="/home/van/project/gpt/gpt.log"
|
||||
GPT_PROCESS=$(ps aux | grep "$/home/van/.env/python3.12-venv/bin/python main.py" | grep -v grep)
|
||||
if [ -n "$GPT_PROCESS" ]; then
|
||||
echo "gpt is running..."
|
||||
else
|
||||
cd /home/van/project/gpt/
|
||||
$GPT_COMMAND > "$LOG_FILE" 2>&1 &
|
||||
echo "gpt start successfully. Log file: $LOG_FILE"
|
||||
fi
|
||||
@@ -45,28 +45,161 @@ Any folded content here. It requires an empty line just above it.
|
||||
|
||||
md ="""
|
||||
|
||||
在这种场景中,您希望机器 B 能够通过轮询机制来间接地“请求”机器 A,而实际上机器 A 只能主动向机器 B 发出请求。这是一种典型的客户端-服务器轮询模式。下面是如何实现这种机制的详细步骤:
|
||||
<details>
|
||||
<summary>第0份搜索结果 [源自google搜索] (汤姆·赫兰德):</summary>
|
||||
<div class="search_result">https://baike.baidu.com/item/%E6%B1%A4%E5%A7%86%C2%B7%E8%B5%AB%E5%85%B0%E5%BE%B7/3687216</div>
|
||||
<div class="search_result">Title: 汤姆·赫兰德
|
||||
|
||||
### 机器 B 的实现
|
||||
URL Source: https://baike.baidu.com/item/%E6%B1%A4%E5%A7%86%C2%B7%E8%B5%AB%E5%85%B0%E5%BE%B7/3687216
|
||||
|
||||
1. **安装 FastAPI 和必要的依赖库**:
|
||||
```bash
|
||||
pip install fastapi uvicorn
|
||||
```
|
||||
Markdown Content:
|
||||
网页新闻贴吧知道网盘图片视频地图文库资讯采购百科
|
||||
百度首页
|
||||
登录
|
||||
注册
|
||||
进入词条
|
||||
全站搜索
|
||||
帮助
|
||||
首页
|
||||
秒懂百科
|
||||
特色百科
|
||||
知识专题
|
||||
加入百科
|
||||
百科团队
|
||||
权威合作
|
||||
个人中心
|
||||
汤姆·赫兰德
|
||||
播报
|
||||
讨论
|
||||
上传视频
|
||||
英国男演员
|
||||
汤姆·赫兰德(Tom Holland),1996年6月1日出生于英国英格兰泰晤士河畔金斯顿,英国男演员。2008年,出演音乐剧《跳出我天地》而崭露头角。2010年,作为主演参加音乐剧《跳出我天地》的五周年特别演出。2012年10月11日,主演的个人首部电影《海啸奇迹》上映,并凭该电影获得第84届美国国家评论协会奖最具突破男演员奖。2016年10月15日,与查理·汉纳姆、西耶娜·米勒合作出演的电影《 ... >>>
|
||||
|
||||
2. **创建 FastAPI 服务**:
|
||||
```python
|
||||
from fastapi import FastAPI
|
||||
from fastapi.responses import JSONResponse
|
||||
from uuid import uuid4
|
||||
from threading import Lock
|
||||
import time
|
||||
目录
|
||||
1早年经历
|
||||
2演艺经历
|
||||
▪影坛新星
|
||||
▪角色多变
|
||||
▪跨界翘楚
|
||||
3个人生活
|
||||
▪家庭
|
||||
▪恋情
|
||||
▪社交
|
||||
4主要作品
|
||||
▪参演电影
|
||||
▪参演电视剧
|
||||
▪配音作品
|
||||
▪导演作品
|
||||
▪杂志写真
|
||||
5社会活动
|
||||
6获奖记录
|
||||
7人物评价
|
||||
基本信息
|
||||
汤姆·赫兰德(Tom Holland),1996年6月1日出生于英国英格兰泰晤士河畔金斯顿,英国男演员。 [67]
|
||||
2008年,出演音乐剧《跳出我天地》而崭露头角 [1]。2010年,作为主演参加音乐剧《跳出我天地》的五周年特别演出 [2]。2012年10月11日,主演的个人首部电影《海啸奇迹》上映,并凭该电影获得第84届美国国家评论协会奖最具突破男演员奖 [3]。2016年10月15日,与查理·汉纳姆、西耶娜·米勒合作出演的电影《迷失Z城》在纽约电影节首映 [17];2017年,主演的《蜘蛛侠:英雄归来》上映,他凭该电影获得第19届青少年选择奖最佳暑期电影男演员奖,以及第70届英国电影和电视艺术学院奖最佳新星奖。 [72]2019年,主演的电影《蜘蛛侠:英雄远征》上映 [5];同年,凭借该电影获得第21届青少年选择奖最佳夏日电影男演员奖 [6]。2024年4月,汤姆·霍兰德主演的伦敦西区新版舞台剧《罗密欧与朱丽叶》公布演员名单。 [66]
|
||||
2024年,......</div>
|
||||
</details>
|
||||
|
||||
app = FastAPI()
|
||||
<details>
|
||||
<summary>第1份搜索结果 [源自google搜索] (汤姆·霍兰德):</summary>
|
||||
<div class="search_result">https://zh.wikipedia.org/zh-hans/%E6%B1%A4%E5%A7%86%C2%B7%E8%B5%AB%E5%85%B0%E5%BE%B7</div>
|
||||
<div class="search_result">Title: 汤姆·赫兰德
|
||||
|
||||
# 字典用于存储请求和状态
|
||||
requests = {}
|
||||
process_lock = Lock()
|
||||
URL Source: https://zh.wikipedia.org/zh-hans/%E6%B1%A4%E5%A7%86%C2%B7%E8%B5%AB%E5%85%B0%E5%BE%B7
|
||||
|
||||
Published Time: 2015-06-24T01:08:01Z
|
||||
|
||||
Markdown Content:
|
||||
| 汤姆·霍兰德
|
||||
Tom Holland |
|
||||
| --- |
|
||||
| [](https://zh.wikipedia.org/wiki/File:Tom_Holland_by_Gage_Skidmore.jpg)
|
||||
|
||||
2016年在[圣地牙哥国际漫画展](https://zh.wikipedia.org/wiki/%E8%81%96%E5%9C%B0%E7%89%99%E5%93%A5%E5%9C%8B%E9%9A%9B%E6%BC%AB%E7%95%AB%E5%B1%95 "圣地牙哥国际漫画展")的霍兰德
|
||||
|
||||
|
||||
|
||||
|
|
||||
| 男演员 |
|
||||
| 昵称 | 荷兰弟[\[1\]](https://zh.wikipedia.org/zh-hans/%E6%B1%A4%E5%A7%86%C2%B7%E8%B5%AB%E5%85%B0%E5%BE%B7#cite_note-1) |
|
||||
| 出生 | 汤玛斯·史丹利·霍兰德
|
||||
(Thomas Stanley Holland)[\[2\]](https://zh.wikipedia.org/zh-hans/%E6%B1%A4%E5%A7%86%C2%B7%E8%B5%AB%E5%85%B0%E5%BE%B7#cite_note-2)
|
||||
|
||||
|
||||
1996年6月1日(28岁)
|
||||
|
||||
英国[英格兰](https://zh.wikipedia.org/wiki/%E8%8B%B1%E6%A0%BC%E8%98%AD "英格兰")[泰晤士河畔金斯顿](https://zh.wikipedia.org/wiki/%E6%B3%B0%E6%99%A4......</div>
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>第2份搜索结果 [源自google搜索] (为什么汤姆赫兰德被称为荷兰弟?):</summary>
|
||||
<div class="search_result">https://www.zhihu.com/question/363988307</div>
|
||||
<div class="search_result">Title: 为什么汤姆赫兰德被称为荷兰弟? - 知乎
|
||||
|
||||
URL Source: https://www.zhihu.com/question/363988307
|
||||
|
||||
Markdown Content:
|
||||
要说漫威演员里面,谁是最牛的存在,不好说,各有各的看法,但要说谁是最能剧透的,毫无疑问,是我们的汤姆赫兰德荷兰弟,可以说,他算得上是把剧透给玩明白了,先后剧透了不少的电影桥段,以至于漫威后面像防贼一样防着人家荷兰弟,可大家知道吗?你永远想象不到荷兰弟的嘴巴到底有多能漏风?
|
||||
|
||||

|
||||
|
||||
故事要回到《侏罗纪世界2》的筹备期间,当时,荷兰弟也参与了面试,计划在剧中饰演一个角色,原本,这也没啥,这都是好莱坞的传统了,可是,当时的导演胡安根本不知道荷兰弟的“风光伟绩”,于是乎,人家便屁颠屁颠把侏罗纪世界2的资料拿过来给荷兰弟,虽然,后面没有让荷兰弟出演这部电影,但导演似乎忘了他的嘴巴是开过光的。
|
||||
|
||||

|
||||
|
||||
荷兰弟把剧情刻在了脑子
|
||||
......</div>
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>第3份搜索结果 [源自google搜索] (爱戴名表被喷配不上赞达亚,荷兰弟曝近照气质大变,2):</summary>
|
||||
<div class="search_result">https://www.sohu.com/a/580380519_120702487</div>
|
||||
<div class="search_result">Title: 爱戴名表被喷配不上赞达亚,荷兰弟曝近照气质大变,26岁资产惊人_蜘蛛侠_手表_罗伯特·唐尼
|
||||
|
||||
URL Source: https://www.sohu.com/a/580380519_120702487
|
||||
|
||||
Markdown Content:
|
||||
2022-08-27 19:00 来源: [BEGEEL宾爵表](https://www.sohu.com/a/580380519_120702487?spm=smpc.content-abroad.content.1.1739375950559fBhgNpP)
|
||||
|
||||
发布于:广东省
|
||||
|
||||
近日,大家熟悉的荷兰弟,也就演漫威超级英雄“蜘蛛侠”而走红的英国男星汤姆·赫兰德(Tom Holland),最近在没有任何预警的情况下宣布自己暂停使用社交媒体,原因网络暴力已经严重影响到他的心理健康了。虽然自出演蜘蛛侠以来,对荷兰弟的骂声就没停过,但不可否认他确实是一位才貌双全的好演员,同时也是一位拥有高雅品味的地道英伦绅士,从他近年名表收藏的趋势也能略知一二。
|
||||
|
||||

|
||||
|
||||
2016年,《美国队长3:内战》上映,汤姆·赫兰德扮演的“史上最嫩”蜘蛛侠也正式登场。这个美国普通学生,由于意外被一只受过放射性感染的蜘蛛咬到,并因此获得超能力,化身邻居英雄蜘蛛侠警恶惩奸。和蜘蛛侠彼得·帕克一样,当时年仅20岁的荷兰弟无论戏里戏外的穿搭都是少年感十足,走的阳光邻家大男孩路线,手上戴的最多的就是来自卡西欧的电子表,还有来自Nixon sentry的手表,千元级别甚至是百元级。
|
||||
|
||||
20岁的荷兰弟走的是邻家大男孩路线
|
||||
|
||||

|
||||
|
||||
随着荷兰弟主演的《蜘蛛侠:英雄归来》上演,第三代蜘蛛侠的话痨性格和年轻活力的形象瞬间圈粉无数。荷兰弟的知名度和演艺收入都大幅度增长,他的穿衣品味也渐渐从稚嫩少年风转变成轻熟绅士风。从简单的T恤短袖搭配牛仔裤,开始向更加丰富的造型发展,其中变化最明显的就是他手腕上的表。
|
||||
|
||||
荷兰弟的衣品日......</div>
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>第4份搜索结果 [源自google搜索] (荷兰弟居然要休息一年,因演戏演到精神分裂…):</summary>
|
||||
<div class="search_result">https://www.sohu.com/a/683718058_544020</div>
|
||||
<div class="search_result">Title: 荷兰弟居然要休息一年,因演戏演到精神分裂…_Holland_Tom_工作
|
||||
|
||||
URL Source: https://www.sohu.com/a/683718058_544020
|
||||
|
||||
Markdown Content:
|
||||
荷兰弟居然要休息一年,因演戏演到精神分裂…\_Holland\_Tom\_工作
|
||||
===============
|
||||
|
||||
* [](http://www.sohu.com/?spm=smpc.content-abroad.nav.1.1739375954055TcEvWsY)
|
||||
* [新闻](http://news.sohu.com/?spm=smpc.content-abroad.nav.2.1739375954055TcEvWsY)
|
||||
* [体育](http://sports.sohu.com/?spm=smpc.content-abroad.nav.3.1739375954055TcEvWsY)
|
||||
* [汽车](http://auto.sohu.com/?spm=smpc.content-abroad.nav.4.1739375954055TcEvWsY)
|
||||
* [房产](http://www.focus.cn/?spm=smpc.content-abroad.nav.5.1739375954055TcEvWsY)
|
||||
* [旅游](http://travel.sohu.com/?spm=smpc.content-abroad.nav.6.1739375954055TcEvWsY)
|
||||
* [教育](http://learning.sohu.com/?spm=smpc.content-abroad.nav.7.1739375954055TcEvWsY)
|
||||
* [时尚](http://fashion.sohu.com/?spm=smpc.content-abroad.nav.8.1739375954055TcEvWsY)
|
||||
* [科技](http://it.sohu.com/?spm=smpc.content-abroad.nav.9.1739375954055TcEvWsY)
|
||||
* [财经](http://business.sohu.com/?spm=smpc.content-abroad.nav.10.17393759......</div>
|
||||
</details>
|
||||
|
||||
"""
|
||||
def validate_path():
|
||||
|
||||
@@ -48,8 +48,6 @@ if __name__ == "__main__":
|
||||
|
||||
# plugin_test(plugin='crazy_functions.下载arxiv论文翻译摘要->下载arxiv论文并翻译摘要', main_input="1812.10695")
|
||||
|
||||
# plugin_test(plugin='crazy_functions.联网的ChatGPT->连接网络回答问题', main_input="谁是应急食品?")
|
||||
|
||||
# plugin_test(plugin='crazy_functions.解析JupyterNotebook->解析ipynb文件', main_input="crazy_functions/test_samples")
|
||||
|
||||
# plugin_test(plugin='crazy_functions.数学动画生成manim->动画生成', main_input="A ball split into 2, and then split into 4, and finally split into 8.")
|
||||
|
||||
@@ -48,8 +48,6 @@ if __name__ == "__main__":
|
||||
|
||||
# plugin_test(plugin='crazy_functions.下载arxiv论文翻译摘要->下载arxiv论文并翻译摘要', main_input="1812.10695")
|
||||
|
||||
# plugin_test(plugin='crazy_functions.联网的ChatGPT->连接网络回答问题', main_input="谁是应急食品?")
|
||||
|
||||
# plugin_test(plugin='crazy_functions.解析JupyterNotebook->解析ipynb文件', main_input="crazy_functions/test_samples")
|
||||
|
||||
# plugin_test(plugin='crazy_functions.数学动画生成manim->动画生成', main_input="A ball split into 2, and then split into 4, and finally split into 8.")
|
||||
|
||||
@@ -9,7 +9,7 @@ from textwrap import dedent
|
||||
# TODO: 解决缩进问题
|
||||
|
||||
find_function_end_prompt = '''
|
||||
Below is a page of code that you need to read. This page may not yet complete, you job is to split this page to sperate functions, class functions etc.
|
||||
Below is a page of code that you need to read. This page may not yet complete, you job is to split this page to separate functions, class functions etc.
|
||||
- Provide the line number where the first visible function ends.
|
||||
- Provide the line number where the next visible function begins.
|
||||
- If there are no other functions in this page, you should simply return the line number of the last line.
|
||||
@@ -58,7 +58,7 @@ OUTPUT:
|
||||
|
||||
|
||||
|
||||
revise_funtion_prompt = '''
|
||||
revise_function_prompt = '''
|
||||
You need to read the following code, and revise the code according to following instructions:
|
||||
1. You should analyze the purpose of the functions (if there are any).
|
||||
2. You need to add docstring for the provided functions (if there are any).
|
||||
@@ -147,7 +147,7 @@ class ContextWindowManager():
|
||||
history=[],
|
||||
sys_prompt="",
|
||||
observe_window=[],
|
||||
console_slience=True
|
||||
console_silence=True
|
||||
)
|
||||
|
||||
def extract_number(text):
|
||||
@@ -240,15 +240,15 @@ class ContextWindowManager():
|
||||
def tag_code(self, fn):
|
||||
code = ''.join(fn)
|
||||
_, n_indent = self.dedent(code)
|
||||
indent_reminder = "" if n_indent == 0 else "(Reminder: as you can see, this piece of code has indent made up with {n_indent} whitespace, please preseve them in the OUTPUT.)"
|
||||
indent_reminder = "" if n_indent == 0 else "(Reminder: as you can see, this piece of code has indent made up with {n_indent} whitespace, please preserve them in the OUTPUT.)"
|
||||
self.llm_kwargs['temperature'] = 0
|
||||
result = predict_no_ui_long_connection(
|
||||
inputs=revise_funtion_prompt.format(THE_CODE=code, INDENT_REMINDER=indent_reminder),
|
||||
inputs=revise_function_prompt.format(THE_CODE=code, INDENT_REMINDER=indent_reminder),
|
||||
llm_kwargs=self.llm_kwargs,
|
||||
history=[],
|
||||
sys_prompt="",
|
||||
observe_window=[],
|
||||
console_slience=True
|
||||
console_silence=True
|
||||
)
|
||||
|
||||
def get_code_block(reply):
|
||||
|
||||
@@ -311,3 +311,24 @@
|
||||
backdrop-filter: blur(10px);
|
||||
background-color: rgba(var(--block-background-fill), 0.5);
|
||||
}
|
||||
|
||||
|
||||
.reasoning_process {
|
||||
font-size: smaller;
|
||||
font-style: italic;
|
||||
margin: 0px;
|
||||
padding: 1em;
|
||||
line-height: 1.5;
|
||||
text-wrap: wrap;
|
||||
opacity: 0.8;
|
||||
}
|
||||
|
||||
.search_result {
|
||||
font-size: smaller;
|
||||
font-style: italic;
|
||||
margin: 0px;
|
||||
padding: 1em;
|
||||
line-height: 1.5;
|
||||
text-wrap: wrap;
|
||||
opacity: 0.8;
|
||||
}
|
||||
|
||||
@@ -26,8 +26,8 @@ def define_gui_toolbar(AVAIL_LLM_MODELS, LLM_MODEL, INIT_SYS_PROMPT, THEME, AVAI
|
||||
fontfamily_dropdown = gr.Dropdown(AVAIL_FONTS, value=get_conf("FONT"), elem_id="elem_fontfamily", label="更换字体类型").style(container=False)
|
||||
fontsize_slider = gr.Slider(minimum=5, maximum=25, value=15, step=1, interactive=True, label="字体大小(默认15)", elem_id="elem_fontsize")
|
||||
checkboxes = gr.CheckboxGroup(["基础功能区", "函数插件区", "浮动输入区", "输入清除键", "插件参数区"], value=["基础功能区", "函数插件区"], label="显示/隐藏功能区", elem_id='cbs').style(container=False)
|
||||
opt = ["自定义菜单"]
|
||||
value=[]
|
||||
opt = ["自定义菜单", "主标题", "副标题", "显示logo"]
|
||||
value=["主标题", "副标题", "显示logo"]
|
||||
if ADD_WAIFU: opt += ["添加Live2D形象"]; value += ["添加Live2D形象"]
|
||||
checkboxes_2 = gr.CheckboxGroup(opt, value=value, label="显示/隐藏自定义菜单", elem_id='cbsc').style(container=False)
|
||||
dark_mode_btn = gr.Button("切换界面明暗 ☀", variant="secondary").style(size="sm")
|
||||
|
||||
145
themes/init.js
145
themes/init.js
@@ -128,6 +128,14 @@ function gpt_academic_change_chatbot_font(fontfamily, fontsize, fontcolor) {
|
||||
}
|
||||
}
|
||||
|
||||
function footer_show_hide(show) {
|
||||
if (show) {
|
||||
document.querySelector('footer').style.display = '';
|
||||
} else {
|
||||
document.querySelector('footer').style.display = 'none';
|
||||
}
|
||||
}
|
||||
|
||||
async function GptAcademicJavaScriptInit(dark, prompt, live2d, layout, tts) {
|
||||
// 第一部分,布局初始化
|
||||
remove_legacy_cookie();
|
||||
@@ -179,6 +187,7 @@ async function GptAcademicJavaScriptInit(dark, prompt, live2d, layout, tts) {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 字体
|
||||
gpt_academic_gradio_saveload("load", "elem_fontfamily", "js_fontfamily", null, "str");
|
||||
gpt_academic_change_chatbot_font(getCookie("js_fontfamily"), null, null);
|
||||
@@ -205,7 +214,93 @@ async function GptAcademicJavaScriptInit(dark, prompt, live2d, layout, tts) {
|
||||
}
|
||||
|
||||
|
||||
|
||||
if (getCookie("js_show_title")) {
|
||||
// have cookie
|
||||
bool_value = getCookie("js_show_title")
|
||||
bool_value = bool_value == "True";
|
||||
searchString = "主标题";
|
||||
tool_bar_group = "cbsc";
|
||||
const true_function = function () {
|
||||
document.querySelector('.prose.svelte-1ybaih5 h1').style.display = '';
|
||||
}
|
||||
const false_function = function () {
|
||||
document.querySelector('.prose.svelte-1ybaih5 h1').style.display = 'none';
|
||||
}
|
||||
if (bool_value) {
|
||||
// make btns appear
|
||||
true_function();
|
||||
// deal with checkboxes
|
||||
let arr_with_clear_btn = update_array(
|
||||
await get_data_from_gradio_component(tool_bar_group), searchString, "add"
|
||||
)
|
||||
push_data_to_gradio_component(arr_with_clear_btn, tool_bar_group, "no_conversion");
|
||||
} else {
|
||||
false_function();
|
||||
// deal with checkboxes
|
||||
let arr_without_clear_btn = update_array(
|
||||
await get_data_from_gradio_component(tool_bar_group), searchString, "remove"
|
||||
)
|
||||
push_data_to_gradio_component(arr_without_clear_btn, tool_bar_group, "no_conversion");
|
||||
}
|
||||
}
|
||||
if (getCookie("js_show_subtitle")) {
|
||||
// have cookie
|
||||
bool_value = getCookie("js_show_subtitle")
|
||||
bool_value = bool_value == "True";
|
||||
searchString = "副标题";
|
||||
tool_bar_group = "cbsc";
|
||||
const true_function = function () {
|
||||
element = document.querySelector('.prose.svelte-1ybaih5 h2');
|
||||
if (element) element.style.display = '';
|
||||
element = document.querySelector('.prose.svelte-1ybaih5 h6');
|
||||
if (element) element.style.display = '';
|
||||
}
|
||||
const false_function = function () {
|
||||
element = document.querySelector('.prose.svelte-1ybaih5 h2');
|
||||
if (element) element.style.display = 'none';
|
||||
element = document.querySelector('.prose.svelte-1ybaih5 h6');
|
||||
if (element) element.style.display = 'none';
|
||||
}
|
||||
if (bool_value) {
|
||||
// make btns appear
|
||||
true_function();
|
||||
// deal with checkboxes
|
||||
let arr_with_clear_btn = update_array(
|
||||
await get_data_from_gradio_component(tool_bar_group), searchString, "add"
|
||||
)
|
||||
push_data_to_gradio_component(arr_with_clear_btn, tool_bar_group, "no_conversion");
|
||||
} else {
|
||||
false_function();
|
||||
// deal with checkboxes
|
||||
let arr_without_clear_btn = update_array(
|
||||
await get_data_from_gradio_component(tool_bar_group), searchString, "remove"
|
||||
)
|
||||
push_data_to_gradio_component(arr_without_clear_btn, tool_bar_group, "no_conversion");
|
||||
}
|
||||
}
|
||||
if (getCookie("js_show_footer")) {
|
||||
// have cookie
|
||||
bool_value = getCookie("js_show_footer")
|
||||
searchString = "显示logo";
|
||||
tool_bar_group = "cbsc";
|
||||
bool_value = bool_value == "True";
|
||||
if (bool_value) {
|
||||
// make btns appear
|
||||
footer_show_hide(true);
|
||||
// deal with checkboxes
|
||||
let arr_with_clear_btn = update_array(
|
||||
await get_data_from_gradio_component(tool_bar_group), searchString, "add"
|
||||
)
|
||||
push_data_to_gradio_component(arr_with_clear_btn, tool_bar_group, "no_conversion");
|
||||
} else {
|
||||
footer_show_hide(false);
|
||||
// deal with checkboxes
|
||||
let arr_without_clear_btn = update_array(
|
||||
await get_data_from_gradio_component(tool_bar_group), searchString, "remove"
|
||||
)
|
||||
push_data_to_gradio_component(arr_without_clear_btn, tool_bar_group, "no_conversion");
|
||||
}
|
||||
}
|
||||
// clearButton 自动清除按钮
|
||||
if (getCookie("js_clearbtn_show_cookie")) {
|
||||
// have cookie
|
||||
@@ -219,7 +314,7 @@ async function GptAcademicJavaScriptInit(dark, prompt, live2d, layout, tts) {
|
||||
let clearButton2 = document.getElementById("elem_clear2"); clearButton2.style.display = "block";
|
||||
// deal with checkboxes
|
||||
let arr_with_clear_btn = update_array(
|
||||
await get_data_from_gradio_component('cbs'), "输入清除键", "add"
|
||||
await get_data_from_gradio_component("cbs"), "输入清除键", "add"
|
||||
)
|
||||
push_data_to_gradio_component(arr_with_clear_btn, "cbs", "no_conversion");
|
||||
} else {
|
||||
@@ -228,7 +323,7 @@ async function GptAcademicJavaScriptInit(dark, prompt, live2d, layout, tts) {
|
||||
let clearButton2 = document.getElementById("elem_clear2"); clearButton2.style.display = "none";
|
||||
// deal with checkboxes
|
||||
let arr_without_clear_btn = update_array(
|
||||
await get_data_from_gradio_component('cbs'), "输入清除键", "remove"
|
||||
await get_data_from_gradio_component("cbs"), "输入清除键", "remove"
|
||||
)
|
||||
push_data_to_gradio_component(arr_without_clear_btn, "cbs", "no_conversion");
|
||||
}
|
||||
@@ -268,3 +363,47 @@ async function GptAcademicJavaScriptInit(dark, prompt, live2d, layout, tts) {
|
||||
change_theme("", "")
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
function apply_checkbox_change_for_group2(display_panel_arr) {
|
||||
setTimeout(() => {
|
||||
display_panel_arr = get_checkbox_selected_items("cbsc");
|
||||
|
||||
let searchString = "添加Live2D形象";
|
||||
if (display_panel_arr.includes(searchString)) {
|
||||
setCookie("js_live2d_show_cookie", "True", 365);
|
||||
loadLive2D();
|
||||
} else {
|
||||
try {
|
||||
setCookie("js_live2d_show_cookie", "False", 365);
|
||||
$('.waifu').hide();
|
||||
} catch (e) {
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
function handleDisplay(searchString, key, displayElement, showFn, hideFn) {
|
||||
if (display_panel_arr.includes(searchString)) {
|
||||
setCookie(key, "True", 365);
|
||||
if (showFn) showFn();
|
||||
if (displayElement) displayElement.style.display = '';
|
||||
} else {
|
||||
setCookie(key, "False", 365);
|
||||
if (hideFn) hideFn();
|
||||
if (displayElement) displayElement.style.display = 'none';
|
||||
}
|
||||
}
|
||||
|
||||
// 主标题
|
||||
const mainTitle = document.querySelector('.prose.svelte-1ybaih5 h1');
|
||||
handleDisplay("主标题", "js_show_title", mainTitle, null, null);
|
||||
|
||||
// 副标题
|
||||
const subTitle = document.querySelector('.prose.svelte-1ybaih5 h2');
|
||||
handleDisplay("副标题", "js_show_subtitle", subTitle, null, null);
|
||||
|
||||
// 显示logo
|
||||
handleDisplay("显示logo", "js_show_footer", null, () => footer_show_hide(true), () => footer_show_hide(false));
|
||||
}, 50);
|
||||
}
|
||||
@@ -141,23 +141,3 @@ setTimeout(() => {
|
||||
}
|
||||
"""
|
||||
|
||||
|
||||
|
||||
js_code_show_or_hide_group2 = """
|
||||
(display_panel_arr)=>{
|
||||
setTimeout(() => {
|
||||
display_panel_arr = get_checkbox_selected_items("cbsc");
|
||||
|
||||
let searchString = "添加Live2D形象";
|
||||
let ele = "none";
|
||||
if (display_panel_arr.includes(searchString)) {
|
||||
setCookie("js_live2d_show_cookie", "True", 365);
|
||||
loadLive2D();
|
||||
} else {
|
||||
setCookie("js_live2d_show_cookie", "False", 365);
|
||||
$('.waifu').hide();
|
||||
}
|
||||
|
||||
}, 50);
|
||||
}
|
||||
"""
|
||||
|
||||
@@ -598,7 +598,7 @@ function(t) {
|
||||
default.VIEW_LOGICAL_MAX_BOTTOM, w.
|
||||
default.VIEW_LOGICAL_MAX_TOP), B.setMaxScale(w.
|
||||
default.VIEW_MAX_SCALE), B.setMinScale(w.
|
||||
default.VIEW_MIN_SCALE), U = new M.L2DMatrix44, U.multScale(1, i / e), G = new M.L2DMatrix44, G.multTranslate(-i / 2, -e / 2), G.multScale(2 / i, -2 / i), F = v(), (0, D.setContext)(F), !F) return console.error("Failed to create WebGL context."), void(window.WebGLRenderingContext && console.error("Your browser don't support WebGL, check https://get.webgl.org/ for futher information."));
|
||||
default.VIEW_MIN_SCALE), U = new M.L2DMatrix44, U.multScale(1, i / e), G = new M.L2DMatrix44, G.multTranslate(-i / 2, -e / 2), G.multScale(2 / i, -2 / i), F = v(), (0, D.setContext)(F), !F) return console.error("Failed to create WebGL context."), void(window.WebGLRenderingContext && console.error("Your browser don't support WebGL, check https://get.webgl.org/ for further information."));
|
||||
window.Live2D.setGL(F), F.clearColor(0, 0, 0, 0), a(t), s()
|
||||
}
|
||||
function s() {
|
||||
|
||||
@@ -183,7 +183,7 @@ def update_ui(chatbot:ChatBotWithCookies, history:list, msg:str="正常", **kwar
|
||||
yield cookies, chatbot_gr, json_history, msg
|
||||
|
||||
|
||||
def update_ui_lastest_msg(lastmsg:str, chatbot:ChatBotWithCookies, history:list, delay:float=1, msg:str="正常"): # 刷新界面
|
||||
def update_ui_latest_msg(lastmsg:str, chatbot:ChatBotWithCookies, history:list, delay:float=1, msg:str="正常"): # 刷新界面
|
||||
"""
|
||||
刷新用户界面
|
||||
"""
|
||||
@@ -679,7 +679,7 @@ def run_gradio_in_subpath(demo, auth, port, custom_path):
|
||||
return True
|
||||
if len(path) == 0:
|
||||
logger.info(
|
||||
"ilegal custom path: {}\npath must not be empty\ndeploy on root url".format(
|
||||
"illegal custom path: {}\npath must not be empty\ndeploy on root url".format(
|
||||
path
|
||||
)
|
||||
)
|
||||
@@ -690,14 +690,14 @@ def run_gradio_in_subpath(demo, auth, port, custom_path):
|
||||
return True
|
||||
return False
|
||||
logger.info(
|
||||
"ilegal custom path: {}\npath should begin with '/'\ndeploy on root url".format(
|
||||
"illegal custom path: {}\npath should begin with '/'\ndeploy on root url".format(
|
||||
path
|
||||
)
|
||||
)
|
||||
return False
|
||||
|
||||
if not is_path_legal(custom_path):
|
||||
raise RuntimeError("Ilegal custom path")
|
||||
raise RuntimeError("Illegal custom path")
|
||||
import uvicorn
|
||||
import gradio as gr
|
||||
from fastapi import FastAPI
|
||||
|
||||
Reference in New Issue
Block a user