Compare commits
1 Commits
e9de41b7e8
...
binary-hus
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
cbbfa2e586 |
@@ -1,14 +1,14 @@
|
|||||||
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
|
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
|
||||||
name: build-with-latex-arm
|
name: build-with-all-capacity-beta
|
||||||
|
|
||||||
on:
|
on:
|
||||||
push:
|
push:
|
||||||
branches:
|
branches:
|
||||||
- "master"
|
- 'master'
|
||||||
|
|
||||||
env:
|
env:
|
||||||
REGISTRY: ghcr.io
|
REGISTRY: ghcr.io
|
||||||
IMAGE_NAME: ${{ github.repository }}_with_latex_arm
|
IMAGE_NAME: ${{ github.repository }}_with_all_capacity_beta
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
build-and-push-image:
|
build-and-push-image:
|
||||||
@@ -18,17 +18,11 @@ jobs:
|
|||||||
packages: write
|
packages: write
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
- name: Set up QEMU
|
|
||||||
uses: docker/setup-qemu-action@v3
|
|
||||||
|
|
||||||
- name: Set up Docker Buildx
|
|
||||||
uses: docker/setup-buildx-action@v3
|
|
||||||
|
|
||||||
- name: Checkout repository
|
- name: Checkout repository
|
||||||
uses: actions/checkout@v4
|
uses: actions/checkout@v3
|
||||||
|
|
||||||
- name: Log in to the Container registry
|
- name: Log in to the Container registry
|
||||||
uses: docker/login-action@v3
|
uses: docker/login-action@v2
|
||||||
with:
|
with:
|
||||||
registry: ${{ env.REGISTRY }}
|
registry: ${{ env.REGISTRY }}
|
||||||
username: ${{ github.actor }}
|
username: ${{ github.actor }}
|
||||||
@@ -41,11 +35,10 @@ jobs:
|
|||||||
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
|
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
|
||||||
|
|
||||||
- name: Build and push Docker image
|
- name: Build and push Docker image
|
||||||
uses: docker/build-push-action@v6
|
uses: docker/build-push-action@v4
|
||||||
with:
|
with:
|
||||||
context: .
|
context: .
|
||||||
push: true
|
push: true
|
||||||
platforms: linux/arm64
|
file: docs/GithubAction+AllCapacityBeta
|
||||||
file: docs/GithubAction+NoLocal+Latex
|
|
||||||
tags: ${{ steps.meta.outputs.tags }}
|
tags: ${{ steps.meta.outputs.tags }}
|
||||||
labels: ${{ steps.meta.outputs.labels }}
|
labels: ${{ steps.meta.outputs.labels }}
|
||||||
44
.github/workflows/build-with-jittorllms.yml
vendored
Normal file
44
.github/workflows/build-with-jittorllms.yml
vendored
Normal file
@@ -0,0 +1,44 @@
|
|||||||
|
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
|
||||||
|
name: build-with-jittorllms
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- 'master'
|
||||||
|
|
||||||
|
env:
|
||||||
|
REGISTRY: ghcr.io
|
||||||
|
IMAGE_NAME: ${{ github.repository }}_jittorllms
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
build-and-push-image:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
permissions:
|
||||||
|
contents: read
|
||||||
|
packages: write
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- name: Checkout repository
|
||||||
|
uses: actions/checkout@v3
|
||||||
|
|
||||||
|
- name: Log in to the Container registry
|
||||||
|
uses: docker/login-action@v2
|
||||||
|
with:
|
||||||
|
registry: ${{ env.REGISTRY }}
|
||||||
|
username: ${{ github.actor }}
|
||||||
|
password: ${{ secrets.GITHUB_TOKEN }}
|
||||||
|
|
||||||
|
- name: Extract metadata (tags, labels) for Docker
|
||||||
|
id: meta
|
||||||
|
uses: docker/metadata-action@v4
|
||||||
|
with:
|
||||||
|
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
|
||||||
|
|
||||||
|
- name: Build and push Docker image
|
||||||
|
uses: docker/build-push-action@v4
|
||||||
|
with:
|
||||||
|
context: .
|
||||||
|
push: true
|
||||||
|
file: docs/GithubAction+JittorLLMs
|
||||||
|
tags: ${{ steps.meta.outputs.tags }}
|
||||||
|
labels: ${{ steps.meta.outputs.labels }}
|
||||||
56
.github/workflows/conda-pack-windows.yml
vendored
56
.github/workflows/conda-pack-windows.yml
vendored
@@ -1,56 +0,0 @@
|
|||||||
name: Create Conda Environment Package
|
|
||||||
|
|
||||||
on:
|
|
||||||
workflow_dispatch:
|
|
||||||
|
|
||||||
jobs:
|
|
||||||
build:
|
|
||||||
runs-on: windows-latest
|
|
||||||
|
|
||||||
steps:
|
|
||||||
- name: Checkout repository
|
|
||||||
uses: actions/checkout@v4
|
|
||||||
|
|
||||||
- name: Setup Miniconda
|
|
||||||
uses: conda-incubator/setup-miniconda@v3
|
|
||||||
with:
|
|
||||||
auto-activate-base: true
|
|
||||||
activate-environment: ""
|
|
||||||
|
|
||||||
- name: Create new Conda environment
|
|
||||||
shell: bash -l {0}
|
|
||||||
run: |
|
|
||||||
conda create -n gpt python=3.11 -y
|
|
||||||
conda activate gpt
|
|
||||||
|
|
||||||
- name: Install requirements
|
|
||||||
shell: bash -l {0}
|
|
||||||
run: |
|
|
||||||
conda activate gpt
|
|
||||||
pip install -r requirements.txt
|
|
||||||
|
|
||||||
- name: Install conda-pack
|
|
||||||
shell: bash -l {0}
|
|
||||||
run: |
|
|
||||||
conda activate gpt
|
|
||||||
conda install conda-pack -y
|
|
||||||
|
|
||||||
- name: Pack conda environment
|
|
||||||
shell: bash -l {0}
|
|
||||||
run: |
|
|
||||||
conda activate gpt
|
|
||||||
conda pack -n gpt -o gpt.tar.gz
|
|
||||||
|
|
||||||
- name: Create workspace zip
|
|
||||||
shell: pwsh
|
|
||||||
run: |
|
|
||||||
mkdir workspace
|
|
||||||
Get-ChildItem -Exclude "workspace" | Copy-Item -Destination workspace -Recurse
|
|
||||||
Remove-Item -Path workspace/.git* -Recurse -Force -ErrorAction SilentlyContinue
|
|
||||||
Copy-Item gpt.tar.gz workspace/ -Force
|
|
||||||
|
|
||||||
- name: Upload packed files
|
|
||||||
uses: actions/upload-artifact@v4
|
|
||||||
with:
|
|
||||||
name: gpt-academic-package
|
|
||||||
path: workspace
|
|
||||||
7
.github/workflows/stale.yml
vendored
7
.github/workflows/stale.yml
vendored
@@ -7,7 +7,7 @@
|
|||||||
name: 'Close stale issues and PRs'
|
name: 'Close stale issues and PRs'
|
||||||
on:
|
on:
|
||||||
schedule:
|
schedule:
|
||||||
- cron: '*/30 * * * *'
|
- cron: '*/5 * * * *'
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
stale:
|
stale:
|
||||||
@@ -19,6 +19,7 @@ jobs:
|
|||||||
steps:
|
steps:
|
||||||
- uses: actions/stale@v8
|
- uses: actions/stale@v8
|
||||||
with:
|
with:
|
||||||
stale-issue-message: 'This issue is stale because it has been open 100 days with no activity. Remove stale label or comment or this will be closed in 7 days.'
|
stale-issue-message: 'This issue is stale because it has been open 100 days with no activity. Remove stale label or comment or this will be closed in 1 days.'
|
||||||
days-before-stale: 100
|
days-before-stale: 100
|
||||||
days-before-close: 7
|
days-before-close: 1
|
||||||
|
debug-only: true
|
||||||
|
|||||||
10
.gitignore
vendored
10
.gitignore
vendored
@@ -131,9 +131,6 @@ dmypy.json
|
|||||||
# Pyre type checker
|
# Pyre type checker
|
||||||
.pyre/
|
.pyre/
|
||||||
|
|
||||||
# macOS files
|
|
||||||
.DS_Store
|
|
||||||
|
|
||||||
.vscode
|
.vscode
|
||||||
.idea
|
.idea
|
||||||
|
|
||||||
@@ -156,10 +153,3 @@ media
|
|||||||
flagged
|
flagged
|
||||||
request_llms/ChatGLM-6b-onnx-u8s8
|
request_llms/ChatGLM-6b-onnx-u8s8
|
||||||
.pre-commit-config.yaml
|
.pre-commit-config.yaml
|
||||||
test.*
|
|
||||||
temp.*
|
|
||||||
objdump*
|
|
||||||
*.min.*.js
|
|
||||||
TODO
|
|
||||||
experimental_mods
|
|
||||||
search_results
|
|
||||||
|
|||||||
@@ -12,17 +12,11 @@ RUN echo '[global]' > /etc/pip.conf && \
|
|||||||
echo 'trusted-host = mirrors.aliyun.com' >> /etc/pip.conf
|
echo 'trusted-host = mirrors.aliyun.com' >> /etc/pip.conf
|
||||||
|
|
||||||
|
|
||||||
# 语音输出功能(以下两行,第一行更换阿里源,第二行安装ffmpeg,都可以删除)
|
|
||||||
RUN UBUNTU_VERSION=$(awk -F= '/^VERSION_CODENAME=/{print $2}' /etc/os-release); echo "deb https://mirrors.aliyun.com/debian/ $UBUNTU_VERSION main non-free contrib" > /etc/apt/sources.list; apt-get update
|
|
||||||
RUN apt-get install ffmpeg -y
|
|
||||||
RUN apt-get clean
|
|
||||||
|
|
||||||
|
|
||||||
# 进入工作路径(必要)
|
# 进入工作路径(必要)
|
||||||
WORKDIR /gpt
|
WORKDIR /gpt
|
||||||
|
|
||||||
|
|
||||||
# 安装大部分依赖,利用Docker缓存加速以后的构建 (以下两行,可以删除)
|
# 安装大部分依赖,利用Docker缓存加速以后的构建 (以下三行,可以删除)
|
||||||
COPY requirements.txt ./
|
COPY requirements.txt ./
|
||||||
RUN pip3 install -r requirements.txt
|
RUN pip3 install -r requirements.txt
|
||||||
|
|
||||||
@@ -34,7 +28,6 @@ RUN pip3 install -r requirements.txt
|
|||||||
|
|
||||||
# 非必要步骤,用于预热模块(可以删除)
|
# 非必要步骤,用于预热模块(可以删除)
|
||||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||||
RUN python3 -m pip cache purge
|
|
||||||
|
|
||||||
|
|
||||||
# 启动(必要)
|
# 启动(必要)
|
||||||
|
|||||||
58
README.md
58
README.md
@@ -1,13 +1,7 @@
|
|||||||
> [!IMPORTANT]
|
> [!IMPORTANT]
|
||||||
> `master主分支`最新动态(2025.2.4): 增加deepseek-r1支持
|
> 2024.1.18: 更新3.70版本,支持Mermaid绘图库(让大模型绘制脑图)
|
||||||
> `frontier开发分支`最新动态(2024.12.9): 更新对话时间线功能,优化xelatex论文翻译
|
> 2024.1.17: 恭迎GLM4,全力支持Qwen、GLM、DeepseekCoder等国内中文大语言基座模型!
|
||||||
> `wiki文档`最新动态(2024.12.5): 更新ollama接入指南
|
> 2024.1.17: 某些依赖包尚不兼容python 3.12,推荐python 3.11。
|
||||||
>
|
|
||||||
> 2025.2.2: 三分钟快速接入最强qwen2.5-max[视频](https://www.bilibili.com/video/BV1LeFuerEG4)
|
|
||||||
> 2025.2.1: 支持自定义字体
|
|
||||||
> 2024.10.10: 突发停电,紧急恢复了提供[whl包](https://drive.google.com/drive/folders/14kR-3V-lIbvGxri4AHc8TpiA1fqsw7SK?usp=sharing)的文件服务器
|
|
||||||
> 2024.5.1: 加入Doc2x翻译PDF论文的功能,[查看详情](https://github.com/binary-husky/gpt_academic/wiki/Doc2x)
|
|
||||||
> 2024.3.11: 全力支持Qwen、GLM、DeepseekCoder等中文大语言模型! SoVits语音克隆模块,[查看详情](https://www.bilibili.com/video/BV1Rp421S7tF/)
|
|
||||||
> 2024.1.17: 安装依赖时,请选择`requirements.txt`中**指定的版本**。 安装命令:`pip install -r requirements.txt`。本项目完全开源免费,您可通过订阅[在线服务](https://github.com/binary-husky/gpt_academic/wiki/online)的方式鼓励本项目的发展。
|
> 2024.1.17: 安装依赖时,请选择`requirements.txt`中**指定的版本**。 安装命令:`pip install -r requirements.txt`。本项目完全开源免费,您可通过订阅[在线服务](https://github.com/binary-husky/gpt_academic/wiki/online)的方式鼓励本项目的发展。
|
||||||
|
|
||||||
<br>
|
<br>
|
||||||
@@ -73,7 +67,7 @@ Read this in [English](docs/README.English.md) | [日本語](docs/README.Japanes
|
|||||||
读论文、[翻译](https://www.bilibili.com/video/BV1KT411x7Wn)论文 | [插件] 一键解读latex/pdf论文全文并生成摘要
|
读论文、[翻译](https://www.bilibili.com/video/BV1KT411x7Wn)论文 | [插件] 一键解读latex/pdf论文全文并生成摘要
|
||||||
Latex全文[翻译](https://www.bilibili.com/video/BV1nk4y1Y7Js/)、[润色](https://www.bilibili.com/video/BV1FT411H7c5/) | [插件] 一键翻译或润色latex论文
|
Latex全文[翻译](https://www.bilibili.com/video/BV1nk4y1Y7Js/)、[润色](https://www.bilibili.com/video/BV1FT411H7c5/) | [插件] 一键翻译或润色latex论文
|
||||||
批量注释生成 | [插件] 一键批量生成函数注释
|
批量注释生成 | [插件] 一键批量生成函数注释
|
||||||
Markdown[中英互译](https://www.bilibili.com/video/BV1yo4y157jV/) | [插件] 看到上面5种语言的[README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README.English.md)了吗?就是出自他的手笔
|
Markdown[中英互译](https://www.bilibili.com/video/BV1yo4y157jV/) | [插件] 看到上面5种语言的[README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md)了吗?就是出自他的手笔
|
||||||
[PDF论文全文翻译功能](https://www.bilibili.com/video/BV1KT411x7Wn) | [插件] PDF论文提取题目&摘要+翻译全文(多线程)
|
[PDF论文全文翻译功能](https://www.bilibili.com/video/BV1KT411x7Wn) | [插件] PDF论文提取题目&摘要+翻译全文(多线程)
|
||||||
[Arxiv小助手](https://www.bilibili.com/video/BV1LM4y1279X) | [插件] 输入arxiv文章url即可一键翻译摘要+下载PDF
|
[Arxiv小助手](https://www.bilibili.com/video/BV1LM4y1279X) | [插件] 输入arxiv文章url即可一键翻译摘要+下载PDF
|
||||||
Latex论文一键校对 | [插件] 仿Grammarly对Latex文章进行语法、拼写纠错+输出对照PDF
|
Latex论文一键校对 | [插件] 仿Grammarly对Latex文章进行语法、拼写纠错+输出对照PDF
|
||||||
@@ -93,10 +87,6 @@ Latex论文一键校对 | [插件] 仿Grammarly对Latex文章进行语法、拼
|
|||||||
<img src="https://user-images.githubusercontent.com/96192199/279702205-d81137c3-affd-4cd1-bb5e-b15610389762.gif" width="700" >
|
<img src="https://user-images.githubusercontent.com/96192199/279702205-d81137c3-affd-4cd1-bb5e-b15610389762.gif" width="700" >
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
<div align="center">
|
|
||||||
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/70ff1ec5-e589-4561-a29e-b831079b37fb.gif" width="700" >
|
|
||||||
</div>
|
|
||||||
|
|
||||||
|
|
||||||
- 所有按钮都通过读取functional.py动态生成,可随意加自定义功能,解放剪贴板
|
- 所有按钮都通过读取functional.py动态生成,可随意加自定义功能,解放剪贴板
|
||||||
<div align="center">
|
<div align="center">
|
||||||
@@ -129,20 +119,20 @@ Latex论文一键校对 | [插件] 仿Grammarly对Latex文章进行语法、拼
|
|||||||
|
|
||||||
```mermaid
|
```mermaid
|
||||||
flowchart TD
|
flowchart TD
|
||||||
A{"安装方法"} --> W1("I 🔑直接运行 (Windows, Linux or MacOS)")
|
A{"安装方法"} --> W1("I. 🔑直接运行 (Windows, Linux or MacOS)")
|
||||||
W1 --> W11["1 Python pip包管理依赖"]
|
W1 --> W11["1. Python pip包管理依赖"]
|
||||||
W1 --> W12["2 Anaconda包管理依赖(推荐⭐)"]
|
W1 --> W12["2. Anaconda包管理依赖(推荐⭐)"]
|
||||||
|
|
||||||
A --> W2["II 🐳使用Docker (Windows, Linux or MacOS)"]
|
A --> W2["II. 🐳使用Docker (Windows, Linux or MacOS)"]
|
||||||
|
|
||||||
W2 --> k1["1 部署项目全部能力的大镜像(推荐⭐)"]
|
W2 --> k1["1. 部署项目全部能力的大镜像(推荐⭐)"]
|
||||||
W2 --> k2["2 仅在线模型(GPT, GLM4等)镜像"]
|
W2 --> k2["2. 仅在线模型(GPT, GLM4等)镜像"]
|
||||||
W2 --> k3["3 在线模型 + Latex的大镜像"]
|
W2 --> k3["3. 在线模型 + Latex的大镜像"]
|
||||||
|
|
||||||
A --> W4["IV 🚀其他部署方法"]
|
A --> W4["IV. 🚀其他部署方法"]
|
||||||
W4 --> C1["1 Windows/MacOS 一键安装运行脚本(推荐⭐)"]
|
W4 --> C1["1. Windows/MacOS 一键安装运行脚本(推荐⭐)"]
|
||||||
W4 --> C2["2 Huggingface, Sealos远程部署"]
|
W4 --> C2["2. Huggingface, Sealos远程部署"]
|
||||||
W4 --> C4["3 其他 ..."]
|
W4 --> C4["3. ... 其他 ..."]
|
||||||
```
|
```
|
||||||
|
|
||||||
### 安装方法I:直接运行 (Windows, Linux or MacOS)
|
### 安装方法I:直接运行 (Windows, Linux or MacOS)
|
||||||
@@ -175,32 +165,26 @@ flowchart TD
|
|||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
<details><summary>如果需要支持清华ChatGLM系列/复旦MOSS/RWKV作为后端,请点击展开此处</summary>
|
<details><summary>如果需要支持清华ChatGLM2/复旦MOSS/RWKV作为后端,请点击展开此处</summary>
|
||||||
<p>
|
<p>
|
||||||
|
|
||||||
【可选步骤】如果需要支持清华ChatGLM系列/复旦MOSS作为后端,需要额外安装更多依赖(前提条件:熟悉Python + 用过Pytorch + 电脑配置够强):
|
【可选步骤】如果需要支持清华ChatGLM3/复旦MOSS作为后端,需要额外安装更多依赖(前提条件:熟悉Python + 用过Pytorch + 电脑配置够强):
|
||||||
|
|
||||||
```sh
|
```sh
|
||||||
# 【可选步骤I】支持清华ChatGLM3。清华ChatGLM备注:如果遇到"Call ChatGLM fail 不能正常加载ChatGLM的参数" 错误,参考如下: 1:以上默认安装的为torch+cpu版,使用cuda需要卸载torch重新安装torch+cuda; 2:如因本机配置不够无法加载模型,可以修改request_llm/bridge_chatglm.py中的模型精度, 将 AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) 都修改为 AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
|
# 【可选步骤I】支持清华ChatGLM3。清华ChatGLM备注:如果遇到"Call ChatGLM fail 不能正常加载ChatGLM的参数" 错误,参考如下: 1:以上默认安装的为torch+cpu版,使用cuda需要卸载torch重新安装torch+cuda; 2:如因本机配置不够无法加载模型,可以修改request_llm/bridge_chatglm.py中的模型精度, 将 AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) 都修改为 AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
|
||||||
python -m pip install -r request_llms/requirements_chatglm.txt
|
python -m pip install -r request_llms/requirements_chatglm.txt
|
||||||
|
|
||||||
# 【可选步骤II】支持清华ChatGLM4 注意:此模型至少需要24G显存
|
# 【可选步骤II】支持复旦MOSS
|
||||||
python -m pip install -r request_llms/requirements_chatglm4.txt
|
|
||||||
# 可使用modelscope下载ChatGLM4模型
|
|
||||||
# pip install modelscope
|
|
||||||
# modelscope download --model ZhipuAI/glm-4-9b-chat --local_dir ./THUDM/glm-4-9b-chat
|
|
||||||
|
|
||||||
# 【可选步骤III】支持复旦MOSS
|
|
||||||
python -m pip install -r request_llms/requirements_moss.txt
|
python -m pip install -r request_llms/requirements_moss.txt
|
||||||
git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llms/moss # 注意执行此行代码时,必须处于项目根路径
|
git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llms/moss # 注意执行此行代码时,必须处于项目根路径
|
||||||
|
|
||||||
# 【可选步骤IV】支持RWKV Runner
|
# 【可选步骤III】支持RWKV Runner
|
||||||
参考wiki:https://github.com/binary-husky/gpt_academic/wiki/%E9%80%82%E9%85%8DRWKV-Runner
|
参考wiki:https://github.com/binary-husky/gpt_academic/wiki/%E9%80%82%E9%85%8DRWKV-Runner
|
||||||
|
|
||||||
# 【可选步骤V】确保config.py配置文件的AVAIL_LLM_MODELS包含了期望的模型,目前支持的全部模型如下(jittorllms系列目前仅支持docker方案):
|
# 【可选步骤IV】确保config.py配置文件的AVAIL_LLM_MODELS包含了期望的模型,目前支持的全部模型如下(jittorllms系列目前仅支持docker方案):
|
||||||
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
|
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
|
||||||
|
|
||||||
# 【可选步骤VI】支持本地模型INT8,INT4量化(这里所指的模型本身不是量化版本,目前deepseek-coder支持,后面测试后会加入更多模型量化选择)
|
# 【可选步骤V】支持本地模型INT8,INT4量化(这里所指的模型本身不是量化版本,目前deepseek-coder支持,后面测试后会加入更多模型量化选择)
|
||||||
pip install bitsandbyte
|
pip install bitsandbyte
|
||||||
# windows用户安装bitsandbytes需要使用下面bitsandbytes-windows-webui
|
# windows用户安装bitsandbytes需要使用下面bitsandbytes-windows-webui
|
||||||
python -m pip install bitsandbytes --prefer-binary --extra-index-url=https://jllllll.github.io/bitsandbytes-windows-webui
|
python -m pip install bitsandbytes --prefer-binary --extra-index-url=https://jllllll.github.io/bitsandbytes-windows-webui
|
||||||
|
|||||||
149
check_proxy.py
149
check_proxy.py
@@ -1,77 +1,37 @@
|
|||||||
from loguru import logger
|
|
||||||
|
|
||||||
def check_proxy(proxies, return_ip=False):
|
def check_proxy(proxies):
|
||||||
"""
|
|
||||||
检查代理配置并返回结果。
|
|
||||||
|
|
||||||
Args:
|
|
||||||
proxies (dict): 包含http和https代理配置的字典。
|
|
||||||
return_ip (bool, optional): 是否返回代理的IP地址。默认为False。
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
str or None: 检查的结果信息或代理的IP地址(如果`return_ip`为True)。
|
|
||||||
"""
|
|
||||||
import requests
|
import requests
|
||||||
proxies_https = proxies['https'] if proxies is not None else '无'
|
proxies_https = proxies['https'] if proxies is not None else '无'
|
||||||
ip = None
|
|
||||||
try:
|
try:
|
||||||
response = requests.get("https://ipapi.co/json/", proxies=proxies, timeout=4) # ⭐ 执行GET请求以获取代理信息
|
response = requests.get("https://ipapi.co/json/", proxies=proxies, timeout=4)
|
||||||
data = response.json()
|
data = response.json()
|
||||||
if 'country_name' in data:
|
if 'country_name' in data:
|
||||||
country = data['country_name']
|
country = data['country_name']
|
||||||
result = f"代理配置 {proxies_https}, 代理所在地:{country}"
|
result = f"代理配置 {proxies_https}, 代理所在地:{country}"
|
||||||
if 'ip' in data:
|
|
||||||
ip = data['ip']
|
|
||||||
elif 'error' in data:
|
elif 'error' in data:
|
||||||
alternative, ip = _check_with_backup_source(proxies) # ⭐ 调用备用方法检查代理配置
|
alternative = _check_with_backup_source(proxies)
|
||||||
if alternative is None:
|
if alternative is None:
|
||||||
result = f"代理配置 {proxies_https}, 代理所在地:未知,IP查询频率受限"
|
result = f"代理配置 {proxies_https}, 代理所在地:未知,IP查询频率受限"
|
||||||
else:
|
else:
|
||||||
result = f"代理配置 {proxies_https}, 代理所在地:{alternative}"
|
result = f"代理配置 {proxies_https}, 代理所在地:{alternative}"
|
||||||
else:
|
else:
|
||||||
result = f"代理配置 {proxies_https}, 代理数据解析失败:{data}"
|
result = f"代理配置 {proxies_https}, 代理数据解析失败:{data}"
|
||||||
|
print(result)
|
||||||
if not return_ip:
|
|
||||||
logger.warning(result)
|
|
||||||
return result
|
return result
|
||||||
else:
|
|
||||||
return ip
|
|
||||||
except:
|
except:
|
||||||
result = f"代理配置 {proxies_https}, 代理所在地查询超时,代理可能无效"
|
result = f"代理配置 {proxies_https}, 代理所在地查询超时,代理可能无效"
|
||||||
if not return_ip:
|
print(result)
|
||||||
logger.warning(result)
|
|
||||||
return result
|
return result
|
||||||
else:
|
|
||||||
return ip
|
|
||||||
|
|
||||||
def _check_with_backup_source(proxies):
|
def _check_with_backup_source(proxies):
|
||||||
"""
|
|
||||||
通过备份源检查代理,并获取相应信息。
|
|
||||||
|
|
||||||
Args:
|
|
||||||
proxies (dict): 包含代理信息的字典。
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
tuple: 代理信息(geo)和IP地址(ip)的元组。
|
|
||||||
"""
|
|
||||||
import random, string, requests
|
import random, string, requests
|
||||||
random_string = ''.join(random.choices(string.ascii_letters + string.digits, k=32))
|
random_string = ''.join(random.choices(string.ascii_letters + string.digits, k=32))
|
||||||
try:
|
try: return requests.get(f"http://{random_string}.edns.ip-api.com/json", proxies=proxies, timeout=4).json()['dns']['geo']
|
||||||
res_json = requests.get(f"http://{random_string}.edns.ip-api.com/json", proxies=proxies, timeout=4).json() # ⭐ 执行代理检查和备份源请求
|
except: return None
|
||||||
return res_json['dns']['geo'], res_json['dns']['ip']
|
|
||||||
except:
|
|
||||||
return None, None
|
|
||||||
|
|
||||||
def backup_and_download(current_version, remote_version):
|
def backup_and_download(current_version, remote_version):
|
||||||
"""
|
"""
|
||||||
一键更新协议:备份当前版本,下载远程版本并解压缩。
|
一键更新协议:备份和下载
|
||||||
|
|
||||||
Args:
|
|
||||||
current_version (str): 当前版本号。
|
|
||||||
remote_version (str): 远程版本号。
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
str: 新版本目录的路径。
|
|
||||||
"""
|
"""
|
||||||
from toolbox import get_conf
|
from toolbox import get_conf
|
||||||
import shutil
|
import shutil
|
||||||
@@ -87,8 +47,8 @@ def backup_and_download(current_version, remote_version):
|
|||||||
shutil.copytree('./', backup_dir, ignore=lambda x, y: ['history'])
|
shutil.copytree('./', backup_dir, ignore=lambda x, y: ['history'])
|
||||||
proxies = get_conf('proxies')
|
proxies = get_conf('proxies')
|
||||||
try: r = requests.get('https://github.com/binary-husky/chatgpt_academic/archive/refs/heads/master.zip', proxies=proxies, stream=True)
|
try: r = requests.get('https://github.com/binary-husky/chatgpt_academic/archive/refs/heads/master.zip', proxies=proxies, stream=True)
|
||||||
except: r = requests.get('https://public.agent-matrix.com/publish/master.zip', proxies=proxies, stream=True)
|
except: r = requests.get('https://public.gpt-academic.top/publish/master.zip', proxies=proxies, stream=True)
|
||||||
zip_file_path = backup_dir+'/master.zip' # ⭐ 保存备份文件的路径
|
zip_file_path = backup_dir+'/master.zip'
|
||||||
with open(zip_file_path, 'wb+') as f:
|
with open(zip_file_path, 'wb+') as f:
|
||||||
f.write(r.content)
|
f.write(r.content)
|
||||||
dst_path = new_version_dir
|
dst_path = new_version_dir
|
||||||
@@ -104,17 +64,6 @@ def backup_and_download(current_version, remote_version):
|
|||||||
def patch_and_restart(path):
|
def patch_and_restart(path):
|
||||||
"""
|
"""
|
||||||
一键更新协议:覆盖和重启
|
一键更新协议:覆盖和重启
|
||||||
|
|
||||||
Args:
|
|
||||||
path (str): 新版本代码所在的路径
|
|
||||||
|
|
||||||
注意事项:
|
|
||||||
如果您的程序没有使用config_private.py私密配置文件,则会将config.py重命名为config_private.py以避免配置丢失。
|
|
||||||
|
|
||||||
更新流程:
|
|
||||||
- 复制最新版本代码到当前目录
|
|
||||||
- 更新pip包依赖
|
|
||||||
- 如果更新失败,则提示手动安装依赖库并重启
|
|
||||||
"""
|
"""
|
||||||
from distutils import dir_util
|
from distutils import dir_util
|
||||||
import shutil
|
import shutil
|
||||||
@@ -122,44 +71,33 @@ def patch_and_restart(path):
|
|||||||
import sys
|
import sys
|
||||||
import time
|
import time
|
||||||
import glob
|
import glob
|
||||||
from shared_utils.colorful import log亮黄, log亮绿, log亮红
|
from colorful import print亮黄, print亮绿, print亮红
|
||||||
|
# if not using config_private, move origin config.py as config_private.py
|
||||||
if not os.path.exists('config_private.py'):
|
if not os.path.exists('config_private.py'):
|
||||||
log亮黄('由于您没有设置config_private.py私密配置,现将您的现有配置移动至config_private.py以防止配置丢失,',
|
print亮黄('由于您没有设置config_private.py私密配置,现将您的现有配置移动至config_private.py以防止配置丢失,',
|
||||||
'另外您可以随时在history子文件夹下找回旧版的程序。')
|
'另外您可以随时在history子文件夹下找回旧版的程序。')
|
||||||
shutil.copyfile('config.py', 'config_private.py')
|
shutil.copyfile('config.py', 'config_private.py')
|
||||||
|
|
||||||
path_new_version = glob.glob(path + '/*-master')[0]
|
path_new_version = glob.glob(path + '/*-master')[0]
|
||||||
dir_util.copy_tree(path_new_version, './') # ⭐ 将最新版本代码复制到当前目录
|
dir_util.copy_tree(path_new_version, './')
|
||||||
|
print亮绿('代码已经更新,即将更新pip包依赖……')
|
||||||
log亮绿('代码已经更新,即将更新pip包依赖……')
|
for i in reversed(range(5)): time.sleep(1); print(i)
|
||||||
for i in reversed(range(5)): time.sleep(1); log亮绿(i)
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
import subprocess
|
import subprocess
|
||||||
subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-r', 'requirements.txt'])
|
subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-r', 'requirements.txt'])
|
||||||
except:
|
except:
|
||||||
log亮红('pip包依赖安装出现问题,需要手动安装新增的依赖库 `python -m pip install -r requirements.txt`,然后在用常规的`python main.py`的方式启动。')
|
print亮红('pip包依赖安装出现问题,需要手动安装新增的依赖库 `python -m pip install -r requirements.txt`,然后在用常规的`python main.py`的方式启动。')
|
||||||
|
print亮绿('更新完成,您可以随时在history子文件夹下找回旧版的程序,5s之后重启')
|
||||||
log亮绿('更新完成,您可以随时在history子文件夹下找回旧版的程序,5s之后重启')
|
print亮红('假如重启失败,您可能需要手动安装新增的依赖库 `python -m pip install -r requirements.txt`,然后在用常规的`python main.py`的方式启动。')
|
||||||
log亮红('假如重启失败,您可能需要手动安装新增的依赖库 `python -m pip install -r requirements.txt`,然后在用常规的`python main.py`的方式启动。')
|
print(' ------------------------------ -----------------------------------')
|
||||||
log亮绿(' ------------------------------ -----------------------------------')
|
for i in reversed(range(8)): time.sleep(1); print(i)
|
||||||
|
os.execl(sys.executable, sys.executable, *sys.argv)
|
||||||
for i in reversed(range(8)): time.sleep(1); log亮绿(i)
|
|
||||||
os.execl(sys.executable, sys.executable, *sys.argv) # 重启程序
|
|
||||||
|
|
||||||
|
|
||||||
def get_current_version():
|
def get_current_version():
|
||||||
"""
|
|
||||||
获取当前的版本号。
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
str: 当前的版本号。如果无法获取版本号,则返回空字符串。
|
|
||||||
"""
|
|
||||||
import json
|
import json
|
||||||
try:
|
try:
|
||||||
with open('./version', 'r', encoding='utf8') as f:
|
with open('./version', 'r', encoding='utf8') as f:
|
||||||
current_version = json.loads(f.read())['version'] # ⭐ 从读取的json数据中提取版本号
|
current_version = json.loads(f.read())['version']
|
||||||
except:
|
except:
|
||||||
current_version = ""
|
current_version = ""
|
||||||
return current_version
|
return current_version
|
||||||
@@ -168,12 +106,6 @@ def get_current_version():
|
|||||||
def auto_update(raise_error=False):
|
def auto_update(raise_error=False):
|
||||||
"""
|
"""
|
||||||
一键更新协议:查询版本和用户意见
|
一键更新协议:查询版本和用户意见
|
||||||
|
|
||||||
Args:
|
|
||||||
raise_error (bool, optional): 是否在出错时抛出错误。默认为 False。
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
None
|
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
from toolbox import get_conf
|
from toolbox import get_conf
|
||||||
@@ -181,7 +113,7 @@ def auto_update(raise_error=False):
|
|||||||
import json
|
import json
|
||||||
proxies = get_conf('proxies')
|
proxies = get_conf('proxies')
|
||||||
try: response = requests.get("https://raw.githubusercontent.com/binary-husky/chatgpt_academic/master/version", proxies=proxies, timeout=5)
|
try: response = requests.get("https://raw.githubusercontent.com/binary-husky/chatgpt_academic/master/version", proxies=proxies, timeout=5)
|
||||||
except: response = requests.get("https://public.agent-matrix.com/publish/version", proxies=proxies, timeout=5)
|
except: response = requests.get("https://public.gpt-academic.top/publish/version", proxies=proxies, timeout=5)
|
||||||
remote_json_data = json.loads(response.text)
|
remote_json_data = json.loads(response.text)
|
||||||
remote_version = remote_json_data['version']
|
remote_version = remote_json_data['version']
|
||||||
if remote_json_data["show_feature"]:
|
if remote_json_data["show_feature"]:
|
||||||
@@ -192,22 +124,22 @@ def auto_update(raise_error=False):
|
|||||||
current_version = f.read()
|
current_version = f.read()
|
||||||
current_version = json.loads(current_version)['version']
|
current_version = json.loads(current_version)['version']
|
||||||
if (remote_version - current_version) >= 0.01-1e-5:
|
if (remote_version - current_version) >= 0.01-1e-5:
|
||||||
from shared_utils.colorful import log亮黄
|
from colorful import print亮黄
|
||||||
log亮黄(f'\n新版本可用。新版本:{remote_version},当前版本:{current_version}。{new_feature}') # ⭐ 在控制台打印新版本信息
|
print亮黄(f'\n新版本可用。新版本:{remote_version},当前版本:{current_version}。{new_feature}')
|
||||||
logger.info('(1)Github更新地址:\nhttps://github.com/binary-husky/chatgpt_academic\n')
|
print('(1)Github更新地址:\nhttps://github.com/binary-husky/chatgpt_academic\n')
|
||||||
user_instruction = input('(2)是否一键更新代码(Y+回车=确认,输入其他/无输入+回车=不更新)?')
|
user_instruction = input('(2)是否一键更新代码(Y+回车=确认,输入其他/无输入+回车=不更新)?')
|
||||||
if user_instruction in ['Y', 'y']:
|
if user_instruction in ['Y', 'y']:
|
||||||
path = backup_and_download(current_version, remote_version) # ⭐ 备份并下载文件
|
path = backup_and_download(current_version, remote_version)
|
||||||
try:
|
try:
|
||||||
patch_and_restart(path) # ⭐ 执行覆盖并重启操作
|
patch_and_restart(path)
|
||||||
except:
|
except:
|
||||||
msg = '更新失败。'
|
msg = '更新失败。'
|
||||||
if raise_error:
|
if raise_error:
|
||||||
from toolbox import trimmed_format_exc
|
from toolbox import trimmed_format_exc
|
||||||
msg += trimmed_format_exc()
|
msg += trimmed_format_exc()
|
||||||
logger.warning(msg)
|
print(msg)
|
||||||
else:
|
else:
|
||||||
logger.info('自动更新程序:已禁用')
|
print('自动更新程序:已禁用')
|
||||||
return
|
return
|
||||||
else:
|
else:
|
||||||
return
|
return
|
||||||
@@ -216,13 +148,10 @@ def auto_update(raise_error=False):
|
|||||||
if raise_error:
|
if raise_error:
|
||||||
from toolbox import trimmed_format_exc
|
from toolbox import trimmed_format_exc
|
||||||
msg += trimmed_format_exc()
|
msg += trimmed_format_exc()
|
||||||
logger.info(msg)
|
print(msg)
|
||||||
|
|
||||||
def warm_up_modules():
|
def warm_up_modules():
|
||||||
"""
|
print('正在执行一些模块的预热 ...')
|
||||||
预热模块,加载特定模块并执行预热操作。
|
|
||||||
"""
|
|
||||||
logger.info('正在执行一些模块的预热 ...')
|
|
||||||
from toolbox import ProxyNetworkActivate
|
from toolbox import ProxyNetworkActivate
|
||||||
from request_llms.bridge_all import model_info
|
from request_llms.bridge_all import model_info
|
||||||
with ProxyNetworkActivate("Warmup_Modules"):
|
with ProxyNetworkActivate("Warmup_Modules"):
|
||||||
@@ -232,17 +161,7 @@ def warm_up_modules():
|
|||||||
enc.encode("模块预热", disallowed_special=())
|
enc.encode("模块预热", disallowed_special=())
|
||||||
|
|
||||||
def warm_up_vectordb():
|
def warm_up_vectordb():
|
||||||
"""
|
print('正在执行一些模块的预热 ...')
|
||||||
执行一些模块的预热操作。
|
|
||||||
|
|
||||||
本函数主要用于执行一些模块的预热操作,确保在后续的流程中能够顺利运行。
|
|
||||||
|
|
||||||
⭐ 关键作用:预热模块
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
None
|
|
||||||
"""
|
|
||||||
logger.info('正在执行一些模块的预热 ...')
|
|
||||||
from toolbox import ProxyNetworkActivate
|
from toolbox import ProxyNetworkActivate
|
||||||
with ProxyNetworkActivate("Warmup_Modules"):
|
with ProxyNetworkActivate("Warmup_Modules"):
|
||||||
import nltk
|
import nltk
|
||||||
|
|||||||
@@ -1,6 +1,5 @@
|
|||||||
import platform
|
import platform
|
||||||
from sys import stdout
|
from sys import stdout
|
||||||
from loguru import logger
|
|
||||||
|
|
||||||
if platform.system()=="Linux":
|
if platform.system()=="Linux":
|
||||||
pass
|
pass
|
||||||
@@ -60,29 +59,3 @@ def sprint亮紫(*kw):
|
|||||||
return "\033[1;35m"+' '.join(kw)+"\033[0m"
|
return "\033[1;35m"+' '.join(kw)+"\033[0m"
|
||||||
def sprint亮靛(*kw):
|
def sprint亮靛(*kw):
|
||||||
return "\033[1;36m"+' '.join(kw)+"\033[0m"
|
return "\033[1;36m"+' '.join(kw)+"\033[0m"
|
||||||
|
|
||||||
def log红(*kw,**kargs):
|
|
||||||
logger.opt(depth=1).info(sprint红(*kw))
|
|
||||||
def log绿(*kw,**kargs):
|
|
||||||
logger.opt(depth=1).info(sprint绿(*kw))
|
|
||||||
def log黄(*kw,**kargs):
|
|
||||||
logger.opt(depth=1).info(sprint黄(*kw))
|
|
||||||
def log蓝(*kw,**kargs):
|
|
||||||
logger.opt(depth=1).info(sprint蓝(*kw))
|
|
||||||
def log紫(*kw,**kargs):
|
|
||||||
logger.opt(depth=1).info(sprint紫(*kw))
|
|
||||||
def log靛(*kw,**kargs):
|
|
||||||
logger.opt(depth=1).info(sprint靛(*kw))
|
|
||||||
|
|
||||||
def log亮红(*kw,**kargs):
|
|
||||||
logger.opt(depth=1).info(sprint亮红(*kw))
|
|
||||||
def log亮绿(*kw,**kargs):
|
|
||||||
logger.opt(depth=1).info(sprint亮绿(*kw))
|
|
||||||
def log亮黄(*kw,**kargs):
|
|
||||||
logger.opt(depth=1).info(sprint亮黄(*kw))
|
|
||||||
def log亮蓝(*kw,**kargs):
|
|
||||||
logger.opt(depth=1).info(sprint亮蓝(*kw))
|
|
||||||
def log亮紫(*kw,**kargs):
|
|
||||||
logger.opt(depth=1).info(sprint亮紫(*kw))
|
|
||||||
def log亮靛(*kw,**kargs):
|
|
||||||
logger.opt(depth=1).info(sprint亮靛(*kw))
|
|
||||||
188
config.py
188
config.py
@@ -7,16 +7,11 @@
|
|||||||
Configuration reading priority: environment variable > config_private.py > config.py
|
Configuration reading priority: environment variable > config_private.py > config.py
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# [step 1-1]>> ( 接入GPT等模型 ) API_KEY = "sk-123456789xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx123456789"。极少数情况下,还需要填写组织(格式如org-123456789abcdefghijklmno的),请向下翻,找 API_ORG 设置项
|
# [step 1]>> API_KEY = "sk-123456789xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx123456789"。极少数情况下,还需要填写组织(格式如org-123456789abcdefghijklmno的),请向下翻,找 API_ORG 设置项
|
||||||
API_KEY = "在此处填写APIKEY" # 可同时填写多个API-KEY,用英文逗号分割,例如API_KEY = "sk-openaikey1,sk-openaikey2,fkxxxx-api2dkey3,azure-apikey4"
|
API_KEY = "此处填API密钥" # 可同时填写多个API-KEY,用英文逗号分割,例如API_KEY = "sk-openaikey1,sk-openaikey2,fkxxxx-api2dkey3,azure-apikey4"
|
||||||
|
|
||||||
# [step 1-2]>> ( 接入通义 qwen-max ) 接入通义千问在线大模型,api-key获取地址 https://dashscope.console.aliyun.com/
|
|
||||||
DASHSCOPE_API_KEY = "" # 阿里灵积云API_KEY
|
|
||||||
|
|
||||||
# [step 1-3]>> ( 接入 deepseek-reasoner, 即 deepseek-r1 ) 深度求索(DeepSeek) API KEY,默认请求地址为"https://api.deepseek.com/v1/chat/completions"
|
# [step 2]>> 改为True应用代理,如果直接在海外服务器部署,此处不修改;如果使用本地或无地域限制的大模型时,此处也不需要修改
|
||||||
DEEPSEEK_API_KEY = "sk-d99b8cc6b7414cc88a5d950a3ff7585e"
|
|
||||||
|
|
||||||
# [step 2]>> 改为True应用代理。如果使用本地或无地域限制的大模型时,此处不修改;如果直接在海外服务器部署,此处不修改
|
|
||||||
USE_PROXY = False
|
USE_PROXY = False
|
||||||
if USE_PROXY:
|
if USE_PROXY:
|
||||||
"""
|
"""
|
||||||
@@ -35,47 +30,11 @@ if USE_PROXY:
|
|||||||
else:
|
else:
|
||||||
proxies = None
|
proxies = None
|
||||||
|
|
||||||
# [step 3]>> 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
|
# ------------------------------------ 以下配置可以优化体验, 但大部分场合下并不需要修改 ------------------------------------
|
||||||
LLM_MODEL = "gpt-3.5-turbo-16k" # 可选 ↓↓↓
|
|
||||||
AVAIL_LLM_MODELS = ["qwen-max", "o1-mini", "o1-mini-2024-09-12", "o1", "o1-2024-12-17", "o1-preview", "o1-preview-2024-09-12",
|
|
||||||
"gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-preview",
|
|
||||||
"gpt-4o", "gpt-4o-mini", "gpt-4-turbo", "gpt-4-turbo-2024-04-09",
|
|
||||||
"gpt-3.5-turbo-1106", "gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
|
|
||||||
"gpt-4", "gpt-4-32k", "azure-gpt-4", "glm-4", "glm-4v", "glm-3-turbo",
|
|
||||||
"gemini-1.5-pro", "chatglm3", "chatglm4",
|
|
||||||
"deepseek-chat", "deepseek-coder", "deepseek-reasoner"
|
|
||||||
]
|
|
||||||
|
|
||||||
EMBEDDING_MODEL = "text-embedding-3-small"
|
|
||||||
|
|
||||||
# --- --- --- ---
|
|
||||||
# P.S. 其他可用的模型还包括
|
|
||||||
# AVAIL_LLM_MODELS = [
|
|
||||||
# "glm-4-0520", "glm-4-air", "glm-4-airx", "glm-4-flash",
|
|
||||||
# "qianfan", "deepseekcoder",
|
|
||||||
# "spark", "sparkv2", "sparkv3", "sparkv3.5", "sparkv4",
|
|
||||||
# "qwen-turbo", "qwen-plus", "qwen-local",
|
|
||||||
# "moonshot-v1-128k", "moonshot-v1-32k", "moonshot-v1-8k",
|
|
||||||
# "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-turbo-0125", "gpt-4o-2024-05-13"
|
|
||||||
# "claude-3-haiku-20240307","claude-3-sonnet-20240229","claude-3-opus-20240229", "claude-2.1", "claude-instant-1.2",
|
|
||||||
# "moss", "llama2", "chatglm_onnx", "internlm", "jittorllms_pangualpha", "jittorllms_llama",
|
|
||||||
# "deepseek-chat" ,"deepseek-coder",
|
|
||||||
# "gemini-1.5-flash",
|
|
||||||
# "yi-34b-chat-0205","yi-34b-chat-200k","yi-large","yi-medium","yi-spark","yi-large-turbo","yi-large-preview",
|
|
||||||
# "grok-beta",
|
|
||||||
# ]
|
|
||||||
# --- --- --- ---
|
|
||||||
# 此外,您还可以在接入one-api/vllm/ollama/Openroute时,
|
|
||||||
# 使用"one-api-*","vllm-*","ollama-*","openrouter-*"前缀直接使用非标准方式接入的模型,例如
|
|
||||||
# AVAIL_LLM_MODELS = ["one-api-claude-3-sonnet-20240229(max_token=100000)", "ollama-phi3(max_token=4096)","openrouter-openai/gpt-4o-mini","openrouter-openai/chatgpt-4o-latest"]
|
|
||||||
# --- --- --- ---
|
|
||||||
|
|
||||||
|
|
||||||
# --------------- 以下配置可以优化体验 ---------------
|
|
||||||
|
|
||||||
# 重新URL重新定向,实现更换API_URL的作用(高危设置! 常规情况下不要修改! 通过修改此设置,您将把您的API-KEY和对话隐私完全暴露给您设定的中间人!)
|
# 重新URL重新定向,实现更换API_URL的作用(高危设置! 常规情况下不要修改! 通过修改此设置,您将把您的API-KEY和对话隐私完全暴露给您设定的中间人!)
|
||||||
# 格式: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "在这里填写重定向的api.openai.com的URL"}
|
# 格式: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "在这里填写重定向的api.openai.com的URL"}
|
||||||
# 举例: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "https://reverse-proxy-url/v1/chat/completions", "http://localhost:11434/api/chat": "在这里填写您ollama的URL"}
|
# 举例: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "https://reverse-proxy-url/v1/chat/completions"}
|
||||||
API_URL_REDIRECT = {}
|
API_URL_REDIRECT = {}
|
||||||
|
|
||||||
|
|
||||||
@@ -89,30 +48,6 @@ DEFAULT_WORKER_NUM = 3
|
|||||||
THEME = "Default"
|
THEME = "Default"
|
||||||
AVAIL_THEMES = ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast", "Gstaff/Xkcd", "NoCrypt/Miku"]
|
AVAIL_THEMES = ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast", "Gstaff/Xkcd", "NoCrypt/Miku"]
|
||||||
|
|
||||||
FONT = "Theme-Default-Font"
|
|
||||||
AVAIL_FONTS = [
|
|
||||||
"默认值(Theme-Default-Font)",
|
|
||||||
"宋体(SimSun)",
|
|
||||||
"黑体(SimHei)",
|
|
||||||
"楷体(KaiTi)",
|
|
||||||
"仿宋(FangSong)",
|
|
||||||
"华文细黑(STHeiti Light)",
|
|
||||||
"华文楷体(STKaiti)",
|
|
||||||
"华文仿宋(STFangsong)",
|
|
||||||
"华文宋体(STSong)",
|
|
||||||
"华文中宋(STZhongsong)",
|
|
||||||
"华文新魏(STXinwei)",
|
|
||||||
"华文隶书(STLiti)",
|
|
||||||
"思源宋体(Source Han Serif CN VF@https://chinese-fonts-cdn.deno.dev/packages/syst/dist/SourceHanSerifCN/result.css)",
|
|
||||||
"月星楷(Moon Stars Kai HW@https://chinese-fonts-cdn.deno.dev/packages/moon-stars-kai/dist/MoonStarsKaiHW-Regular/result.css)",
|
|
||||||
"珠圆体(MaokenZhuyuanTi@https://chinese-fonts-cdn.deno.dev/packages/mkzyt/dist/猫啃珠圆体/result.css)",
|
|
||||||
"平方萌萌哒(PING FANG MENG MNEG DA@https://chinese-fonts-cdn.deno.dev/packages/pfmmd/dist/平方萌萌哒/result.css)",
|
|
||||||
"Helvetica",
|
|
||||||
"ui-sans-serif",
|
|
||||||
"sans-serif",
|
|
||||||
"system-ui"
|
|
||||||
]
|
|
||||||
|
|
||||||
|
|
||||||
# 默认的系统提示词(system prompt)
|
# 默认的系统提示词(system prompt)
|
||||||
INIT_SYS_PROMPT = "Serve me as a writing and programming assistant."
|
INIT_SYS_PROMPT = "Serve me as a writing and programming assistant."
|
||||||
@@ -142,10 +77,6 @@ TIMEOUT_SECONDS = 30
|
|||||||
WEB_PORT = -1
|
WEB_PORT = -1
|
||||||
|
|
||||||
|
|
||||||
# 是否自动打开浏览器页面
|
|
||||||
AUTO_OPEN_BROWSER = True
|
|
||||||
|
|
||||||
|
|
||||||
# 如果OpenAI不响应(网络卡顿、代理失败、KEY失效),重试的次数限制
|
# 如果OpenAI不响应(网络卡顿、代理失败、KEY失效),重试的次数限制
|
||||||
MAX_RETRY = 2
|
MAX_RETRY = 2
|
||||||
|
|
||||||
@@ -154,6 +85,20 @@ MAX_RETRY = 2
|
|||||||
DEFAULT_FN_GROUPS = ['对话', '编程', '学术', '智能体']
|
DEFAULT_FN_GROUPS = ['对话', '编程', '学术', '智能体']
|
||||||
|
|
||||||
|
|
||||||
|
# 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
|
||||||
|
LLM_MODEL = "gpt-3.5-turbo-16k" # 可选 ↓↓↓
|
||||||
|
AVAIL_LLM_MODELS = ["gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-preview",
|
||||||
|
"gpt-3.5-turbo-1106", "gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
|
||||||
|
"gpt-4", "gpt-4-32k", "azure-gpt-4", "glm-4", "glm-3-turbo",
|
||||||
|
"gemini-pro", "chatglm3", "claude-2"]
|
||||||
|
# P.S. 其他可用的模型还包括 [
|
||||||
|
# "moss", "qwen-turbo", "qwen-plus", "qwen-max"
|
||||||
|
# "zhipuai", "qianfan", "deepseekcoder", "llama2", "qwen-local", "gpt-3.5-turbo-0613",
|
||||||
|
# "gpt-3.5-turbo-16k-0613", "gpt-3.5-random", "api2d-gpt-3.5-turbo", 'api2d-gpt-3.5-turbo-16k',
|
||||||
|
# "spark", "sparkv2", "sparkv3", "chatglm_onnx", "claude-1-100k", "claude-2", "internlm", "jittorllms_pangualpha", "jittorllms_llama"
|
||||||
|
# ]
|
||||||
|
|
||||||
|
|
||||||
# 定义界面上“询问多个GPT模型”插件应该使用哪些模型,请从AVAIL_LLM_MODELS中选择,并在不同模型之间用`&`间隔,例如"gpt-3.5-turbo&chatglm3&azure-gpt-4"
|
# 定义界面上“询问多个GPT模型”插件应该使用哪些模型,请从AVAIL_LLM_MODELS中选择,并在不同模型之间用`&`间隔,例如"gpt-3.5-turbo&chatglm3&azure-gpt-4"
|
||||||
MULTI_QUERY_LLM_MODELS = "gpt-3.5-turbo&chatglm3"
|
MULTI_QUERY_LLM_MODELS = "gpt-3.5-turbo&chatglm3"
|
||||||
|
|
||||||
@@ -164,15 +109,16 @@ MULTI_QUERY_LLM_MODELS = "gpt-3.5-turbo&chatglm3"
|
|||||||
QWEN_LOCAL_MODEL_SELECTION = "Qwen/Qwen-1_8B-Chat-Int8"
|
QWEN_LOCAL_MODEL_SELECTION = "Qwen/Qwen-1_8B-Chat-Int8"
|
||||||
|
|
||||||
|
|
||||||
|
# 接入通义千问在线大模型 https://dashscope.console.aliyun.com/
|
||||||
|
DASHSCOPE_API_KEY = "" # 阿里灵积云API_KEY
|
||||||
|
|
||||||
|
|
||||||
# 百度千帆(LLM_MODEL="qianfan")
|
# 百度千帆(LLM_MODEL="qianfan")
|
||||||
BAIDU_CLOUD_API_KEY = ''
|
BAIDU_CLOUD_API_KEY = ''
|
||||||
BAIDU_CLOUD_SECRET_KEY = ''
|
BAIDU_CLOUD_SECRET_KEY = ''
|
||||||
BAIDU_CLOUD_QIANFAN_MODEL = 'ERNIE-Bot' # 可选 "ERNIE-Bot-4"(文心大模型4.0), "ERNIE-Bot"(文心一言), "ERNIE-Bot-turbo", "BLOOMZ-7B", "Llama-2-70B-Chat", "Llama-2-13B-Chat", "Llama-2-7B-Chat", "ERNIE-Speed-128K", "ERNIE-Speed-8K", "ERNIE-Lite-8K"
|
BAIDU_CLOUD_QIANFAN_MODEL = 'ERNIE-Bot' # 可选 "ERNIE-Bot-4"(文心大模型4.0), "ERNIE-Bot"(文心一言), "ERNIE-Bot-turbo", "BLOOMZ-7B", "Llama-2-70B-Chat", "Llama-2-13B-Chat", "Llama-2-7B-Chat"
|
||||||
|
|
||||||
|
|
||||||
# 如果使用ChatGLM3或ChatGLM4本地模型,请把 LLM_MODEL="chatglm3" 或LLM_MODEL="chatglm4",并在此处指定模型路径
|
|
||||||
CHATGLM_LOCAL_MODEL_PATH = "THUDM/glm-4-9b-chat" # 例如"/home/hmp/ChatGLM3-6B/"
|
|
||||||
|
|
||||||
# 如果使用ChatGLM2微调模型,请把 LLM_MODEL="chatglmft",并在此处指定模型路径
|
# 如果使用ChatGLM2微调模型,请把 LLM_MODEL="chatglmft",并在此处指定模型路径
|
||||||
CHATGLM_PTUNING_CHECKPOINT = "" # 例如"/home/hmp/ChatGLM2-6B/ptuning/output/6b-pt-128-1e-2/checkpoint-100"
|
CHATGLM_PTUNING_CHECKPOINT = "" # 例如"/home/hmp/ChatGLM2-6B/ptuning/output/6b-pt-128-1e-2/checkpoint-100"
|
||||||
|
|
||||||
@@ -181,7 +127,6 @@ CHATGLM_PTUNING_CHECKPOINT = "" # 例如"/home/hmp/ChatGLM2-6B/ptuning/output/6b
|
|||||||
LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
|
LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
|
||||||
LOCAL_MODEL_QUANT = "FP16" # 默认 "FP16" "INT4" 启用量化INT4版本 "INT8" 启用量化INT8版本
|
LOCAL_MODEL_QUANT = "FP16" # 默认 "FP16" "INT4" 启用量化INT4版本 "INT8" 启用量化INT8版本
|
||||||
|
|
||||||
|
|
||||||
# 设置gradio的并行线程数(不需要修改)
|
# 设置gradio的并行线程数(不需要修改)
|
||||||
CONCURRENT_COUNT = 100
|
CONCURRENT_COUNT = 100
|
||||||
|
|
||||||
@@ -199,8 +144,7 @@ ADD_WAIFU = False
|
|||||||
AUTHENTICATION = []
|
AUTHENTICATION = []
|
||||||
|
|
||||||
|
|
||||||
# 如果需要在二级路径下运行(常规情况下,不要修改!!)
|
# 如果需要在二级路径下运行(常规情况下,不要修改!!)(需要配合修改main.py才能生效!)
|
||||||
# (举例 CUSTOM_PATH = "/gpt_academic",可以让软件运行在 http://ip:port/gpt_academic/ 下。)
|
|
||||||
CUSTOM_PATH = "/"
|
CUSTOM_PATH = "/"
|
||||||
|
|
||||||
|
|
||||||
@@ -228,8 +172,14 @@ AZURE_ENGINE = "填入你亲手写的部署名" # 读 docs\use_azure.
|
|||||||
AZURE_CFG_ARRAY = {}
|
AZURE_CFG_ARRAY = {}
|
||||||
|
|
||||||
|
|
||||||
# 阿里云实时语音识别 配置难度较高
|
# 使用Newbing (不推荐使用,未来将删除)
|
||||||
# 参考 https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md
|
NEWBING_STYLE = "creative" # ["creative", "balanced", "precise"]
|
||||||
|
NEWBING_COOKIES = """
|
||||||
|
put your new bing cookies here
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
# 阿里云实时语音识别 配置难度较高 仅建议高手用户使用 参考 https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md
|
||||||
ENABLE_AUDIO = False
|
ENABLE_AUDIO = False
|
||||||
ALIYUN_TOKEN="" # 例如 f37f30e0f9934c34a992f6f64f7eba4f
|
ALIYUN_TOKEN="" # 例如 f37f30e0f9934c34a992f6f64f7eba4f
|
||||||
ALIYUN_APPKEY="" # 例如 RoPlZrM88DnAFkZK
|
ALIYUN_APPKEY="" # 例如 RoPlZrM88DnAFkZK
|
||||||
@@ -237,12 +187,6 @@ ALIYUN_ACCESSKEY="" # (无需填写)
|
|||||||
ALIYUN_SECRET="" # (无需填写)
|
ALIYUN_SECRET="" # (无需填写)
|
||||||
|
|
||||||
|
|
||||||
# GPT-SOVITS 文本转语音服务的运行地址(将语言模型的生成文本朗读出来)
|
|
||||||
TTS_TYPE = "EDGE_TTS" # EDGE_TTS / LOCAL_SOVITS_API / DISABLE
|
|
||||||
GPT_SOVITS_URL = ""
|
|
||||||
EDGE_TTS_VOICE = "zh-CN-XiaoxiaoNeural"
|
|
||||||
|
|
||||||
|
|
||||||
# 接入讯飞星火大模型 https://console.xfyun.cn/services/iat
|
# 接入讯飞星火大模型 https://console.xfyun.cn/services/iat
|
||||||
XFYUN_APPID = "00000000"
|
XFYUN_APPID = "00000000"
|
||||||
XFYUN_API_SECRET = "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"
|
XFYUN_API_SECRET = "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"
|
||||||
@@ -254,33 +198,21 @@ ZHIPUAI_API_KEY = ""
|
|||||||
ZHIPUAI_MODEL = "" # 此选项已废弃,不再需要填写
|
ZHIPUAI_MODEL = "" # 此选项已废弃,不再需要填写
|
||||||
|
|
||||||
|
|
||||||
|
# # 火山引擎YUNQUE大模型
|
||||||
|
# YUNQUE_SECRET_KEY = ""
|
||||||
|
# YUNQUE_ACCESS_KEY = ""
|
||||||
|
# YUNQUE_MODEL = ""
|
||||||
|
|
||||||
|
|
||||||
# Claude API KEY
|
# Claude API KEY
|
||||||
ANTHROPIC_API_KEY = ""
|
ANTHROPIC_API_KEY = ""
|
||||||
|
|
||||||
|
|
||||||
# 月之暗面 API KEY
|
|
||||||
MOONSHOT_API_KEY = ""
|
|
||||||
|
|
||||||
|
|
||||||
# 零一万物(Yi Model) API KEY
|
|
||||||
YIMODEL_API_KEY = ""
|
|
||||||
|
|
||||||
|
|
||||||
# 紫东太初大模型 https://ai-maas.wair.ac.cn
|
|
||||||
TAICHU_API_KEY = ""
|
|
||||||
|
|
||||||
# Grok API KEY
|
|
||||||
GROK_API_KEY = ""
|
|
||||||
|
|
||||||
# Mathpix 拥有执行PDF的OCR功能,但是需要注册账号
|
# Mathpix 拥有执行PDF的OCR功能,但是需要注册账号
|
||||||
MATHPIX_APPID = ""
|
MATHPIX_APPID = ""
|
||||||
MATHPIX_APPKEY = ""
|
MATHPIX_APPKEY = ""
|
||||||
|
|
||||||
|
|
||||||
# DOC2X的PDF解析服务,注册账号并获取API KEY: https://doc2x.noedgeai.com/login
|
|
||||||
DOC2X_API_KEY = ""
|
|
||||||
|
|
||||||
|
|
||||||
# 自定义API KEY格式
|
# 自定义API KEY格式
|
||||||
CUSTOM_API_KEY_PATTERN = ""
|
CUSTOM_API_KEY_PATTERN = ""
|
||||||
|
|
||||||
@@ -302,10 +234,6 @@ GROBID_URLS = [
|
|||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
# Searxng互联网检索服务(这是一个huggingface空间,请前往huggingface复制该空间,然后把自己新的空间地址填在这里)
|
|
||||||
SEARXNG_URLS = [ f"https://kaletianlre-beardvs{i}dd.hf.space/" for i in range(1,5) ]
|
|
||||||
|
|
||||||
|
|
||||||
# 是否允许通过自然语言描述修改本页的配置,该功能具有一定的危险性,默认关闭
|
# 是否允许通过自然语言描述修改本页的配置,该功能具有一定的危险性,默认关闭
|
||||||
ALLOW_RESET_CONFIG = False
|
ALLOW_RESET_CONFIG = False
|
||||||
|
|
||||||
@@ -314,21 +242,21 @@ ALLOW_RESET_CONFIG = False
|
|||||||
AUTOGEN_USE_DOCKER = False
|
AUTOGEN_USE_DOCKER = False
|
||||||
|
|
||||||
|
|
||||||
# 临时的上传文件夹位置,请尽量不要修改
|
# 临时的上传文件夹位置,请勿修改
|
||||||
PATH_PRIVATE_UPLOAD = "private_upload"
|
PATH_PRIVATE_UPLOAD = "private_upload"
|
||||||
|
|
||||||
|
|
||||||
# 日志文件夹的位置,请尽量不要修改
|
# 日志文件夹的位置,请勿修改
|
||||||
PATH_LOGGING = "gpt_log"
|
PATH_LOGGING = "gpt_log"
|
||||||
|
|
||||||
|
|
||||||
# 存储翻译好的arxiv论文的路径,请尽量不要修改
|
# 除了连接OpenAI之外,还有哪些场合允许使用代理,请勿修改
|
||||||
ARXIV_CACHE_DIR = "gpt_log/arxiv_cache"
|
WHEN_TO_USE_PROXY = ["Download_LLM", "Download_Gradio_Theme", "Connect_Grobid",
|
||||||
|
"Warmup_Modules", "Nougat_Download", "AutoGen"]
|
||||||
|
|
||||||
|
|
||||||
# 除了连接OpenAI之外,还有哪些场合允许使用代理,请尽量不要修改
|
# *实验性功能*: 自动检测并屏蔽失效的KEY,请勿使用
|
||||||
WHEN_TO_USE_PROXY = ["Connect_OpenAI", "Download_LLM", "Download_Gradio_Theme", "Connect_Grobid",
|
BLOCK_INVALID_APIKEY = False
|
||||||
"Warmup_Modules", "Nougat_Download", "AutoGen", "Connect_OpenAI_Embedding"]
|
|
||||||
|
|
||||||
|
|
||||||
# 启用插件热加载
|
# 启用插件热加载
|
||||||
@@ -338,15 +266,7 @@ PLUGIN_HOT_RELOAD = False
|
|||||||
# 自定义按钮的最大数量限制
|
# 自定义按钮的最大数量限制
|
||||||
NUM_CUSTOM_BASIC_BTN = 4
|
NUM_CUSTOM_BASIC_BTN = 4
|
||||||
|
|
||||||
|
|
||||||
# 媒体智能体的服务地址(这是一个huggingface空间,请前往huggingface复制该空间,然后把自己新的空间地址填在这里)
|
|
||||||
DAAS_SERVER_URLS = [ f"https://niuziniu-biligpt{i}.hf.space/stream" for i in range(1,5) ]
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
--------------- 配置关联关系说明 ---------------
|
|
||||||
|
|
||||||
在线大模型配置关联关系示意图
|
在线大模型配置关联关系示意图
|
||||||
│
|
│
|
||||||
├── "gpt-3.5-turbo" 等openai模型
|
├── "gpt-3.5-turbo" 等openai模型
|
||||||
@@ -370,7 +290,7 @@ DAAS_SERVER_URLS = [ f"https://niuziniu-biligpt{i}.hf.space/stream" for i in ran
|
|||||||
│ ├── XFYUN_API_SECRET
|
│ ├── XFYUN_API_SECRET
|
||||||
│ └── XFYUN_API_KEY
|
│ └── XFYUN_API_KEY
|
||||||
│
|
│
|
||||||
├── "claude-3-opus-20240229" 等claude模型
|
├── "claude-1-100k" 等claude模型
|
||||||
│ └── ANTHROPIC_API_KEY
|
│ └── ANTHROPIC_API_KEY
|
||||||
│
|
│
|
||||||
├── "stack-claude"
|
├── "stack-claude"
|
||||||
@@ -385,24 +305,19 @@ DAAS_SERVER_URLS = [ f"https://niuziniu-biligpt{i}.hf.space/stream" for i in ran
|
|||||||
├── "glm-4", "glm-3-turbo", "zhipuai" 智谱AI大模型
|
├── "glm-4", "glm-3-turbo", "zhipuai" 智谱AI大模型
|
||||||
│ └── ZHIPUAI_API_KEY
|
│ └── ZHIPUAI_API_KEY
|
||||||
│
|
│
|
||||||
├── "yi-34b-chat-0205", "yi-34b-chat-200k" 等零一万物(Yi Model)大模型
|
|
||||||
│ └── YIMODEL_API_KEY
|
|
||||||
│
|
|
||||||
├── "qwen-turbo" 等通义千问大模型
|
├── "qwen-turbo" 等通义千问大模型
|
||||||
│ └── DASHSCOPE_API_KEY
|
│ └── DASHSCOPE_API_KEY
|
||||||
│
|
│
|
||||||
├── "Gemini"
|
├── "Gemini"
|
||||||
│ └── GEMINI_API_KEY
|
│ └── GEMINI_API_KEY
|
||||||
│
|
│
|
||||||
└── "one-api-...(max_token=...)" 用一种更方便的方式接入one-api多模型管理界面
|
└── "newbing" Newbing接口不再稳定,不推荐使用
|
||||||
├── AVAIL_LLM_MODELS
|
├── NEWBING_STYLE
|
||||||
├── API_KEY
|
└── NEWBING_COOKIES
|
||||||
└── API_URL_REDIRECT
|
|
||||||
|
|
||||||
|
|
||||||
本地大模型示意图
|
本地大模型示意图
|
||||||
│
|
│
|
||||||
├── "chatglm4"
|
|
||||||
├── "chatglm3"
|
├── "chatglm3"
|
||||||
├── "chatglm"
|
├── "chatglm"
|
||||||
├── "chatglm_onnx"
|
├── "chatglm_onnx"
|
||||||
@@ -432,9 +347,6 @@ DAAS_SERVER_URLS = [ f"https://niuziniu-biligpt{i}.hf.space/stream" for i in ran
|
|||||||
|
|
||||||
插件在线服务配置依赖关系示意图
|
插件在线服务配置依赖关系示意图
|
||||||
│
|
│
|
||||||
├── 互联网检索
|
|
||||||
│ └── SEARXNG_URLS
|
|
||||||
│
|
|
||||||
├── 语音功能
|
├── 语音功能
|
||||||
│ ├── ENABLE_AUDIO
|
│ ├── ENABLE_AUDIO
|
||||||
│ ├── ALIYUN_TOKEN
|
│ ├── ALIYUN_TOKEN
|
||||||
|
|||||||
@@ -1,444 +0,0 @@
|
|||||||
"""
|
|
||||||
以下所有配置也都支持利用环境变量覆写,环境变量配置格式见docker-compose.yml。
|
|
||||||
读取优先级:环境变量 > config_private.py > config.py
|
|
||||||
--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
|
|
||||||
All the following configurations also support using environment variables to override,
|
|
||||||
and the environment variable configuration format can be seen in docker-compose.yml.
|
|
||||||
Configuration reading priority: environment variable > config_private.py > config.py
|
|
||||||
"""
|
|
||||||
|
|
||||||
# [step 1-1]>> ( 接入GPT等模型 ) API_KEY = "sk-123456789xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx123456789"。极少数情况下,还需要填写组织(格式如org-123456789abcdefghijklmno的),请向下翻,找 API_ORG 设置项
|
|
||||||
API_KEY = "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" # 可同时填写多个API-KEY,用英文逗号分割,例如API_KEY = "sk-openaikey1,sk-openaikey2,fkxxxx-api2dkey1,fkxxxx-api2dkey2"
|
|
||||||
|
|
||||||
# [step 1-2]>> ( 接入通义 qwen-max ) 接入通义千问在线大模型,api-key获取地址 https://dashscope.console.aliyun.com/
|
|
||||||
DASHSCOPE_API_KEY = "" # 阿里灵积云API_KEY
|
|
||||||
|
|
||||||
# [step 1-3]>> ( 接入 deepseek-reasoner, 即 deepseek-r1 ) 深度求索(DeepSeek) API KEY,默认请求地址为"https://api.deepseek.com/v1/chat/completions"
|
|
||||||
DEEPSEEK_API_KEY = "sk-d99b8cc6b7414cc88a5d950a3ff7585e"
|
|
||||||
|
|
||||||
# [step 2]>> 改为True应用代理。如果使用本地或无地域限制的大模型时,此处不修改;如果直接在海外服务器部署,此处不修改
|
|
||||||
USE_PROXY = True
|
|
||||||
if USE_PROXY:
|
|
||||||
proxies = {
|
|
||||||
"http":"socks5h://192.168.8.9:1070", # 再例如 "http": "http://127.0.0.1:7890",
|
|
||||||
"https":"socks5h://192.168.8.9:1070", # 再例如 "https": "http://127.0.0.1:7890",
|
|
||||||
}
|
|
||||||
else:
|
|
||||||
proxies = None
|
|
||||||
DEFAULT_WORKER_NUM = 256
|
|
||||||
|
|
||||||
# [step 3]>> 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
|
|
||||||
LLM_MODEL = "gpt-4-32k" # 可选 ↓↓↓
|
|
||||||
AVAIL_LLM_MODELS = ["deepseek-chat", "deepseek-coder", "deepseek-reasoner",
|
|
||||||
"gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-preview",
|
|
||||||
"gpt-4o", "gpt-4o-mini", "gpt-4-turbo", "gpt-4-turbo-2024-04-09",
|
|
||||||
"gpt-3.5-turbo-1106", "gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
|
|
||||||
"gpt-4", "gpt-4-32k", "azure-gpt-4", "glm-4", "glm-4v", "glm-3-turbo",
|
|
||||||
"gemini-1.5-pro", "chatglm3", "chatglm4",
|
|
||||||
]
|
|
||||||
|
|
||||||
EMBEDDING_MODEL = "text-embedding-3-small"
|
|
||||||
|
|
||||||
# --- --- --- ---
|
|
||||||
# P.S. 其他可用的模型还包括
|
|
||||||
# AVAIL_LLM_MODELS = [
|
|
||||||
# "glm-4-0520", "glm-4-air", "glm-4-airx", "glm-4-flash",
|
|
||||||
# "qianfan", "deepseekcoder",
|
|
||||||
# "spark", "sparkv2", "sparkv3", "sparkv3.5", "sparkv4",
|
|
||||||
# "qwen-turbo", "qwen-plus", "qwen-local",
|
|
||||||
# "moonshot-v1-128k", "moonshot-v1-32k", "moonshot-v1-8k",
|
|
||||||
# "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-turbo-0125", "gpt-4o-2024-05-13"
|
|
||||||
# "claude-3-haiku-20240307","claude-3-sonnet-20240229","claude-3-opus-20240229", "claude-2.1", "claude-instant-1.2",
|
|
||||||
# "moss", "llama2", "chatglm_onnx", "internlm", "jittorllms_pangualpha", "jittorllms_llama",
|
|
||||||
# "deepseek-chat" ,"deepseek-coder",
|
|
||||||
# "gemini-1.5-flash",
|
|
||||||
# "yi-34b-chat-0205","yi-34b-chat-200k","yi-large","yi-medium","yi-spark","yi-large-turbo","yi-large-preview",
|
|
||||||
# "grok-beta",
|
|
||||||
# ]
|
|
||||||
# --- --- --- ---
|
|
||||||
# 此外,您还可以在接入one-api/vllm/ollama/Openroute时,
|
|
||||||
# 使用"one-api-*","vllm-*","ollama-*","openrouter-*"前缀直接使用非标准方式接入的模型,例如
|
|
||||||
# AVAIL_LLM_MODELS = ["one-api-claude-3-sonnet-20240229(max_token=100000)", "ollama-phi3(max_token=4096)","openrouter-openai/gpt-4o-mini","openrouter-openai/chatgpt-4o-latest"]
|
|
||||||
# --- --- --- ---
|
|
||||||
|
|
||||||
|
|
||||||
# --------------- 以下配置可以优化体验 ---------------
|
|
||||||
|
|
||||||
# 重新URL重新定向,实现更换API_URL的作用(高危设置! 常规情况下不要修改! 通过修改此设置,您将把您的API-KEY和对话隐私完全暴露给您设定的中间人!)
|
|
||||||
# 格式: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "在这里填写重定向的api.openai.com的URL"}
|
|
||||||
# 举例: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "https://reverse-proxy-url/v1/chat/completions", "http://localhost:11434/api/chat": "在这里填写您ollama的URL"}
|
|
||||||
API_URL_REDIRECT = {}
|
|
||||||
|
|
||||||
|
|
||||||
# 多线程函数插件中,默认允许多少路线程同时访问OpenAI。Free trial users的限制是每分钟3次,Pay-as-you-go users的限制是每分钟3500次
|
|
||||||
# 一言以蔽之:免费(5刀)用户填3,OpenAI绑了信用卡的用户可以填 16 或者更高。提高限制请查询:https://platform.openai.com/docs/guides/rate-limits/overview
|
|
||||||
DEFAULT_WORKER_NUM = 64
|
|
||||||
|
|
||||||
|
|
||||||
# 色彩主题, 可选 ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast"]
|
|
||||||
# 更多主题, 请查阅Gradio主题商店: https://huggingface.co/spaces/gradio/theme-gallery 可选 ["Gstaff/Xkcd", "NoCrypt/Miku", ...]
|
|
||||||
THEME = "Default"
|
|
||||||
AVAIL_THEMES = ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast", "Gstaff/Xkcd", "NoCrypt/Miku"]
|
|
||||||
|
|
||||||
FONT = "Theme-Default-Font"
|
|
||||||
AVAIL_FONTS = [
|
|
||||||
"默认值(Theme-Default-Font)",
|
|
||||||
"宋体(SimSun)",
|
|
||||||
"黑体(SimHei)",
|
|
||||||
"楷体(KaiTi)",
|
|
||||||
"仿宋(FangSong)",
|
|
||||||
"华文细黑(STHeiti Light)",
|
|
||||||
"华文楷体(STKaiti)",
|
|
||||||
"华文仿宋(STFangsong)",
|
|
||||||
"华文宋体(STSong)",
|
|
||||||
"华文中宋(STZhongsong)",
|
|
||||||
"华文新魏(STXinwei)",
|
|
||||||
"华文隶书(STLiti)",
|
|
||||||
"思源宋体(Source Han Serif CN VF@https://chinese-fonts-cdn.deno.dev/packages/syst/dist/SourceHanSerifCN/result.css)",
|
|
||||||
"月星楷(Moon Stars Kai HW@https://chinese-fonts-cdn.deno.dev/packages/moon-stars-kai/dist/MoonStarsKaiHW-Regular/result.css)",
|
|
||||||
"珠圆体(MaokenZhuyuanTi@https://chinese-fonts-cdn.deno.dev/packages/mkzyt/dist/猫啃珠圆体/result.css)",
|
|
||||||
"平方萌萌哒(PING FANG MENG MNEG DA@https://chinese-fonts-cdn.deno.dev/packages/pfmmd/dist/平方萌萌哒/result.css)",
|
|
||||||
"Helvetica",
|
|
||||||
"ui-sans-serif",
|
|
||||||
"sans-serif",
|
|
||||||
"system-ui"
|
|
||||||
]
|
|
||||||
|
|
||||||
|
|
||||||
# 默认的系统提示词(system prompt)
|
|
||||||
INIT_SYS_PROMPT = "Serve me as a writing and programming assistant."
|
|
||||||
|
|
||||||
|
|
||||||
# 对话窗的高度 (仅在LAYOUT="TOP-DOWN"时生效)
|
|
||||||
CHATBOT_HEIGHT = 1115
|
|
||||||
|
|
||||||
|
|
||||||
# 代码高亮
|
|
||||||
CODE_HIGHLIGHT = True
|
|
||||||
|
|
||||||
|
|
||||||
# 窗口布局
|
|
||||||
LAYOUT = "LEFT-RIGHT" # "LEFT-RIGHT"(左右布局) # "TOP-DOWN"(上下布局)
|
|
||||||
|
|
||||||
|
|
||||||
# 暗色模式 / 亮色模式
|
|
||||||
DARK_MODE = True
|
|
||||||
|
|
||||||
|
|
||||||
# 发送请求到OpenAI后,等待多久判定为超时
|
|
||||||
TIMEOUT_SECONDS = 60
|
|
||||||
|
|
||||||
|
|
||||||
# 网页的端口, -1代表随机端口
|
|
||||||
WEB_PORT = 19998
|
|
||||||
|
|
||||||
# 是否自动打开浏览器页面
|
|
||||||
AUTO_OPEN_BROWSER = True
|
|
||||||
|
|
||||||
|
|
||||||
# 如果OpenAI不响应(网络卡顿、代理失败、KEY失效),重试的次数限制
|
|
||||||
MAX_RETRY = 5
|
|
||||||
|
|
||||||
|
|
||||||
# 插件分类默认选项
|
|
||||||
DEFAULT_FN_GROUPS = ['对话', '编程', '学术', '智能体']
|
|
||||||
|
|
||||||
|
|
||||||
# 定义界面上“询问多个GPT模型”插件应该使用哪些模型,请从AVAIL_LLM_MODELS中选择,并在不同模型之间用`&`间隔,例如"gpt-3.5-turbo&chatglm3&azure-gpt-4"
|
|
||||||
MULTI_QUERY_LLM_MODELS = "gpt-3.5-turbo&chatglm3"
|
|
||||||
|
|
||||||
|
|
||||||
# 选择本地模型变体(只有当AVAIL_LLM_MODELS包含了对应本地模型时,才会起作用)
|
|
||||||
# 如果你选择Qwen系列的模型,那么请在下面的QWEN_MODEL_SELECTION中指定具体的模型
|
|
||||||
# 也可以是具体的模型路径
|
|
||||||
QWEN_LOCAL_MODEL_SELECTION = "Qwen/Qwen-1_8B-Chat-Int8"
|
|
||||||
|
|
||||||
|
|
||||||
# 百度千帆(LLM_MODEL="qianfan")
|
|
||||||
BAIDU_CLOUD_API_KEY = ''
|
|
||||||
BAIDU_CLOUD_SECRET_KEY = ''
|
|
||||||
BAIDU_CLOUD_QIANFAN_MODEL = 'ERNIE-Bot' # 可选 "ERNIE-Bot-4"(文心大模型4.0), "ERNIE-Bot"(文心一言), "ERNIE-Bot-turbo", "BLOOMZ-7B", "Llama-2-70B-Chat", "Llama-2-13B-Chat", "Llama-2-7B-Chat", "ERNIE-Speed-128K", "ERNIE-Speed-8K", "ERNIE-Lite-8K"
|
|
||||||
|
|
||||||
|
|
||||||
# 如果使用ChatGLM3或ChatGLM4本地模型,请把 LLM_MODEL="chatglm3" 或LLM_MODEL="chatglm4",并在此处指定模型路径
|
|
||||||
CHATGLM_LOCAL_MODEL_PATH = "THUDM/glm-4-9b-chat" # 例如"/home/hmp/ChatGLM3-6B/"
|
|
||||||
|
|
||||||
# 如果使用ChatGLM2微调模型,请把 LLM_MODEL="chatglmft",并在此处指定模型路径
|
|
||||||
CHATGLM_PTUNING_CHECKPOINT = "" # 例如"/home/hmp/ChatGLM2-6B/ptuning/output/6b-pt-128-1e-2/checkpoint-100"
|
|
||||||
|
|
||||||
|
|
||||||
# 本地LLM模型如ChatGLM的执行方式 CPU/GPU
|
|
||||||
LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
|
|
||||||
LOCAL_MODEL_QUANT = "FP16" # 默认 "FP16" "INT4" 启用量化INT4版本 "INT8" 启用量化INT8版本
|
|
||||||
|
|
||||||
|
|
||||||
# 设置gradio的并行线程数(不需要修改)
|
|
||||||
CONCURRENT_COUNT = 100
|
|
||||||
|
|
||||||
|
|
||||||
# 是否在提交时自动清空输入框
|
|
||||||
AUTO_CLEAR_TXT = False
|
|
||||||
|
|
||||||
|
|
||||||
# 加一个live2d装饰
|
|
||||||
ADD_WAIFU = False
|
|
||||||
|
|
||||||
|
|
||||||
# 设置用户名和密码(不需要修改)(相关功能不稳定,与gradio版本和网络都相关,如果本地使用不建议加这个)
|
|
||||||
# [("username", "password"), ("username2", "password2"), ...]
|
|
||||||
AUTHENTICATION = [("van", "L807878712"),("林", "L807878712"),("源", "L807878712"),("欣", "L807878712"),("z", "czh123456789")]
|
|
||||||
|
|
||||||
|
|
||||||
# 如果需要在二级路径下运行(常规情况下,不要修改!!)
|
|
||||||
# (举例 CUSTOM_PATH = "/gpt_academic",可以让软件运行在 http://ip:port/gpt_academic/ 下。)
|
|
||||||
CUSTOM_PATH = "/"
|
|
||||||
|
|
||||||
|
|
||||||
# HTTPS 秘钥和证书(不需要修改)
|
|
||||||
SSL_KEYFILE = ""
|
|
||||||
SSL_CERTFILE = ""
|
|
||||||
|
|
||||||
|
|
||||||
# 极少数情况下,openai的官方KEY需要伴随组织编码(格式如org-xxxxxxxxxxxxxxxxxxxxxxxx)使用
|
|
||||||
API_ORG = ""
|
|
||||||
|
|
||||||
|
|
||||||
# 如果需要使用Slack Claude,使用教程详情见 request_llms/README.md
|
|
||||||
SLACK_CLAUDE_BOT_ID = ''
|
|
||||||
SLACK_CLAUDE_USER_TOKEN = ''
|
|
||||||
|
|
||||||
|
|
||||||
# 如果需要使用AZURE(方法一:单个azure模型部署)详情请见额外文档 docs\use_azure.md
|
|
||||||
AZURE_ENDPOINT = "https://你亲手写的api名称.openai.azure.com/"
|
|
||||||
AZURE_API_KEY = "填入azure openai api的密钥" # 建议直接在API_KEY处填写,该选项即将被弃用
|
|
||||||
AZURE_ENGINE = "填入你亲手写的部署名" # 读 docs\use_azure.md
|
|
||||||
|
|
||||||
|
|
||||||
# 如果需要使用AZURE(方法二:多个azure模型部署+动态切换)详情请见额外文档 docs\use_azure.md
|
|
||||||
AZURE_CFG_ARRAY = {}
|
|
||||||
|
|
||||||
|
|
||||||
# 阿里云实时语音识别 配置难度较高
|
|
||||||
# 参考 https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md
|
|
||||||
ENABLE_AUDIO = False
|
|
||||||
ALIYUN_TOKEN="" # 例如 f37f30e0f9934c34a992f6f64f7eba4f
|
|
||||||
ALIYUN_APPKEY="" # 例如 RoPlZrM88DnAFkZK
|
|
||||||
ALIYUN_ACCESSKEY="" # (无需填写)
|
|
||||||
ALIYUN_SECRET="" # (无需填写)
|
|
||||||
|
|
||||||
|
|
||||||
# GPT-SOVITS 文本转语音服务的运行地址(将语言模型的生成文本朗读出来)
|
|
||||||
TTS_TYPE = "DISABLE" # EDGE_TTS / LOCAL_SOVITS_API / DISABLE
|
|
||||||
GPT_SOVITS_URL = ""
|
|
||||||
EDGE_TTS_VOICE = "zh-CN-XiaoxiaoNeural"
|
|
||||||
|
|
||||||
|
|
||||||
# 接入讯飞星火大模型 https://console.xfyun.cn/services/iat
|
|
||||||
XFYUN_APPID = "00000000"
|
|
||||||
XFYUN_API_SECRET = "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"
|
|
||||||
XFYUN_API_KEY = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
|
|
||||||
|
|
||||||
|
|
||||||
# 接入智谱大模型
|
|
||||||
ZHIPUAI_API_KEY = ""
|
|
||||||
ZHIPUAI_MODEL = "" # 此选项已废弃,不再需要填写
|
|
||||||
|
|
||||||
|
|
||||||
# Claude API KEY
|
|
||||||
ANTHROPIC_API_KEY = ""
|
|
||||||
|
|
||||||
|
|
||||||
# 月之暗面 API KEY
|
|
||||||
MOONSHOT_API_KEY = ""
|
|
||||||
|
|
||||||
|
|
||||||
# 零一万物(Yi Model) API KEY
|
|
||||||
YIMODEL_API_KEY = ""
|
|
||||||
|
|
||||||
|
|
||||||
# 紫东太初大模型 https://ai-maas.wair.ac.cn
|
|
||||||
TAICHU_API_KEY = ""
|
|
||||||
|
|
||||||
# Grok API KEY
|
|
||||||
GROK_API_KEY = ""
|
|
||||||
|
|
||||||
# Mathpix 拥有执行PDF的OCR功能,但是需要注册账号
|
|
||||||
MATHPIX_APPID = ""
|
|
||||||
MATHPIX_APPKEY = ""
|
|
||||||
|
|
||||||
|
|
||||||
# DOC2X的PDF解析服务,注册账号并获取API KEY: https://doc2x.noedgeai.com/login
|
|
||||||
DOC2X_API_KEY = ""
|
|
||||||
|
|
||||||
|
|
||||||
# 自定义API KEY格式
|
|
||||||
CUSTOM_API_KEY_PATTERN = ""
|
|
||||||
|
|
||||||
|
|
||||||
# Google Gemini API-Key
|
|
||||||
GEMINI_API_KEY = ''
|
|
||||||
|
|
||||||
|
|
||||||
# HUGGINGFACE的TOKEN,下载LLAMA时起作用 https://huggingface.co/docs/hub/security-tokens
|
|
||||||
HUGGINGFACE_ACCESS_TOKEN = "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"
|
|
||||||
|
|
||||||
|
|
||||||
# GROBID服务器地址(填写多个可以均衡负载),用于高质量地读取PDF文档
|
|
||||||
# 获取方法:复制以下空间https://huggingface.co/spaces/qingxu98/grobid,设为public,然后GROBID_URL = "https://(你的hf用户名如qingxu98)-(你的填写的空间名如grobid).hf.space"
|
|
||||||
GROBID_URLS = [
|
|
||||||
"https://qingxu98-grobid.hf.space","https://qingxu98-grobid2.hf.space","https://qingxu98-grobid3.hf.space",
|
|
||||||
"https://qingxu98-grobid4.hf.space","https://qingxu98-grobid5.hf.space", "https://qingxu98-grobid6.hf.space",
|
|
||||||
"https://qingxu98-grobid7.hf.space", "https://qingxu98-grobid8.hf.space",
|
|
||||||
]
|
|
||||||
|
|
||||||
|
|
||||||
# Searxng互联网检索服务(这是一个huggingface空间,请前往huggingface复制该空间,然后把自己新的空间地址填在这里)
|
|
||||||
SEARXNG_URLS = [ f"https://kaletianlre-beardvs{i}dd.hf.space/" for i in range(1,5) ]
|
|
||||||
|
|
||||||
|
|
||||||
# 是否允许通过自然语言描述修改本页的配置,该功能具有一定的危险性,默认关闭
|
|
||||||
ALLOW_RESET_CONFIG = False
|
|
||||||
|
|
||||||
|
|
||||||
# 在使用AutoGen插件时,是否使用Docker容器运行代码
|
|
||||||
AUTOGEN_USE_DOCKER = False
|
|
||||||
|
|
||||||
|
|
||||||
# 临时的上传文件夹位置,请尽量不要修改
|
|
||||||
PATH_PRIVATE_UPLOAD = "private_upload"
|
|
||||||
|
|
||||||
|
|
||||||
# 日志文件夹的位置,请尽量不要修改
|
|
||||||
PATH_LOGGING = "gpt_log"
|
|
||||||
|
|
||||||
|
|
||||||
# 存储翻译好的arxiv论文的路径,请尽量不要修改
|
|
||||||
ARXIV_CACHE_DIR = "gpt_log/arxiv_cache"
|
|
||||||
|
|
||||||
|
|
||||||
# 除了连接OpenAI之外,还有哪些场合允许使用代理,请尽量不要修改
|
|
||||||
WHEN_TO_USE_PROXY = ["Connect_OpenAI", "Download_LLM", "Download_Gradio_Theme", "Connect_Grobid",
|
|
||||||
"Warmup_Modules", "Nougat_Download", "AutoGen", "Connect_OpenAI_Embedding"]
|
|
||||||
|
|
||||||
|
|
||||||
# 启用插件热加载
|
|
||||||
PLUGIN_HOT_RELOAD = False
|
|
||||||
|
|
||||||
|
|
||||||
# 自定义按钮的最大数量限制
|
|
||||||
NUM_CUSTOM_BASIC_BTN = 4
|
|
||||||
|
|
||||||
|
|
||||||
# 媒体智能体的服务地址(这是一个huggingface空间,请前往huggingface复制该空间,然后把自己新的空间地址填在这里)
|
|
||||||
DAAS_SERVER_URLS = [ f"https://niuziniu-biligpt{i}.hf.space/stream" for i in range(1,5) ]
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
"""
|
|
||||||
--------------- 配置关联关系说明 ---------------
|
|
||||||
|
|
||||||
在线大模型配置关联关系示意图
|
|
||||||
│
|
|
||||||
├── "gpt-3.5-turbo" 等openai模型
|
|
||||||
│ ├── API_KEY
|
|
||||||
│ ├── CUSTOM_API_KEY_PATTERN(不常用)
|
|
||||||
│ ├── API_ORG(不常用)
|
|
||||||
│ └── API_URL_REDIRECT(不常用)
|
|
||||||
│
|
|
||||||
├── "azure-gpt-3.5" 等azure模型(单个azure模型,不需要动态切换)
|
|
||||||
│ ├── API_KEY
|
|
||||||
│ ├── AZURE_ENDPOINT
|
|
||||||
│ ├── AZURE_API_KEY
|
|
||||||
│ ├── AZURE_ENGINE
|
|
||||||
│ └── API_URL_REDIRECT
|
|
||||||
│
|
|
||||||
├── "azure-gpt-3.5" 等azure模型(多个azure模型,需要动态切换,高优先级)
|
|
||||||
│ └── AZURE_CFG_ARRAY
|
|
||||||
│
|
|
||||||
├── "spark" 星火认知大模型 spark & sparkv2
|
|
||||||
│ ├── XFYUN_APPID
|
|
||||||
│ ├── XFYUN_API_SECRET
|
|
||||||
│ └── XFYUN_API_KEY
|
|
||||||
│
|
|
||||||
├── "claude-3-opus-20240229" 等claude模型
|
|
||||||
│ └── ANTHROPIC_API_KEY
|
|
||||||
│
|
|
||||||
├── "stack-claude"
|
|
||||||
│ ├── SLACK_CLAUDE_BOT_ID
|
|
||||||
│ └── SLACK_CLAUDE_USER_TOKEN
|
|
||||||
│
|
|
||||||
├── "qianfan" 百度千帆大模型库
|
|
||||||
│ ├── BAIDU_CLOUD_QIANFAN_MODEL
|
|
||||||
│ ├── BAIDU_CLOUD_API_KEY
|
|
||||||
│ └── BAIDU_CLOUD_SECRET_KEY
|
|
||||||
│
|
|
||||||
├── "glm-4", "glm-3-turbo", "zhipuai" 智谱AI大模型
|
|
||||||
│ └── ZHIPUAI_API_KEY
|
|
||||||
│
|
|
||||||
├── "yi-34b-chat-0205", "yi-34b-chat-200k" 等零一万物(Yi Model)大模型
|
|
||||||
│ └── YIMODEL_API_KEY
|
|
||||||
│
|
|
||||||
├── "qwen-turbo" 等通义千问大模型
|
|
||||||
│ └── DASHSCOPE_API_KEY
|
|
||||||
│
|
|
||||||
├── "Gemini"
|
|
||||||
│ └── GEMINI_API_KEY
|
|
||||||
│
|
|
||||||
└── "one-api-...(max_token=...)" 用一种更方便的方式接入one-api多模型管理界面
|
|
||||||
├── AVAIL_LLM_MODELS
|
|
||||||
├── API_KEY
|
|
||||||
└── API_URL_REDIRECT
|
|
||||||
|
|
||||||
|
|
||||||
本地大模型示意图
|
|
||||||
│
|
|
||||||
├── "chatglm4"
|
|
||||||
├── "chatglm3"
|
|
||||||
├── "chatglm"
|
|
||||||
├── "chatglm_onnx"
|
|
||||||
├── "chatglmft"
|
|
||||||
├── "internlm"
|
|
||||||
├── "moss"
|
|
||||||
├── "jittorllms_pangualpha"
|
|
||||||
├── "jittorllms_llama"
|
|
||||||
├── "deepseekcoder"
|
|
||||||
├── "qwen-local"
|
|
||||||
├── RWKV的支持见Wiki
|
|
||||||
└── "llama2"
|
|
||||||
|
|
||||||
|
|
||||||
用户图形界面布局依赖关系示意图
|
|
||||||
│
|
|
||||||
├── CHATBOT_HEIGHT 对话窗的高度
|
|
||||||
├── CODE_HIGHLIGHT 代码高亮
|
|
||||||
├── LAYOUT 窗口布局
|
|
||||||
├── DARK_MODE 暗色模式 / 亮色模式
|
|
||||||
├── DEFAULT_FN_GROUPS 插件分类默认选项
|
|
||||||
├── THEME 色彩主题
|
|
||||||
├── AUTO_CLEAR_TXT 是否在提交时自动清空输入框
|
|
||||||
├── ADD_WAIFU 加一个live2d装饰
|
|
||||||
└── ALLOW_RESET_CONFIG 是否允许通过自然语言描述修改本页的配置,该功能具有一定的危险性
|
|
||||||
|
|
||||||
|
|
||||||
插件在线服务配置依赖关系示意图
|
|
||||||
│
|
|
||||||
├── 互联网检索
|
|
||||||
│ └── SEARXNG_URLS
|
|
||||||
│
|
|
||||||
├── 语音功能
|
|
||||||
│ ├── ENABLE_AUDIO
|
|
||||||
│ ├── ALIYUN_TOKEN
|
|
||||||
│ ├── ALIYUN_APPKEY
|
|
||||||
│ ├── ALIYUN_ACCESSKEY
|
|
||||||
│ └── ALIYUN_SECRET
|
|
||||||
│
|
|
||||||
└── PDF文档精准解析
|
|
||||||
├── GROBID_URLS
|
|
||||||
├── MATHPIX_APPID
|
|
||||||
└── MATHPIX_APPKEY
|
|
||||||
|
|
||||||
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@@ -17,7 +17,7 @@ def get_core_functions():
|
|||||||
text_show_english=
|
text_show_english=
|
||||||
r"Below is a paragraph from an academic paper. Polish the writing to meet the academic style, "
|
r"Below is a paragraph from an academic paper. Polish the writing to meet the academic style, "
|
||||||
r"improve the spelling, grammar, clarity, concision and overall readability. When necessary, rewrite the whole sentence. "
|
r"improve the spelling, grammar, clarity, concision and overall readability. When necessary, rewrite the whole sentence. "
|
||||||
r"Firstly, you should provide the polished paragraph (in English). "
|
r"Firstly, you should provide the polished paragraph. "
|
||||||
r"Secondly, you should list all your modification and explain the reasons to do so in markdown table.",
|
r"Secondly, you should list all your modification and explain the reasons to do so in markdown table.",
|
||||||
text_show_chinese=
|
text_show_chinese=
|
||||||
r"作为一名中文学术论文写作改进助理,你的任务是改进所提供文本的拼写、语法、清晰、简洁和整体可读性,"
|
r"作为一名中文学术论文写作改进助理,你的任务是改进所提供文本的拼写、语法、清晰、简洁和整体可读性,"
|
||||||
@@ -33,19 +33,17 @@ def get_core_functions():
|
|||||||
"AutoClearHistory": False,
|
"AutoClearHistory": False,
|
||||||
# [6] 文本预处理 (可选参数,默认 None,举例:写个函数移除所有的换行符)
|
# [6] 文本预处理 (可选参数,默认 None,举例:写个函数移除所有的换行符)
|
||||||
"PreProcess": None,
|
"PreProcess": None,
|
||||||
# [7] 模型选择 (可选参数。如不设置,则使用当前全局模型;如设置,则用指定模型覆盖全局模型。)
|
|
||||||
# "ModelOverride": "gpt-3.5-turbo", # 主要用途:强制点击此基础功能按钮时,使用指定的模型。
|
|
||||||
},
|
},
|
||||||
|
|
||||||
|
|
||||||
"总结绘制脑图": {
|
"总结绘制脑图": {
|
||||||
# 前缀,会被加在你的输入之前。例如,用来描述你的要求,例如翻译、解释代码、润色等等
|
# 前缀,会被加在你的输入之前。例如,用来描述你的要求,例如翻译、解释代码、润色等等
|
||||||
"Prefix": '''"""\n\n''',
|
"Prefix": r"",
|
||||||
# 后缀,会被加在你的输入之后。例如,配合前缀可以把你的输入内容用引号圈起来
|
# 后缀,会被加在你的输入之后。例如,配合前缀可以把你的输入内容用引号圈起来
|
||||||
"Suffix":
|
"Suffix":
|
||||||
# dedent() 函数用于去除多行字符串的缩进
|
# dedent() 函数用于去除多行字符串的缩进
|
||||||
dedent("\n\n"+r'''
|
dedent("\n"+r'''
|
||||||
"""
|
==============================
|
||||||
|
|
||||||
使用mermaid flowchart对以上文本进行总结,概括上述段落的内容以及内在逻辑关系,例如:
|
使用mermaid flowchart对以上文本进行总结,概括上述段落的内容以及内在逻辑关系,例如:
|
||||||
|
|
||||||
@@ -59,7 +57,7 @@ def get_core_functions():
|
|||||||
C --> |"箭头名2"| F["节点名6"]
|
C --> |"箭头名2"| F["节点名6"]
|
||||||
```
|
```
|
||||||
|
|
||||||
注意:
|
警告:
|
||||||
(1)使用中文
|
(1)使用中文
|
||||||
(2)节点名字使用引号包裹,如["Laptop"]
|
(2)节点名字使用引号包裹,如["Laptop"]
|
||||||
(3)`|` 和 `"`之间不要存在空格
|
(3)`|` 和 `"`之间不要存在空格
|
||||||
|
|||||||
@@ -1,69 +1,46 @@
|
|||||||
from toolbox import HotReload # HotReload 的意思是热更新,修改函数插件后,不需要重启程序,代码直接生效
|
from toolbox import HotReload # HotReload 的意思是热更新,修改函数插件后,不需要重启程序,代码直接生效
|
||||||
from toolbox import trimmed_format_exc
|
from toolbox import trimmed_format_exc
|
||||||
from loguru import logger
|
|
||||||
|
|
||||||
def get_crazy_functions():
|
def get_crazy_functions():
|
||||||
from crazy_functions.读文章写摘要 import 读文章写摘要
|
from crazy_functions.读文章写摘要 import 读文章写摘要
|
||||||
from crazy_functions.生成函数注释 import 批量生成函数注释
|
from crazy_functions.生成函数注释 import 批量生成函数注释
|
||||||
from crazy_functions.SourceCode_Analyse import 解析项目本身
|
from crazy_functions.解析项目源代码 import 解析项目本身
|
||||||
from crazy_functions.SourceCode_Analyse import 解析一个Python项目
|
from crazy_functions.解析项目源代码 import 解析一个Python项目
|
||||||
from crazy_functions.SourceCode_Analyse import 解析一个Matlab项目
|
from crazy_functions.解析项目源代码 import 解析一个Matlab项目
|
||||||
from crazy_functions.SourceCode_Analyse import 解析一个C项目的头文件
|
from crazy_functions.解析项目源代码 import 解析一个C项目的头文件
|
||||||
from crazy_functions.SourceCode_Analyse import 解析一个C项目
|
from crazy_functions.解析项目源代码 import 解析一个C项目
|
||||||
from crazy_functions.SourceCode_Analyse import 解析一个Golang项目
|
from crazy_functions.解析项目源代码 import 解析一个Golang项目
|
||||||
from crazy_functions.SourceCode_Analyse import 解析一个Rust项目
|
from crazy_functions.解析项目源代码 import 解析一个Rust项目
|
||||||
from crazy_functions.SourceCode_Analyse import 解析一个Java项目
|
from crazy_functions.解析项目源代码 import 解析一个Java项目
|
||||||
from crazy_functions.SourceCode_Analyse import 解析一个前端项目
|
from crazy_functions.解析项目源代码 import 解析一个前端项目
|
||||||
from crazy_functions.高级功能函数模板 import 高阶功能模板函数
|
from crazy_functions.高级功能函数模板 import 高阶功能模板函数
|
||||||
from crazy_functions.高级功能函数模板 import Demo_Wrap
|
from crazy_functions.Latex全文润色 import Latex英文润色
|
||||||
from crazy_functions.Latex_Project_Polish import Latex英文润色
|
|
||||||
from crazy_functions.询问多个大语言模型 import 同时问询
|
from crazy_functions.询问多个大语言模型 import 同时问询
|
||||||
from crazy_functions.SourceCode_Analyse import 解析一个Lua项目
|
from crazy_functions.解析项目源代码 import 解析一个Lua项目
|
||||||
from crazy_functions.SourceCode_Analyse import 解析一个CSharp项目
|
from crazy_functions.解析项目源代码 import 解析一个CSharp项目
|
||||||
from crazy_functions.总结word文档 import 总结word文档
|
from crazy_functions.总结word文档 import 总结word文档
|
||||||
from crazy_functions.解析JupyterNotebook import 解析ipynb文件
|
from crazy_functions.解析JupyterNotebook import 解析ipynb文件
|
||||||
from crazy_functions.Conversation_To_File import 载入对话历史存档
|
from crazy_functions.对话历史存档 import 对话历史存档
|
||||||
from crazy_functions.Conversation_To_File import 对话历史存档
|
from crazy_functions.对话历史存档 import 载入对话历史存档
|
||||||
from crazy_functions.Conversation_To_File import Conversation_To_File_Wrap
|
from crazy_functions.对话历史存档 import 删除所有本地对话历史记录
|
||||||
from crazy_functions.Conversation_To_File import 删除所有本地对话历史记录
|
|
||||||
from crazy_functions.辅助功能 import 清除缓存
|
from crazy_functions.辅助功能 import 清除缓存
|
||||||
from crazy_functions.Markdown_Translate import Markdown英译中
|
from crazy_functions.批量Markdown翻译 import Markdown英译中
|
||||||
from crazy_functions.批量总结PDF文档 import 批量总结PDF文档
|
from crazy_functions.批量总结PDF文档 import 批量总结PDF文档
|
||||||
from crazy_functions.PDF_Translate import 批量翻译PDF文档
|
from crazy_functions.批量翻译PDF文档_多线程 import 批量翻译PDF文档
|
||||||
from crazy_functions.谷歌检索小助手 import 谷歌检索小助手
|
from crazy_functions.谷歌检索小助手 import 谷歌检索小助手
|
||||||
from crazy_functions.理解PDF文档内容 import 理解PDF文档内容标准文件输入
|
from crazy_functions.理解PDF文档内容 import 理解PDF文档内容标准文件输入
|
||||||
from crazy_functions.Latex_Project_Polish import Latex中文润色
|
from crazy_functions.Latex全文润色 import Latex中文润色
|
||||||
from crazy_functions.Latex_Project_Polish import Latex英文纠错
|
from crazy_functions.Latex全文润色 import Latex英文纠错
|
||||||
from crazy_functions.Markdown_Translate import Markdown中译英
|
from crazy_functions.批量Markdown翻译 import Markdown中译英
|
||||||
from crazy_functions.虚空终端 import 虚空终端
|
from crazy_functions.虚空终端 import 虚空终端
|
||||||
from crazy_functions.生成多种Mermaid图表 import Mermaid_Gen
|
from crazy_functions.生成多种Mermaid图表 import 生成多种Mermaid图表
|
||||||
from crazy_functions.PDF_Translate_Wrap import PDF_Tran
|
|
||||||
from crazy_functions.Latex_Function import Latex英文纠错加PDF对比
|
|
||||||
from crazy_functions.Latex_Function import Latex翻译中文并重新编译PDF
|
|
||||||
from crazy_functions.Latex_Function import PDF翻译中文并重新编译PDF
|
|
||||||
from crazy_functions.Latex_Function_Wrap import Arxiv_Localize
|
|
||||||
from crazy_functions.Latex_Function_Wrap import PDF_Localize
|
|
||||||
from crazy_functions.Internet_GPT import 连接网络回答问题
|
|
||||||
from crazy_functions.Internet_GPT_Wrap import NetworkGPT_Wrap
|
|
||||||
from crazy_functions.Image_Generate import 图片生成_DALLE2, 图片生成_DALLE3, 图片修改_DALLE2
|
|
||||||
from crazy_functions.Image_Generate_Wrap import ImageGen_Wrap
|
|
||||||
from crazy_functions.SourceCode_Comment import 注释Python项目
|
|
||||||
from crazy_functions.SourceCode_Comment_Wrap import SourceCodeComment_Wrap
|
|
||||||
from crazy_functions.VideoResource_GPT import 多媒体任务
|
|
||||||
|
|
||||||
function_plugins = {
|
function_plugins = {
|
||||||
"多媒体智能体": {
|
|
||||||
"Group": "智能体",
|
|
||||||
"Color": "stop",
|
|
||||||
"AsButton": False,
|
|
||||||
"Info": "【仅测试】多媒体任务",
|
|
||||||
"Function": HotReload(多媒体任务),
|
|
||||||
},
|
|
||||||
"虚空终端": {
|
"虚空终端": {
|
||||||
"Group": "对话|编程|学术|智能体",
|
"Group": "对话|编程|学术|智能体",
|
||||||
"Color": "stop",
|
"Color": "stop",
|
||||||
"AsButton": True,
|
"AsButton": True,
|
||||||
"Info": "使用自然语言实现您的想法",
|
|
||||||
"Function": HotReload(虚空终端),
|
"Function": HotReload(虚空终端),
|
||||||
},
|
},
|
||||||
"解析整个Python项目": {
|
"解析整个Python项目": {
|
||||||
@@ -73,14 +50,6 @@ def get_crazy_functions():
|
|||||||
"Info": "解析一个Python项目的所有源文件(.py) | 输入参数为路径",
|
"Info": "解析一个Python项目的所有源文件(.py) | 输入参数为路径",
|
||||||
"Function": HotReload(解析一个Python项目),
|
"Function": HotReload(解析一个Python项目),
|
||||||
},
|
},
|
||||||
"注释Python项目": {
|
|
||||||
"Group": "编程",
|
|
||||||
"Color": "stop",
|
|
||||||
"AsButton": False,
|
|
||||||
"Info": "上传一系列python源文件(或者压缩包), 为这些代码添加docstring | 输入参数为路径",
|
|
||||||
"Function": HotReload(注释Python项目),
|
|
||||||
"Class": SourceCodeComment_Wrap,
|
|
||||||
},
|
|
||||||
"载入对话历史存档(先上传存档或输入路径)": {
|
"载入对话历史存档(先上传存档或输入路径)": {
|
||||||
"Group": "对话",
|
"Group": "对话",
|
||||||
"Color": "stop",
|
"Color": "stop",
|
||||||
@@ -106,21 +75,14 @@ def get_crazy_functions():
|
|||||||
"Color": "stop",
|
"Color": "stop",
|
||||||
"AsButton": False,
|
"AsButton": False,
|
||||||
"Info" : "基于当前对话或文件生成多种Mermaid图表,图表类型由模型判断",
|
"Info" : "基于当前对话或文件生成多种Mermaid图表,图表类型由模型判断",
|
||||||
"Function": None,
|
"Function": HotReload(生成多种Mermaid图表),
|
||||||
"Class": Mermaid_Gen
|
"AdvancedArgs": True,
|
||||||
},
|
"ArgsReminder": "请输入图类型对应的数字,不输入则为模型自行判断:1-流程图,2-序列图,3-类图,4-饼图,5-甘特图,6-状态图,7-实体关系图,8-象限提示图,9-思维导图",
|
||||||
"Arxiv论文翻译": {
|
|
||||||
"Group": "学术",
|
|
||||||
"Color": "stop",
|
|
||||||
"AsButton": True,
|
|
||||||
"Info": "Arixv论文精细翻译 | 输入参数arxiv论文的ID,比如1812.10695",
|
|
||||||
"Function": HotReload(Latex翻译中文并重新编译PDF), # 当注册Class后,Function旧接口仅会在“虚空终端”中起作用
|
|
||||||
"Class": Arxiv_Localize, # 新一代插件需要注册Class
|
|
||||||
},
|
},
|
||||||
"批量总结Word文档": {
|
"批量总结Word文档": {
|
||||||
"Group": "学术",
|
"Group": "学术",
|
||||||
"Color": "stop",
|
"Color": "stop",
|
||||||
"AsButton": False,
|
"AsButton": True,
|
||||||
"Info": "批量总结word文档 | 输入参数为路径",
|
"Info": "批量总结word文档 | 输入参数为路径",
|
||||||
"Function": HotReload(总结word文档),
|
"Function": HotReload(总结word文档),
|
||||||
},
|
},
|
||||||
@@ -226,42 +188,28 @@ def get_crazy_functions():
|
|||||||
},
|
},
|
||||||
"保存当前的对话": {
|
"保存当前的对话": {
|
||||||
"Group": "对话",
|
"Group": "对话",
|
||||||
"Color": "stop",
|
|
||||||
"AsButton": True,
|
"AsButton": True,
|
||||||
"Info": "保存当前的对话 | 不需要输入参数",
|
"Info": "保存当前的对话 | 不需要输入参数",
|
||||||
"Function": HotReload(对话历史存档), # 当注册Class后,Function旧接口仅会在“虚空终端”中起作用
|
"Function": HotReload(对话历史存档),
|
||||||
"Class": Conversation_To_File_Wrap # 新一代插件需要注册Class
|
|
||||||
},
|
},
|
||||||
"[多线程Demo]解析此项目本身(源码自译解)": {
|
"[多线程Demo]解析此项目本身(源码自译解)": {
|
||||||
"Group": "对话|编程",
|
"Group": "对话|编程",
|
||||||
"Color": "stop",
|
|
||||||
"AsButton": False, # 加入下拉菜单中
|
"AsButton": False, # 加入下拉菜单中
|
||||||
"Info": "多线程解析并翻译此项目的源码 | 不需要输入参数",
|
"Info": "多线程解析并翻译此项目的源码 | 不需要输入参数",
|
||||||
"Function": HotReload(解析项目本身),
|
"Function": HotReload(解析项目本身),
|
||||||
},
|
},
|
||||||
"查互联网后回答": {
|
|
||||||
"Group": "对话",
|
|
||||||
"Color": "stop",
|
|
||||||
"AsButton": True, # 加入下拉菜单中
|
|
||||||
# "Info": "连接网络回答问题(需要访问谷歌)| 输入参数是一个问题",
|
|
||||||
"Function": HotReload(连接网络回答问题),
|
|
||||||
"Class": NetworkGPT_Wrap # 新一代插件需要注册Class
|
|
||||||
},
|
|
||||||
"历史上的今天": {
|
"历史上的今天": {
|
||||||
"Group": "对话",
|
"Group": "对话",
|
||||||
"Color": "stop",
|
"AsButton": True,
|
||||||
"AsButton": False,
|
|
||||||
"Info": "查看历史上的今天事件 (这是一个面向开发者的插件Demo) | 不需要输入参数",
|
"Info": "查看历史上的今天事件 (这是一个面向开发者的插件Demo) | 不需要输入参数",
|
||||||
"Function": None,
|
"Function": HotReload(高阶功能模板函数),
|
||||||
"Class": Demo_Wrap, # 新一代插件需要注册Class
|
|
||||||
},
|
},
|
||||||
"精准翻译PDF论文": {
|
"精准翻译PDF论文": {
|
||||||
"Group": "学术",
|
"Group": "学术",
|
||||||
"Color": "stop",
|
"Color": "stop",
|
||||||
"AsButton": True,
|
"AsButton": True,
|
||||||
"Info": "精准翻译PDF论文为中文 | 输入参数为路径",
|
"Info": "精准翻译PDF论文为中文 | 输入参数为路径",
|
||||||
"Function": HotReload(批量翻译PDF文档), # 当注册Class后,Function旧接口仅会在“虚空终端”中起作用
|
"Function": HotReload(批量翻译PDF文档),
|
||||||
"Class": PDF_Tran, # 新一代插件需要注册Class
|
|
||||||
},
|
},
|
||||||
"询问多个GPT模型": {
|
"询问多个GPT模型": {
|
||||||
"Group": "对话",
|
"Group": "对话",
|
||||||
@@ -336,6 +284,260 @@ def get_crazy_functions():
|
|||||||
"Info": "批量将Markdown文件中文翻译为英文 | 输入参数为路径或上传压缩包",
|
"Info": "批量将Markdown文件中文翻译为英文 | 输入参数为路径或上传压缩包",
|
||||||
"Function": HotReload(Markdown中译英),
|
"Function": HotReload(Markdown中译英),
|
||||||
},
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
# -=--=- 尚未充分测试的实验性插件 & 需要额外依赖的插件 -=--=-
|
||||||
|
try:
|
||||||
|
from crazy_functions.下载arxiv论文翻译摘要 import 下载arxiv论文并翻译摘要
|
||||||
|
|
||||||
|
function_plugins.update(
|
||||||
|
{
|
||||||
|
"一键下载arxiv论文并翻译摘要(先在input输入编号,如1812.10695)": {
|
||||||
|
"Group": "学术",
|
||||||
|
"Color": "stop",
|
||||||
|
"AsButton": False, # 加入下拉菜单中
|
||||||
|
# "Info": "下载arxiv论文并翻译摘要 | 输入参数为arxiv编号如1812.10695",
|
||||||
|
"Function": HotReload(下载arxiv论文并翻译摘要),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
except:
|
||||||
|
print(trimmed_format_exc())
|
||||||
|
print("Load function plugin failed")
|
||||||
|
|
||||||
|
try:
|
||||||
|
from crazy_functions.联网的ChatGPT import 连接网络回答问题
|
||||||
|
|
||||||
|
function_plugins.update(
|
||||||
|
{
|
||||||
|
"连接网络回答问题(输入问题后点击该插件,需要访问谷歌)": {
|
||||||
|
"Group": "对话",
|
||||||
|
"Color": "stop",
|
||||||
|
"AsButton": False, # 加入下拉菜单中
|
||||||
|
# "Info": "连接网络回答问题(需要访问谷歌)| 输入参数是一个问题",
|
||||||
|
"Function": HotReload(连接网络回答问题),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
from crazy_functions.联网的ChatGPT_bing版 import 连接bing搜索回答问题
|
||||||
|
|
||||||
|
function_plugins.update(
|
||||||
|
{
|
||||||
|
"连接网络回答问题(中文Bing版,输入问题后点击该插件)": {
|
||||||
|
"Group": "对话",
|
||||||
|
"Color": "stop",
|
||||||
|
"AsButton": False, # 加入下拉菜单中
|
||||||
|
"Info": "连接网络回答问题(需要访问中文Bing)| 输入参数是一个问题",
|
||||||
|
"Function": HotReload(连接bing搜索回答问题),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
except:
|
||||||
|
print(trimmed_format_exc())
|
||||||
|
print("Load function plugin failed")
|
||||||
|
|
||||||
|
try:
|
||||||
|
from crazy_functions.解析项目源代码 import 解析任意code项目
|
||||||
|
|
||||||
|
function_plugins.update(
|
||||||
|
{
|
||||||
|
"解析项目源代码(手动指定和筛选源代码文件类型)": {
|
||||||
|
"Group": "编程",
|
||||||
|
"Color": "stop",
|
||||||
|
"AsButton": False,
|
||||||
|
"AdvancedArgs": True, # 调用时,唤起高级参数输入区(默认False)
|
||||||
|
"ArgsReminder": '输入时用逗号隔开, *代表通配符, 加了^代表不匹配; 不输入代表全部匹配。例如: "*.c, ^*.cpp, config.toml, ^*.toml"', # 高级参数输入区的显示提示
|
||||||
|
"Function": HotReload(解析任意code项目),
|
||||||
|
},
|
||||||
|
}
|
||||||
|
)
|
||||||
|
except:
|
||||||
|
print(trimmed_format_exc())
|
||||||
|
print("Load function plugin failed")
|
||||||
|
|
||||||
|
try:
|
||||||
|
from crazy_functions.询问多个大语言模型 import 同时问询_指定模型
|
||||||
|
|
||||||
|
function_plugins.update(
|
||||||
|
{
|
||||||
|
"询问多个GPT模型(手动指定询问哪些模型)": {
|
||||||
|
"Group": "对话",
|
||||||
|
"Color": "stop",
|
||||||
|
"AsButton": False,
|
||||||
|
"AdvancedArgs": True, # 调用时,唤起高级参数输入区(默认False)
|
||||||
|
"ArgsReminder": "支持任意数量的llm接口,用&符号分隔。例如chatglm&gpt-3.5-turbo&gpt-4", # 高级参数输入区的显示提示
|
||||||
|
"Function": HotReload(同时问询_指定模型),
|
||||||
|
},
|
||||||
|
}
|
||||||
|
)
|
||||||
|
except:
|
||||||
|
print(trimmed_format_exc())
|
||||||
|
print("Load function plugin failed")
|
||||||
|
|
||||||
|
try:
|
||||||
|
from crazy_functions.图片生成 import 图片生成_DALLE2, 图片生成_DALLE3, 图片修改_DALLE2
|
||||||
|
|
||||||
|
function_plugins.update(
|
||||||
|
{
|
||||||
|
"图片生成_DALLE2 (先切换模型到gpt-*)": {
|
||||||
|
"Group": "对话",
|
||||||
|
"Color": "stop",
|
||||||
|
"AsButton": False,
|
||||||
|
"AdvancedArgs": True, # 调用时,唤起高级参数输入区(默认False)
|
||||||
|
"ArgsReminder": "在这里输入分辨率, 如1024x1024(默认),支持 256x256, 512x512, 1024x1024", # 高级参数输入区的显示提示
|
||||||
|
"Info": "使用DALLE2生成图片 | 输入参数字符串,提供图像的内容",
|
||||||
|
"Function": HotReload(图片生成_DALLE2),
|
||||||
|
},
|
||||||
|
}
|
||||||
|
)
|
||||||
|
function_plugins.update(
|
||||||
|
{
|
||||||
|
"图片生成_DALLE3 (先切换模型到gpt-*)": {
|
||||||
|
"Group": "对话",
|
||||||
|
"Color": "stop",
|
||||||
|
"AsButton": False,
|
||||||
|
"AdvancedArgs": True, # 调用时,唤起高级参数输入区(默认False)
|
||||||
|
"ArgsReminder": "在这里输入自定义参数「分辨率-质量(可选)-风格(可选)」, 参数示例「1024x1024-hd-vivid」 || 分辨率支持 「1024x1024」(默认) /「1792x1024」/「1024x1792」 || 质量支持 「-standard」(默认) /「-hd」 || 风格支持 「-vivid」(默认) /「-natural」", # 高级参数输入区的显示提示
|
||||||
|
"Info": "使用DALLE3生成图片 | 输入参数字符串,提供图像的内容",
|
||||||
|
"Function": HotReload(图片生成_DALLE3),
|
||||||
|
},
|
||||||
|
}
|
||||||
|
)
|
||||||
|
function_plugins.update(
|
||||||
|
{
|
||||||
|
"图片修改_DALLE2 (先切换模型到gpt-*)": {
|
||||||
|
"Group": "对话",
|
||||||
|
"Color": "stop",
|
||||||
|
"AsButton": False,
|
||||||
|
"AdvancedArgs": False, # 调用时,唤起高级参数输入区(默认False)
|
||||||
|
# "Info": "使用DALLE2修改图片 | 输入参数字符串,提供图像的内容",
|
||||||
|
"Function": HotReload(图片修改_DALLE2),
|
||||||
|
},
|
||||||
|
}
|
||||||
|
)
|
||||||
|
except:
|
||||||
|
print(trimmed_format_exc())
|
||||||
|
print("Load function plugin failed")
|
||||||
|
|
||||||
|
try:
|
||||||
|
from crazy_functions.总结音视频 import 总结音视频
|
||||||
|
|
||||||
|
function_plugins.update(
|
||||||
|
{
|
||||||
|
"批量总结音视频(输入路径或上传压缩包)": {
|
||||||
|
"Group": "对话",
|
||||||
|
"Color": "stop",
|
||||||
|
"AsButton": False,
|
||||||
|
"AdvancedArgs": True,
|
||||||
|
"ArgsReminder": "调用openai api 使用whisper-1模型, 目前支持的格式:mp4, m4a, wav, mpga, mpeg, mp3。此处可以输入解析提示,例如:解析为简体中文(默认)。",
|
||||||
|
"Info": "批量总结音频或视频 | 输入参数为路径",
|
||||||
|
"Function": HotReload(总结音视频),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
except:
|
||||||
|
print(trimmed_format_exc())
|
||||||
|
print("Load function plugin failed")
|
||||||
|
|
||||||
|
try:
|
||||||
|
from crazy_functions.数学动画生成manim import 动画生成
|
||||||
|
|
||||||
|
function_plugins.update(
|
||||||
|
{
|
||||||
|
"数学动画生成(Manim)": {
|
||||||
|
"Group": "对话",
|
||||||
|
"Color": "stop",
|
||||||
|
"AsButton": False,
|
||||||
|
"Info": "按照自然语言描述生成一个动画 | 输入参数是一段话",
|
||||||
|
"Function": HotReload(动画生成),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
except:
|
||||||
|
print(trimmed_format_exc())
|
||||||
|
print("Load function plugin failed")
|
||||||
|
|
||||||
|
try:
|
||||||
|
from crazy_functions.批量Markdown翻译 import Markdown翻译指定语言
|
||||||
|
|
||||||
|
function_plugins.update(
|
||||||
|
{
|
||||||
|
"Markdown翻译(指定翻译成何种语言)": {
|
||||||
|
"Group": "编程",
|
||||||
|
"Color": "stop",
|
||||||
|
"AsButton": False,
|
||||||
|
"AdvancedArgs": True,
|
||||||
|
"ArgsReminder": "请输入要翻译成哪种语言,默认为Chinese。",
|
||||||
|
"Function": HotReload(Markdown翻译指定语言),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
except:
|
||||||
|
print(trimmed_format_exc())
|
||||||
|
print("Load function plugin failed")
|
||||||
|
|
||||||
|
try:
|
||||||
|
from crazy_functions.知识库问答 import 知识库文件注入
|
||||||
|
|
||||||
|
function_plugins.update(
|
||||||
|
{
|
||||||
|
"构建知识库(先上传文件素材,再运行此插件)": {
|
||||||
|
"Group": "对话",
|
||||||
|
"Color": "stop",
|
||||||
|
"AsButton": False,
|
||||||
|
"AdvancedArgs": True,
|
||||||
|
"ArgsReminder": "此处待注入的知识库名称id, 默认为default。文件进入知识库后可长期保存。可以通过再次调用本插件的方式,向知识库追加更多文档。",
|
||||||
|
"Function": HotReload(知识库文件注入),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
except:
|
||||||
|
print(trimmed_format_exc())
|
||||||
|
print("Load function plugin failed")
|
||||||
|
|
||||||
|
try:
|
||||||
|
from crazy_functions.知识库问答 import 读取知识库作答
|
||||||
|
|
||||||
|
function_plugins.update(
|
||||||
|
{
|
||||||
|
"知识库文件注入(构建知识库后,再运行此插件)": {
|
||||||
|
"Group": "对话",
|
||||||
|
"Color": "stop",
|
||||||
|
"AsButton": False,
|
||||||
|
"AdvancedArgs": True,
|
||||||
|
"ArgsReminder": "待提取的知识库名称id, 默认为default, 您需要构建知识库后再运行此插件。",
|
||||||
|
"Function": HotReload(读取知识库作答),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
except:
|
||||||
|
print(trimmed_format_exc())
|
||||||
|
print("Load function plugin failed")
|
||||||
|
|
||||||
|
try:
|
||||||
|
from crazy_functions.交互功能函数模板 import 交互功能模板函数
|
||||||
|
|
||||||
|
function_plugins.update(
|
||||||
|
{
|
||||||
|
"交互功能模板Demo函数(查找wallhaven.cc的壁纸)": {
|
||||||
|
"Group": "对话",
|
||||||
|
"Color": "stop",
|
||||||
|
"AsButton": False,
|
||||||
|
"Function": HotReload(交互功能模板函数),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
except:
|
||||||
|
print(trimmed_format_exc())
|
||||||
|
print("Load function plugin failed")
|
||||||
|
|
||||||
|
try:
|
||||||
|
from crazy_functions.Latex输出PDF import Latex英文纠错加PDF对比
|
||||||
|
from crazy_functions.Latex输出PDF import Latex翻译中文并重新编译PDF
|
||||||
|
from crazy_functions.Latex输出PDF import PDF翻译中文并重新编译PDF
|
||||||
|
|
||||||
|
function_plugins.update(
|
||||||
|
{
|
||||||
"Latex英文纠错+高亮修正位置 [需Latex]": {
|
"Latex英文纠错+高亮修正位置 [需Latex]": {
|
||||||
"Group": "学术",
|
"Group": "学术",
|
||||||
"Color": "stop",
|
"Color": "stop",
|
||||||
@@ -344,7 +546,7 @@ def get_crazy_functions():
|
|||||||
"ArgsReminder": "如果有必要, 请在此处追加更细致的矫错指令(使用英文)。",
|
"ArgsReminder": "如果有必要, 请在此处追加更细致的矫错指令(使用英文)。",
|
||||||
"Function": HotReload(Latex英文纠错加PDF对比),
|
"Function": HotReload(Latex英文纠错加PDF对比),
|
||||||
},
|
},
|
||||||
"📚Arxiv论文精细翻译(输入arxivID)[需Latex]": {
|
"Arxiv论文精细翻译(输入arxivID)[需Latex]": {
|
||||||
"Group": "学术",
|
"Group": "学术",
|
||||||
"Color": "stop",
|
"Color": "stop",
|
||||||
"AsButton": False,
|
"AsButton": False,
|
||||||
@@ -353,10 +555,9 @@ def get_crazy_functions():
|
|||||||
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
|
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
|
||||||
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
||||||
"Info": "Arixv论文精细翻译 | 输入参数arxiv论文的ID,比如1812.10695",
|
"Info": "Arixv论文精细翻译 | 输入参数arxiv论文的ID,比如1812.10695",
|
||||||
"Function": HotReload(Latex翻译中文并重新编译PDF), # 当注册Class后,Function旧接口仅会在“虚空终端”中起作用
|
"Function": HotReload(Latex翻译中文并重新编译PDF),
|
||||||
"Class": Arxiv_Localize, # 新一代插件需要注册Class
|
|
||||||
},
|
},
|
||||||
"📚本地Latex论文精细翻译(上传Latex项目)[需Latex]": {
|
"本地Latex论文精细翻译(上传Latex项目)[需Latex]": {
|
||||||
"Group": "学术",
|
"Group": "学术",
|
||||||
"Color": "stop",
|
"Color": "stop",
|
||||||
"AsButton": False,
|
"AsButton": False,
|
||||||
@@ -376,247 +577,13 @@ def get_crazy_functions():
|
|||||||
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
|
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
|
||||||
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
||||||
"Info": "PDF翻译中文,并重新编译PDF | 输入参数为路径",
|
"Info": "PDF翻译中文,并重新编译PDF | 输入参数为路径",
|
||||||
"Function": HotReload(PDF翻译中文并重新编译PDF), # 当注册Class后,Function旧接口仅会在“虚空终端”中起作用
|
"Function": HotReload(PDF翻译中文并重新编译PDF)
|
||||||
"Class": PDF_Localize # 新一代插件需要注册Class
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
function_plugins.update(
|
|
||||||
{
|
|
||||||
"🎨图片生成(DALLE2/DALLE3, 使用前切换到GPT系列模型)": {
|
|
||||||
"Group": "对话",
|
|
||||||
"Color": "stop",
|
|
||||||
"AsButton": False,
|
|
||||||
"Info": "使用 DALLE2/DALLE3 生成图片 | 输入参数字符串,提供图像的内容",
|
|
||||||
"Function": HotReload(图片生成_DALLE2), # 当注册Class后,Function旧接口仅会在“虚空终端”中起作用
|
|
||||||
"Class": ImageGen_Wrap # 新一代插件需要注册Class
|
|
||||||
},
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
function_plugins.update(
|
|
||||||
{
|
|
||||||
"🎨图片修改_DALLE2 (使用前请切换模型到GPT系列)": {
|
|
||||||
"Group": "对话",
|
|
||||||
"Color": "stop",
|
|
||||||
"AsButton": False,
|
|
||||||
"AdvancedArgs": False, # 调用时,唤起高级参数输入区(默认False)
|
|
||||||
# "Info": "使用DALLE2修改图片 | 输入参数字符串,提供图像的内容",
|
|
||||||
"Function": HotReload(图片修改_DALLE2),
|
|
||||||
},
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# -=--=- 尚未充分测试的实验性插件 & 需要额外依赖的插件 -=--=-
|
|
||||||
try:
|
|
||||||
from crazy_functions.下载arxiv论文翻译摘要 import 下载arxiv论文并翻译摘要
|
|
||||||
|
|
||||||
function_plugins.update(
|
|
||||||
{
|
|
||||||
"一键下载arxiv论文并翻译摘要(先在input输入编号,如1812.10695)": {
|
|
||||||
"Group": "学术",
|
|
||||||
"Color": "stop",
|
|
||||||
"AsButton": False, # 加入下拉菜单中
|
|
||||||
# "Info": "下载arxiv论文并翻译摘要 | 输入参数为arxiv编号如1812.10695",
|
|
||||||
"Function": HotReload(下载arxiv论文并翻译摘要),
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
except:
|
except:
|
||||||
logger.error(trimmed_format_exc())
|
print(trimmed_format_exc())
|
||||||
logger.error("Load function plugin failed")
|
print("Load function plugin failed")
|
||||||
|
|
||||||
# try:
|
|
||||||
# from crazy_functions.联网的ChatGPT import 连接网络回答问题
|
|
||||||
|
|
||||||
# function_plugins.update(
|
|
||||||
# {
|
|
||||||
# "连接网络回答问题(输入问题后点击该插件,需要访问谷歌)": {
|
|
||||||
# "Group": "对话",
|
|
||||||
# "Color": "stop",
|
|
||||||
# "AsButton": False, # 加入下拉菜单中
|
|
||||||
# # "Info": "连接网络回答问题(需要访问谷歌)| 输入参数是一个问题",
|
|
||||||
# "Function": HotReload(连接网络回答问题),
|
|
||||||
# }
|
|
||||||
# }
|
|
||||||
# )
|
|
||||||
# from crazy_functions.联网的ChatGPT_bing版 import 连接bing搜索回答问题
|
|
||||||
|
|
||||||
# function_plugins.update(
|
|
||||||
# {
|
|
||||||
# "连接网络回答问题(中文Bing版,输入问题后点击该插件)": {
|
|
||||||
# "Group": "对话",
|
|
||||||
# "Color": "stop",
|
|
||||||
# "AsButton": False, # 加入下拉菜单中
|
|
||||||
# "Info": "连接网络回答问题(需要访问中文Bing)| 输入参数是一个问题",
|
|
||||||
# "Function": HotReload(连接bing搜索回答问题),
|
|
||||||
# }
|
|
||||||
# }
|
|
||||||
# )
|
|
||||||
# except:
|
|
||||||
# logger.error(trimmed_format_exc())
|
|
||||||
# logger.error("Load function plugin failed")
|
|
||||||
|
|
||||||
try:
|
|
||||||
from crazy_functions.SourceCode_Analyse import 解析任意code项目
|
|
||||||
|
|
||||||
function_plugins.update(
|
|
||||||
{
|
|
||||||
"解析项目源代码(手动指定和筛选源代码文件类型)": {
|
|
||||||
"Group": "编程",
|
|
||||||
"Color": "stop",
|
|
||||||
"AsButton": False,
|
|
||||||
"AdvancedArgs": True, # 调用时,唤起高级参数输入区(默认False)
|
|
||||||
"ArgsReminder": '输入时用逗号隔开, *代表通配符, 加了^代表不匹配; 不输入代表全部匹配。例如: "*.c, ^*.cpp, config.toml, ^*.toml"', # 高级参数输入区的显示提示
|
|
||||||
"Function": HotReload(解析任意code项目),
|
|
||||||
},
|
|
||||||
}
|
|
||||||
)
|
|
||||||
except:
|
|
||||||
logger.error(trimmed_format_exc())
|
|
||||||
logger.error("Load function plugin failed")
|
|
||||||
|
|
||||||
try:
|
|
||||||
from crazy_functions.询问多个大语言模型 import 同时问询_指定模型
|
|
||||||
|
|
||||||
function_plugins.update(
|
|
||||||
{
|
|
||||||
"询问多个GPT模型(手动指定询问哪些模型)": {
|
|
||||||
"Group": "对话",
|
|
||||||
"Color": "stop",
|
|
||||||
"AsButton": False,
|
|
||||||
"AdvancedArgs": True, # 调用时,唤起高级参数输入区(默认False)
|
|
||||||
"ArgsReminder": "支持任意数量的llm接口,用&符号分隔。例如chatglm&gpt-3.5-turbo&gpt-4", # 高级参数输入区的显示提示
|
|
||||||
"Function": HotReload(同时问询_指定模型),
|
|
||||||
},
|
|
||||||
}
|
|
||||||
)
|
|
||||||
except:
|
|
||||||
logger.error(trimmed_format_exc())
|
|
||||||
logger.error("Load function plugin failed")
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
try:
|
|
||||||
from crazy_functions.总结音视频 import 总结音视频
|
|
||||||
|
|
||||||
function_plugins.update(
|
|
||||||
{
|
|
||||||
"批量总结音视频(输入路径或上传压缩包)": {
|
|
||||||
"Group": "对话",
|
|
||||||
"Color": "stop",
|
|
||||||
"AsButton": False,
|
|
||||||
"AdvancedArgs": True,
|
|
||||||
"ArgsReminder": "调用openai api 使用whisper-1模型, 目前支持的格式:mp4, m4a, wav, mpga, mpeg, mp3。此处可以输入解析提示,例如:解析为简体中文(默认)。",
|
|
||||||
"Info": "批量总结音频或视频 | 输入参数为路径",
|
|
||||||
"Function": HotReload(总结音视频),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
)
|
|
||||||
except:
|
|
||||||
logger.error(trimmed_format_exc())
|
|
||||||
logger.error("Load function plugin failed")
|
|
||||||
|
|
||||||
try:
|
|
||||||
from crazy_functions.数学动画生成manim import 动画生成
|
|
||||||
|
|
||||||
function_plugins.update(
|
|
||||||
{
|
|
||||||
"数学动画生成(Manim)": {
|
|
||||||
"Group": "对话",
|
|
||||||
"Color": "stop",
|
|
||||||
"AsButton": False,
|
|
||||||
"Info": "按照自然语言描述生成一个动画 | 输入参数是一段话",
|
|
||||||
"Function": HotReload(动画生成),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
)
|
|
||||||
except:
|
|
||||||
logger.error(trimmed_format_exc())
|
|
||||||
logger.error("Load function plugin failed")
|
|
||||||
|
|
||||||
try:
|
|
||||||
from crazy_functions.Markdown_Translate import Markdown翻译指定语言
|
|
||||||
|
|
||||||
function_plugins.update(
|
|
||||||
{
|
|
||||||
"Markdown翻译(指定翻译成何种语言)": {
|
|
||||||
"Group": "编程",
|
|
||||||
"Color": "stop",
|
|
||||||
"AsButton": False,
|
|
||||||
"AdvancedArgs": True,
|
|
||||||
"ArgsReminder": "请输入要翻译成哪种语言,默认为Chinese。",
|
|
||||||
"Function": HotReload(Markdown翻译指定语言),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
)
|
|
||||||
except:
|
|
||||||
logger.error(trimmed_format_exc())
|
|
||||||
logger.error("Load function plugin failed")
|
|
||||||
|
|
||||||
try:
|
|
||||||
from crazy_functions.知识库问答 import 知识库文件注入
|
|
||||||
|
|
||||||
function_plugins.update(
|
|
||||||
{
|
|
||||||
"构建知识库(先上传文件素材,再运行此插件)": {
|
|
||||||
"Group": "对话",
|
|
||||||
"Color": "stop",
|
|
||||||
"AsButton": False,
|
|
||||||
"AdvancedArgs": True,
|
|
||||||
"ArgsReminder": "此处待注入的知识库名称id, 默认为default。文件进入知识库后可长期保存。可以通过再次调用本插件的方式,向知识库追加更多文档。",
|
|
||||||
"Function": HotReload(知识库文件注入),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
)
|
|
||||||
except:
|
|
||||||
logger.error(trimmed_format_exc())
|
|
||||||
logger.error("Load function plugin failed")
|
|
||||||
|
|
||||||
try:
|
|
||||||
from crazy_functions.知识库问答 import 读取知识库作答
|
|
||||||
|
|
||||||
function_plugins.update(
|
|
||||||
{
|
|
||||||
"知识库文件注入(构建知识库后,再运行此插件)": {
|
|
||||||
"Group": "对话",
|
|
||||||
"Color": "stop",
|
|
||||||
"AsButton": False,
|
|
||||||
"AdvancedArgs": True,
|
|
||||||
"ArgsReminder": "待提取的知识库名称id, 默认为default, 您需要构建知识库后再运行此插件。",
|
|
||||||
"Function": HotReload(读取知识库作答),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
)
|
|
||||||
except:
|
|
||||||
logger.error(trimmed_format_exc())
|
|
||||||
logger.error("Load function plugin failed")
|
|
||||||
|
|
||||||
try:
|
|
||||||
from crazy_functions.交互功能函数模板 import 交互功能模板函数
|
|
||||||
|
|
||||||
function_plugins.update(
|
|
||||||
{
|
|
||||||
"交互功能模板Demo函数(查找wallhaven.cc的壁纸)": {
|
|
||||||
"Group": "对话",
|
|
||||||
"Color": "stop",
|
|
||||||
"AsButton": False,
|
|
||||||
"Function": HotReload(交互功能模板函数),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
)
|
|
||||||
except:
|
|
||||||
logger.error(trimmed_format_exc())
|
|
||||||
logger.error("Load function plugin failed")
|
|
||||||
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from toolbox import get_conf
|
from toolbox import get_conf
|
||||||
@@ -637,8 +604,8 @@ def get_crazy_functions():
|
|||||||
}
|
}
|
||||||
)
|
)
|
||||||
except:
|
except:
|
||||||
logger.error(trimmed_format_exc())
|
print(trimmed_format_exc())
|
||||||
logger.error("Load function plugin failed")
|
print("Load function plugin failed")
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from crazy_functions.批量翻译PDF文档_NOUGAT import 批量翻译PDF文档
|
from crazy_functions.批量翻译PDF文档_NOUGAT import 批量翻译PDF文档
|
||||||
@@ -654,8 +621,8 @@ def get_crazy_functions():
|
|||||||
}
|
}
|
||||||
)
|
)
|
||||||
except:
|
except:
|
||||||
logger.error(trimmed_format_exc())
|
print(trimmed_format_exc())
|
||||||
logger.error("Load function plugin failed")
|
print("Load function plugin failed")
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from crazy_functions.函数动态生成 import 函数动态生成
|
from crazy_functions.函数动态生成 import 函数动态生成
|
||||||
@@ -671,8 +638,8 @@ def get_crazy_functions():
|
|||||||
}
|
}
|
||||||
)
|
)
|
||||||
except:
|
except:
|
||||||
logger.error(trimmed_format_exc())
|
print(trimmed_format_exc())
|
||||||
logger.error("Load function plugin failed")
|
print("Load function plugin failed")
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from crazy_functions.多智能体 import 多智能体终端
|
from crazy_functions.多智能体 import 多智能体终端
|
||||||
@@ -688,8 +655,8 @@ def get_crazy_functions():
|
|||||||
}
|
}
|
||||||
)
|
)
|
||||||
except:
|
except:
|
||||||
logger.error(trimmed_format_exc())
|
print(trimmed_format_exc())
|
||||||
logger.error("Load function plugin failed")
|
print("Load function plugin failed")
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from crazy_functions.互动小游戏 import 随机小游戏
|
from crazy_functions.互动小游戏 import 随机小游戏
|
||||||
@@ -705,27 +672,8 @@ def get_crazy_functions():
|
|||||||
}
|
}
|
||||||
)
|
)
|
||||||
except:
|
except:
|
||||||
logger.error(trimmed_format_exc())
|
print(trimmed_format_exc())
|
||||||
logger.error("Load function plugin failed")
|
print("Load function plugin failed")
|
||||||
|
|
||||||
try:
|
|
||||||
from crazy_functions.Rag_Interface import Rag问答
|
|
||||||
|
|
||||||
function_plugins.update(
|
|
||||||
{
|
|
||||||
"Rag智能召回": {
|
|
||||||
"Group": "对话",
|
|
||||||
"Color": "stop",
|
|
||||||
"AsButton": False,
|
|
||||||
"Info": "将问答数据记录到向量库中,作为长期参考。",
|
|
||||||
"Function": HotReload(Rag问答),
|
|
||||||
},
|
|
||||||
}
|
|
||||||
)
|
|
||||||
except:
|
|
||||||
logger.error(trimmed_format_exc())
|
|
||||||
logger.error("Load function plugin failed")
|
|
||||||
|
|
||||||
|
|
||||||
# try:
|
# try:
|
||||||
# from crazy_functions.高级功能函数模板 import 测试图表渲染
|
# from crazy_functions.高级功能函数模板 import 测试图表渲染
|
||||||
@@ -738,9 +686,22 @@ def get_crazy_functions():
|
|||||||
# }
|
# }
|
||||||
# })
|
# })
|
||||||
# except:
|
# except:
|
||||||
# logger.error(trimmed_format_exc())
|
# print(trimmed_format_exc())
|
||||||
# print('Load function plugin failed')
|
# print('Load function plugin failed')
|
||||||
|
|
||||||
|
# try:
|
||||||
|
# from crazy_functions.chatglm微调工具 import 微调数据集生成
|
||||||
|
# function_plugins.update({
|
||||||
|
# "黑盒模型学习: 微调数据集生成 (先上传数据集)": {
|
||||||
|
# "Color": "stop",
|
||||||
|
# "AsButton": False,
|
||||||
|
# "AdvancedArgs": True,
|
||||||
|
# "ArgsReminder": "针对数据集输入(如 绿帽子*深蓝色衬衫*黑色运动裤)给出指令,例如您可以将以下命令复制到下方: --llm_to_learn=azure-gpt-3.5 --prompt_prefix='根据下面的服装类型提示,想象一个穿着者,对这个人外貌、身处的环境、内心世界、过去经历进行描写。要求:100字以内,用第二人称。' --system_prompt=''",
|
||||||
|
# "Function": HotReload(微调数据集生成)
|
||||||
|
# }
|
||||||
|
# })
|
||||||
|
# except:
|
||||||
|
# print('Load function plugin failed')
|
||||||
|
|
||||||
"""
|
"""
|
||||||
设置默认值:
|
设置默认值:
|
||||||
@@ -760,23 +721,3 @@ def get_crazy_functions():
|
|||||||
function_plugins[name]["Color"] = "secondary"
|
function_plugins[name]["Color"] = "secondary"
|
||||||
|
|
||||||
return function_plugins
|
return function_plugins
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def get_multiplex_button_functions():
|
|
||||||
"""多路复用主提交按钮的功能映射
|
|
||||||
"""
|
|
||||||
return {
|
|
||||||
"常规对话":
|
|
||||||
"",
|
|
||||||
|
|
||||||
"多模型对话":
|
|
||||||
"询问多个GPT模型", # 映射到上面的 `询问多个GPT模型` 插件
|
|
||||||
|
|
||||||
"智能召回 RAG":
|
|
||||||
"Rag智能召回", # 映射到上面的 `Rag智能召回` 插件
|
|
||||||
|
|
||||||
"多媒体查询":
|
|
||||||
"多媒体智能体", # 映射到上面的 `多媒体智能体` 插件
|
|
||||||
}
|
|
||||||
|
|||||||
@@ -1,56 +0,0 @@
|
|||||||
|
|
||||||
from toolbox import get_conf, update_ui
|
|
||||||
from crazy_functions.Image_Generate import 图片生成_DALLE2, 图片生成_DALLE3, 图片修改_DALLE2
|
|
||||||
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
|
|
||||||
|
|
||||||
|
|
||||||
class ImageGen_Wrap(GptAcademicPluginTemplate):
|
|
||||||
def __init__(self):
|
|
||||||
"""
|
|
||||||
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
|
|
||||||
"""
|
|
||||||
pass
|
|
||||||
|
|
||||||
def define_arg_selection_menu(self):
|
|
||||||
"""
|
|
||||||
定义插件的二级选项菜单
|
|
||||||
|
|
||||||
第一个参数,名称`main_input`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
|
|
||||||
第二个参数,名称`advanced_arg`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
|
|
||||||
|
|
||||||
"""
|
|
||||||
gui_definition = {
|
|
||||||
"main_input":
|
|
||||||
ArgProperty(title="输入图片描述", description="需要生成图像的文本描述,尽量使用英文", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
|
|
||||||
"model_name":
|
|
||||||
ArgProperty(title="模型", options=["DALLE2", "DALLE3"], default_value="DALLE3", description="无", type="dropdown").model_dump_json(),
|
|
||||||
"resolution":
|
|
||||||
ArgProperty(title="分辨率", options=["256x256(限DALLE2)", "512x512(限DALLE2)", "1024x1024", "1792x1024(限DALLE3)", "1024x1792(限DALLE3)"], default_value="1024x1024", description="无", type="dropdown").model_dump_json(),
|
|
||||||
"quality (仅DALLE3生效)":
|
|
||||||
ArgProperty(title="质量", options=["standard", "hd"], default_value="standard", description="无", type="dropdown").model_dump_json(),
|
|
||||||
"style (仅DALLE3生效)":
|
|
||||||
ArgProperty(title="风格", options=["vivid", "natural"], default_value="vivid", description="无", type="dropdown").model_dump_json(),
|
|
||||||
|
|
||||||
}
|
|
||||||
return gui_definition
|
|
||||||
|
|
||||||
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
|
||||||
"""
|
|
||||||
执行插件
|
|
||||||
"""
|
|
||||||
# 分辨率
|
|
||||||
resolution = plugin_kwargs["resolution"].replace("(限DALLE2)", "").replace("(限DALLE3)", "")
|
|
||||||
|
|
||||||
if plugin_kwargs["model_name"] == "DALLE2":
|
|
||||||
plugin_kwargs["advanced_arg"] = resolution
|
|
||||||
yield from 图片生成_DALLE2(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
|
||||||
|
|
||||||
elif plugin_kwargs["model_name"] == "DALLE3":
|
|
||||||
quality = plugin_kwargs["quality (仅DALLE3生效)"]
|
|
||||||
style = plugin_kwargs["style (仅DALLE3生效)"]
|
|
||||||
plugin_kwargs["advanced_arg"] = f"{resolution}-{quality}-{style}"
|
|
||||||
yield from 图片生成_DALLE3(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
|
||||||
|
|
||||||
else:
|
|
||||||
chatbot.append([None, "抱歉,找不到该模型"])
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
@@ -1,311 +0,0 @@
|
|||||||
import requests
|
|
||||||
import random
|
|
||||||
import time
|
|
||||||
import re
|
|
||||||
import json
|
|
||||||
from bs4 import BeautifulSoup
|
|
||||||
from functools import lru_cache
|
|
||||||
from itertools import zip_longest
|
|
||||||
from check_proxy import check_proxy
|
|
||||||
from toolbox import CatchException, update_ui, get_conf, update_ui_lastest_msg
|
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
|
|
||||||
from request_llms.bridge_all import model_info
|
|
||||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
|
||||||
from crazy_functions.prompts.internet import SearchOptimizerPrompt, SearchAcademicOptimizerPrompt
|
|
||||||
|
|
||||||
def search_optimizer(
|
|
||||||
query,
|
|
||||||
proxies,
|
|
||||||
history,
|
|
||||||
llm_kwargs,
|
|
||||||
optimizer=1,
|
|
||||||
categories="general",
|
|
||||||
searxng_url=None,
|
|
||||||
engines=None,
|
|
||||||
):
|
|
||||||
# ------------- < 第1步:尝试进行搜索优化 > -------------
|
|
||||||
# * 增强优化,会尝试结合历史记录进行搜索优化
|
|
||||||
if optimizer == 2:
|
|
||||||
his = " "
|
|
||||||
if len(history) == 0:
|
|
||||||
pass
|
|
||||||
else:
|
|
||||||
for i, h in enumerate(history):
|
|
||||||
if i % 2 == 0:
|
|
||||||
his += f"Q: {h}\n"
|
|
||||||
else:
|
|
||||||
his += f"A: {h}\n"
|
|
||||||
if categories == "general":
|
|
||||||
sys_prompt = SearchOptimizerPrompt.format(query=query, history=his, num=4)
|
|
||||||
elif categories == "science":
|
|
||||||
sys_prompt = SearchAcademicOptimizerPrompt.format(query=query, history=his, num=4)
|
|
||||||
else:
|
|
||||||
his = " "
|
|
||||||
if categories == "general":
|
|
||||||
sys_prompt = SearchOptimizerPrompt.format(query=query, history=his, num=3)
|
|
||||||
elif categories == "science":
|
|
||||||
sys_prompt = SearchAcademicOptimizerPrompt.format(query=query, history=his, num=3)
|
|
||||||
|
|
||||||
mutable = ["", time.time(), ""]
|
|
||||||
llm_kwargs["temperature"] = 0.8
|
|
||||||
try:
|
|
||||||
querys_json = predict_no_ui_long_connection(
|
|
||||||
inputs=query,
|
|
||||||
llm_kwargs=llm_kwargs,
|
|
||||||
history=[],
|
|
||||||
sys_prompt=sys_prompt,
|
|
||||||
observe_window=mutable,
|
|
||||||
)
|
|
||||||
except Exception:
|
|
||||||
querys_json = "1234"
|
|
||||||
#* 尝试解码优化后的搜索结果
|
|
||||||
querys_json = re.sub(r"```json|```", "", querys_json)
|
|
||||||
try:
|
|
||||||
querys = json.loads(querys_json)
|
|
||||||
except Exception:
|
|
||||||
#* 如果解码失败,降低温度再试一次
|
|
||||||
try:
|
|
||||||
llm_kwargs["temperature"] = 0.4
|
|
||||||
querys_json = predict_no_ui_long_connection(
|
|
||||||
inputs=query,
|
|
||||||
llm_kwargs=llm_kwargs,
|
|
||||||
history=[],
|
|
||||||
sys_prompt=sys_prompt,
|
|
||||||
observe_window=mutable,
|
|
||||||
)
|
|
||||||
querys_json = re.sub(r"```json|```", "", querys_json)
|
|
||||||
querys = json.loads(querys_json)
|
|
||||||
except Exception:
|
|
||||||
#* 如果再次失败,直接返回原始问题
|
|
||||||
querys = [query]
|
|
||||||
links = []
|
|
||||||
success = 0
|
|
||||||
Exceptions = ""
|
|
||||||
for q in querys:
|
|
||||||
try:
|
|
||||||
link = searxng_request(q, proxies, categories, searxng_url, engines=engines)
|
|
||||||
if len(link) > 0:
|
|
||||||
links.append(link[:-5])
|
|
||||||
success += 1
|
|
||||||
except Exception:
|
|
||||||
Exceptions = Exception
|
|
||||||
pass
|
|
||||||
if success == 0:
|
|
||||||
raise ValueError(f"在线搜索失败!\n{Exceptions}")
|
|
||||||
# * 清洗搜索结果,依次放入每组第一,第二个搜索结果,并清洗重复的搜索结果
|
|
||||||
seen_links = set()
|
|
||||||
result = []
|
|
||||||
for tuple in zip_longest(*links, fillvalue=None):
|
|
||||||
for item in tuple:
|
|
||||||
if item is not None:
|
|
||||||
link = item["link"]
|
|
||||||
if link not in seen_links:
|
|
||||||
seen_links.add(link)
|
|
||||||
result.append(item)
|
|
||||||
return result
|
|
||||||
|
|
||||||
|
|
||||||
@lru_cache
|
|
||||||
def get_auth_ip():
|
|
||||||
ip = check_proxy(None, return_ip=True)
|
|
||||||
if ip is None:
|
|
||||||
return '114.114.114.' + str(random.randint(1, 10))
|
|
||||||
return ip
|
|
||||||
|
|
||||||
|
|
||||||
def searxng_request(query, proxies, categories='general', searxng_url=None, engines=None):
|
|
||||||
if searxng_url is None:
|
|
||||||
urls = get_conf("SEARXNG_URLS")
|
|
||||||
url = random.choice(urls)
|
|
||||||
else:
|
|
||||||
url = searxng_url
|
|
||||||
|
|
||||||
if engines == "Mixed":
|
|
||||||
engines = None
|
|
||||||
|
|
||||||
if categories == 'general':
|
|
||||||
params = {
|
|
||||||
'q': query, # 搜索查询
|
|
||||||
'format': 'json', # 输出格式为JSON
|
|
||||||
'language': 'zh', # 搜索语言
|
|
||||||
'engines': engines,
|
|
||||||
}
|
|
||||||
elif categories == 'science':
|
|
||||||
params = {
|
|
||||||
'q': query, # 搜索查询
|
|
||||||
'format': 'json', # 输出格式为JSON
|
|
||||||
'language': 'zh', # 搜索语言
|
|
||||||
'categories': 'science'
|
|
||||||
}
|
|
||||||
else:
|
|
||||||
raise ValueError('不支持的检索类型')
|
|
||||||
|
|
||||||
headers = {
|
|
||||||
'Accept-Language': 'zh-CN,zh;q=0.9',
|
|
||||||
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36',
|
|
||||||
'X-Forwarded-For': get_auth_ip(),
|
|
||||||
'X-Real-IP': get_auth_ip()
|
|
||||||
}
|
|
||||||
results = []
|
|
||||||
response = requests.post(url, params=params, headers=headers, proxies=proxies, timeout=30)
|
|
||||||
if response.status_code == 200:
|
|
||||||
json_result = response.json()
|
|
||||||
for result in json_result['results']:
|
|
||||||
item = {
|
|
||||||
"title": result.get("title", ""),
|
|
||||||
"source": result.get("engines", "unknown"),
|
|
||||||
"content": result.get("content", ""),
|
|
||||||
"link": result["url"],
|
|
||||||
}
|
|
||||||
results.append(item)
|
|
||||||
return results
|
|
||||||
else:
|
|
||||||
if response.status_code == 429:
|
|
||||||
raise ValueError("Searxng(在线搜索服务)当前使用人数太多,请稍后。")
|
|
||||||
else:
|
|
||||||
raise ValueError("在线搜索失败,状态码: " + str(response.status_code) + '\t' + response.content.decode('utf-8'))
|
|
||||||
|
|
||||||
|
|
||||||
def scrape_text(url, proxies) -> str:
|
|
||||||
"""Scrape text from a webpage
|
|
||||||
|
|
||||||
Args:
|
|
||||||
url (str): The URL to scrape text from
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
str: The scraped text
|
|
||||||
"""
|
|
||||||
headers = {
|
|
||||||
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36',
|
|
||||||
'Content-Type': 'text/plain',
|
|
||||||
}
|
|
||||||
try:
|
|
||||||
response = requests.get(url, headers=headers, proxies=proxies, timeout=8)
|
|
||||||
if response.encoding == "ISO-8859-1": response.encoding = response.apparent_encoding
|
|
||||||
except:
|
|
||||||
return "无法连接到该网页"
|
|
||||||
soup = BeautifulSoup(response.text, "html.parser")
|
|
||||||
for script in soup(["script", "style"]):
|
|
||||||
script.extract()
|
|
||||||
text = soup.get_text()
|
|
||||||
lines = (line.strip() for line in text.splitlines())
|
|
||||||
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
|
|
||||||
text = "\n".join(chunk for chunk in chunks if chunk)
|
|
||||||
return text
|
|
||||||
|
|
||||||
def internet_search_with_analysis_prompt(prompt, analysis_prompt, llm_kwargs, chatbot):
|
|
||||||
from toolbox import get_conf
|
|
||||||
proxies = get_conf('proxies')
|
|
||||||
categories = 'general'
|
|
||||||
searxng_url = None # 使用默认的searxng_url
|
|
||||||
engines = None # 使用默认的搜索引擎
|
|
||||||
yield from update_ui_lastest_msg(lastmsg=f"检索中: {prompt} ...", chatbot=chatbot, history=[], delay=1)
|
|
||||||
urls = searxng_request(prompt, proxies, categories, searxng_url, engines=engines)
|
|
||||||
yield from update_ui_lastest_msg(lastmsg=f"依次访问搜索到的网站 ...", chatbot=chatbot, history=[], delay=1)
|
|
||||||
if len(urls) == 0:
|
|
||||||
return None
|
|
||||||
max_search_result = 5 # 最多收纳多少个网页的结果
|
|
||||||
history = []
|
|
||||||
for index, url in enumerate(urls[:max_search_result]):
|
|
||||||
yield from update_ui_lastest_msg(lastmsg=f"依次访问搜索到的网站: {url['link']} ...", chatbot=chatbot, history=[], delay=1)
|
|
||||||
res = scrape_text(url['link'], proxies)
|
|
||||||
prefix = f"第{index}份搜索结果 [源自{url['source'][0]}搜索] ({url['title'][:25]}):"
|
|
||||||
history.extend([prefix, res])
|
|
||||||
i_say = f"从以上搜索结果中抽取信息,然后回答问题:{prompt} {analysis_prompt}"
|
|
||||||
i_say, history = input_clipping( # 裁剪输入,从最长的条目开始裁剪,防止爆token
|
|
||||||
inputs=i_say,
|
|
||||||
history=history,
|
|
||||||
max_token_limit=8192
|
|
||||||
)
|
|
||||||
gpt_say = predict_no_ui_long_connection(
|
|
||||||
inputs=i_say,
|
|
||||||
llm_kwargs=llm_kwargs,
|
|
||||||
history=history,
|
|
||||||
sys_prompt="请从搜索结果中抽取信息,对最相关的两个搜索结果进行总结,然后回答问题。",
|
|
||||||
console_slience=False,
|
|
||||||
)
|
|
||||||
return gpt_say
|
|
||||||
|
|
||||||
@CatchException
|
|
||||||
def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
|
||||||
optimizer_history = history[:-8]
|
|
||||||
history = [] # 清空历史,以免输入溢出
|
|
||||||
chatbot.append((f"请结合互联网信息回答以下问题:{txt}", "检索中..."))
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
|
|
||||||
# ------------- < 第1步:爬取搜索引擎的结果 > -------------
|
|
||||||
from toolbox import get_conf
|
|
||||||
proxies = get_conf('proxies')
|
|
||||||
categories = plugin_kwargs.get('categories', 'general')
|
|
||||||
searxng_url = plugin_kwargs.get('searxng_url', None)
|
|
||||||
engines = plugin_kwargs.get('engine', None)
|
|
||||||
optimizer = plugin_kwargs.get('optimizer', "关闭")
|
|
||||||
if optimizer == "关闭":
|
|
||||||
urls = searxng_request(txt, proxies, categories, searxng_url, engines=engines)
|
|
||||||
else:
|
|
||||||
urls = search_optimizer(txt, proxies, optimizer_history, llm_kwargs, optimizer, categories, searxng_url, engines)
|
|
||||||
history = []
|
|
||||||
if len(urls) == 0:
|
|
||||||
chatbot.append((f"结论:{txt}",
|
|
||||||
"[Local Message] 受到限制,无法从searxng获取信息!请尝试更换搜索引擎。"))
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
return
|
|
||||||
|
|
||||||
# ------------- < 第2步:依次访问网页 > -------------
|
|
||||||
max_search_result = 5 # 最多收纳多少个网页的结果
|
|
||||||
if optimizer == "开启(增强)":
|
|
||||||
max_search_result = 8
|
|
||||||
chatbot.append(["联网检索中 ...", None])
|
|
||||||
for index, url in enumerate(urls[:max_search_result]):
|
|
||||||
res = scrape_text(url['link'], proxies)
|
|
||||||
prefix = f"第{index}份搜索结果 [源自{url['source'][0]}搜索] ({url['title'][:25]}):"
|
|
||||||
history.extend([prefix, res])
|
|
||||||
res_squeeze = res.replace('\n', '...')
|
|
||||||
chatbot[-1] = [prefix + "\n\n" + res_squeeze[:500] + "......", None]
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
|
|
||||||
# ------------- < 第3步:ChatGPT综合 > -------------
|
|
||||||
if (optimizer != "开启(增强)"):
|
|
||||||
i_say = f"从以上搜索结果中抽取信息,然后回答问题:{txt}"
|
|
||||||
i_say, history = input_clipping( # 裁剪输入,从最长的条目开始裁剪,防止爆token
|
|
||||||
inputs=i_say,
|
|
||||||
history=history,
|
|
||||||
max_token_limit=min(model_info[llm_kwargs['llm_model']]['max_token']*3//4, 8192)
|
|
||||||
)
|
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
|
||||||
inputs=i_say, inputs_show_user=i_say,
|
|
||||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
|
||||||
sys_prompt="请从给定的若干条搜索结果中抽取信息,对最相关的两个搜索结果进行总结,然后回答问题。"
|
|
||||||
)
|
|
||||||
chatbot[-1] = (i_say, gpt_say)
|
|
||||||
history.append(i_say);history.append(gpt_say)
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
|
||||||
|
|
||||||
#* 或者使用搜索优化器,这样可以保证后续问答能读取到有效的历史记录
|
|
||||||
else:
|
|
||||||
i_say = f"从以上搜索结果中抽取与问题:{txt} 相关的信息:"
|
|
||||||
i_say, history = input_clipping( # 裁剪输入,从最长的条目开始裁剪,防止爆token
|
|
||||||
inputs=i_say,
|
|
||||||
history=history,
|
|
||||||
max_token_limit=min(model_info[llm_kwargs['llm_model']]['max_token']*3//4, 8192)
|
|
||||||
)
|
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
|
||||||
inputs=i_say, inputs_show_user=i_say,
|
|
||||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
|
||||||
sys_prompt="请从给定的若干条搜索结果中抽取信息,对最相关的三个搜索结果进行总结"
|
|
||||||
)
|
|
||||||
chatbot[-1] = (i_say, gpt_say)
|
|
||||||
history = []
|
|
||||||
history.append(i_say);history.append(gpt_say)
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
|
||||||
|
|
||||||
# ------------- < 第4步:根据综合回答问题 > -------------
|
|
||||||
i_say = f"请根据以上搜索结果回答问题:{txt}"
|
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
|
||||||
inputs=i_say, inputs_show_user=i_say,
|
|
||||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
|
||||||
sys_prompt="请根据给定的若干条搜索结果回答问题"
|
|
||||||
)
|
|
||||||
chatbot[-1] = (i_say, gpt_say)
|
|
||||||
history.append(i_say);history.append(gpt_say)
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
|
||||||
@@ -1,48 +0,0 @@
|
|||||||
import random
|
|
||||||
from toolbox import get_conf
|
|
||||||
from crazy_functions.Internet_GPT import 连接网络回答问题
|
|
||||||
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
|
|
||||||
|
|
||||||
|
|
||||||
class NetworkGPT_Wrap(GptAcademicPluginTemplate):
|
|
||||||
def __init__(self):
|
|
||||||
"""
|
|
||||||
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
|
|
||||||
"""
|
|
||||||
pass
|
|
||||||
|
|
||||||
def define_arg_selection_menu(self):
|
|
||||||
"""
|
|
||||||
定义插件的二级选项菜单
|
|
||||||
|
|
||||||
第一个参数,名称`main_input`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
|
|
||||||
第二个参数,名称`advanced_arg`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
|
|
||||||
第三个参数,名称`allow_cache`,参数`type`声明这是一个下拉菜单,下拉菜单上方显示`title`+`description`,下拉菜单的选项为`options`,`default_value`为下拉菜单默认值;
|
|
||||||
|
|
||||||
"""
|
|
||||||
urls = get_conf("SEARXNG_URLS")
|
|
||||||
url = random.choice(urls)
|
|
||||||
|
|
||||||
gui_definition = {
|
|
||||||
"main_input":
|
|
||||||
ArgProperty(title="输入问题", description="待通过互联网检索的问题,会自动读取输入框内容", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
|
|
||||||
"categories":
|
|
||||||
ArgProperty(title="搜索分类", options=["网页", "学术论文"], default_value="网页", description="无", type="dropdown").model_dump_json(),
|
|
||||||
"engine":
|
|
||||||
ArgProperty(title="选择搜索引擎", options=["Mixed", "bing", "google", "duckduckgo"], default_value="google", description="无", type="dropdown").model_dump_json(),
|
|
||||||
"optimizer":
|
|
||||||
ArgProperty(title="搜索优化", options=["关闭", "开启", "开启(增强)"], default_value="关闭", description="是否使用搜索增强。注意这可能会消耗较多token", type="dropdown").model_dump_json(),
|
|
||||||
"searxng_url":
|
|
||||||
ArgProperty(title="Searxng服务地址", description="输入Searxng的地址", default_value=url, type="string").model_dump_json(), # 主输入,自动从输入框同步
|
|
||||||
|
|
||||||
}
|
|
||||||
return gui_definition
|
|
||||||
|
|
||||||
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
|
||||||
"""
|
|
||||||
执行插件
|
|
||||||
"""
|
|
||||||
if plugin_kwargs["categories"] == "网页": plugin_kwargs["categories"] = "general"
|
|
||||||
if plugin_kwargs["categories"] == "学术论文": plugin_kwargs["categories"] = "science"
|
|
||||||
yield from 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
|
||||||
|
|
||||||
@@ -1,85 +0,0 @@
|
|||||||
|
|
||||||
from crazy_functions.Latex_Function import Latex翻译中文并重新编译PDF, PDF翻译中文并重新编译PDF
|
|
||||||
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
|
|
||||||
|
|
||||||
|
|
||||||
class Arxiv_Localize(GptAcademicPluginTemplate):
|
|
||||||
def __init__(self):
|
|
||||||
"""
|
|
||||||
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
|
|
||||||
"""
|
|
||||||
pass
|
|
||||||
|
|
||||||
def define_arg_selection_menu(self):
|
|
||||||
"""
|
|
||||||
定义插件的二级选项菜单
|
|
||||||
|
|
||||||
第一个参数,名称`main_input`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
|
|
||||||
第二个参数,名称`advanced_arg`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
|
|
||||||
第三个参数,名称`allow_cache`,参数`type`声明这是一个下拉菜单,下拉菜单上方显示`title`+`description`,下拉菜单的选项为`options`,`default_value`为下拉菜单默认值;
|
|
||||||
|
|
||||||
"""
|
|
||||||
gui_definition = {
|
|
||||||
"main_input":
|
|
||||||
ArgProperty(title="ArxivID", description="输入Arxiv的ID或者网址", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
|
|
||||||
"advanced_arg":
|
|
||||||
ArgProperty(title="额外的翻译提示词",
|
|
||||||
description=r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
|
|
||||||
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
|
|
||||||
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
|
||||||
default_value="", type="string").model_dump_json(), # 高级参数输入区,自动同步
|
|
||||||
"allow_cache":
|
|
||||||
ArgProperty(title="是否允许从缓存中调取结果", options=["允许缓存", "从头执行"], default_value="允许缓存", description="无", type="dropdown").model_dump_json(),
|
|
||||||
"allow_cloudio":
|
|
||||||
ArgProperty(title="是否允许从GPTAC学术云下载(或者上传)翻译结果(仅针对Arxiv论文)", options=["允许", "禁止"], default_value="禁止", description="共享文献,互助互利", type="dropdown").model_dump_json(),
|
|
||||||
}
|
|
||||||
return gui_definition
|
|
||||||
|
|
||||||
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
|
||||||
"""
|
|
||||||
执行插件
|
|
||||||
"""
|
|
||||||
allow_cache = plugin_kwargs["allow_cache"]
|
|
||||||
allow_cloudio = plugin_kwargs["allow_cloudio"]
|
|
||||||
advanced_arg = plugin_kwargs["advanced_arg"]
|
|
||||||
|
|
||||||
if allow_cache == "从头执行": plugin_kwargs["advanced_arg"] = "--no-cache " + plugin_kwargs["advanced_arg"]
|
|
||||||
|
|
||||||
# 从云端下载翻译结果,以及上传翻译结果到云端;人人为我,我为人人。
|
|
||||||
if allow_cloudio == "允许": plugin_kwargs["advanced_arg"] = "--allow-cloudio " + plugin_kwargs["advanced_arg"]
|
|
||||||
|
|
||||||
yield from Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class PDF_Localize(GptAcademicPluginTemplate):
|
|
||||||
def __init__(self):
|
|
||||||
"""
|
|
||||||
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
|
|
||||||
"""
|
|
||||||
pass
|
|
||||||
|
|
||||||
def define_arg_selection_menu(self):
|
|
||||||
"""
|
|
||||||
定义插件的二级选项菜单
|
|
||||||
"""
|
|
||||||
gui_definition = {
|
|
||||||
"main_input":
|
|
||||||
ArgProperty(title="PDF文件路径", description="未指定路径,请上传文件后,再点击该插件", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
|
|
||||||
"advanced_arg":
|
|
||||||
ArgProperty(title="额外的翻译提示词",
|
|
||||||
description=r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
|
|
||||||
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
|
|
||||||
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
|
||||||
default_value="", type="string").model_dump_json(), # 高级参数输入区,自动同步
|
|
||||||
"method":
|
|
||||||
ArgProperty(title="采用哪种方法执行转换", options=["MATHPIX", "DOC2X"], default_value="DOC2X", description="无", type="dropdown").model_dump_json(),
|
|
||||||
|
|
||||||
}
|
|
||||||
return gui_definition
|
|
||||||
|
|
||||||
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
|
||||||
"""
|
|
||||||
执行插件
|
|
||||||
"""
|
|
||||||
yield from PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
|
||||||
@@ -1,6 +1,6 @@
|
|||||||
from toolbox import update_ui, trimmed_format_exc, promote_file_to_downloadzone, get_log_folder
|
from toolbox import update_ui, trimmed_format_exc, promote_file_to_downloadzone, get_log_folder
|
||||||
from toolbox import CatchException, report_exception, write_history_to_file, zip_folder
|
from toolbox import CatchException, report_exception, write_history_to_file, zip_folder
|
||||||
from loguru import logger
|
|
||||||
|
|
||||||
class PaperFileGroup():
|
class PaperFileGroup():
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
@@ -33,7 +33,7 @@ class PaperFileGroup():
|
|||||||
self.sp_file_index.append(index)
|
self.sp_file_index.append(index)
|
||||||
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.tex")
|
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.tex")
|
||||||
|
|
||||||
logger.info('Segmentation: done')
|
print('Segmentation: done')
|
||||||
def merge_result(self):
|
def merge_result(self):
|
||||||
self.file_result = ["" for _ in range(len(self.file_paths))]
|
self.file_result = ["" for _ in range(len(self.file_paths))]
|
||||||
for r, k in zip(self.sp_file_result, self.sp_file_index):
|
for r, k in zip(self.sp_file_result, self.sp_file_index):
|
||||||
@@ -56,7 +56,7 @@ class PaperFileGroup():
|
|||||||
|
|
||||||
def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en', mode='polish'):
|
def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en', mode='polish'):
|
||||||
import time, os, re
|
import time, os, re
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
|
|
||||||
|
|
||||||
# <-------- 读取Latex文件,删除其中的所有注释 ---------->
|
# <-------- 读取Latex文件,删除其中的所有注释 ---------->
|
||||||
@@ -81,8 +81,8 @@ def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
|||||||
# <-------- 多线程润色开始 ---------->
|
# <-------- 多线程润色开始 ---------->
|
||||||
if language == 'en':
|
if language == 'en':
|
||||||
if mode == 'polish':
|
if mode == 'polish':
|
||||||
inputs_array = [r"Below is a section from an academic paper, polish this section to meet the academic standard, " +
|
inputs_array = ["Below is a section from an academic paper, polish this section to meet the academic standard, " +
|
||||||
r"improve the grammar, clarity and overall readability, do not modify any latex command such as \section, \cite and equations:" +
|
"improve the grammar, clarity and overall readability, do not modify any latex command such as \section, \cite and equations:" +
|
||||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||||
else:
|
else:
|
||||||
inputs_array = [r"Below is a section from an academic paper, proofread this section." +
|
inputs_array = [r"Below is a section from an academic paper, proofread this section." +
|
||||||
@@ -93,10 +93,10 @@ def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
|||||||
sys_prompt_array = ["You are a professional academic paper writer." for _ in range(n_split)]
|
sys_prompt_array = ["You are a professional academic paper writer." for _ in range(n_split)]
|
||||||
elif language == 'zh':
|
elif language == 'zh':
|
||||||
if mode == 'polish':
|
if mode == 'polish':
|
||||||
inputs_array = [r"以下是一篇学术论文中的一段内容,请将此部分润色以满足学术标准,提高语法、清晰度和整体可读性,不要修改任何LaTeX命令,例如\section,\cite和方程式:" +
|
inputs_array = [f"以下是一篇学术论文中的一段内容,请将此部分润色以满足学术标准,提高语法、清晰度和整体可读性,不要修改任何LaTeX命令,例如\section,\cite和方程式:" +
|
||||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||||
else:
|
else:
|
||||||
inputs_array = [r"以下是一篇学术论文中的一段内容,请对这部分内容进行语法矫正。不要修改任何LaTeX命令,例如\section,\cite和方程式:" +
|
inputs_array = [f"以下是一篇学术论文中的一段内容,请对这部分内容进行语法矫正。不要修改任何LaTeX命令,例如\section,\cite和方程式:" +
|
||||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||||
inputs_show_user_array = [f"润色 {f}" for f in pfg.sp_file_tag]
|
inputs_show_user_array = [f"润色 {f}" for f in pfg.sp_file_tag]
|
||||||
sys_prompt_array=["你是一位专业的中文学术论文作家。" for _ in range(n_split)]
|
sys_prompt_array=["你是一位专业的中文学术论文作家。" for _ in range(n_split)]
|
||||||
@@ -122,7 +122,7 @@ def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
|||||||
pfg.write_result()
|
pfg.write_result()
|
||||||
pfg.zip_result()
|
pfg.zip_result()
|
||||||
except:
|
except:
|
||||||
logger.error(trimmed_format_exc())
|
print(trimmed_format_exc())
|
||||||
|
|
||||||
# <-------- 整理结果,退出 ---------->
|
# <-------- 整理结果,退出 ---------->
|
||||||
create_report_file_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + f"-chatgpt.polish.md"
|
create_report_file_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + f"-chatgpt.polish.md"
|
||||||
@@ -1,6 +1,6 @@
|
|||||||
from toolbox import update_ui, promote_file_to_downloadzone
|
from toolbox import update_ui, promote_file_to_downloadzone
|
||||||
from toolbox import CatchException, report_exception, write_history_to_file
|
from toolbox import CatchException, report_exception, write_history_to_file
|
||||||
from loguru import logger
|
fast_debug = False
|
||||||
|
|
||||||
class PaperFileGroup():
|
class PaperFileGroup():
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
@@ -33,11 +33,11 @@ class PaperFileGroup():
|
|||||||
self.sp_file_index.append(index)
|
self.sp_file_index.append(index)
|
||||||
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.tex")
|
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.tex")
|
||||||
|
|
||||||
logger.info('Segmentation: done')
|
print('Segmentation: done')
|
||||||
|
|
||||||
def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en'):
|
def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en'):
|
||||||
import time, os, re
|
import time, os, re
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
|
|
||||||
# <-------- 读取Latex文件,删除其中的所有注释 ---------->
|
# <-------- 读取Latex文件,删除其中的所有注释 ---------->
|
||||||
pfg = PaperFileGroup()
|
pfg = PaperFileGroup()
|
||||||
@@ -1,12 +1,10 @@
|
|||||||
from toolbox import update_ui, trimmed_format_exc, get_conf, get_log_folder, promote_file_to_downloadzone, check_repeat_upload, map_file_to_sha256
|
from toolbox import update_ui, trimmed_format_exc, get_conf, get_log_folder, promote_file_to_downloadzone
|
||||||
from toolbox import CatchException, report_exception, update_ui_lastest_msg, zip_result, gen_time_str
|
from toolbox import CatchException, report_exception, update_ui_lastest_msg, zip_result, gen_time_str
|
||||||
from functools import partial
|
from functools import partial
|
||||||
from loguru import logger
|
import glob, os, requests, time, json, tarfile
|
||||||
|
|
||||||
import glob, os, requests, time, json, tarfile, threading
|
|
||||||
|
|
||||||
pj = os.path.join
|
pj = os.path.join
|
||||||
ARXIV_CACHE_DIR = get_conf("ARXIV_CACHE_DIR")
|
ARXIV_CACHE_DIR = os.path.expanduser(f"~/arxiv_cache/")
|
||||||
|
|
||||||
|
|
||||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- 工具函数 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- 工具函数 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||||
@@ -109,10 +107,6 @@ def arxiv_download(chatbot, history, txt, allow_cache=True):
|
|||||||
except ValueError:
|
except ValueError:
|
||||||
return False
|
return False
|
||||||
|
|
||||||
if txt.startswith('https://arxiv.org/pdf/'):
|
|
||||||
arxiv_id = txt.split('/')[-1] # 2402.14207v2.pdf
|
|
||||||
txt = arxiv_id.split('v')[0] # 2402.14207
|
|
||||||
|
|
||||||
if ('.' in txt) and ('/' not in txt) and is_float(txt): # is arxiv ID
|
if ('.' in txt) and ('/' not in txt) and is_float(txt): # is arxiv ID
|
||||||
txt = 'https://arxiv.org/abs/' + txt.strip()
|
txt = 'https://arxiv.org/abs/' + txt.strip()
|
||||||
if ('.' in txt) and ('/' not in txt) and is_float(txt[:10]): # is arxiv ID
|
if ('.' in txt) and ('/' not in txt) and is_float(txt[:10]): # is arxiv ID
|
||||||
@@ -127,7 +121,6 @@ def arxiv_download(chatbot, history, txt, allow_cache=True):
|
|||||||
time.sleep(1) # 刷新界面
|
time.sleep(1) # 刷新界面
|
||||||
|
|
||||||
url_ = txt # https://arxiv.org/abs/1707.06690
|
url_ = txt # https://arxiv.org/abs/1707.06690
|
||||||
|
|
||||||
if not txt.startswith('https://arxiv.org/abs/'):
|
if not txt.startswith('https://arxiv.org/abs/'):
|
||||||
msg = f"解析arxiv网址失败, 期望格式例如: https://arxiv.org/abs/1707.06690。实际得到格式: {url_}。"
|
msg = f"解析arxiv网址失败, 期望格式例如: https://arxiv.org/abs/1707.06690。实际得到格式: {url_}。"
|
||||||
yield from update_ui_lastest_msg(msg, chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui_lastest_msg(msg, chatbot=chatbot, history=history) # 刷新界面
|
||||||
@@ -138,48 +131,29 @@ def arxiv_download(chatbot, history, txt, allow_cache=True):
|
|||||||
cached_translation_pdf = check_cached_translation_pdf(arxiv_id)
|
cached_translation_pdf = check_cached_translation_pdf(arxiv_id)
|
||||||
if cached_translation_pdf and allow_cache: return cached_translation_pdf, arxiv_id
|
if cached_translation_pdf and allow_cache: return cached_translation_pdf, arxiv_id
|
||||||
|
|
||||||
extract_dst = pj(ARXIV_CACHE_DIR, arxiv_id, 'extract')
|
url_tar = url_.replace('/abs/', '/e-print/')
|
||||||
translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'e-print')
|
translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'e-print')
|
||||||
dst = pj(translation_dir, arxiv_id + '.tar')
|
extract_dst = pj(ARXIV_CACHE_DIR, arxiv_id, 'extract')
|
||||||
os.makedirs(translation_dir, exist_ok=True)
|
os.makedirs(translation_dir, exist_ok=True)
|
||||||
# <-------------- download arxiv source file ------------->
|
|
||||||
|
|
||||||
def fix_url_and_download():
|
# <-------------- download arxiv source file ------------->
|
||||||
# for url_tar in [url_.replace('/abs/', '/e-print/'), url_.replace('/abs/', '/src/')]:
|
dst = pj(translation_dir, arxiv_id + '.tar')
|
||||||
for url_tar in [url_.replace('/abs/', '/src/'), url_.replace('/abs/', '/e-print/')]:
|
if os.path.exists(dst):
|
||||||
|
yield from update_ui_lastest_msg("调用缓存", chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
else:
|
||||||
|
yield from update_ui_lastest_msg("开始下载", chatbot=chatbot, history=history) # 刷新界面
|
||||||
proxies = get_conf('proxies')
|
proxies = get_conf('proxies')
|
||||||
r = requests.get(url_tar, proxies=proxies)
|
r = requests.get(url_tar, proxies=proxies)
|
||||||
if r.status_code == 200:
|
|
||||||
with open(dst, 'wb+') as f:
|
with open(dst, 'wb+') as f:
|
||||||
f.write(r.content)
|
f.write(r.content)
|
||||||
return True
|
|
||||||
return False
|
|
||||||
|
|
||||||
if os.path.exists(dst) and allow_cache:
|
|
||||||
yield from update_ui_lastest_msg(f"调用缓存 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
success = True
|
|
||||||
else:
|
|
||||||
yield from update_ui_lastest_msg(f"开始下载 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
success = fix_url_and_download()
|
|
||||||
yield from update_ui_lastest_msg(f"下载完成 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
|
|
||||||
|
|
||||||
if not success:
|
|
||||||
yield from update_ui_lastest_msg(f"下载失败 {arxiv_id}", chatbot=chatbot, history=history)
|
|
||||||
raise tarfile.ReadError(f"论文下载失败 {arxiv_id}")
|
|
||||||
|
|
||||||
# <-------------- extract file ------------->
|
# <-------------- extract file ------------->
|
||||||
|
yield from update_ui_lastest_msg("下载完成", chatbot=chatbot, history=history) # 刷新界面
|
||||||
from toolbox import extract_archive
|
from toolbox import extract_archive
|
||||||
try:
|
|
||||||
extract_archive(file_path=dst, dest_dir=extract_dst)
|
extract_archive(file_path=dst, dest_dir=extract_dst)
|
||||||
except tarfile.ReadError:
|
|
||||||
os.remove(dst)
|
|
||||||
raise tarfile.ReadError(f"论文下载失败")
|
|
||||||
return extract_dst, arxiv_id
|
return extract_dst, arxiv_id
|
||||||
|
|
||||||
|
|
||||||
def pdf2tex_project(pdf_file_path, plugin_kwargs):
|
def pdf2tex_project(pdf_file_path):
|
||||||
if plugin_kwargs["method"] == "MATHPIX":
|
|
||||||
# Mathpix API credentials
|
# Mathpix API credentials
|
||||||
app_id, app_key = get_conf('MATHPIX_APPID', 'MATHPIX_APPKEY')
|
app_id, app_key = get_conf('MATHPIX_APPID', 'MATHPIX_APPKEY')
|
||||||
headers = {"app_id": app_id, "app_key": app_key}
|
headers = {"app_id": app_id, "app_key": app_key}
|
||||||
@@ -198,7 +172,7 @@ def pdf2tex_project(pdf_file_path, plugin_kwargs):
|
|||||||
|
|
||||||
if response.ok:
|
if response.ok:
|
||||||
pdf_id = response.json()["pdf_id"]
|
pdf_id = response.json()["pdf_id"]
|
||||||
logger.info(f"PDF processing initiated. PDF ID: {pdf_id}")
|
print(f"PDF processing initiated. PDF ID: {pdf_id}")
|
||||||
|
|
||||||
# Step 2: Check processing status
|
# Step 2: Check processing status
|
||||||
while True:
|
while True:
|
||||||
@@ -206,12 +180,12 @@ def pdf2tex_project(pdf_file_path, plugin_kwargs):
|
|||||||
conversion_data = conversion_response.json()
|
conversion_data = conversion_response.json()
|
||||||
|
|
||||||
if conversion_data["status"] == "completed":
|
if conversion_data["status"] == "completed":
|
||||||
logger.info("PDF processing completed.")
|
print("PDF processing completed.")
|
||||||
break
|
break
|
||||||
elif conversion_data["status"] == "error":
|
elif conversion_data["status"] == "error":
|
||||||
logger.info("Error occurred during processing.")
|
print("Error occurred during processing.")
|
||||||
else:
|
else:
|
||||||
logger.info(f"Processing status: {conversion_data['status']}")
|
print(f"Processing status: {conversion_data['status']}")
|
||||||
time.sleep(5) # wait for a few seconds before checking again
|
time.sleep(5) # wait for a few seconds before checking again
|
||||||
|
|
||||||
# Step 3: Save results to local files
|
# Step 3: Save results to local files
|
||||||
@@ -226,7 +200,7 @@ def pdf2tex_project(pdf_file_path, plugin_kwargs):
|
|||||||
output_path = os.path.join(output_dir, output_name)
|
output_path = os.path.join(output_dir, output_name)
|
||||||
with open(output_path, "wb") as output_file:
|
with open(output_path, "wb") as output_file:
|
||||||
output_file.write(response.content)
|
output_file.write(response.content)
|
||||||
logger.info(f"tex.zip file saved at: {output_path}")
|
print(f"tex.zip file saved at: {output_path}")
|
||||||
|
|
||||||
import zipfile
|
import zipfile
|
||||||
unzip_dir = os.path.join(output_dir, file_name_wo_dot)
|
unzip_dir = os.path.join(output_dir, file_name_wo_dot)
|
||||||
@@ -236,14 +210,8 @@ def pdf2tex_project(pdf_file_path, plugin_kwargs):
|
|||||||
return unzip_dir
|
return unzip_dir
|
||||||
|
|
||||||
else:
|
else:
|
||||||
logger.error(f"Error sending PDF for processing. Status code: {response.status_code}")
|
print(f"Error sending PDF for processing. Status code: {response.status_code}")
|
||||||
return None
|
return None
|
||||||
else:
|
|
||||||
from crazy_functions.pdf_fns.parse_pdf_via_doc2x import 解析PDF_DOC2X_转Latex
|
|
||||||
unzip_dir = 解析PDF_DOC2X_转Latex(pdf_file_path)
|
|
||||||
return unzip_dir
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 插件主程序1 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 插件主程序1 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||||
@@ -253,7 +221,7 @@ def pdf2tex_project(pdf_file_path, plugin_kwargs):
|
|||||||
def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||||
# <-------------- information about this plugin ------------->
|
# <-------------- information about this plugin ------------->
|
||||||
chatbot.append(["函数插件功能?",
|
chatbot.append(["函数插件功能?",
|
||||||
"对整个Latex项目进行纠错, 用latex编译为PDF对修正处做高亮。函数插件贡献者: Binary-Husky。注意事项: 目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。仅在Windows系统进行了测试,其他操作系统表现未知。"])
|
"对整个Latex项目进行纠错, 用latex编译为PDF对修正处做高亮。函数插件贡献者: Binary-Husky。注意事项: 目前仅支持GPT3.5/GPT4,其他模型转化效果未知。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。仅在Windows系统进行了测试,其他操作系统表现未知。"])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
# <-------------- more requirements ------------->
|
# <-------------- more requirements ------------->
|
||||||
@@ -291,8 +259,6 @@ def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, histo
|
|||||||
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
||||||
|
|
||||||
# <-------------- move latex project away from temp folder ------------->
|
# <-------------- move latex project away from temp folder ------------->
|
||||||
from shared_utils.fastapi_server import validate_path_safety
|
|
||||||
validate_path_safety(project_folder, chatbot.get_user())
|
|
||||||
project_folder = move_project(project_folder, arxiv_id=None)
|
project_folder = move_project(project_folder, arxiv_id=None)
|
||||||
|
|
||||||
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
|
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
|
||||||
@@ -316,7 +282,7 @@ def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, histo
|
|||||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||||
else:
|
else:
|
||||||
chatbot.append((f"失败了",
|
chatbot.append((f"失败了",
|
||||||
'虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 也是可读的, 您可以到Github Issue区, 用该压缩包+Conversation_To_File进行反馈 ...'))
|
'虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 也是可读的, 您可以到Github Issue区, 用该压缩包+对话历史存档进行反馈 ...'))
|
||||||
yield from update_ui(chatbot=chatbot, history=history);
|
yield from update_ui(chatbot=chatbot, history=history);
|
||||||
time.sleep(1) # 刷新界面
|
time.sleep(1) # 刷新界面
|
||||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||||
@@ -332,23 +298,17 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
|
|||||||
# <-------------- information about this plugin ------------->
|
# <-------------- information about this plugin ------------->
|
||||||
chatbot.append([
|
chatbot.append([
|
||||||
"函数插件功能?",
|
"函数插件功能?",
|
||||||
"对整个Latex项目进行翻译, 生成中文PDF。函数插件贡献者: Binary-Husky。注意事项: 此插件Windows支持最佳,Linux下必须使用Docker安装,详见项目主README.md。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。"])
|
"对整个Latex项目进行翻译, 生成中文PDF。函数插件贡献者: Binary-Husky。注意事项: 此插件Windows支持最佳,Linux下必须使用Docker安装,详见项目主README.md。目前仅支持GPT3.5/GPT4,其他模型转化效果未知。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。"])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
# <-------------- more requirements ------------->
|
# <-------------- more requirements ------------->
|
||||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||||
more_req = plugin_kwargs.get("advanced_arg", "")
|
more_req = plugin_kwargs.get("advanced_arg", "")
|
||||||
|
no_cache = more_req.startswith("--no-cache")
|
||||||
no_cache = ("--no-cache" in more_req)
|
if no_cache: more_req.lstrip("--no-cache")
|
||||||
if no_cache: more_req = more_req.replace("--no-cache", "").strip()
|
|
||||||
|
|
||||||
allow_gptac_cloud_io = ("--allow-cloudio" in more_req) # 从云端下载翻译结果,以及上传翻译结果到云端
|
|
||||||
if allow_gptac_cloud_io: more_req = more_req.replace("--allow-cloudio", "").strip()
|
|
||||||
|
|
||||||
allow_cache = not no_cache
|
allow_cache = not no_cache
|
||||||
_switch_prompt_ = partial(switch_prompt, more_requirement=more_req)
|
_switch_prompt_ = partial(switch_prompt, more_requirement=more_req)
|
||||||
|
|
||||||
|
|
||||||
# <-------------- check deps ------------->
|
# <-------------- check deps ------------->
|
||||||
try:
|
try:
|
||||||
import glob, os, time, subprocess
|
import glob, os, time, subprocess
|
||||||
@@ -375,20 +335,6 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
|
|||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
return
|
return
|
||||||
|
|
||||||
# #################################################################
|
|
||||||
if allow_gptac_cloud_io and arxiv_id:
|
|
||||||
# 访问 GPTAC学术云,查询云端是否存在该论文的翻译版本
|
|
||||||
from crazy_functions.latex_fns.latex_actions import check_gptac_cloud
|
|
||||||
success, downloaded = check_gptac_cloud(arxiv_id, chatbot)
|
|
||||||
if success:
|
|
||||||
chatbot.append([
|
|
||||||
f"检测到GPTAC云端存在翻译版本, 如果不满意翻译结果, 请禁用云端分享, 然后重新执行。",
|
|
||||||
None
|
|
||||||
])
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
|
||||||
return
|
|
||||||
#################################################################
|
|
||||||
|
|
||||||
if os.path.exists(txt):
|
if os.path.exists(txt):
|
||||||
project_folder = txt
|
project_folder = txt
|
||||||
else:
|
else:
|
||||||
@@ -407,8 +353,6 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
|
|||||||
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
||||||
|
|
||||||
# <-------------- move latex project away from temp folder ------------->
|
# <-------------- move latex project away from temp folder ------------->
|
||||||
from shared_utils.fastapi_server import validate_path_safety
|
|
||||||
validate_path_safety(project_folder, chatbot.get_user())
|
|
||||||
project_folder = move_project(project_folder, arxiv_id)
|
project_folder = move_project(project_folder, arxiv_id)
|
||||||
|
|
||||||
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
|
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
|
||||||
@@ -426,21 +370,14 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
|
|||||||
# <-------------- zip PDF ------------->
|
# <-------------- zip PDF ------------->
|
||||||
zip_res = zip_result(project_folder)
|
zip_res = zip_result(project_folder)
|
||||||
if success:
|
if success:
|
||||||
if allow_gptac_cloud_io and arxiv_id:
|
|
||||||
# 如果用户允许,我们将翻译好的arxiv论文PDF上传到GPTAC学术云
|
|
||||||
from crazy_functions.latex_fns.latex_actions import upload_to_gptac_cloud_if_user_allow
|
|
||||||
threading.Thread(target=upload_to_gptac_cloud_if_user_allow,
|
|
||||||
args=(chatbot, arxiv_id), daemon=True).start()
|
|
||||||
|
|
||||||
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
|
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
yield from update_ui(chatbot=chatbot, history=history);
|
||||||
time.sleep(1) # 刷新界面
|
time.sleep(1) # 刷新界面
|
||||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
chatbot.append((f"失败了",
|
chatbot.append((f"失败了",
|
||||||
'虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 您可以到Github Issue区, 用该压缩包进行反馈。如系统是Linux,请检查系统字体(见Github wiki) ...'))
|
'虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 您可以到Github Issue区, 用该压缩包进行反馈。如系统是Linux,请检查系统字体(见Github wiki) ...'))
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
yield from update_ui(chatbot=chatbot, history=history);
|
||||||
time.sleep(1) # 刷新界面
|
time.sleep(1) # 刷新界面
|
||||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||||
|
|
||||||
@@ -455,7 +392,7 @@ def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, h
|
|||||||
# <-------------- information about this plugin ------------->
|
# <-------------- information about this plugin ------------->
|
||||||
chatbot.append([
|
chatbot.append([
|
||||||
"函数插件功能?",
|
"函数插件功能?",
|
||||||
"将PDF转换为Latex项目,翻译为中文后重新编译为PDF。函数插件贡献者: Marroh。注意事项: 此插件Windows支持最佳,Linux下必须使用Docker安装,详见项目主README.md。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。"])
|
"将PDF转换为Latex项目,翻译为中文后重新编译为PDF。函数插件贡献者: Marroh。注意事项: 此插件Windows支持最佳,Linux下必须使用Docker安装,详见项目主README.md。目前仅支持GPT3.5/GPT4,其他模型转化效果未知。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。"])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
# <-------------- more requirements ------------->
|
# <-------------- more requirements ------------->
|
||||||
@@ -495,55 +432,16 @@ def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, h
|
|||||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"不支持同时处理多个pdf文件: {txt}")
|
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"不支持同时处理多个pdf文件: {txt}")
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
return
|
return
|
||||||
|
|
||||||
if plugin_kwargs.get("method", "") == 'MATHPIX':
|
|
||||||
app_id, app_key = get_conf('MATHPIX_APPID', 'MATHPIX_APPKEY')
|
app_id, app_key = get_conf('MATHPIX_APPID', 'MATHPIX_APPKEY')
|
||||||
if len(app_id) == 0 or len(app_key) == 0:
|
if len(app_id) == 0 or len(app_key) == 0:
|
||||||
report_exception(chatbot, history, a="缺失 MATHPIX_APPID 和 MATHPIX_APPKEY。", b=f"请配置 MATHPIX_APPID 和 MATHPIX_APPKEY")
|
report_exception(chatbot, history, a="缺失 MATHPIX_APPID 和 MATHPIX_APPKEY。", b=f"请配置 MATHPIX_APPID 和 MATHPIX_APPKEY")
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
return
|
return
|
||||||
if plugin_kwargs.get("method", "") == 'DOC2X':
|
|
||||||
app_id, app_key = "", ""
|
|
||||||
DOC2X_API_KEY = get_conf('DOC2X_API_KEY')
|
|
||||||
if len(DOC2X_API_KEY) == 0:
|
|
||||||
report_exception(chatbot, history, a="缺失 DOC2X_API_KEY。", b=f"请配置 DOC2X_API_KEY")
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
return
|
|
||||||
|
|
||||||
hash_tag = map_file_to_sha256(file_manifest[0])
|
|
||||||
|
|
||||||
# # <-------------- check repeated pdf ------------->
|
|
||||||
# chatbot.append([f"检查PDF是否被重复上传", "正在检查..."])
|
|
||||||
# yield from update_ui(chatbot=chatbot, history=history)
|
|
||||||
# repeat, project_folder = check_repeat_upload(file_manifest[0], hash_tag)
|
|
||||||
|
|
||||||
# if repeat:
|
|
||||||
# yield from update_ui_lastest_msg(f"发现重复上传,请查收结果(压缩包)...", chatbot=chatbot, history=history)
|
|
||||||
# try:
|
|
||||||
# translate_pdf = [f for f in glob.glob(f'{project_folder}/**/merge_translate_zh.pdf', recursive=True)][0]
|
|
||||||
# promote_file_to_downloadzone(translate_pdf, rename_file=None, chatbot=chatbot)
|
|
||||||
# comparison_pdf = [f for f in glob.glob(f'{project_folder}/**/comparison.pdf', recursive=True)][0]
|
|
||||||
# promote_file_to_downloadzone(comparison_pdf, rename_file=None, chatbot=chatbot)
|
|
||||||
# zip_res = zip_result(project_folder)
|
|
||||||
# promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
|
||||||
# return
|
|
||||||
# except:
|
|
||||||
# report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"发现重复上传,但是无法找到相关文件")
|
|
||||||
# yield from update_ui(chatbot=chatbot, history=history)
|
|
||||||
# else:
|
|
||||||
# yield from update_ui_lastest_msg(f"未发现重复上传", chatbot=chatbot, history=history)
|
|
||||||
|
|
||||||
# <-------------- convert pdf into tex ------------->
|
# <-------------- convert pdf into tex ------------->
|
||||||
chatbot.append([f"解析项目: {txt}", "正在将PDF转换为tex项目,请耐心等待..."])
|
project_folder = pdf2tex_project(file_manifest[0])
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
|
||||||
project_folder = pdf2tex_project(file_manifest[0], plugin_kwargs)
|
|
||||||
if project_folder is None:
|
|
||||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"PDF转换为tex项目失败")
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
|
||||||
return False
|
|
||||||
|
|
||||||
# <-------------- translate latex file into Chinese ------------->
|
# Translate English Latex to Chinese Latex, and compile it
|
||||||
yield from update_ui_lastest_msg("正在tex项目将翻译为中文...", chatbot=chatbot, history=history)
|
|
||||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
|
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
|
||||||
if len(file_manifest) == 0:
|
if len(file_manifest) == 0:
|
||||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex文件: {txt}")
|
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex文件: {txt}")
|
||||||
@@ -554,16 +452,8 @@ def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, h
|
|||||||
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
||||||
|
|
||||||
# <-------------- move latex project away from temp folder ------------->
|
# <-------------- move latex project away from temp folder ------------->
|
||||||
from shared_utils.fastapi_server import validate_path_safety
|
|
||||||
validate_path_safety(project_folder, chatbot.get_user())
|
|
||||||
project_folder = move_project(project_folder)
|
project_folder = move_project(project_folder)
|
||||||
|
|
||||||
# <-------------- set a hash tag for repeat-checking ------------->
|
|
||||||
with open(pj(project_folder, hash_tag + '.tag'), 'w', encoding='utf8') as f:
|
|
||||||
f.write(hash_tag)
|
|
||||||
f.close()
|
|
||||||
|
|
||||||
|
|
||||||
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
|
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
|
||||||
if not os.path.exists(project_folder + '/merge_translate_zh.tex'):
|
if not os.path.exists(project_folder + '/merge_translate_zh.tex'):
|
||||||
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
||||||
@@ -571,7 +461,6 @@ def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, h
|
|||||||
switch_prompt=_switch_prompt_)
|
switch_prompt=_switch_prompt_)
|
||||||
|
|
||||||
# <-------------- compile PDF ------------->
|
# <-------------- compile PDF ------------->
|
||||||
yield from update_ui_lastest_msg("正在将翻译好的项目tex项目编译为PDF...", chatbot=chatbot, history=history)
|
|
||||||
success = yield from 编译Latex(chatbot, history, main_file_original='merge',
|
success = yield from 编译Latex(chatbot, history, main_file_original='merge',
|
||||||
main_file_modified='merge_translate_zh', mode='translate_zh',
|
main_file_modified='merge_translate_zh', mode='translate_zh',
|
||||||
work_folder_original=project_folder, work_folder_modified=project_folder,
|
work_folder_original=project_folder, work_folder_modified=project_folder,
|
||||||
@@ -1,83 +0,0 @@
|
|||||||
from toolbox import CatchException, check_packages, get_conf
|
|
||||||
from toolbox import update_ui, update_ui_lastest_msg, disable_auto_promotion
|
|
||||||
from toolbox import trimmed_format_exc_markdown
|
|
||||||
from crazy_functions.crazy_utils import get_files_from_everything
|
|
||||||
from crazy_functions.pdf_fns.parse_pdf import get_avail_grobid_url
|
|
||||||
from crazy_functions.pdf_fns.parse_pdf_via_doc2x import 解析PDF_基于DOC2X
|
|
||||||
from crazy_functions.pdf_fns.parse_pdf_legacy import 解析PDF_简单拆解
|
|
||||||
from crazy_functions.pdf_fns.parse_pdf_grobid import 解析PDF_基于GROBID
|
|
||||||
from shared_utils.colorful import *
|
|
||||||
|
|
||||||
@CatchException
|
|
||||||
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
|
||||||
|
|
||||||
disable_auto_promotion(chatbot)
|
|
||||||
# 基本信息:功能、贡献者
|
|
||||||
chatbot.append([None, "插件功能:批量翻译PDF文档。函数插件贡献者: Binary-Husky"])
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
|
|
||||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
|
||||||
try:
|
|
||||||
check_packages(["fitz", "tiktoken", "scipdf"])
|
|
||||||
except:
|
|
||||||
chatbot.append([None, f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf tiktoken scipdf_parser```。"])
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
return
|
|
||||||
|
|
||||||
# 清空历史,以免输入溢出
|
|
||||||
history = []
|
|
||||||
success, file_manifest, project_folder = get_files_from_everything(txt, type='.pdf')
|
|
||||||
|
|
||||||
# 检测输入参数,如没有给定输入参数,直接退出
|
|
||||||
if (not success) and txt == "": txt = '空空如也的输入栏。提示:请先上传文件(把PDF文件拖入对话)。'
|
|
||||||
|
|
||||||
# 如果没找到任何文件
|
|
||||||
if len(file_manifest) == 0:
|
|
||||||
chatbot.append([None, f"找不到任何.pdf拓展名的文件: {txt}"])
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
return
|
|
||||||
|
|
||||||
# 开始正式执行任务
|
|
||||||
method = plugin_kwargs.get("pdf_parse_method", None)
|
|
||||||
if method == "DOC2X":
|
|
||||||
# ------- 第一种方法,效果最好,但是需要DOC2X服务 -------
|
|
||||||
DOC2X_API_KEY = get_conf("DOC2X_API_KEY")
|
|
||||||
if len(DOC2X_API_KEY) != 0:
|
|
||||||
try:
|
|
||||||
yield from 解析PDF_基于DOC2X(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, DOC2X_API_KEY, user_request)
|
|
||||||
return
|
|
||||||
except:
|
|
||||||
chatbot.append([None, f"DOC2X服务不可用,请检查报错详细。{trimmed_format_exc_markdown()}"])
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
|
||||||
|
|
||||||
if method == "GROBID":
|
|
||||||
# ------- 第二种方法,效果次优 -------
|
|
||||||
grobid_url = get_avail_grobid_url()
|
|
||||||
if grobid_url is not None:
|
|
||||||
yield from 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url)
|
|
||||||
return
|
|
||||||
|
|
||||||
if method == "ClASSIC":
|
|
||||||
# ------- 第三种方法,早期代码,效果不理想 -------
|
|
||||||
yield from update_ui_lastest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
|
|
||||||
yield from 解析PDF_简单拆解(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
|
||||||
return
|
|
||||||
|
|
||||||
if method is None:
|
|
||||||
# ------- 以上三种方法都试一遍 -------
|
|
||||||
DOC2X_API_KEY = get_conf("DOC2X_API_KEY")
|
|
||||||
if len(DOC2X_API_KEY) != 0:
|
|
||||||
try:
|
|
||||||
yield from 解析PDF_基于DOC2X(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, DOC2X_API_KEY, user_request)
|
|
||||||
return
|
|
||||||
except:
|
|
||||||
chatbot.append([None, f"DOC2X服务不可用,正在尝试GROBID。{trimmed_format_exc_markdown()}"])
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
|
||||||
grobid_url = get_avail_grobid_url()
|
|
||||||
if grobid_url is not None:
|
|
||||||
yield from 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url)
|
|
||||||
return
|
|
||||||
yield from update_ui_lastest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
|
|
||||||
yield from 解析PDF_简单拆解(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
|
||||||
return
|
|
||||||
|
|
||||||
@@ -1,33 +0,0 @@
|
|||||||
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
|
|
||||||
from .PDF_Translate import 批量翻译PDF文档
|
|
||||||
|
|
||||||
|
|
||||||
class PDF_Tran(GptAcademicPluginTemplate):
|
|
||||||
def __init__(self):
|
|
||||||
"""
|
|
||||||
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
|
|
||||||
"""
|
|
||||||
pass
|
|
||||||
|
|
||||||
def define_arg_selection_menu(self):
|
|
||||||
"""
|
|
||||||
定义插件的二级选项菜单
|
|
||||||
"""
|
|
||||||
gui_definition = {
|
|
||||||
"main_input":
|
|
||||||
ArgProperty(title="PDF文件路径", description="未指定路径,请上传文件后,再点击该插件", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
|
|
||||||
"additional_prompt":
|
|
||||||
ArgProperty(title="额外提示词", description="例如:对专有名词、翻译语气等方面的要求", default_value="", type="string").model_dump_json(), # 高级参数输入区,自动同步
|
|
||||||
"pdf_parse_method":
|
|
||||||
ArgProperty(title="PDF解析方法", options=["DOC2X", "GROBID", "ClASSIC"], description="无", default_value="GROBID", type="dropdown").model_dump_json(),
|
|
||||||
}
|
|
||||||
return gui_definition
|
|
||||||
|
|
||||||
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
|
||||||
"""
|
|
||||||
执行插件
|
|
||||||
"""
|
|
||||||
main_input = plugin_kwargs["main_input"]
|
|
||||||
additional_prompt = plugin_kwargs["additional_prompt"]
|
|
||||||
pdf_parse_method = plugin_kwargs["pdf_parse_method"]
|
|
||||||
yield from 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
|
||||||
@@ -1,153 +0,0 @@
|
|||||||
import os,glob
|
|
||||||
from typing import List
|
|
||||||
|
|
||||||
from shared_utils.fastapi_server import validate_path_safety
|
|
||||||
|
|
||||||
from toolbox import report_exception
|
|
||||||
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_lastest_msg
|
|
||||||
from shared_utils.fastapi_server import validate_path_safety
|
|
||||||
from crazy_functions.crazy_utils import input_clipping
|
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
|
||||||
|
|
||||||
RAG_WORKER_REGISTER = {}
|
|
||||||
MAX_HISTORY_ROUND = 5
|
|
||||||
MAX_CONTEXT_TOKEN_LIMIT = 4096
|
|
||||||
REMEMBER_PREVIEW = 1000
|
|
||||||
|
|
||||||
@CatchException
|
|
||||||
def handle_document_upload(files: List[str], llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request, rag_worker):
|
|
||||||
"""
|
|
||||||
Handles document uploads by extracting text and adding it to the vector store.
|
|
||||||
"""
|
|
||||||
from llama_index.core import Document
|
|
||||||
from crazy_functions.rag_fns.rag_file_support import extract_text, supports_format
|
|
||||||
user_name = chatbot.get_user()
|
|
||||||
checkpoint_dir = get_log_folder(user_name, plugin_name='experimental_rag')
|
|
||||||
|
|
||||||
for file_path in files:
|
|
||||||
try:
|
|
||||||
validate_path_safety(file_path, user_name)
|
|
||||||
text = extract_text(file_path)
|
|
||||||
if text is None:
|
|
||||||
chatbot.append(
|
|
||||||
[f"上传文件: {os.path.basename(file_path)}", f"文件解析失败,无法提取文本内容,请更换文件。失败原因可能为:1.文档格式过于复杂;2. 不支持的文件格式,支持的文件格式后缀有:" + ", ".join(supports_format)])
|
|
||||||
else:
|
|
||||||
chatbot.append(
|
|
||||||
[f"上传文件: {os.path.basename(file_path)}", f"上传文件前50个字符为:{text[:50]}。"])
|
|
||||||
document = Document(text=text, metadata={"source": file_path})
|
|
||||||
rag_worker.add_documents_to_vector_store([document])
|
|
||||||
chatbot.append([f"上传文件: {os.path.basename(file_path)}", "文件已成功添加到知识库。"])
|
|
||||||
except Exception as e:
|
|
||||||
report_exception(chatbot, history, a=f"处理文件: {file_path}", b=str(e))
|
|
||||||
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# Main Q&A function with document upload support
|
|
||||||
@CatchException
|
|
||||||
def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
|
||||||
|
|
||||||
# import vector store lib
|
|
||||||
VECTOR_STORE_TYPE = "Milvus"
|
|
||||||
if VECTOR_STORE_TYPE == "Milvus":
|
|
||||||
try:
|
|
||||||
from crazy_functions.rag_fns.milvus_worker import MilvusRagWorker as LlamaIndexRagWorker
|
|
||||||
except:
|
|
||||||
VECTOR_STORE_TYPE = "Simple"
|
|
||||||
if VECTOR_STORE_TYPE == "Simple":
|
|
||||||
from crazy_functions.rag_fns.llama_index_worker import LlamaIndexRagWorker
|
|
||||||
|
|
||||||
# 1. we retrieve rag worker from global context
|
|
||||||
user_name = chatbot.get_user()
|
|
||||||
checkpoint_dir = get_log_folder(user_name, plugin_name='experimental_rag')
|
|
||||||
|
|
||||||
if user_name in RAG_WORKER_REGISTER:
|
|
||||||
rag_worker = RAG_WORKER_REGISTER[user_name]
|
|
||||||
else:
|
|
||||||
rag_worker = RAG_WORKER_REGISTER[user_name] = LlamaIndexRagWorker(
|
|
||||||
user_name,
|
|
||||||
llm_kwargs,
|
|
||||||
checkpoint_dir=checkpoint_dir,
|
|
||||||
auto_load_checkpoint=True
|
|
||||||
)
|
|
||||||
|
|
||||||
current_context = f"{VECTOR_STORE_TYPE} @ {checkpoint_dir}"
|
|
||||||
tip = "提示:输入“清空向量数据库”可以清空RAG向量数据库"
|
|
||||||
|
|
||||||
# 2. Handle special commands
|
|
||||||
if os.path.exists(txt) and os.path.isdir(txt):
|
|
||||||
project_folder = txt
|
|
||||||
validate_path_safety(project_folder, chatbot.get_user())
|
|
||||||
# Extract file paths from the user input
|
|
||||||
# Assuming the user inputs file paths separated by commas after the command
|
|
||||||
file_paths = [f for f in glob.glob(f'{project_folder}/**/*', recursive=True)]
|
|
||||||
chatbot.append([txt, f'正在处理上传的文档 ({current_context}) ...'])
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
|
|
||||||
yield from handle_document_upload(file_paths, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request, rag_worker)
|
|
||||||
return
|
|
||||||
|
|
||||||
elif txt == "清空向量数据库":
|
|
||||||
chatbot.append([txt, f'正在清空 ({current_context}) ...'])
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
rag_worker.purge_vector_store()
|
|
||||||
yield from update_ui_lastest_msg('已清空', chatbot, history, delay=0) # 刷新界面
|
|
||||||
return
|
|
||||||
|
|
||||||
# 3. Normal Q&A processing
|
|
||||||
chatbot.append([txt, f'正在召回知识 ({current_context}) ...'])
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
|
|
||||||
# 4. Clip history to reduce token consumption
|
|
||||||
txt_origin = txt
|
|
||||||
|
|
||||||
if len(history) > MAX_HISTORY_ROUND * 2:
|
|
||||||
history = history[-(MAX_HISTORY_ROUND * 2):]
|
|
||||||
txt_clip, history, flags = input_clipping(txt, history, max_token_limit=MAX_CONTEXT_TOKEN_LIMIT, return_clip_flags=True)
|
|
||||||
input_is_clipped_flag = (flags["original_input_len"] != flags["clipped_input_len"])
|
|
||||||
|
|
||||||
# 5. If input is clipped, add input to vector store before retrieve
|
|
||||||
if input_is_clipped_flag:
|
|
||||||
yield from update_ui_lastest_msg('检测到长输入, 正在向量化 ...', chatbot, history, delay=0) # 刷新界面
|
|
||||||
# Save input to vector store
|
|
||||||
rag_worker.add_text_to_vector_store(txt_origin)
|
|
||||||
yield from update_ui_lastest_msg('向量化完成 ...', chatbot, history, delay=0) # 刷新界面
|
|
||||||
|
|
||||||
if len(txt_origin) > REMEMBER_PREVIEW:
|
|
||||||
HALF = REMEMBER_PREVIEW // 2
|
|
||||||
i_say_to_remember = txt[:HALF] + f" ...\n...(省略{len(txt_origin)-REMEMBER_PREVIEW}字)...\n... " + txt[-HALF:]
|
|
||||||
if (flags["original_input_len"] - flags["clipped_input_len"]) > HALF:
|
|
||||||
txt_clip = txt_clip + f" ...\n...(省略{len(txt_origin)-len(txt_clip)-HALF}字)...\n... " + txt[-HALF:]
|
|
||||||
else:
|
|
||||||
i_say_to_remember = i_say = txt_clip
|
|
||||||
else:
|
|
||||||
i_say_to_remember = i_say = txt_clip
|
|
||||||
|
|
||||||
# 6. Search vector store and build prompts
|
|
||||||
nodes = rag_worker.retrieve_from_store_with_query(i_say)
|
|
||||||
prompt = rag_worker.build_prompt(query=i_say, nodes=nodes)
|
|
||||||
# 7. Query language model
|
|
||||||
if len(chatbot) != 0:
|
|
||||||
chatbot.pop(-1) # Pop temp chat, because we are going to add them again inside `request_gpt_model_in_new_thread_with_ui_alive`
|
|
||||||
|
|
||||||
model_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
|
||||||
inputs=prompt,
|
|
||||||
inputs_show_user=i_say,
|
|
||||||
llm_kwargs=llm_kwargs,
|
|
||||||
chatbot=chatbot,
|
|
||||||
history=history,
|
|
||||||
sys_prompt=system_prompt,
|
|
||||||
retry_times_at_unknown_error=0
|
|
||||||
)
|
|
||||||
|
|
||||||
# 8. Remember Q&A
|
|
||||||
yield from update_ui_lastest_msg(
|
|
||||||
model_say + '</br></br>' + f'对话记忆中, 请稍等 ({current_context}) ...',
|
|
||||||
chatbot, history, delay=0.5
|
|
||||||
)
|
|
||||||
rag_worker.remember_qa(i_say_to_remember, model_say)
|
|
||||||
history.extend([i_say, model_say])
|
|
||||||
|
|
||||||
# 9. Final UI Update
|
|
||||||
yield from update_ui_lastest_msg(model_say, chatbot, history, delay=0, msg=tip)
|
|
||||||
@@ -1,167 +0,0 @@
|
|||||||
import pickle, os, random
|
|
||||||
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_lastest_msg
|
|
||||||
from crazy_functions.crazy_utils import input_clipping
|
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
|
||||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
|
||||||
from crazy_functions.json_fns.select_tool import structure_output, select_tool
|
|
||||||
from pydantic import BaseModel, Field
|
|
||||||
from loguru import logger
|
|
||||||
from typing import List
|
|
||||||
|
|
||||||
|
|
||||||
SOCIAL_NETWOK_WORKER_REGISTER = {}
|
|
||||||
|
|
||||||
class SocialNetwork():
|
|
||||||
def __init__(self):
|
|
||||||
self.people = []
|
|
||||||
|
|
||||||
class SaveAndLoad():
|
|
||||||
def __init__(self, user_name, llm_kwargs, auto_load_checkpoint=True, checkpoint_dir=None) -> None:
|
|
||||||
self.user_name = user_name
|
|
||||||
self.checkpoint_dir = checkpoint_dir
|
|
||||||
if auto_load_checkpoint:
|
|
||||||
self.social_network = self.load_from_checkpoint(checkpoint_dir)
|
|
||||||
else:
|
|
||||||
self.social_network = SocialNetwork()
|
|
||||||
|
|
||||||
def does_checkpoint_exist(self, checkpoint_dir=None):
|
|
||||||
import os, glob
|
|
||||||
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
|
|
||||||
if not os.path.exists(checkpoint_dir): return False
|
|
||||||
if len(glob.glob(os.path.join(checkpoint_dir, "social_network.pkl"))) == 0: return False
|
|
||||||
return True
|
|
||||||
|
|
||||||
def save_to_checkpoint(self, checkpoint_dir=None):
|
|
||||||
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
|
|
||||||
with open(os.path.join(checkpoint_dir, 'social_network.pkl'), "wb+") as f:
|
|
||||||
pickle.dump(self.social_network, f)
|
|
||||||
return
|
|
||||||
|
|
||||||
def load_from_checkpoint(self, checkpoint_dir=None):
|
|
||||||
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
|
|
||||||
if self.does_checkpoint_exist(checkpoint_dir=checkpoint_dir):
|
|
||||||
with open(os.path.join(checkpoint_dir, 'social_network.pkl'), "rb") as f:
|
|
||||||
social_network = pickle.load(f)
|
|
||||||
return social_network
|
|
||||||
else:
|
|
||||||
return SocialNetwork()
|
|
||||||
|
|
||||||
|
|
||||||
class Friend(BaseModel):
|
|
||||||
friend_name: str = Field(description="name of a friend")
|
|
||||||
friend_description: str = Field(description="description of a friend (everything about this friend)")
|
|
||||||
friend_relationship: str = Field(description="The relationship with a friend (e.g. friend, family, colleague)")
|
|
||||||
|
|
||||||
class FriendList(BaseModel):
|
|
||||||
friends_list: List[Friend] = Field(description="The list of friends")
|
|
||||||
|
|
||||||
|
|
||||||
class SocialNetworkWorker(SaveAndLoad):
|
|
||||||
def ai_socail_advice(self, prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, run_gpt_fn, intention_type):
|
|
||||||
pass
|
|
||||||
|
|
||||||
def ai_remove_friend(self, prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, run_gpt_fn, intention_type):
|
|
||||||
pass
|
|
||||||
|
|
||||||
def ai_list_friends(self, prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, run_gpt_fn, intention_type):
|
|
||||||
pass
|
|
||||||
|
|
||||||
def ai_add_multi_friends(self, prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, run_gpt_fn, intention_type):
|
|
||||||
friend, err_msg = structure_output(
|
|
||||||
txt=prompt,
|
|
||||||
prompt="根据提示, 解析多个联系人的身份信息\n\n",
|
|
||||||
err_msg=f"不能理解该联系人",
|
|
||||||
run_gpt_fn=run_gpt_fn,
|
|
||||||
pydantic_cls=FriendList
|
|
||||||
)
|
|
||||||
if friend.friends_list:
|
|
||||||
for f in friend.friends_list:
|
|
||||||
self.add_friend(f)
|
|
||||||
msg = f"成功添加{len(friend.friends_list)}个联系人: {str(friend.friends_list)}"
|
|
||||||
yield from update_ui_lastest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=0)
|
|
||||||
|
|
||||||
|
|
||||||
def run(self, txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
|
||||||
prompt = txt
|
|
||||||
run_gpt_fn = lambda inputs, sys_prompt: predict_no_ui_long_connection(inputs=inputs, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=[])
|
|
||||||
self.tools_to_select = {
|
|
||||||
"SocialAdvice":{
|
|
||||||
"explain_to_llm": "如果用户希望获取社交指导,调用SocialAdvice生成一些社交建议",
|
|
||||||
"callback": self.ai_socail_advice,
|
|
||||||
},
|
|
||||||
"AddFriends":{
|
|
||||||
"explain_to_llm": "如果用户给出了联系人,调用AddMultiFriends把联系人添加到数据库",
|
|
||||||
"callback": self.ai_add_multi_friends,
|
|
||||||
},
|
|
||||||
"RemoveFriend":{
|
|
||||||
"explain_to_llm": "如果用户希望移除某个联系人,调用RemoveFriend",
|
|
||||||
"callback": self.ai_remove_friend,
|
|
||||||
},
|
|
||||||
"ListFriends":{
|
|
||||||
"explain_to_llm": "如果用户列举联系人,调用ListFriends",
|
|
||||||
"callback": self.ai_list_friends,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
try:
|
|
||||||
Explaination = '\n'.join([f'{k}: {v["explain_to_llm"]}' for k, v in self.tools_to_select.items()])
|
|
||||||
class UserSociaIntention(BaseModel):
|
|
||||||
intention_type: str = Field(
|
|
||||||
description=
|
|
||||||
f"The type of user intention. You must choose from {self.tools_to_select.keys()}.\n\n"
|
|
||||||
f"Explaination:\n{Explaination}",
|
|
||||||
default="SocialAdvice"
|
|
||||||
)
|
|
||||||
pydantic_cls_instance, err_msg = select_tool(
|
|
||||||
prompt=txt,
|
|
||||||
run_gpt_fn=run_gpt_fn,
|
|
||||||
pydantic_cls=UserSociaIntention
|
|
||||||
)
|
|
||||||
except Exception as e:
|
|
||||||
yield from update_ui_lastest_msg(
|
|
||||||
lastmsg=f"无法理解用户意图 {err_msg}",
|
|
||||||
chatbot=chatbot,
|
|
||||||
history=history,
|
|
||||||
delay=0
|
|
||||||
)
|
|
||||||
return
|
|
||||||
|
|
||||||
intention_type = pydantic_cls_instance.intention_type
|
|
||||||
intention_callback = self.tools_to_select[pydantic_cls_instance.intention_type]['callback']
|
|
||||||
yield from intention_callback(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, run_gpt_fn, intention_type)
|
|
||||||
|
|
||||||
|
|
||||||
def add_friend(self, friend):
|
|
||||||
# check whether the friend is already in the social network
|
|
||||||
for f in self.social_network.people:
|
|
||||||
if f.friend_name == friend.friend_name:
|
|
||||||
f.friend_description = friend.friend_description
|
|
||||||
f.friend_relationship = friend.friend_relationship
|
|
||||||
logger.info(f"Repeated friend, update info: {friend}")
|
|
||||||
return
|
|
||||||
logger.info(f"Add a new friend: {friend}")
|
|
||||||
self.social_network.people.append(friend)
|
|
||||||
return
|
|
||||||
|
|
||||||
|
|
||||||
@CatchException
|
|
||||||
def I人助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
|
||||||
|
|
||||||
# 1. we retrieve worker from global context
|
|
||||||
user_name = chatbot.get_user()
|
|
||||||
checkpoint_dir=get_log_folder(user_name, plugin_name='experimental_rag')
|
|
||||||
if user_name in SOCIAL_NETWOK_WORKER_REGISTER:
|
|
||||||
social_network_worker = SOCIAL_NETWOK_WORKER_REGISTER[user_name]
|
|
||||||
else:
|
|
||||||
social_network_worker = SOCIAL_NETWOK_WORKER_REGISTER[user_name] = SocialNetworkWorker(
|
|
||||||
user_name,
|
|
||||||
llm_kwargs,
|
|
||||||
checkpoint_dir=checkpoint_dir,
|
|
||||||
auto_load_checkpoint=True
|
|
||||||
)
|
|
||||||
|
|
||||||
# 2. save
|
|
||||||
yield from social_network_worker.run(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
|
||||||
social_network_worker.save_to_checkpoint(checkpoint_dir)
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
|
|
||||||
@@ -1,162 +0,0 @@
|
|||||||
import os, copy, time
|
|
||||||
from toolbox import CatchException, report_exception, update_ui, zip_result, promote_file_to_downloadzone, update_ui_lastest_msg, get_conf, generate_file_link
|
|
||||||
from shared_utils.fastapi_server import validate_path_safety
|
|
||||||
from crazy_functions.crazy_utils import input_clipping
|
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
|
||||||
from crazy_functions.agent_fns.python_comment_agent import PythonCodeComment
|
|
||||||
from crazy_functions.diagram_fns.file_tree import FileNode
|
|
||||||
from crazy_functions.agent_fns.watchdog import WatchDog
|
|
||||||
from shared_utils.advanced_markdown_format import markdown_convertion_for_file
|
|
||||||
from loguru import logger
|
|
||||||
|
|
||||||
|
|
||||||
def 注释源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
|
||||||
|
|
||||||
summary_batch_isolation = True
|
|
||||||
inputs_array = []
|
|
||||||
inputs_show_user_array = []
|
|
||||||
history_array = []
|
|
||||||
sys_prompt_array = []
|
|
||||||
|
|
||||||
assert len(file_manifest) <= 512, "源文件太多(超过512个), 请缩减输入文件的数量。或者,您也可以选择删除此行警告,并修改代码拆分file_manifest列表,从而实现分批次处理。"
|
|
||||||
|
|
||||||
# 建立文件树
|
|
||||||
file_tree_struct = FileNode("root", build_manifest=True)
|
|
||||||
for file_path in file_manifest:
|
|
||||||
file_tree_struct.add_file(file_path, file_path)
|
|
||||||
|
|
||||||
# <第一步,逐个文件分析,多线程>
|
|
||||||
lang = "" if not plugin_kwargs["use_chinese"] else " (you must use Chinese)"
|
|
||||||
for index, fp in enumerate(file_manifest):
|
|
||||||
# 读取文件
|
|
||||||
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
|
|
||||||
file_content = f.read()
|
|
||||||
prefix = ""
|
|
||||||
i_say = prefix + f'Please conclude the following source code at {os.path.relpath(fp, project_folder)} with only one sentence{lang}, the code is:\n```{file_content}```'
|
|
||||||
i_say_show_user = prefix + f'[{index+1}/{len(file_manifest)}] 请用一句话对下面的程序文件做一个整体概述: {fp}'
|
|
||||||
# 装载请求内容
|
|
||||||
MAX_TOKEN_SINGLE_FILE = 2560
|
|
||||||
i_say, _ = input_clipping(inputs=i_say, history=[], max_token_limit=MAX_TOKEN_SINGLE_FILE)
|
|
||||||
inputs_array.append(i_say)
|
|
||||||
inputs_show_user_array.append(i_say_show_user)
|
|
||||||
history_array.append([])
|
|
||||||
sys_prompt_array.append(f"You are a software architecture analyst analyzing a source code project. Do not dig into details, tell me what the code is doing in general. Your answer must be short, simple and clear{lang}.")
|
|
||||||
# 文件读取完成,对每一个源代码文件,生成一个请求线程,发送到大模型进行分析
|
|
||||||
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
|
||||||
inputs_array = inputs_array,
|
|
||||||
inputs_show_user_array = inputs_show_user_array,
|
|
||||||
history_array = history_array,
|
|
||||||
sys_prompt_array = sys_prompt_array,
|
|
||||||
llm_kwargs = llm_kwargs,
|
|
||||||
chatbot = chatbot,
|
|
||||||
show_user_at_complete = True
|
|
||||||
)
|
|
||||||
|
|
||||||
# <第二步,逐个文件分析,生成带注释文件>
|
|
||||||
tasks = ["" for _ in range(len(file_manifest))]
|
|
||||||
def bark_fn(tasks):
|
|
||||||
for i in range(len(tasks)): tasks[i] = "watchdog is dead"
|
|
||||||
wd = WatchDog(timeout=10, bark_fn=lambda: bark_fn(tasks), interval=3, msg="ThreadWatcher timeout")
|
|
||||||
wd.begin_watch()
|
|
||||||
from concurrent.futures import ThreadPoolExecutor
|
|
||||||
executor = ThreadPoolExecutor(max_workers=get_conf('DEFAULT_WORKER_NUM'))
|
|
||||||
def _task_multi_threading(i_say, gpt_say, fp, file_tree_struct, index):
|
|
||||||
language = 'Chinese' if plugin_kwargs["use_chinese"] else 'English'
|
|
||||||
def observe_window_update(x):
|
|
||||||
if tasks[index] == "watchdog is dead":
|
|
||||||
raise TimeoutError("ThreadWatcher: watchdog is dead")
|
|
||||||
tasks[index] = x
|
|
||||||
pcc = PythonCodeComment(llm_kwargs, plugin_kwargs, language=language, observe_window_update=observe_window_update)
|
|
||||||
pcc.read_file(path=fp, brief=gpt_say)
|
|
||||||
revised_path, revised_content = pcc.begin_comment_source_code(None, None)
|
|
||||||
file_tree_struct.manifest[fp].revised_path = revised_path
|
|
||||||
file_tree_struct.manifest[fp].revised_content = revised_content
|
|
||||||
# <将结果写回源文件>
|
|
||||||
with open(fp, 'w', encoding='utf-8') as f:
|
|
||||||
f.write(file_tree_struct.manifest[fp].revised_content)
|
|
||||||
# <生成对比html>
|
|
||||||
with open("crazy_functions/agent_fns/python_comment_compare.html", 'r', encoding='utf-8') as f:
|
|
||||||
html_template = f.read()
|
|
||||||
warp = lambda x: "```python\n\n" + x + "\n\n```"
|
|
||||||
from themes.theme import load_dynamic_theme
|
|
||||||
_, advanced_css, _, _ = load_dynamic_theme("Default")
|
|
||||||
html_template = html_template.replace("ADVANCED_CSS", advanced_css)
|
|
||||||
html_template = html_template.replace("REPLACE_CODE_FILE_LEFT", pcc.get_markdown_block_in_html(markdown_convertion_for_file(warp(pcc.original_content))))
|
|
||||||
html_template = html_template.replace("REPLACE_CODE_FILE_RIGHT", pcc.get_markdown_block_in_html(markdown_convertion_for_file(warp(revised_content))))
|
|
||||||
compare_html_path = fp + '.compare.html'
|
|
||||||
file_tree_struct.manifest[fp].compare_html = compare_html_path
|
|
||||||
with open(compare_html_path, 'w', encoding='utf-8') as f:
|
|
||||||
f.write(html_template)
|
|
||||||
tasks[index] = ""
|
|
||||||
|
|
||||||
chatbot.append([None, f"正在处理:"])
|
|
||||||
futures = []
|
|
||||||
index = 0
|
|
||||||
for i_say, gpt_say, fp in zip(gpt_response_collection[0::2], gpt_response_collection[1::2], file_manifest):
|
|
||||||
future = executor.submit(_task_multi_threading, i_say, gpt_say, fp, file_tree_struct, index)
|
|
||||||
index += 1
|
|
||||||
futures.append(future)
|
|
||||||
|
|
||||||
# <第三步,等待任务完成>
|
|
||||||
cnt = 0
|
|
||||||
while True:
|
|
||||||
cnt += 1
|
|
||||||
wd.feed()
|
|
||||||
time.sleep(3)
|
|
||||||
worker_done = [h.done() for h in futures]
|
|
||||||
remain = len(worker_done) - sum(worker_done)
|
|
||||||
|
|
||||||
# <展示已经完成的部分>
|
|
||||||
preview_html_list = []
|
|
||||||
for done, fp in zip(worker_done, file_manifest):
|
|
||||||
if not done: continue
|
|
||||||
if hasattr(file_tree_struct.manifest[fp], 'compare_html'):
|
|
||||||
preview_html_list.append(file_tree_struct.manifest[fp].compare_html)
|
|
||||||
else:
|
|
||||||
logger.error(f"文件: {fp} 的注释结果未能成功")
|
|
||||||
file_links = generate_file_link(preview_html_list)
|
|
||||||
|
|
||||||
yield from update_ui_lastest_msg(
|
|
||||||
f"当前任务: <br/>{'<br/>'.join(tasks)}.<br/>" +
|
|
||||||
f"剩余源文件数量: {remain}.<br/>" +
|
|
||||||
f"已完成的文件: {sum(worker_done)}.<br/>" +
|
|
||||||
file_links +
|
|
||||||
"<br/>" +
|
|
||||||
''.join(['.']*(cnt % 10 + 1)
|
|
||||||
), chatbot=chatbot, history=history, delay=0)
|
|
||||||
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
|
|
||||||
if all(worker_done):
|
|
||||||
executor.shutdown()
|
|
||||||
break
|
|
||||||
|
|
||||||
# <第四步,压缩结果>
|
|
||||||
zip_res = zip_result(project_folder)
|
|
||||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
|
||||||
|
|
||||||
# <END>
|
|
||||||
chatbot.append((None, "所有源文件均已处理完毕。"))
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@CatchException
|
|
||||||
def 注释Python项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
|
||||||
history = [] # 清空历史,以免输入溢出
|
|
||||||
plugin_kwargs["use_chinese"] = plugin_kwargs.get("use_chinese", False)
|
|
||||||
import glob, os
|
|
||||||
if os.path.exists(txt):
|
|
||||||
project_folder = txt
|
|
||||||
validate_path_safety(project_folder, chatbot.get_user())
|
|
||||||
else:
|
|
||||||
if txt == "": txt = '空空如也的输入栏'
|
|
||||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
return
|
|
||||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.py', recursive=True)]
|
|
||||||
if len(file_manifest) == 0:
|
|
||||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何python文件: {txt}")
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
return
|
|
||||||
|
|
||||||
yield from 注释源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
|
||||||
@@ -1,36 +0,0 @@
|
|||||||
|
|
||||||
from toolbox import get_conf, update_ui
|
|
||||||
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
|
|
||||||
from crazy_functions.SourceCode_Comment import 注释Python项目
|
|
||||||
|
|
||||||
class SourceCodeComment_Wrap(GptAcademicPluginTemplate):
|
|
||||||
def __init__(self):
|
|
||||||
"""
|
|
||||||
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
|
|
||||||
"""
|
|
||||||
pass
|
|
||||||
|
|
||||||
def define_arg_selection_menu(self):
|
|
||||||
"""
|
|
||||||
定义插件的二级选项菜单
|
|
||||||
"""
|
|
||||||
gui_definition = {
|
|
||||||
"main_input":
|
|
||||||
ArgProperty(title="路径", description="程序路径(上传文件后自动填写)", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
|
|
||||||
"use_chinese":
|
|
||||||
ArgProperty(title="注释语言", options=["英文", "中文"], default_value="英文", description="无", type="dropdown").model_dump_json(),
|
|
||||||
# "use_emoji":
|
|
||||||
# ArgProperty(title="在注释中使用emoji", options=["禁止", "允许"], default_value="禁止", description="无", type="dropdown").model_dump_json(),
|
|
||||||
}
|
|
||||||
return gui_definition
|
|
||||||
|
|
||||||
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
|
||||||
"""
|
|
||||||
执行插件
|
|
||||||
"""
|
|
||||||
if plugin_kwargs["use_chinese"] == "中文":
|
|
||||||
plugin_kwargs["use_chinese"] = True
|
|
||||||
else:
|
|
||||||
plugin_kwargs["use_chinese"] = False
|
|
||||||
|
|
||||||
yield from 注释Python项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
|
||||||
@@ -1,204 +0,0 @@
|
|||||||
import requests
|
|
||||||
import random
|
|
||||||
import time
|
|
||||||
import re
|
|
||||||
import json
|
|
||||||
from bs4 import BeautifulSoup
|
|
||||||
from functools import lru_cache
|
|
||||||
from itertools import zip_longest
|
|
||||||
from check_proxy import check_proxy
|
|
||||||
from toolbox import CatchException, update_ui, get_conf, promote_file_to_downloadzone, update_ui_lastest_msg, generate_file_link
|
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
|
|
||||||
from request_llms.bridge_all import model_info
|
|
||||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
|
||||||
from crazy_functions.prompts.internet import SearchOptimizerPrompt, SearchAcademicOptimizerPrompt
|
|
||||||
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
|
|
||||||
from textwrap import dedent
|
|
||||||
from loguru import logger
|
|
||||||
from pydantic import BaseModel, Field
|
|
||||||
|
|
||||||
class Query(BaseModel):
|
|
||||||
search_keyword: str = Field(description="search query for video resource")
|
|
||||||
|
|
||||||
|
|
||||||
class VideoResource(BaseModel):
|
|
||||||
thought: str = Field(description="analysis of the search results based on the user's query")
|
|
||||||
title: str = Field(description="title of the video")
|
|
||||||
author: str = Field(description="author/uploader of the video")
|
|
||||||
bvid: str = Field(description="unique ID of the video")
|
|
||||||
another_failsafe_bvid: str = Field(description="provide another bvid, the other one is not working")
|
|
||||||
|
|
||||||
|
|
||||||
def get_video_resource(search_keyword):
|
|
||||||
from crazy_functions.media_fns.get_media import search_videos
|
|
||||||
|
|
||||||
# Search for videos and return the first result
|
|
||||||
videos = search_videos(
|
|
||||||
search_keyword
|
|
||||||
)
|
|
||||||
|
|
||||||
# Return the first video if results exist, otherwise return None
|
|
||||||
return videos
|
|
||||||
|
|
||||||
def download_video(bvid, user_name, chatbot, history):
|
|
||||||
# from experimental_mods.get_bilibili_resource import download_bilibili
|
|
||||||
from crazy_functions.media_fns.get_media import download_video
|
|
||||||
# pause a while
|
|
||||||
tic_time = 8
|
|
||||||
for i in range(tic_time):
|
|
||||||
yield from update_ui_lastest_msg(
|
|
||||||
lastmsg=f"即将下载音频。等待{tic_time-i}秒后自动继续, 点击“停止”键取消此操作。",
|
|
||||||
chatbot=chatbot, history=[], delay=1)
|
|
||||||
|
|
||||||
# download audio
|
|
||||||
chatbot.append((None, "下载音频, 请稍等...")); yield from update_ui(chatbot=chatbot, history=history)
|
|
||||||
downloaded_files = yield from download_video(bvid, only_audio=True, user_name=user_name, chatbot=chatbot, history=history)
|
|
||||||
|
|
||||||
if len(downloaded_files) == 0:
|
|
||||||
# failed to download audio
|
|
||||||
return []
|
|
||||||
|
|
||||||
# preview
|
|
||||||
preview_list = [promote_file_to_downloadzone(fp) for fp in downloaded_files]
|
|
||||||
file_links = generate_file_link(preview_list)
|
|
||||||
yield from update_ui_lastest_msg(f"已完成的文件: <br/>" + file_links, chatbot=chatbot, history=history, delay=0)
|
|
||||||
chatbot.append((None, f"即将下载视频。"))
|
|
||||||
|
|
||||||
# pause a while
|
|
||||||
tic_time = 16
|
|
||||||
for i in range(tic_time):
|
|
||||||
yield from update_ui_lastest_msg(
|
|
||||||
lastmsg=f"即将下载视频。等待{tic_time-i}秒后自动继续, 点击“停止”键取消此操作。",
|
|
||||||
chatbot=chatbot, history=[], delay=1)
|
|
||||||
|
|
||||||
# download video
|
|
||||||
chatbot.append((None, "下载视频, 请稍等...")); yield from update_ui(chatbot=chatbot, history=history)
|
|
||||||
downloaded_files_part2 = yield from download_video(bvid, only_audio=False, user_name=user_name, chatbot=chatbot, history=history)
|
|
||||||
|
|
||||||
# preview
|
|
||||||
preview_list = [promote_file_to_downloadzone(fp) for fp in downloaded_files_part2]
|
|
||||||
file_links = generate_file_link(preview_list)
|
|
||||||
yield from update_ui_lastest_msg(f"已完成的文件: <br/>" + file_links, chatbot=chatbot, history=history, delay=0)
|
|
||||||
|
|
||||||
# return
|
|
||||||
return downloaded_files + downloaded_files_part2
|
|
||||||
|
|
||||||
|
|
||||||
class Strategy(BaseModel):
|
|
||||||
thought: str = Field(description="analysis of the user's wish, for example, can you recall the name of the resource?")
|
|
||||||
which_methods: str = Field(description="Which method to use to find the necessary information? choose from 'method_1' and 'method_2'.")
|
|
||||||
method_1_search_keywords: str = Field(description="Generate keywords to search the internet if you choose method 1, otherwise empty.")
|
|
||||||
method_2_generate_keywords: str = Field(description="Generate keywords for video download engine if you choose method 2, otherwise empty.")
|
|
||||||
|
|
||||||
|
|
||||||
@CatchException
|
|
||||||
def 多媒体任务(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
|
||||||
user_wish: str = txt
|
|
||||||
# query demos:
|
|
||||||
# - "我想找一首歌,里面有句歌词是“turn your face towards the sun”"
|
|
||||||
# - "一首歌,第一句是红豆生南国"
|
|
||||||
# - "一首音乐,中国航天任务专用的那首"
|
|
||||||
# - "戴森球计划在熔岩星球的音乐"
|
|
||||||
# - "hanser的百变什么精"
|
|
||||||
# - "打大圣残躯时的bgm"
|
|
||||||
# - "渊下宫战斗音乐"
|
|
||||||
|
|
||||||
# 搜索
|
|
||||||
chatbot.append((txt, "检索中, 请稍等..."))
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
if "跳过联网搜索" not in user_wish:
|
|
||||||
# 结构化生成
|
|
||||||
internet_search_keyword = user_wish
|
|
||||||
|
|
||||||
yield from update_ui_lastest_msg(lastmsg=f"发起互联网检索: {internet_search_keyword} ...", chatbot=chatbot, history=[], delay=1)
|
|
||||||
from crazy_functions.Internet_GPT import internet_search_with_analysis_prompt
|
|
||||||
result = yield from internet_search_with_analysis_prompt(
|
|
||||||
prompt=internet_search_keyword,
|
|
||||||
analysis_prompt="请根据搜索结果分析,获取用户需要找的资源的名称、作者、出处等信息。",
|
|
||||||
llm_kwargs=llm_kwargs,
|
|
||||||
chatbot=chatbot
|
|
||||||
)
|
|
||||||
|
|
||||||
yield from update_ui_lastest_msg(lastmsg=f"互联网检索结论: {result} \n\n 正在生成进一步检索方案 ...", chatbot=chatbot, history=[], delay=1)
|
|
||||||
rf_req = dedent(f"""
|
|
||||||
The user wish to get the following resource:
|
|
||||||
{user_wish}
|
|
||||||
Meanwhile, you can access another expert's opinion on the user's wish:
|
|
||||||
{result}
|
|
||||||
Generate search keywords (less than 5 keywords) for video download engine accordingly.
|
|
||||||
""")
|
|
||||||
else:
|
|
||||||
user_wish = user_wish.replace("跳过联网搜索", "").strip()
|
|
||||||
rf_req = dedent(f"""
|
|
||||||
The user wish to get the following resource:
|
|
||||||
{user_wish}
|
|
||||||
Generate reseach keywords (less than 5 keywords) accordingly.
|
|
||||||
""")
|
|
||||||
gpt_json_io = GptJsonIO(Query)
|
|
||||||
inputs = rf_req + gpt_json_io.format_instructions
|
|
||||||
run_gpt_fn = lambda inputs, sys_prompt: predict_no_ui_long_connection(inputs=inputs, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=[])
|
|
||||||
analyze_res = run_gpt_fn(inputs, "")
|
|
||||||
logger.info(analyze_res)
|
|
||||||
query: Query = gpt_json_io.generate_output_auto_repair(analyze_res, run_gpt_fn)
|
|
||||||
video_engine_keywords = query.search_keyword
|
|
||||||
# 关键词展示
|
|
||||||
chatbot.append((None, f"检索关键词已确认: {video_engine_keywords}。筛选中, 请稍等..."))
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
|
|
||||||
# 获取候选资源
|
|
||||||
candadate_dictionary: dict = get_video_resource(video_engine_keywords)
|
|
||||||
candadate_dictionary_as_str = json.dumps(candadate_dictionary, ensure_ascii=False, indent=4)
|
|
||||||
|
|
||||||
# 展示候选资源
|
|
||||||
candadate_display = "\n".join([f"{i+1}. {it['title']}" for i, it in enumerate(candadate_dictionary)])
|
|
||||||
chatbot.append((None, f"候选:\n\n{candadate_display}"))
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
|
|
||||||
# 结构化生成
|
|
||||||
rf_req_2 = dedent(f"""
|
|
||||||
The user wish to get the following resource:
|
|
||||||
{user_wish}
|
|
||||||
|
|
||||||
Select the most relevant and suitable video resource from the following search results:
|
|
||||||
{candadate_dictionary_as_str}
|
|
||||||
|
|
||||||
Note:
|
|
||||||
1. The first several search video results are more likely to satisfy the user's wish.
|
|
||||||
2. The time duration of the video should be less than 10 minutes.
|
|
||||||
3. You should analyze the search results first, before giving your answer.
|
|
||||||
4. Use Chinese if possible.
|
|
||||||
5. Beside the primary video selection, give a backup video resource `bvid`.
|
|
||||||
""")
|
|
||||||
gpt_json_io = GptJsonIO(VideoResource)
|
|
||||||
inputs = rf_req_2 + gpt_json_io.format_instructions
|
|
||||||
run_gpt_fn = lambda inputs, sys_prompt: predict_no_ui_long_connection(inputs=inputs, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=[])
|
|
||||||
analyze_res = run_gpt_fn(inputs, "")
|
|
||||||
logger.info(analyze_res)
|
|
||||||
video_resource: VideoResource = gpt_json_io.generate_output_auto_repair(analyze_res, run_gpt_fn)
|
|
||||||
|
|
||||||
# Display
|
|
||||||
chatbot.append(
|
|
||||||
(None,
|
|
||||||
f"分析:{video_resource.thought}" "<br/>"
|
|
||||||
f"选择: `{video_resource.title}`。" "<br/>"
|
|
||||||
f"作者:{video_resource.author}"
|
|
||||||
)
|
|
||||||
)
|
|
||||||
chatbot.append((None, f"下载中, 请稍等..."))
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
|
|
||||||
if video_resource and video_resource.bvid:
|
|
||||||
logger.info(video_resource)
|
|
||||||
downloaded = yield from download_video(video_resource.bvid, chatbot.get_user(), chatbot, history)
|
|
||||||
if not downloaded:
|
|
||||||
chatbot.append((None, f"下载失败, 尝试备选 ..."))
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
downloaded = yield from download_video(video_resource.another_failsafe_bvid, chatbot.get_user(), chatbot, history)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@CatchException
|
|
||||||
def debug(bvid, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
|
||||||
yield from download_video(bvid, chatbot.get_user(), chatbot, history)
|
|
||||||
@@ -1,5 +1,4 @@
|
|||||||
from crazy_functions.agent_fns.pipe import PluginMultiprocessManager, PipeCom
|
from crazy_functions.agent_fns.pipe import PluginMultiprocessManager, PipeCom
|
||||||
from loguru import logger
|
|
||||||
|
|
||||||
class EchoDemo(PluginMultiprocessManager):
|
class EchoDemo(PluginMultiprocessManager):
|
||||||
def subprocess_worker(self, child_conn):
|
def subprocess_worker(self, child_conn):
|
||||||
@@ -17,4 +16,4 @@ class EchoDemo(PluginMultiprocessManager):
|
|||||||
elif msg.cmd == "terminate":
|
elif msg.cmd == "terminate":
|
||||||
self.child_conn.send(PipeCom("done", ""))
|
self.child_conn.send(PipeCom("done", ""))
|
||||||
break
|
break
|
||||||
logger.info('[debug] subprocess_worker terminated')
|
print('[debug] subprocess_worker terminated')
|
||||||
@@ -1,6 +1,5 @@
|
|||||||
from toolbox import get_log_folder, update_ui, gen_time_str, get_conf, promote_file_to_downloadzone
|
from toolbox import get_log_folder, update_ui, gen_time_str, get_conf, promote_file_to_downloadzone
|
||||||
from crazy_functions.agent_fns.watchdog import WatchDog
|
from crazy_functions.agent_fns.watchdog import WatchDog
|
||||||
from loguru import logger
|
|
||||||
import time, os
|
import time, os
|
||||||
|
|
||||||
class PipeCom:
|
class PipeCom:
|
||||||
@@ -48,7 +47,7 @@ class PluginMultiprocessManager:
|
|||||||
def terminate(self):
|
def terminate(self):
|
||||||
self.p.terminate()
|
self.p.terminate()
|
||||||
self.alive = False
|
self.alive = False
|
||||||
logger.info("[debug] instance terminated")
|
print("[debug] instance terminated")
|
||||||
|
|
||||||
def subprocess_worker(self, child_conn):
|
def subprocess_worker(self, child_conn):
|
||||||
# ⭐⭐ run in subprocess
|
# ⭐⭐ run in subprocess
|
||||||
|
|||||||
@@ -1,457 +0,0 @@
|
|||||||
import datetime
|
|
||||||
import re
|
|
||||||
import os
|
|
||||||
from loguru import logger
|
|
||||||
from textwrap import dedent
|
|
||||||
from toolbox import CatchException, update_ui
|
|
||||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
|
||||||
|
|
||||||
# TODO: 解决缩进问题
|
|
||||||
|
|
||||||
find_function_end_prompt = '''
|
|
||||||
Below is a page of code that you need to read. This page may not yet complete, you job is to split this page to sperate functions, class functions etc.
|
|
||||||
- Provide the line number where the first visible function ends.
|
|
||||||
- Provide the line number where the next visible function begins.
|
|
||||||
- If there are no other functions in this page, you should simply return the line number of the last line.
|
|
||||||
- Only focus on functions declared by `def` keyword. Ignore inline functions. Ignore function calls.
|
|
||||||
|
|
||||||
------------------ Example ------------------
|
|
||||||
INPUT:
|
|
||||||
|
|
||||||
```
|
|
||||||
L0000 |import sys
|
|
||||||
L0001 |import re
|
|
||||||
L0002 |
|
|
||||||
L0003 |def trimmed_format_exc():
|
|
||||||
L0004 | import os
|
|
||||||
L0005 | import traceback
|
|
||||||
L0006 | str = traceback.format_exc()
|
|
||||||
L0007 | current_path = os.getcwd()
|
|
||||||
L0008 | replace_path = "."
|
|
||||||
L0009 | return str.replace(current_path, replace_path)
|
|
||||||
L0010 |
|
|
||||||
L0011 |
|
|
||||||
L0012 |def trimmed_format_exc_markdown():
|
|
||||||
L0013 | ...
|
|
||||||
L0014 | ...
|
|
||||||
```
|
|
||||||
|
|
||||||
OUTPUT:
|
|
||||||
|
|
||||||
```
|
|
||||||
<first_function_end_at>L0009</first_function_end_at>
|
|
||||||
<next_function_begin_from>L0012</next_function_begin_from>
|
|
||||||
```
|
|
||||||
|
|
||||||
------------------ End of Example ------------------
|
|
||||||
|
|
||||||
|
|
||||||
------------------ the real INPUT you need to process NOW ------------------
|
|
||||||
```
|
|
||||||
{THE_TAGGED_CODE}
|
|
||||||
```
|
|
||||||
'''
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
revise_funtion_prompt = '''
|
|
||||||
You need to read the following code, and revise the source code ({FILE_BASENAME}) according to following instructions:
|
|
||||||
1. You should analyze the purpose of the functions (if there are any).
|
|
||||||
2. You need to add docstring for the provided functions (if there are any).
|
|
||||||
|
|
||||||
Be aware:
|
|
||||||
1. You must NOT modify the indent of code.
|
|
||||||
2. You are NOT authorized to change or translate non-comment code, and you are NOT authorized to add empty lines either, toggle qu.
|
|
||||||
3. Use {LANG} to add comments and docstrings. Do NOT translate Chinese that is already in the code.
|
|
||||||
4. Besides adding a docstring, use the ⭐ symbol to annotate the most core and important line of code within the function, explaining its role.
|
|
||||||
|
|
||||||
------------------ Example ------------------
|
|
||||||
INPUT:
|
|
||||||
```
|
|
||||||
L0000 |
|
|
||||||
L0001 |def zip_result(folder):
|
|
||||||
L0002 | t = gen_time_str()
|
|
||||||
L0003 | zip_folder(folder, get_log_folder(), f"result.zip")
|
|
||||||
L0004 | return os.path.join(get_log_folder(), f"result.zip")
|
|
||||||
L0005 |
|
|
||||||
L0006 |
|
|
||||||
```
|
|
||||||
|
|
||||||
OUTPUT:
|
|
||||||
|
|
||||||
<instruction_1_purpose>
|
|
||||||
This function compresses a given folder, and return the path of the resulting `zip` file.
|
|
||||||
</instruction_1_purpose>
|
|
||||||
<instruction_2_revised_code>
|
|
||||||
```
|
|
||||||
def zip_result(folder):
|
|
||||||
"""
|
|
||||||
Compresses the specified folder into a zip file and stores it in the log folder.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
folder (str): The path to the folder that needs to be compressed.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
str: The path to the created zip file in the log folder.
|
|
||||||
"""
|
|
||||||
t = gen_time_str()
|
|
||||||
zip_folder(folder, get_log_folder(), f"result.zip") # ⭐ Execute the zipping of folder
|
|
||||||
return os.path.join(get_log_folder(), f"result.zip")
|
|
||||||
```
|
|
||||||
</instruction_2_revised_code>
|
|
||||||
------------------ End of Example ------------------
|
|
||||||
|
|
||||||
|
|
||||||
------------------ the real INPUT you need to process NOW ({FILE_BASENAME}) ------------------
|
|
||||||
```
|
|
||||||
{THE_CODE}
|
|
||||||
```
|
|
||||||
{INDENT_REMINDER}
|
|
||||||
{BRIEF_REMINDER}
|
|
||||||
{HINT_REMINDER}
|
|
||||||
'''
|
|
||||||
|
|
||||||
|
|
||||||
revise_funtion_prompt_chinese = '''
|
|
||||||
您需要阅读以下代码,并根据以下说明修订源代码({FILE_BASENAME}):
|
|
||||||
1. 如果源代码中包含函数的话, 你应该分析给定函数实现了什么功能
|
|
||||||
2. 如果源代码中包含函数的话, 你需要为函数添加docstring, docstring必须使用中文
|
|
||||||
|
|
||||||
请注意:
|
|
||||||
1. 你不得修改代码的缩进
|
|
||||||
2. 你无权更改或翻译代码中的非注释部分,也不允许添加空行
|
|
||||||
3. 使用 {LANG} 添加注释和文档字符串。不要翻译代码中已有的中文
|
|
||||||
4. 除了添加docstring之外, 使用⭐符号给该函数中最核心、最重要的一行代码添加注释,并说明其作用
|
|
||||||
|
|
||||||
------------------ 示例 ------------------
|
|
||||||
INPUT:
|
|
||||||
```
|
|
||||||
L0000 |
|
|
||||||
L0001 |def zip_result(folder):
|
|
||||||
L0002 | t = gen_time_str()
|
|
||||||
L0003 | zip_folder(folder, get_log_folder(), f"result.zip")
|
|
||||||
L0004 | return os.path.join(get_log_folder(), f"result.zip")
|
|
||||||
L0005 |
|
|
||||||
L0006 |
|
|
||||||
```
|
|
||||||
|
|
||||||
OUTPUT:
|
|
||||||
|
|
||||||
<instruction_1_purpose>
|
|
||||||
该函数用于压缩指定文件夹,并返回生成的`zip`文件的路径。
|
|
||||||
</instruction_1_purpose>
|
|
||||||
<instruction_2_revised_code>
|
|
||||||
```
|
|
||||||
def zip_result(folder):
|
|
||||||
"""
|
|
||||||
该函数将指定的文件夹压缩成ZIP文件, 并将其存储在日志文件夹中。
|
|
||||||
|
|
||||||
输入参数:
|
|
||||||
folder (str): 需要压缩的文件夹的路径。
|
|
||||||
返回值:
|
|
||||||
str: 日志文件夹中创建的ZIP文件的路径。
|
|
||||||
"""
|
|
||||||
t = gen_time_str()
|
|
||||||
zip_folder(folder, get_log_folder(), f"result.zip") # ⭐ 执行文件夹的压缩
|
|
||||||
return os.path.join(get_log_folder(), f"result.zip")
|
|
||||||
```
|
|
||||||
</instruction_2_revised_code>
|
|
||||||
------------------ End of Example ------------------
|
|
||||||
|
|
||||||
|
|
||||||
------------------ the real INPUT you need to process NOW ({FILE_BASENAME}) ------------------
|
|
||||||
```
|
|
||||||
{THE_CODE}
|
|
||||||
```
|
|
||||||
{INDENT_REMINDER}
|
|
||||||
{BRIEF_REMINDER}
|
|
||||||
{HINT_REMINDER}
|
|
||||||
'''
|
|
||||||
|
|
||||||
|
|
||||||
class PythonCodeComment():
|
|
||||||
|
|
||||||
def __init__(self, llm_kwargs, plugin_kwargs, language, observe_window_update) -> None:
|
|
||||||
self.original_content = ""
|
|
||||||
self.full_context = []
|
|
||||||
self.full_context_with_line_no = []
|
|
||||||
self.current_page_start = 0
|
|
||||||
self.page_limit = 100 # 100 lines of code each page
|
|
||||||
self.ignore_limit = 20
|
|
||||||
self.llm_kwargs = llm_kwargs
|
|
||||||
self.plugin_kwargs = plugin_kwargs
|
|
||||||
self.language = language
|
|
||||||
self.observe_window_update = observe_window_update
|
|
||||||
if self.language == "chinese":
|
|
||||||
self.core_prompt = revise_funtion_prompt_chinese
|
|
||||||
else:
|
|
||||||
self.core_prompt = revise_funtion_prompt
|
|
||||||
self.path = None
|
|
||||||
self.file_basename = None
|
|
||||||
self.file_brief = ""
|
|
||||||
|
|
||||||
def generate_tagged_code_from_full_context(self):
|
|
||||||
for i, code in enumerate(self.full_context):
|
|
||||||
number = i
|
|
||||||
padded_number = f"{number:04}"
|
|
||||||
result = f"L{padded_number}"
|
|
||||||
self.full_context_with_line_no.append(f"{result} | {code}")
|
|
||||||
return self.full_context_with_line_no
|
|
||||||
|
|
||||||
def read_file(self, path, brief):
|
|
||||||
with open(path, 'r', encoding='utf8') as f:
|
|
||||||
self.full_context = f.readlines()
|
|
||||||
self.original_content = ''.join(self.full_context)
|
|
||||||
self.file_basename = os.path.basename(path)
|
|
||||||
self.file_brief = brief
|
|
||||||
self.full_context_with_line_no = self.generate_tagged_code_from_full_context()
|
|
||||||
self.path = path
|
|
||||||
|
|
||||||
def find_next_function_begin(self, tagged_code:list, begin_and_end):
|
|
||||||
begin, end = begin_and_end
|
|
||||||
THE_TAGGED_CODE = ''.join(tagged_code)
|
|
||||||
self.llm_kwargs['temperature'] = 0
|
|
||||||
result = predict_no_ui_long_connection(
|
|
||||||
inputs=find_function_end_prompt.format(THE_TAGGED_CODE=THE_TAGGED_CODE),
|
|
||||||
llm_kwargs=self.llm_kwargs,
|
|
||||||
history=[],
|
|
||||||
sys_prompt="",
|
|
||||||
observe_window=[],
|
|
||||||
console_slience=True
|
|
||||||
)
|
|
||||||
|
|
||||||
def extract_number(text):
|
|
||||||
# 使用正则表达式匹配模式
|
|
||||||
match = re.search(r'<next_function_begin_from>L(\d+)</next_function_begin_from>', text)
|
|
||||||
if match:
|
|
||||||
# 提取匹配的数字部分并转换为整数
|
|
||||||
return int(match.group(1))
|
|
||||||
return None
|
|
||||||
|
|
||||||
line_no = extract_number(result)
|
|
||||||
if line_no is not None:
|
|
||||||
return line_no
|
|
||||||
else:
|
|
||||||
return end
|
|
||||||
|
|
||||||
def _get_next_window(self):
|
|
||||||
#
|
|
||||||
current_page_start = self.current_page_start
|
|
||||||
|
|
||||||
if self.current_page_start == len(self.full_context) + 1:
|
|
||||||
raise StopIteration
|
|
||||||
|
|
||||||
# 如果剩余的行数非常少,一鼓作气处理掉
|
|
||||||
if len(self.full_context) - self.current_page_start < self.ignore_limit:
|
|
||||||
future_page_start = len(self.full_context) + 1
|
|
||||||
self.current_page_start = future_page_start
|
|
||||||
return current_page_start, future_page_start
|
|
||||||
|
|
||||||
|
|
||||||
tagged_code = self.full_context_with_line_no[ self.current_page_start: self.current_page_start + self.page_limit]
|
|
||||||
line_no = self.find_next_function_begin(tagged_code, [self.current_page_start, self.current_page_start + self.page_limit])
|
|
||||||
|
|
||||||
if line_no > len(self.full_context) - 5:
|
|
||||||
line_no = len(self.full_context) + 1
|
|
||||||
|
|
||||||
future_page_start = line_no
|
|
||||||
self.current_page_start = future_page_start
|
|
||||||
|
|
||||||
# ! consider eof
|
|
||||||
return current_page_start, future_page_start
|
|
||||||
|
|
||||||
def dedent(self, text):
|
|
||||||
"""Remove any common leading whitespace from every line in `text`.
|
|
||||||
"""
|
|
||||||
# Look for the longest leading string of spaces and tabs common to
|
|
||||||
# all lines.
|
|
||||||
margin = None
|
|
||||||
_whitespace_only_re = re.compile('^[ \t]+$', re.MULTILINE)
|
|
||||||
_leading_whitespace_re = re.compile('(^[ \t]*)(?:[^ \t\n])', re.MULTILINE)
|
|
||||||
text = _whitespace_only_re.sub('', text)
|
|
||||||
indents = _leading_whitespace_re.findall(text)
|
|
||||||
for indent in indents:
|
|
||||||
if margin is None:
|
|
||||||
margin = indent
|
|
||||||
|
|
||||||
# Current line more deeply indented than previous winner:
|
|
||||||
# no change (previous winner is still on top).
|
|
||||||
elif indent.startswith(margin):
|
|
||||||
pass
|
|
||||||
|
|
||||||
# Current line consistent with and no deeper than previous winner:
|
|
||||||
# it's the new winner.
|
|
||||||
elif margin.startswith(indent):
|
|
||||||
margin = indent
|
|
||||||
|
|
||||||
# Find the largest common whitespace between current line and previous
|
|
||||||
# winner.
|
|
||||||
else:
|
|
||||||
for i, (x, y) in enumerate(zip(margin, indent)):
|
|
||||||
if x != y:
|
|
||||||
margin = margin[:i]
|
|
||||||
break
|
|
||||||
|
|
||||||
# sanity check (testing/debugging only)
|
|
||||||
if 0 and margin:
|
|
||||||
for line in text.split("\n"):
|
|
||||||
assert not line or line.startswith(margin), \
|
|
||||||
"line = %r, margin = %r" % (line, margin)
|
|
||||||
|
|
||||||
if margin:
|
|
||||||
text = re.sub(r'(?m)^' + margin, '', text)
|
|
||||||
return text, len(margin)
|
|
||||||
else:
|
|
||||||
return text, 0
|
|
||||||
|
|
||||||
def get_next_batch(self):
|
|
||||||
current_page_start, future_page_start = self._get_next_window()
|
|
||||||
return ''.join(self.full_context[current_page_start: future_page_start]), current_page_start, future_page_start
|
|
||||||
|
|
||||||
def tag_code(self, fn, hint):
|
|
||||||
code = fn
|
|
||||||
_, n_indent = self.dedent(code)
|
|
||||||
indent_reminder = "" if n_indent == 0 else "(Reminder: as you can see, this piece of code has indent made up with {n_indent} whitespace, please preseve them in the OUTPUT.)"
|
|
||||||
brief_reminder = "" if self.file_brief == "" else f"({self.file_basename} abstract: {self.file_brief})"
|
|
||||||
hint_reminder = "" if hint is None else f"(Reminder: do not ignore or modify code such as `{hint}`, provide complete code in the OUTPUT.)"
|
|
||||||
self.llm_kwargs['temperature'] = 0
|
|
||||||
result = predict_no_ui_long_connection(
|
|
||||||
inputs=self.core_prompt.format(
|
|
||||||
LANG=self.language,
|
|
||||||
FILE_BASENAME=self.file_basename,
|
|
||||||
THE_CODE=code,
|
|
||||||
INDENT_REMINDER=indent_reminder,
|
|
||||||
BRIEF_REMINDER=brief_reminder,
|
|
||||||
HINT_REMINDER=hint_reminder
|
|
||||||
),
|
|
||||||
llm_kwargs=self.llm_kwargs,
|
|
||||||
history=[],
|
|
||||||
sys_prompt="",
|
|
||||||
observe_window=[],
|
|
||||||
console_slience=True
|
|
||||||
)
|
|
||||||
|
|
||||||
def get_code_block(reply):
|
|
||||||
import re
|
|
||||||
pattern = r"```([\s\S]*?)```" # regex pattern to match code blocks
|
|
||||||
matches = re.findall(pattern, reply) # find all code blocks in text
|
|
||||||
if len(matches) == 1:
|
|
||||||
return matches[0].strip('python') # code block
|
|
||||||
return None
|
|
||||||
|
|
||||||
code_block = get_code_block(result)
|
|
||||||
if code_block is not None:
|
|
||||||
code_block = self.sync_and_patch(original=code, revised=code_block)
|
|
||||||
return code_block
|
|
||||||
else:
|
|
||||||
return code
|
|
||||||
|
|
||||||
def get_markdown_block_in_html(self, html):
|
|
||||||
from bs4 import BeautifulSoup
|
|
||||||
soup = BeautifulSoup(html, 'lxml')
|
|
||||||
found_list = soup.find_all("div", class_="markdown-body")
|
|
||||||
if found_list:
|
|
||||||
res = found_list[0]
|
|
||||||
return res.prettify()
|
|
||||||
else:
|
|
||||||
return None
|
|
||||||
|
|
||||||
|
|
||||||
def sync_and_patch(self, original, revised):
|
|
||||||
"""Ensure the number of pre-string empty lines in revised matches those in original."""
|
|
||||||
|
|
||||||
def count_leading_empty_lines(s, reverse=False):
|
|
||||||
"""Count the number of leading empty lines in a string."""
|
|
||||||
lines = s.split('\n')
|
|
||||||
if reverse: lines = list(reversed(lines))
|
|
||||||
count = 0
|
|
||||||
for line in lines:
|
|
||||||
if line.strip() == '':
|
|
||||||
count += 1
|
|
||||||
else:
|
|
||||||
break
|
|
||||||
return count
|
|
||||||
|
|
||||||
original_empty_lines = count_leading_empty_lines(original)
|
|
||||||
revised_empty_lines = count_leading_empty_lines(revised)
|
|
||||||
|
|
||||||
if original_empty_lines > revised_empty_lines:
|
|
||||||
additional_lines = '\n' * (original_empty_lines - revised_empty_lines)
|
|
||||||
revised = additional_lines + revised
|
|
||||||
elif original_empty_lines < revised_empty_lines:
|
|
||||||
lines = revised.split('\n')
|
|
||||||
revised = '\n'.join(lines[revised_empty_lines - original_empty_lines:])
|
|
||||||
|
|
||||||
original_empty_lines = count_leading_empty_lines(original, reverse=True)
|
|
||||||
revised_empty_lines = count_leading_empty_lines(revised, reverse=True)
|
|
||||||
|
|
||||||
if original_empty_lines > revised_empty_lines:
|
|
||||||
additional_lines = '\n' * (original_empty_lines - revised_empty_lines)
|
|
||||||
revised = revised + additional_lines
|
|
||||||
elif original_empty_lines < revised_empty_lines:
|
|
||||||
lines = revised.split('\n')
|
|
||||||
revised = '\n'.join(lines[:-(revised_empty_lines - original_empty_lines)])
|
|
||||||
|
|
||||||
return revised
|
|
||||||
|
|
||||||
def begin_comment_source_code(self, chatbot=None, history=None):
|
|
||||||
# from toolbox import update_ui_lastest_msg
|
|
||||||
assert self.path is not None
|
|
||||||
assert '.py' in self.path # must be python source code
|
|
||||||
# write_target = self.path + '.revised.py'
|
|
||||||
|
|
||||||
write_content = ""
|
|
||||||
# with open(self.path + '.revised.py', 'w+', encoding='utf8') as f:
|
|
||||||
while True:
|
|
||||||
try:
|
|
||||||
# yield from update_ui_lastest_msg(f"({self.file_basename}) 正在读取下一段代码片段:\n", chatbot=chatbot, history=history, delay=0)
|
|
||||||
next_batch, line_no_start, line_no_end = self.get_next_batch()
|
|
||||||
self.observe_window_update(f"正在处理{self.file_basename} - {line_no_start}/{len(self.full_context)}\n")
|
|
||||||
# yield from update_ui_lastest_msg(f"({self.file_basename}) 处理代码片段:\n\n{next_batch}", chatbot=chatbot, history=history, delay=0)
|
|
||||||
|
|
||||||
hint = None
|
|
||||||
MAX_ATTEMPT = 2
|
|
||||||
for attempt in range(MAX_ATTEMPT):
|
|
||||||
result = self.tag_code(next_batch, hint)
|
|
||||||
try:
|
|
||||||
successful, hint = self.verify_successful(next_batch, result)
|
|
||||||
except Exception as e:
|
|
||||||
logger.error('ignored exception:\n' + str(e))
|
|
||||||
break
|
|
||||||
if successful:
|
|
||||||
break
|
|
||||||
if attempt == MAX_ATTEMPT - 1:
|
|
||||||
# cannot deal with this, give up
|
|
||||||
result = next_batch
|
|
||||||
break
|
|
||||||
|
|
||||||
# f.write(result)
|
|
||||||
write_content += result
|
|
||||||
except StopIteration:
|
|
||||||
next_batch, line_no_start, line_no_end = [], -1, -1
|
|
||||||
return None, write_content
|
|
||||||
|
|
||||||
def verify_successful(self, original, revised):
|
|
||||||
""" Determine whether the revised code contains every line that already exists
|
|
||||||
"""
|
|
||||||
from crazy_functions.ast_fns.comment_remove import remove_python_comments
|
|
||||||
original = remove_python_comments(original)
|
|
||||||
original_lines = original.split('\n')
|
|
||||||
revised_lines = revised.split('\n')
|
|
||||||
|
|
||||||
for l in original_lines:
|
|
||||||
l = l.strip()
|
|
||||||
if '\'' in l or '\"' in l: continue # ast sometimes toggle " to '
|
|
||||||
found = False
|
|
||||||
for lt in revised_lines:
|
|
||||||
if l in lt:
|
|
||||||
found = True
|
|
||||||
break
|
|
||||||
if not found:
|
|
||||||
return False, l
|
|
||||||
return True, None
|
|
||||||
@@ -1,45 +0,0 @@
|
|||||||
<!DOCTYPE html>
|
|
||||||
<html lang="zh-CN">
|
|
||||||
<head>
|
|
||||||
<style>ADVANCED_CSS</style>
|
|
||||||
<meta charset="UTF-8">
|
|
||||||
<title>源文件对比</title>
|
|
||||||
<style>
|
|
||||||
body {
|
|
||||||
font-family: Arial, sans-serif;
|
|
||||||
display: flex;
|
|
||||||
justify-content: center;
|
|
||||||
align-items: center;
|
|
||||||
height: 100vh;
|
|
||||||
margin: 0;
|
|
||||||
}
|
|
||||||
.container {
|
|
||||||
display: flex;
|
|
||||||
width: 95%;
|
|
||||||
height: -webkit-fill-available;
|
|
||||||
}
|
|
||||||
.code-container {
|
|
||||||
flex: 1;
|
|
||||||
margin: 0px;
|
|
||||||
padding: 0px;
|
|
||||||
border: 1px solid #ccc;
|
|
||||||
background-color: #f9f9f9;
|
|
||||||
overflow: auto;
|
|
||||||
}
|
|
||||||
pre {
|
|
||||||
white-space: pre-wrap;
|
|
||||||
word-wrap: break-word;
|
|
||||||
}
|
|
||||||
</style>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
<div class="container">
|
|
||||||
<div class="code-container">
|
|
||||||
REPLACE_CODE_FILE_LEFT
|
|
||||||
</div>
|
|
||||||
<div class="code-container">
|
|
||||||
REPLACE_CODE_FILE_RIGHT
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
</body>
|
|
||||||
</html>
|
|
||||||
@@ -1,5 +1,4 @@
|
|||||||
import threading, time
|
import threading, time
|
||||||
from loguru import logger
|
|
||||||
|
|
||||||
class WatchDog():
|
class WatchDog():
|
||||||
def __init__(self, timeout, bark_fn, interval=3, msg="") -> None:
|
def __init__(self, timeout, bark_fn, interval=3, msg="") -> None:
|
||||||
@@ -14,7 +13,7 @@ class WatchDog():
|
|||||||
while True:
|
while True:
|
||||||
if self.kill_dog: break
|
if self.kill_dog: break
|
||||||
if time.time() - self.last_feed > self.timeout:
|
if time.time() - self.last_feed > self.timeout:
|
||||||
if len(self.msg) > 0: logger.info(self.msg)
|
if len(self.msg) > 0: print(self.msg)
|
||||||
self.bark_fn()
|
self.bark_fn()
|
||||||
break
|
break
|
||||||
time.sleep(self.interval)
|
time.sleep(self.interval)
|
||||||
|
|||||||
@@ -1,54 +0,0 @@
|
|||||||
import token
|
|
||||||
import tokenize
|
|
||||||
import copy
|
|
||||||
import io
|
|
||||||
|
|
||||||
|
|
||||||
def remove_python_comments(input_source: str) -> str:
|
|
||||||
source_flag = copy.copy(input_source)
|
|
||||||
source = io.StringIO(input_source)
|
|
||||||
ls = input_source.split('\n')
|
|
||||||
prev_toktype = token.INDENT
|
|
||||||
readline = source.readline
|
|
||||||
|
|
||||||
def get_char_index(lineno, col):
|
|
||||||
# find the index of the char in the source code
|
|
||||||
if lineno == 1:
|
|
||||||
return len('\n'.join(ls[:(lineno-1)])) + col
|
|
||||||
else:
|
|
||||||
return len('\n'.join(ls[:(lineno-1)])) + col + 1
|
|
||||||
|
|
||||||
def replace_char_between(start_lineno, start_col, end_lineno, end_col, source, replace_char, ls):
|
|
||||||
# replace char between start_lineno, start_col and end_lineno, end_col with replace_char, but keep '\n' and ' '
|
|
||||||
b = get_char_index(start_lineno, start_col)
|
|
||||||
e = get_char_index(end_lineno, end_col)
|
|
||||||
for i in range(b, e):
|
|
||||||
if source[i] == '\n':
|
|
||||||
source = source[:i] + '\n' + source[i+1:]
|
|
||||||
elif source[i] == ' ':
|
|
||||||
source = source[:i] + ' ' + source[i+1:]
|
|
||||||
else:
|
|
||||||
source = source[:i] + replace_char + source[i+1:]
|
|
||||||
return source
|
|
||||||
|
|
||||||
tokgen = tokenize.generate_tokens(readline)
|
|
||||||
for toktype, ttext, (slineno, scol), (elineno, ecol), ltext in tokgen:
|
|
||||||
if toktype == token.STRING and (prev_toktype == token.INDENT):
|
|
||||||
source_flag = replace_char_between(slineno, scol, elineno, ecol, source_flag, ' ', ls)
|
|
||||||
elif toktype == token.STRING and (prev_toktype == token.NEWLINE):
|
|
||||||
source_flag = replace_char_between(slineno, scol, elineno, ecol, source_flag, ' ', ls)
|
|
||||||
elif toktype == tokenize.COMMENT:
|
|
||||||
source_flag = replace_char_between(slineno, scol, elineno, ecol, source_flag, ' ', ls)
|
|
||||||
prev_toktype = toktype
|
|
||||||
return source_flag
|
|
||||||
|
|
||||||
|
|
||||||
# 示例使用
|
|
||||||
if __name__ == "__main__":
|
|
||||||
with open("source.py", "r", encoding="utf-8") as f:
|
|
||||||
source_code = f.read()
|
|
||||||
|
|
||||||
cleaned_code = remove_python_comments(source_code)
|
|
||||||
|
|
||||||
with open("cleaned_source.py", "w", encoding="utf-8") as f:
|
|
||||||
f.write(cleaned_code)
|
|
||||||
141
crazy_functions/chatglm微调工具.py
Normal file
141
crazy_functions/chatglm微调工具.py
Normal file
@@ -0,0 +1,141 @@
|
|||||||
|
from toolbox import CatchException, update_ui, promote_file_to_downloadzone
|
||||||
|
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
|
import datetime, json
|
||||||
|
|
||||||
|
def fetch_items(list_of_items, batch_size):
|
||||||
|
for i in range(0, len(list_of_items), batch_size):
|
||||||
|
yield list_of_items[i:i + batch_size]
|
||||||
|
|
||||||
|
def string_to_options(arguments):
|
||||||
|
import argparse
|
||||||
|
import shlex
|
||||||
|
|
||||||
|
# Create an argparse.ArgumentParser instance
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
|
||||||
|
# Add command-line arguments
|
||||||
|
parser.add_argument("--llm_to_learn", type=str, help="LLM model to learn", default="gpt-3.5-turbo")
|
||||||
|
parser.add_argument("--prompt_prefix", type=str, help="Prompt prefix", default='')
|
||||||
|
parser.add_argument("--system_prompt", type=str, help="System prompt", default='')
|
||||||
|
parser.add_argument("--batch", type=int, help="System prompt", default=50)
|
||||||
|
parser.add_argument("--pre_seq_len", type=int, help="pre_seq_len", default=50)
|
||||||
|
parser.add_argument("--learning_rate", type=float, help="learning_rate", default=2e-2)
|
||||||
|
parser.add_argument("--num_gpus", type=int, help="num_gpus", default=1)
|
||||||
|
parser.add_argument("--json_dataset", type=str, help="json_dataset", default="")
|
||||||
|
parser.add_argument("--ptuning_directory", type=str, help="ptuning_directory", default="")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# Parse the arguments
|
||||||
|
args = parser.parse_args(shlex.split(arguments))
|
||||||
|
|
||||||
|
return args
|
||||||
|
|
||||||
|
@CatchException
|
||||||
|
def 微调数据集生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||||
|
"""
|
||||||
|
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||||
|
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||||
|
plugin_kwargs 插件模型的参数
|
||||||
|
chatbot 聊天显示框的句柄,用于显示给用户
|
||||||
|
history 聊天历史,前情提要
|
||||||
|
system_prompt 给gpt的静默提醒
|
||||||
|
user_request 当前用户的请求信息(IP地址等)
|
||||||
|
"""
|
||||||
|
history = [] # 清空历史,以免输入溢出
|
||||||
|
chatbot.append(("这是什么功能?", "[Local Message] 微调数据集生成"))
|
||||||
|
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||||
|
args = plugin_kwargs.get("advanced_arg", None)
|
||||||
|
if args is None:
|
||||||
|
chatbot.append(("没给定指令", "退出"))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history); return
|
||||||
|
else:
|
||||||
|
arguments = string_to_options(arguments=args)
|
||||||
|
|
||||||
|
dat = []
|
||||||
|
with open(txt, 'r', encoding='utf8') as f:
|
||||||
|
for line in f.readlines():
|
||||||
|
json_dat = json.loads(line)
|
||||||
|
dat.append(json_dat["content"])
|
||||||
|
|
||||||
|
llm_kwargs['llm_model'] = arguments.llm_to_learn
|
||||||
|
for batch in fetch_items(dat, arguments.batch):
|
||||||
|
res = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||||
|
inputs_array=[f"{arguments.prompt_prefix}\n\n{b}" for b in (batch)],
|
||||||
|
inputs_show_user_array=[f"Show Nothing" for _ in (batch)],
|
||||||
|
llm_kwargs=llm_kwargs,
|
||||||
|
chatbot=chatbot,
|
||||||
|
history_array=[[] for _ in (batch)],
|
||||||
|
sys_prompt_array=[arguments.system_prompt for _ in (batch)],
|
||||||
|
max_workers=10 # OpenAI所允许的最大并行过载
|
||||||
|
)
|
||||||
|
|
||||||
|
with open(txt+'.generated.json', 'a+', encoding='utf8') as f:
|
||||||
|
for b, r in zip(batch, res[1::2]):
|
||||||
|
f.write(json.dumps({"content":b, "summary":r}, ensure_ascii=False)+'\n')
|
||||||
|
|
||||||
|
promote_file_to_downloadzone(txt+'.generated.json', rename_file='generated.json', chatbot=chatbot)
|
||||||
|
return
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@CatchException
|
||||||
|
def 启动微调(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||||
|
"""
|
||||||
|
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||||
|
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||||
|
plugin_kwargs 插件模型的参数
|
||||||
|
chatbot 聊天显示框的句柄,用于显示给用户
|
||||||
|
history 聊天历史,前情提要
|
||||||
|
system_prompt 给gpt的静默提醒
|
||||||
|
user_request 当前用户的请求信息(IP地址等)
|
||||||
|
"""
|
||||||
|
import subprocess
|
||||||
|
history = [] # 清空历史,以免输入溢出
|
||||||
|
chatbot.append(("这是什么功能?", "[Local Message] 微调数据集生成"))
|
||||||
|
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||||
|
args = plugin_kwargs.get("advanced_arg", None)
|
||||||
|
if args is None:
|
||||||
|
chatbot.append(("没给定指令", "退出"))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history); return
|
||||||
|
else:
|
||||||
|
arguments = string_to_options(arguments=args)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
pre_seq_len = arguments.pre_seq_len # 128
|
||||||
|
learning_rate = arguments.learning_rate # 2e-2
|
||||||
|
num_gpus = arguments.num_gpus # 1
|
||||||
|
json_dataset = arguments.json_dataset # 't_code.json'
|
||||||
|
ptuning_directory = arguments.ptuning_directory # '/home/hmp/ChatGLM2-6B/ptuning'
|
||||||
|
|
||||||
|
command = f"torchrun --standalone --nnodes=1 --nproc-per-node={num_gpus} main.py \
|
||||||
|
--do_train \
|
||||||
|
--train_file AdvertiseGen/{json_dataset} \
|
||||||
|
--validation_file AdvertiseGen/{json_dataset} \
|
||||||
|
--preprocessing_num_workers 20 \
|
||||||
|
--prompt_column content \
|
||||||
|
--response_column summary \
|
||||||
|
--overwrite_cache \
|
||||||
|
--model_name_or_path THUDM/chatglm2-6b \
|
||||||
|
--output_dir output/clothgen-chatglm2-6b-pt-{pre_seq_len}-{learning_rate} \
|
||||||
|
--overwrite_output_dir \
|
||||||
|
--max_source_length 256 \
|
||||||
|
--max_target_length 256 \
|
||||||
|
--per_device_train_batch_size 1 \
|
||||||
|
--per_device_eval_batch_size 1 \
|
||||||
|
--gradient_accumulation_steps 16 \
|
||||||
|
--predict_with_generate \
|
||||||
|
--max_steps 100 \
|
||||||
|
--logging_steps 10 \
|
||||||
|
--save_steps 20 \
|
||||||
|
--learning_rate {learning_rate} \
|
||||||
|
--pre_seq_len {pre_seq_len} \
|
||||||
|
--quantization_bit 4"
|
||||||
|
|
||||||
|
process = subprocess.Popen(command, shell=True, cwd=ptuning_directory)
|
||||||
|
try:
|
||||||
|
process.communicate(timeout=3600*24)
|
||||||
|
except subprocess.TimeoutExpired:
|
||||||
|
process.kill()
|
||||||
|
return
|
||||||
@@ -1,39 +1,25 @@
|
|||||||
import os
|
|
||||||
import threading
|
|
||||||
from loguru import logger
|
|
||||||
from shared_utils.char_visual_effect import scolling_visual_effect
|
|
||||||
from toolbox import update_ui, get_conf, trimmed_format_exc, get_max_token, Singleton
|
from toolbox import update_ui, get_conf, trimmed_format_exc, get_max_token, Singleton
|
||||||
|
import threading
|
||||||
|
import os
|
||||||
|
import logging
|
||||||
|
|
||||||
def input_clipping(inputs, history, max_token_limit, return_clip_flags=False):
|
def input_clipping(inputs, history, max_token_limit):
|
||||||
"""
|
|
||||||
当输入文本 + 历史文本超出最大限制时,采取措施丢弃一部分文本。
|
|
||||||
输入:
|
|
||||||
- inputs 本次请求
|
|
||||||
- history 历史上下文
|
|
||||||
- max_token_limit 最大token限制
|
|
||||||
输出:
|
|
||||||
- inputs 本次请求(经过clip)
|
|
||||||
- history 历史上下文(经过clip)
|
|
||||||
"""
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from request_llms.bridge_all import model_info
|
from request_llms.bridge_all import model_info
|
||||||
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
||||||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||||||
|
|
||||||
|
|
||||||
mode = 'input-and-history'
|
mode = 'input-and-history'
|
||||||
# 当 输入部分的token占比 小于 全文的一半时,只裁剪历史
|
# 当 输入部分的token占比 小于 全文的一半时,只裁剪历史
|
||||||
input_token_num = get_token_num(inputs)
|
input_token_num = get_token_num(inputs)
|
||||||
original_input_len = len(inputs)
|
|
||||||
if input_token_num < max_token_limit//2:
|
if input_token_num < max_token_limit//2:
|
||||||
mode = 'only-history'
|
mode = 'only-history'
|
||||||
max_token_limit = max_token_limit - input_token_num
|
max_token_limit = max_token_limit - input_token_num
|
||||||
|
|
||||||
everything = [inputs] if mode == 'input-and-history' else ['']
|
everything = [inputs] if mode == 'input-and-history' else ['']
|
||||||
everything.extend(history)
|
everything.extend(history)
|
||||||
full_token_num = n_token = get_token_num('\n'.join(everything))
|
n_token = get_token_num('\n'.join(everything))
|
||||||
everything_token = [get_token_num(e) for e in everything]
|
everything_token = [get_token_num(e) for e in everything]
|
||||||
everything_token_num = sum(everything_token)
|
|
||||||
delta = max(everything_token) // 16 # 截断时的颗粒度
|
delta = max(everything_token) // 16 # 截断时的颗粒度
|
||||||
|
|
||||||
while n_token > max_token_limit:
|
while n_token > max_token_limit:
|
||||||
@@ -46,24 +32,10 @@ def input_clipping(inputs, history, max_token_limit, return_clip_flags=False):
|
|||||||
|
|
||||||
if mode == 'input-and-history':
|
if mode == 'input-and-history':
|
||||||
inputs = everything[0]
|
inputs = everything[0]
|
||||||
full_token_num = everything_token_num
|
|
||||||
else:
|
else:
|
||||||
full_token_num = everything_token_num + input_token_num
|
pass
|
||||||
|
|
||||||
history = everything[1:]
|
history = everything[1:]
|
||||||
|
|
||||||
flags = {
|
|
||||||
"mode": mode,
|
|
||||||
"original_input_token_num": input_token_num,
|
|
||||||
"original_full_token_num": full_token_num,
|
|
||||||
"original_input_len": original_input_len,
|
|
||||||
"clipped_input_len": len(inputs),
|
|
||||||
}
|
|
||||||
|
|
||||||
if not return_clip_flags:
|
|
||||||
return inputs, history
|
return inputs, history
|
||||||
else:
|
|
||||||
return inputs, history, flags
|
|
||||||
|
|
||||||
def request_gpt_model_in_new_thread_with_ui_alive(
|
def request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs, inputs_show_user, llm_kwargs,
|
inputs, inputs_show_user, llm_kwargs,
|
||||||
@@ -133,7 +105,7 @@ def request_gpt_model_in_new_thread_with_ui_alive(
|
|||||||
except:
|
except:
|
||||||
# 【第三种情况】:其他错误:重试几次
|
# 【第三种情况】:其他错误:重试几次
|
||||||
tb_str = '```\n' + trimmed_format_exc() + '```'
|
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||||
logger.error(tb_str)
|
print(tb_str)
|
||||||
mutable[0] += f"[Local Message] 警告,在执行过程中遭遇问题, Traceback:\n\n{tb_str}\n\n"
|
mutable[0] += f"[Local Message] 警告,在执行过程中遭遇问题, Traceback:\n\n{tb_str}\n\n"
|
||||||
if retry_op > 0:
|
if retry_op > 0:
|
||||||
retry_op -= 1
|
retry_op -= 1
|
||||||
@@ -163,31 +135,18 @@ def request_gpt_model_in_new_thread_with_ui_alive(
|
|||||||
yield from update_ui(chatbot=chatbot, history=[]) # 如果最后成功了,则删除报错信息
|
yield from update_ui(chatbot=chatbot, history=[]) # 如果最后成功了,则删除报错信息
|
||||||
return final_result
|
return final_result
|
||||||
|
|
||||||
def can_multi_process(llm) -> bool:
|
def can_multi_process(llm):
|
||||||
from request_llms.bridge_all import model_info
|
|
||||||
|
|
||||||
def default_condition(llm) -> bool:
|
|
||||||
# legacy condition
|
|
||||||
if llm.startswith('gpt-'): return True
|
if llm.startswith('gpt-'): return True
|
||||||
if llm.startswith('chatgpt-'): return True
|
|
||||||
if llm.startswith('api2d-'): return True
|
if llm.startswith('api2d-'): return True
|
||||||
if llm.startswith('azure-'): return True
|
if llm.startswith('azure-'): return True
|
||||||
if llm.startswith('spark'): return True
|
if llm.startswith('spark'): return True
|
||||||
if llm.startswith('zhipuai') or llm.startswith('glm-'): return True
|
if llm.startswith('zhipuai') or llm.startswith('glm-'): return True
|
||||||
return False
|
return False
|
||||||
|
|
||||||
if llm in model_info:
|
|
||||||
if 'can_multi_thread' in model_info[llm]:
|
|
||||||
return model_info[llm]['can_multi_thread']
|
|
||||||
else:
|
|
||||||
return default_condition(llm)
|
|
||||||
else:
|
|
||||||
return default_condition(llm)
|
|
||||||
|
|
||||||
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||||
inputs_array, inputs_show_user_array, llm_kwargs,
|
inputs_array, inputs_show_user_array, llm_kwargs,
|
||||||
chatbot, history_array, sys_prompt_array,
|
chatbot, history_array, sys_prompt_array,
|
||||||
refresh_interval=0.2, max_workers=-1, scroller_max_len=75,
|
refresh_interval=0.2, max_workers=-1, scroller_max_len=30,
|
||||||
handle_token_exceed=True, show_user_at_complete=False,
|
handle_token_exceed=True, show_user_at_complete=False,
|
||||||
retry_times_at_unknown_error=2,
|
retry_times_at_unknown_error=2,
|
||||||
):
|
):
|
||||||
@@ -284,7 +243,7 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
|||||||
# 【第三种情况】:其他错误
|
# 【第三种情况】:其他错误
|
||||||
if detect_timeout(): raise RuntimeError("检测到程序终止。")
|
if detect_timeout(): raise RuntimeError("检测到程序终止。")
|
||||||
tb_str = '```\n' + trimmed_format_exc() + '```'
|
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||||
logger.error(tb_str)
|
print(tb_str)
|
||||||
gpt_say += f"[Local Message] 警告,线程{index}在执行过程中遭遇问题, Traceback:\n\n{tb_str}\n\n"
|
gpt_say += f"[Local Message] 警告,线程{index}在执行过程中遭遇问题, Traceback:\n\n{tb_str}\n\n"
|
||||||
if len(mutable[index][0]) > 0: gpt_say += "此线程失败前收到的回答:\n\n" + mutable[index][0]
|
if len(mutable[index][0]) > 0: gpt_say += "此线程失败前收到的回答:\n\n" + mutable[index][0]
|
||||||
if retry_op > 0:
|
if retry_op > 0:
|
||||||
@@ -312,8 +271,6 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
|||||||
futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip(
|
futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip(
|
||||||
range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)]
|
range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)]
|
||||||
cnt = 0
|
cnt = 0
|
||||||
|
|
||||||
|
|
||||||
while True:
|
while True:
|
||||||
# yield一次以刷新前端页面
|
# yield一次以刷新前端页面
|
||||||
time.sleep(refresh_interval)
|
time.sleep(refresh_interval)
|
||||||
@@ -326,7 +283,8 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
|||||||
mutable[thread_index][1] = time.time()
|
mutable[thread_index][1] = time.time()
|
||||||
# 在前端打印些好玩的东西
|
# 在前端打印些好玩的东西
|
||||||
for thread_index, _ in enumerate(worker_done):
|
for thread_index, _ in enumerate(worker_done):
|
||||||
print_something_really_funny = f"[ ...`{scolling_visual_effect(mutable[thread_index][0], scroller_max_len)}`... ]"
|
print_something_really_funny = "[ ...`"+mutable[thread_index][0][-scroller_max_len:].\
|
||||||
|
replace('\n', '').replace('`', '.').replace(' ', '.').replace('<br/>', '.....').replace('$', '.')+"`... ]"
|
||||||
observe_win.append(print_something_really_funny)
|
observe_win.append(print_something_really_funny)
|
||||||
# 在前端打印些好玩的东西
|
# 在前端打印些好玩的东西
|
||||||
stat_str = ''.join([f'`{mutable[thread_index][2]}`: {obs}\n\n'
|
stat_str = ''.join([f'`{mutable[thread_index][2]}`: {obs}\n\n'
|
||||||
@@ -379,7 +337,7 @@ def read_and_clean_pdf_text(fp):
|
|||||||
import fitz, copy
|
import fitz, copy
|
||||||
import re
|
import re
|
||||||
import numpy as np
|
import numpy as np
|
||||||
# from shared_utils.colorful import print亮黄, print亮绿
|
from colorful import print亮黄, print亮绿
|
||||||
fc = 0 # Index 0 文本
|
fc = 0 # Index 0 文本
|
||||||
fs = 1 # Index 1 字体
|
fs = 1 # Index 1 字体
|
||||||
fb = 2 # Index 2 框框
|
fb = 2 # Index 2 框框
|
||||||
@@ -596,15 +554,15 @@ class nougat_interface():
|
|||||||
def nougat_with_timeout(self, command, cwd, timeout=3600):
|
def nougat_with_timeout(self, command, cwd, timeout=3600):
|
||||||
import subprocess
|
import subprocess
|
||||||
from toolbox import ProxyNetworkActivate
|
from toolbox import ProxyNetworkActivate
|
||||||
logger.info(f'正在执行命令 {command}')
|
logging.info(f'正在执行命令 {command}')
|
||||||
with ProxyNetworkActivate("Nougat_Download"):
|
with ProxyNetworkActivate("Nougat_Download"):
|
||||||
process = subprocess.Popen(command, shell=False, cwd=cwd, env=os.environ)
|
process = subprocess.Popen(command, shell=True, cwd=cwd, env=os.environ)
|
||||||
try:
|
try:
|
||||||
stdout, stderr = process.communicate(timeout=timeout)
|
stdout, stderr = process.communicate(timeout=timeout)
|
||||||
except subprocess.TimeoutExpired:
|
except subprocess.TimeoutExpired:
|
||||||
process.kill()
|
process.kill()
|
||||||
stdout, stderr = process.communicate()
|
stdout, stderr = process.communicate()
|
||||||
logger.error("Process timed out!")
|
print("Process timed out!")
|
||||||
return False
|
return False
|
||||||
return True
|
return True
|
||||||
|
|
||||||
@@ -622,8 +580,7 @@ class nougat_interface():
|
|||||||
|
|
||||||
yield from update_ui_lastest_msg("正在解析论文, 请稍候。进度:正在加载NOUGAT... (提示:首次运行需要花费较长时间下载NOUGAT参数)",
|
yield from update_ui_lastest_msg("正在解析论文, 请稍候。进度:正在加载NOUGAT... (提示:首次运行需要花费较长时间下载NOUGAT参数)",
|
||||||
chatbot=chatbot, history=history, delay=0)
|
chatbot=chatbot, history=history, delay=0)
|
||||||
command = ['nougat', '--out', os.path.abspath(dst), os.path.abspath(fp)]
|
self.nougat_with_timeout(f'nougat --out "{os.path.abspath(dst)}" "{os.path.abspath(fp)}"', os.getcwd(), timeout=3600)
|
||||||
self.nougat_with_timeout(command, cwd=os.getcwd(), timeout=3600)
|
|
||||||
res = glob.glob(os.path.join(dst,'*.mmd'))
|
res = glob.glob(os.path.join(dst,'*.mmd'))
|
||||||
if len(res) == 0:
|
if len(res) == 0:
|
||||||
self.threadLock.release()
|
self.threadLock.release()
|
||||||
|
|||||||
@@ -1,9 +1,8 @@
|
|||||||
import os
|
import os
|
||||||
from textwrap import indent
|
from textwrap import indent
|
||||||
from loguru import logger
|
|
||||||
|
|
||||||
class FileNode:
|
class FileNode:
|
||||||
def __init__(self, name, build_manifest=False):
|
def __init__(self, name):
|
||||||
self.name = name
|
self.name = name
|
||||||
self.children = []
|
self.children = []
|
||||||
self.is_leaf = False
|
self.is_leaf = False
|
||||||
@@ -11,8 +10,6 @@ class FileNode:
|
|||||||
self.parenting_ship = []
|
self.parenting_ship = []
|
||||||
self.comment = ""
|
self.comment = ""
|
||||||
self.comment_maxlen_show = 50
|
self.comment_maxlen_show = 50
|
||||||
self.build_manifest = build_manifest
|
|
||||||
self.manifest = {}
|
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def add_linebreaks_at_spaces(string, interval=10):
|
def add_linebreaks_at_spaces(string, interval=10):
|
||||||
@@ -32,7 +29,6 @@ class FileNode:
|
|||||||
level = 1
|
level = 1
|
||||||
if directory_names == "":
|
if directory_names == "":
|
||||||
new_node = FileNode(file_name)
|
new_node = FileNode(file_name)
|
||||||
self.manifest[file_path] = new_node
|
|
||||||
current_node.children.append(new_node)
|
current_node.children.append(new_node)
|
||||||
new_node.is_leaf = True
|
new_node.is_leaf = True
|
||||||
new_node.comment = self.sanitize_comment(file_comment)
|
new_node.comment = self.sanitize_comment(file_comment)
|
||||||
@@ -54,14 +50,13 @@ class FileNode:
|
|||||||
new_node.level = level - 1
|
new_node.level = level - 1
|
||||||
current_node = new_node
|
current_node = new_node
|
||||||
term = FileNode(file_name)
|
term = FileNode(file_name)
|
||||||
self.manifest[file_path] = term
|
|
||||||
term.level = level
|
term.level = level
|
||||||
term.comment = self.sanitize_comment(file_comment)
|
term.comment = self.sanitize_comment(file_comment)
|
||||||
term.is_leaf = True
|
term.is_leaf = True
|
||||||
current_node.children.append(term)
|
current_node.children.append(term)
|
||||||
|
|
||||||
def print_files_recursively(self, level=0, code="R0"):
|
def print_files_recursively(self, level=0, code="R0"):
|
||||||
logger.info(' '*level + self.name + ' ' + str(self.is_leaf) + ' ' + str(self.level))
|
print(' '*level + self.name + ' ' + str(self.is_leaf) + ' ' + str(self.level))
|
||||||
for j, child in enumerate(self.children):
|
for j, child in enumerate(self.children):
|
||||||
child.print_files_recursively(level=level+1, code=code+str(j))
|
child.print_files_recursively(level=level+1, code=code+str(j))
|
||||||
self.parenting_ship.extend(child.parenting_ship)
|
self.parenting_ship.extend(child.parenting_ship)
|
||||||
@@ -124,4 +119,4 @@ if __name__ == "__main__":
|
|||||||
"用于加载和分割文件中的文本的通用文件加载器用于加载和分割文件中的文本的通用文件加载器用于加载和分割文件中的文本的通用文件加载器",
|
"用于加载和分割文件中的文本的通用文件加载器用于加载和分割文件中的文本的通用文件加载器用于加载和分割文件中的文本的通用文件加载器",
|
||||||
"包含了用于构建和管理向量数据库的函数和类包含了用于构建和管理向量数据库的函数和类包含了用于构建和管理向量数据库的函数和类",
|
"包含了用于构建和管理向量数据库的函数和类包含了用于构建和管理向量数据库的函数和类包含了用于构建和管理向量数据库的函数和类",
|
||||||
]
|
]
|
||||||
logger.info(build_file_tree_mermaid_diagram(file_manifest, file_comments, "项目文件树"))
|
print(build_file_tree_mermaid_diagram(file_manifest, file_comments, "项目文件树"))
|
||||||
@@ -92,7 +92,7 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
|
|||||||
|
|
||||||
def generate_story_image(self, story_paragraph):
|
def generate_story_image(self, story_paragraph):
|
||||||
try:
|
try:
|
||||||
from crazy_functions.Image_Generate import gen_image
|
from crazy_functions.图片生成 import gen_image
|
||||||
prompt_ = predict_no_ui_long_connection(inputs=story_paragraph, llm_kwargs=self.llm_kwargs, history=[], sys_prompt='你需要根据用户给出的小说段落,进行简短的环境描写。要求:80字以内。')
|
prompt_ = predict_no_ui_long_connection(inputs=story_paragraph, llm_kwargs=self.llm_kwargs, history=[], sys_prompt='你需要根据用户给出的小说段落,进行简短的环境描写。要求:80字以内。')
|
||||||
image_url, image_path = gen_image(self.llm_kwargs, prompt_, '512x512', model="dall-e-2", quality='standard', style='natural')
|
image_url, image_path = gen_image(self.llm_kwargs, prompt_, '512x512', model="dall-e-2", quality='standard', style='natural')
|
||||||
return f'<br/><div align="center"><img src="file={image_path}"></div>'
|
return f'<br/><div align="center"><img src="file={image_path}"></div>'
|
||||||
|
|||||||
@@ -24,8 +24,8 @@ class Actor(BaseModel):
|
|||||||
film_names: List[str] = Field(description="list of names of films they starred in")
|
film_names: List[str] = Field(description="list of names of films they starred in")
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import json, re
|
import json, re, logging
|
||||||
from loguru import logger as logging
|
|
||||||
|
|
||||||
PYDANTIC_FORMAT_INSTRUCTIONS = """The output should be formatted as a JSON instance that conforms to the JSON schema below.
|
PYDANTIC_FORMAT_INSTRUCTIONS = """The output should be formatted as a JSON instance that conforms to the JSON schema below.
|
||||||
|
|
||||||
@@ -62,8 +62,8 @@ class GptJsonIO():
|
|||||||
if "type" in reduced_schema:
|
if "type" in reduced_schema:
|
||||||
del reduced_schema["type"]
|
del reduced_schema["type"]
|
||||||
# Ensure json in context is well-formed with double quotes.
|
# Ensure json in context is well-formed with double quotes.
|
||||||
schema_str = json.dumps(reduced_schema)
|
|
||||||
if self.example_instruction:
|
if self.example_instruction:
|
||||||
|
schema_str = json.dumps(reduced_schema)
|
||||||
return PYDANTIC_FORMAT_INSTRUCTIONS.format(schema=schema_str)
|
return PYDANTIC_FORMAT_INSTRUCTIONS.format(schema=schema_str)
|
||||||
else:
|
else:
|
||||||
return PYDANTIC_FORMAT_INSTRUCTIONS_SIMPLE.format(schema=schema_str)
|
return PYDANTIC_FORMAT_INSTRUCTIONS_SIMPLE.format(schema=schema_str)
|
||||||
|
|||||||
@@ -1,26 +0,0 @@
|
|||||||
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
|
|
||||||
|
|
||||||
def structure_output(txt, prompt, err_msg, run_gpt_fn, pydantic_cls):
|
|
||||||
gpt_json_io = GptJsonIO(pydantic_cls)
|
|
||||||
analyze_res = run_gpt_fn(
|
|
||||||
txt,
|
|
||||||
sys_prompt=prompt + gpt_json_io.format_instructions
|
|
||||||
)
|
|
||||||
try:
|
|
||||||
friend = gpt_json_io.generate_output_auto_repair(analyze_res, run_gpt_fn)
|
|
||||||
except JsonStringError as e:
|
|
||||||
return None, err_msg
|
|
||||||
|
|
||||||
err_msg = ""
|
|
||||||
return friend, err_msg
|
|
||||||
|
|
||||||
|
|
||||||
def select_tool(prompt, run_gpt_fn, pydantic_cls):
|
|
||||||
pydantic_cls_instance, err_msg = structure_output(
|
|
||||||
txt=prompt,
|
|
||||||
prompt="根据提示, 分析应该调用哪个工具函数\n\n",
|
|
||||||
err_msg=f"不能理解该联系人",
|
|
||||||
run_gpt_fn=run_gpt_fn,
|
|
||||||
pydantic_cls=pydantic_cls
|
|
||||||
)
|
|
||||||
return pydantic_cls_instance, err_msg
|
|
||||||
@@ -1,17 +1,14 @@
|
|||||||
import os
|
from toolbox import update_ui, update_ui_lastest_msg, get_log_folder
|
||||||
import re
|
from toolbox import get_conf, objdump, objload, promote_file_to_downloadzone
|
||||||
import shutil
|
from .latex_toolbox import PRESERVE, TRANSFORM
|
||||||
import numpy as np
|
from .latex_toolbox import set_forbidden_text, set_forbidden_text_begin_end, set_forbidden_text_careful_brace
|
||||||
from loguru import logger
|
from .latex_toolbox import reverse_forbidden_text_careful_brace, reverse_forbidden_text, convert_to_linklist, post_process
|
||||||
from toolbox import update_ui, update_ui_lastest_msg, get_log_folder, gen_time_str
|
from .latex_toolbox import fix_content, find_main_tex_file, merge_tex_files, compile_latex_with_timeout
|
||||||
from toolbox import get_conf, promote_file_to_downloadzone
|
from .latex_toolbox import find_title_and_abs
|
||||||
from crazy_functions.latex_fns.latex_toolbox import PRESERVE, TRANSFORM
|
|
||||||
from crazy_functions.latex_fns.latex_toolbox import set_forbidden_text, set_forbidden_text_begin_end, set_forbidden_text_careful_brace
|
|
||||||
from crazy_functions.latex_fns.latex_toolbox import reverse_forbidden_text_careful_brace, reverse_forbidden_text, convert_to_linklist, post_process
|
|
||||||
from crazy_functions.latex_fns.latex_toolbox import fix_content, find_main_tex_file, merge_tex_files, compile_latex_with_timeout
|
|
||||||
from crazy_functions.latex_fns.latex_toolbox import find_title_and_abs
|
|
||||||
from crazy_functions.latex_fns.latex_pickle_io import objdump, objload
|
|
||||||
|
|
||||||
|
import os, shutil
|
||||||
|
import re
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
pj = os.path.join
|
pj = os.path.join
|
||||||
|
|
||||||
@@ -300,8 +297,7 @@ def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin
|
|||||||
write_html(pfg.sp_file_contents, pfg.sp_file_result, chatbot=chatbot, project_folder=project_folder)
|
write_html(pfg.sp_file_contents, pfg.sp_file_result, chatbot=chatbot, project_folder=project_folder)
|
||||||
|
|
||||||
# <-------- 写出文件 ---------->
|
# <-------- 写出文件 ---------->
|
||||||
model_name = llm_kwargs['llm_model'].replace('_', '\\_') # 替换LLM模型名称中的下划线为转义字符
|
msg = f"当前大语言模型: {llm_kwargs['llm_model']},当前语言模型温度设定: {llm_kwargs['temperature']}。"
|
||||||
msg = f"当前大语言模型: {model_name},当前语言模型温度设定: {llm_kwargs['temperature']}。"
|
|
||||||
final_tex = lps.merge_result(pfg.file_result, mode, msg)
|
final_tex = lps.merge_result(pfg.file_result, mode, msg)
|
||||||
objdump((lps, pfg.file_result, mode, msg), file=pj(project_folder,'merge_result.pkl'))
|
objdump((lps, pfg.file_result, mode, msg), file=pj(project_folder,'merge_result.pkl'))
|
||||||
|
|
||||||
@@ -326,7 +322,7 @@ def remove_buggy_lines(file_path, log_path, tex_name, tex_name_pure, n_fix, work
|
|||||||
buggy_lines = [int(l) for l in buggy_lines]
|
buggy_lines = [int(l) for l in buggy_lines]
|
||||||
buggy_lines = sorted(buggy_lines)
|
buggy_lines = sorted(buggy_lines)
|
||||||
buggy_line = buggy_lines[0]-1
|
buggy_line = buggy_lines[0]-1
|
||||||
logger.warning("reversing tex line that has errors", buggy_line)
|
print("reversing tex line that has errors", buggy_line)
|
||||||
|
|
||||||
# 重组,逆转出错的段落
|
# 重组,逆转出错的段落
|
||||||
if buggy_line not in fixed_line:
|
if buggy_line not in fixed_line:
|
||||||
@@ -340,7 +336,7 @@ def remove_buggy_lines(file_path, log_path, tex_name, tex_name_pure, n_fix, work
|
|||||||
|
|
||||||
return True, f"{tex_name_pure}_fix_{n_fix}", buggy_lines
|
return True, f"{tex_name_pure}_fix_{n_fix}", buggy_lines
|
||||||
except:
|
except:
|
||||||
logger.error("Fatal error occurred, but we cannot identify error, please download zip, read latex log, and compile manually.")
|
print("Fatal error occurred, but we cannot identify error, please download zip, read latex log, and compile manually.")
|
||||||
return False, -1, [-1]
|
return False, -1, [-1]
|
||||||
|
|
||||||
|
|
||||||
@@ -352,41 +348,6 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
|||||||
chatbot.append([f"正在编译PDF文档", f'编译已经开始。当前工作路径为{work_folder},如果程序停顿5分钟以上,请直接去该路径下取回翻译结果,或者重启之后再度尝试 ...']); yield from update_ui(chatbot=chatbot, history=history)
|
chatbot.append([f"正在编译PDF文档", f'编译已经开始。当前工作路径为{work_folder},如果程序停顿5分钟以上,请直接去该路径下取回翻译结果,或者重启之后再度尝试 ...']); yield from update_ui(chatbot=chatbot, history=history)
|
||||||
chatbot.append([f"正在编译PDF文档", '...']); yield from update_ui(chatbot=chatbot, history=history); time.sleep(1); chatbot[-1] = list(chatbot[-1]) # 刷新界面
|
chatbot.append([f"正在编译PDF文档", '...']); yield from update_ui(chatbot=chatbot, history=history); time.sleep(1); chatbot[-1] = list(chatbot[-1]) # 刷新界面
|
||||||
yield from update_ui_lastest_msg('编译已经开始...', chatbot, history) # 刷新Gradio前端界面
|
yield from update_ui_lastest_msg('编译已经开始...', chatbot, history) # 刷新Gradio前端界面
|
||||||
# 检查是否需要使用xelatex
|
|
||||||
def check_if_need_xelatex(tex_path):
|
|
||||||
try:
|
|
||||||
with open(tex_path, 'r', encoding='utf-8', errors='replace') as f:
|
|
||||||
content = f.read(5000)
|
|
||||||
# 检查是否有使用xelatex的宏包
|
|
||||||
need_xelatex = any(
|
|
||||||
pkg in content
|
|
||||||
for pkg in ['fontspec', 'xeCJK', 'xetex', 'unicode-math', 'xltxtra', 'xunicode']
|
|
||||||
)
|
|
||||||
if need_xelatex:
|
|
||||||
logger.info(f"检测到宏包需要xelatex编译, 切换至xelatex编译")
|
|
||||||
else:
|
|
||||||
logger.info(f"未检测到宏包需要xelatex编译, 使用pdflatex编译")
|
|
||||||
return need_xelatex
|
|
||||||
except Exception:
|
|
||||||
return False
|
|
||||||
|
|
||||||
# 根据编译器类型返回编译命令
|
|
||||||
def get_compile_command(compiler, filename):
|
|
||||||
compile_command = f'{compiler} -interaction=batchmode -file-line-error {filename}.tex'
|
|
||||||
logger.info('Latex 编译指令: ' + compile_command)
|
|
||||||
return compile_command
|
|
||||||
|
|
||||||
# 确定使用的编译器
|
|
||||||
compiler = 'pdflatex'
|
|
||||||
if check_if_need_xelatex(pj(work_folder_modified, f'{main_file_modified}.tex')):
|
|
||||||
logger.info("检测到宏包需要xelatex编译,切换至xelatex编译")
|
|
||||||
# Check if xelatex is installed
|
|
||||||
try:
|
|
||||||
import subprocess
|
|
||||||
subprocess.run(['xelatex', '--version'], capture_output=True, check=True)
|
|
||||||
compiler = 'xelatex'
|
|
||||||
except (subprocess.CalledProcessError, FileNotFoundError):
|
|
||||||
raise RuntimeError("检测到需要使用xelatex编译,但系统中未安装xelatex。请先安装texlive或其他提供xelatex的LaTeX发行版。")
|
|
||||||
|
|
||||||
while True:
|
while True:
|
||||||
import os
|
import os
|
||||||
@@ -397,10 +358,10 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
|||||||
|
|
||||||
# https://stackoverflow.com/questions/738755/dont-make-me-manually-abort-a-latex-compile-when-theres-an-error
|
# https://stackoverflow.com/questions/738755/dont-make-me-manually-abort-a-latex-compile-when-theres-an-error
|
||||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译原始PDF ...', chatbot, history) # 刷新Gradio前端界面
|
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译原始PDF ...', chatbot, history) # 刷新Gradio前端界面
|
||||||
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_original), work_folder_original)
|
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex', work_folder_original)
|
||||||
|
|
||||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译转化后的PDF ...', chatbot, history) # 刷新Gradio前端界面
|
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译转化后的PDF ...', chatbot, history) # 刷新Gradio前端界面
|
||||||
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_modified), work_folder_modified)
|
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex', work_folder_modified)
|
||||||
|
|
||||||
if ok and os.path.exists(pj(work_folder_modified, f'{main_file_modified}.pdf')):
|
if ok and os.path.exists(pj(work_folder_modified, f'{main_file_modified}.pdf')):
|
||||||
# 只有第二步成功,才能继续下面的步骤
|
# 只有第二步成功,才能继续下面的步骤
|
||||||
@@ -411,21 +372,21 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
|||||||
ok = compile_latex_with_timeout(f'bibtex {main_file_modified}.aux', work_folder_modified)
|
ok = compile_latex_with_timeout(f'bibtex {main_file_modified}.aux', work_folder_modified)
|
||||||
|
|
||||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译文献交叉引用 ...', chatbot, history) # 刷新Gradio前端界面
|
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译文献交叉引用 ...', chatbot, history) # 刷新Gradio前端界面
|
||||||
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_original), work_folder_original)
|
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex', work_folder_original)
|
||||||
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_modified), work_folder_modified)
|
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex', work_folder_modified)
|
||||||
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_original), work_folder_original)
|
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex', work_folder_original)
|
||||||
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_modified), work_folder_modified)
|
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex', work_folder_modified)
|
||||||
|
|
||||||
if mode!='translate_zh':
|
if mode!='translate_zh':
|
||||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 使用latexdiff生成论文转化前后对比 ...', chatbot, history) # 刷新Gradio前端界面
|
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 使用latexdiff生成论文转化前后对比 ...', chatbot, history) # 刷新Gradio前端界面
|
||||||
logger.info( f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex')
|
print( f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex')
|
||||||
ok = compile_latex_with_timeout(f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex', os.getcwd())
|
ok = compile_latex_with_timeout(f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex', os.getcwd())
|
||||||
|
|
||||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 正在编译对比PDF ...', chatbot, history) # 刷新Gradio前端界面
|
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 正在编译对比PDF ...', chatbot, history) # 刷新Gradio前端界面
|
||||||
ok = compile_latex_with_timeout(get_compile_command(compiler, 'merge_diff'), work_folder)
|
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
|
||||||
ok = compile_latex_with_timeout(f'bibtex merge_diff.aux', work_folder)
|
ok = compile_latex_with_timeout(f'bibtex merge_diff.aux', work_folder)
|
||||||
ok = compile_latex_with_timeout(get_compile_command(compiler, 'merge_diff'), work_folder)
|
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
|
||||||
ok = compile_latex_with_timeout(get_compile_command(compiler, 'merge_diff'), work_folder)
|
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
|
||||||
|
|
||||||
# <---------- 检查结果 ----------->
|
# <---------- 检查结果 ----------->
|
||||||
results_ = ""
|
results_ = ""
|
||||||
@@ -457,7 +418,7 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
|||||||
shutil.copyfile(concat_pdf, pj(work_folder, '..', 'translation', 'comparison.pdf'))
|
shutil.copyfile(concat_pdf, pj(work_folder, '..', 'translation', 'comparison.pdf'))
|
||||||
promote_file_to_downloadzone(concat_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
|
promote_file_to_downloadzone(concat_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(e)
|
print(e)
|
||||||
pass
|
pass
|
||||||
return True # 成功啦
|
return True # 成功啦
|
||||||
else:
|
else:
|
||||||
@@ -503,71 +464,4 @@ def write_html(sp_file_contents, sp_file_result, chatbot, project_folder):
|
|||||||
promote_file_to_downloadzone(file=res, chatbot=chatbot)
|
promote_file_to_downloadzone(file=res, chatbot=chatbot)
|
||||||
except:
|
except:
|
||||||
from toolbox import trimmed_format_exc
|
from toolbox import trimmed_format_exc
|
||||||
logger.error('writing html result failed:', trimmed_format_exc())
|
print('writing html result failed:', trimmed_format_exc())
|
||||||
|
|
||||||
|
|
||||||
def upload_to_gptac_cloud_if_user_allow(chatbot, arxiv_id):
|
|
||||||
try:
|
|
||||||
# 如果用户允许,我们将arxiv论文PDF上传到GPTAC学术云
|
|
||||||
from toolbox import map_file_to_sha256
|
|
||||||
# 检查是否顺利,如果没有生成预期的文件,则跳过
|
|
||||||
is_result_good = False
|
|
||||||
for file_path in chatbot._cookies.get("files_to_promote", []):
|
|
||||||
if file_path.endswith('translate_zh.pdf'):
|
|
||||||
is_result_good = True
|
|
||||||
if not is_result_good:
|
|
||||||
return
|
|
||||||
# 上传文件
|
|
||||||
for file_path in chatbot._cookies.get("files_to_promote", []):
|
|
||||||
align_name = None
|
|
||||||
# normalized name
|
|
||||||
for name in ['translate_zh.pdf', 'comparison.pdf']:
|
|
||||||
if file_path.endswith(name): align_name = name
|
|
||||||
# if match any align name
|
|
||||||
if align_name:
|
|
||||||
logger.info(f'Uploading to GPTAC cloud as the user has set `allow_cloud_io`: {file_path}')
|
|
||||||
with open(file_path, 'rb') as f:
|
|
||||||
import requests
|
|
||||||
url = 'https://cloud-2.agent-matrix.com/arxiv_tf_paper_normal_upload'
|
|
||||||
files = {'file': (align_name, f, 'application/octet-stream')}
|
|
||||||
data = {
|
|
||||||
'arxiv_id': arxiv_id,
|
|
||||||
'file_hash': map_file_to_sha256(file_path),
|
|
||||||
'language': 'zh',
|
|
||||||
'trans_prompt': 'to_be_implemented',
|
|
||||||
'llm_model': 'to_be_implemented',
|
|
||||||
'llm_model_param': 'to_be_implemented',
|
|
||||||
}
|
|
||||||
resp = requests.post(url=url, files=files, data=data, timeout=30)
|
|
||||||
logger.info(f'Uploading terminate ({resp.status_code})`: {file_path}')
|
|
||||||
except:
|
|
||||||
# 如果上传失败,不会中断程序,因为这是次要功能
|
|
||||||
pass
|
|
||||||
|
|
||||||
def check_gptac_cloud(arxiv_id, chatbot):
|
|
||||||
import requests
|
|
||||||
success = False
|
|
||||||
downloaded = []
|
|
||||||
try:
|
|
||||||
for pdf_target in ['translate_zh.pdf', 'comparison.pdf']:
|
|
||||||
url = 'https://cloud-2.agent-matrix.com/arxiv_tf_paper_normal_exist'
|
|
||||||
data = {
|
|
||||||
'arxiv_id': arxiv_id,
|
|
||||||
'name': pdf_target,
|
|
||||||
}
|
|
||||||
resp = requests.post(url=url, data=data)
|
|
||||||
cache_hit_result = resp.text.strip('"')
|
|
||||||
if cache_hit_result.startswith("http"):
|
|
||||||
url = cache_hit_result
|
|
||||||
logger.info(f'Downloading from GPTAC cloud: {url}')
|
|
||||||
resp = requests.get(url=url, timeout=30)
|
|
||||||
target = os.path.join(get_log_folder(plugin_name='gptac_cloud'), gen_time_str(), pdf_target)
|
|
||||||
os.makedirs(os.path.dirname(target), exist_ok=True)
|
|
||||||
with open(target, 'wb') as f:
|
|
||||||
f.write(resp.content)
|
|
||||||
new_path = promote_file_to_downloadzone(target, chatbot=chatbot)
|
|
||||||
success = True
|
|
||||||
downloaded.append(new_path)
|
|
||||||
except:
|
|
||||||
pass
|
|
||||||
return success, downloaded
|
|
||||||
|
|||||||
@@ -1,48 +0,0 @@
|
|||||||
import pickle
|
|
||||||
|
|
||||||
|
|
||||||
class SafeUnpickler(pickle.Unpickler):
|
|
||||||
|
|
||||||
def get_safe_classes(self):
|
|
||||||
from crazy_functions.latex_fns.latex_actions import LatexPaperFileGroup, LatexPaperSplit
|
|
||||||
from crazy_functions.latex_fns.latex_toolbox import LinkedListNode
|
|
||||||
from numpy.core.multiarray import scalar
|
|
||||||
from numpy import dtype
|
|
||||||
# 定义允许的安全类
|
|
||||||
safe_classes = {
|
|
||||||
# 在这里添加其他安全的类
|
|
||||||
'LatexPaperFileGroup': LatexPaperFileGroup,
|
|
||||||
'LatexPaperSplit': LatexPaperSplit,
|
|
||||||
'LinkedListNode': LinkedListNode,
|
|
||||||
'scalar': scalar,
|
|
||||||
'dtype': dtype,
|
|
||||||
}
|
|
||||||
return safe_classes
|
|
||||||
|
|
||||||
def find_class(self, module, name):
|
|
||||||
# 只允许特定的类进行反序列化
|
|
||||||
self.safe_classes = self.get_safe_classes()
|
|
||||||
match_class_name = None
|
|
||||||
for class_name in self.safe_classes.keys():
|
|
||||||
if (class_name in f'{module}.{name}'):
|
|
||||||
match_class_name = class_name
|
|
||||||
if match_class_name is not None:
|
|
||||||
return self.safe_classes[match_class_name]
|
|
||||||
# 如果尝试加载未授权的类,则抛出异常
|
|
||||||
raise pickle.UnpicklingError(f"Attempted to deserialize unauthorized class '{name}' from module '{module}'")
|
|
||||||
|
|
||||||
def objdump(obj, file="objdump.tmp"):
|
|
||||||
|
|
||||||
with open(file, "wb+") as f:
|
|
||||||
pickle.dump(obj, f)
|
|
||||||
return
|
|
||||||
|
|
||||||
|
|
||||||
def objload(file="objdump.tmp"):
|
|
||||||
import os
|
|
||||||
|
|
||||||
if not os.path.exists(file):
|
|
||||||
return
|
|
||||||
with open(file, "rb") as f:
|
|
||||||
unpickler = SafeUnpickler(f)
|
|
||||||
return unpickler.load()
|
|
||||||
@@ -1,8 +1,6 @@
|
|||||||
import os
|
import os, shutil
|
||||||
import re
|
import re
|
||||||
import shutil
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from loguru import logger
|
|
||||||
|
|
||||||
PRESERVE = 0
|
PRESERVE = 0
|
||||||
TRANSFORM = 1
|
TRANSFORM = 1
|
||||||
@@ -57,7 +55,7 @@ def post_process(root):
|
|||||||
str_stack.append("{")
|
str_stack.append("{")
|
||||||
elif c == "}":
|
elif c == "}":
|
||||||
if len(str_stack) == 1:
|
if len(str_stack) == 1:
|
||||||
logger.warning("fixing brace error")
|
print("stack fix")
|
||||||
return i
|
return i
|
||||||
str_stack.pop(-1)
|
str_stack.pop(-1)
|
||||||
else:
|
else:
|
||||||
@@ -603,7 +601,7 @@ def compile_latex_with_timeout(command, cwd, timeout=60):
|
|||||||
except subprocess.TimeoutExpired:
|
except subprocess.TimeoutExpired:
|
||||||
process.kill()
|
process.kill()
|
||||||
stdout, stderr = process.communicate()
|
stdout, stderr = process.communicate()
|
||||||
logger.error("Process timed out (compile_latex_with_timeout)!")
|
print("Process timed out!")
|
||||||
return False
|
return False
|
||||||
return True
|
return True
|
||||||
|
|
||||||
@@ -644,216 +642,6 @@ def run_in_subprocess(func):
|
|||||||
|
|
||||||
|
|
||||||
def _merge_pdfs(pdf1_path, pdf2_path, output_path):
|
def _merge_pdfs(pdf1_path, pdf2_path, output_path):
|
||||||
try:
|
|
||||||
logger.info("Merging PDFs using _merge_pdfs_ng")
|
|
||||||
_merge_pdfs_ng(pdf1_path, pdf2_path, output_path)
|
|
||||||
except:
|
|
||||||
logger.info("Merging PDFs using _merge_pdfs_legacy")
|
|
||||||
_merge_pdfs_legacy(pdf1_path, pdf2_path, output_path)
|
|
||||||
|
|
||||||
|
|
||||||
def _merge_pdfs_ng(pdf1_path, pdf2_path, output_path):
|
|
||||||
import PyPDF2 # PyPDF2这个库有严重的内存泄露问题,把它放到子进程中运行,从而方便内存的释放
|
|
||||||
from PyPDF2.generic import NameObject, TextStringObject, ArrayObject, FloatObject, NumberObject
|
|
||||||
|
|
||||||
Percent = 1
|
|
||||||
# raise RuntimeError('PyPDF2 has a serious memory leak problem, please use other tools to merge PDF files.')
|
|
||||||
# Open the first PDF file
|
|
||||||
with open(pdf1_path, "rb") as pdf1_file:
|
|
||||||
pdf1_reader = PyPDF2.PdfFileReader(pdf1_file)
|
|
||||||
# Open the second PDF file
|
|
||||||
with open(pdf2_path, "rb") as pdf2_file:
|
|
||||||
pdf2_reader = PyPDF2.PdfFileReader(pdf2_file)
|
|
||||||
# Create a new PDF file to store the merged pages
|
|
||||||
output_writer = PyPDF2.PdfFileWriter()
|
|
||||||
# Determine the number of pages in each PDF file
|
|
||||||
num_pages = max(pdf1_reader.numPages, pdf2_reader.numPages)
|
|
||||||
# Merge the pages from the two PDF files
|
|
||||||
for page_num in range(num_pages):
|
|
||||||
# Add the page from the first PDF file
|
|
||||||
if page_num < pdf1_reader.numPages:
|
|
||||||
page1 = pdf1_reader.getPage(page_num)
|
|
||||||
else:
|
|
||||||
page1 = PyPDF2.PageObject.createBlankPage(pdf1_reader)
|
|
||||||
# Add the page from the second PDF file
|
|
||||||
if page_num < pdf2_reader.numPages:
|
|
||||||
page2 = pdf2_reader.getPage(page_num)
|
|
||||||
else:
|
|
||||||
page2 = PyPDF2.PageObject.createBlankPage(pdf1_reader)
|
|
||||||
# Create a new empty page with double width
|
|
||||||
new_page = PyPDF2.PageObject.createBlankPage(
|
|
||||||
width=int(
|
|
||||||
int(page1.mediaBox.getWidth())
|
|
||||||
+ int(page2.mediaBox.getWidth()) * Percent
|
|
||||||
),
|
|
||||||
height=max(page1.mediaBox.getHeight(), page2.mediaBox.getHeight()),
|
|
||||||
)
|
|
||||||
new_page.mergeTranslatedPage(page1, 0, 0)
|
|
||||||
new_page.mergeTranslatedPage(
|
|
||||||
page2,
|
|
||||||
int(
|
|
||||||
int(page1.mediaBox.getWidth())
|
|
||||||
- int(page2.mediaBox.getWidth()) * (1 - Percent)
|
|
||||||
),
|
|
||||||
0,
|
|
||||||
)
|
|
||||||
if "/Annots" in new_page:
|
|
||||||
annotations = new_page["/Annots"]
|
|
||||||
for i, annot in enumerate(annotations):
|
|
||||||
annot_obj = annot.get_object()
|
|
||||||
|
|
||||||
# 检查注释类型是否是链接(/Link)
|
|
||||||
if annot_obj.get("/Subtype") == "/Link":
|
|
||||||
# 检查是否为内部链接跳转(/GoTo)或外部URI链接(/URI)
|
|
||||||
action = annot_obj.get("/A")
|
|
||||||
if action:
|
|
||||||
|
|
||||||
if "/S" in action and action["/S"] == "/GoTo":
|
|
||||||
# 内部链接:跳转到文档中的某个页面
|
|
||||||
dest = action.get("/D") # 目标页或目标位置
|
|
||||||
# if dest and annot.idnum in page2_annot_id:
|
|
||||||
# if dest in pdf2_reader.named_destinations:
|
|
||||||
if dest and page2.annotations:
|
|
||||||
if annot in page2.annotations:
|
|
||||||
# 获取原始文件中跳转信息,包括跳转页面
|
|
||||||
destination = pdf2_reader.named_destinations[
|
|
||||||
dest
|
|
||||||
]
|
|
||||||
page_number = (
|
|
||||||
pdf2_reader.get_destination_page_number(
|
|
||||||
destination
|
|
||||||
)
|
|
||||||
)
|
|
||||||
# 更新跳转信息,跳转到对应的页面和,指定坐标 (100, 150),缩放比例为 100%
|
|
||||||
# “/D”:[10,'/XYZ',100,100,0]
|
|
||||||
if destination.dest_array[1] == "/XYZ":
|
|
||||||
annot_obj["/A"].update(
|
|
||||||
{
|
|
||||||
NameObject("/D"): ArrayObject(
|
|
||||||
[
|
|
||||||
NumberObject(page_number),
|
|
||||||
destination.dest_array[1],
|
|
||||||
FloatObject(
|
|
||||||
destination.dest_array[
|
|
||||||
2
|
|
||||||
]
|
|
||||||
+ int(
|
|
||||||
page1.mediaBox.getWidth()
|
|
||||||
)
|
|
||||||
),
|
|
||||||
destination.dest_array[3],
|
|
||||||
destination.dest_array[4],
|
|
||||||
]
|
|
||||||
) # 确保键和值是 PdfObject
|
|
||||||
}
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
annot_obj["/A"].update(
|
|
||||||
{
|
|
||||||
NameObject("/D"): ArrayObject(
|
|
||||||
[
|
|
||||||
NumberObject(page_number),
|
|
||||||
destination.dest_array[1],
|
|
||||||
]
|
|
||||||
) # 确保键和值是 PdfObject
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
rect = annot_obj.get("/Rect")
|
|
||||||
# 更新点击坐标
|
|
||||||
rect = ArrayObject(
|
|
||||||
[
|
|
||||||
FloatObject(
|
|
||||||
rect[0]
|
|
||||||
+ int(page1.mediaBox.getWidth())
|
|
||||||
),
|
|
||||||
rect[1],
|
|
||||||
FloatObject(
|
|
||||||
rect[2]
|
|
||||||
+ int(page1.mediaBox.getWidth())
|
|
||||||
),
|
|
||||||
rect[3],
|
|
||||||
]
|
|
||||||
)
|
|
||||||
annot_obj.update(
|
|
||||||
{
|
|
||||||
NameObject(
|
|
||||||
"/Rect"
|
|
||||||
): rect # 确保键和值是 PdfObject
|
|
||||||
}
|
|
||||||
)
|
|
||||||
# if dest and annot.idnum in page1_annot_id:
|
|
||||||
# if dest in pdf1_reader.named_destinations:
|
|
||||||
if dest and page1.annotations:
|
|
||||||
if annot in page1.annotations:
|
|
||||||
# 获取原始文件中跳转信息,包括跳转页面
|
|
||||||
destination = pdf1_reader.named_destinations[
|
|
||||||
dest
|
|
||||||
]
|
|
||||||
page_number = (
|
|
||||||
pdf1_reader.get_destination_page_number(
|
|
||||||
destination
|
|
||||||
)
|
|
||||||
)
|
|
||||||
# 更新跳转信息,跳转到对应的页面和,指定坐标 (100, 150),缩放比例为 100%
|
|
||||||
# “/D”:[10,'/XYZ',100,100,0]
|
|
||||||
if destination.dest_array[1] == "/XYZ":
|
|
||||||
annot_obj["/A"].update(
|
|
||||||
{
|
|
||||||
NameObject("/D"): ArrayObject(
|
|
||||||
[
|
|
||||||
NumberObject(page_number),
|
|
||||||
destination.dest_array[1],
|
|
||||||
FloatObject(
|
|
||||||
destination.dest_array[
|
|
||||||
2
|
|
||||||
]
|
|
||||||
),
|
|
||||||
destination.dest_array[3],
|
|
||||||
destination.dest_array[4],
|
|
||||||
]
|
|
||||||
) # 确保键和值是 PdfObject
|
|
||||||
}
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
annot_obj["/A"].update(
|
|
||||||
{
|
|
||||||
NameObject("/D"): ArrayObject(
|
|
||||||
[
|
|
||||||
NumberObject(page_number),
|
|
||||||
destination.dest_array[1],
|
|
||||||
]
|
|
||||||
) # 确保键和值是 PdfObject
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
rect = annot_obj.get("/Rect")
|
|
||||||
rect = ArrayObject(
|
|
||||||
[
|
|
||||||
FloatObject(rect[0]),
|
|
||||||
rect[1],
|
|
||||||
FloatObject(rect[2]),
|
|
||||||
rect[3],
|
|
||||||
]
|
|
||||||
)
|
|
||||||
annot_obj.update(
|
|
||||||
{
|
|
||||||
NameObject(
|
|
||||||
"/Rect"
|
|
||||||
): rect # 确保键和值是 PdfObject
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
elif "/S" in action and action["/S"] == "/URI":
|
|
||||||
# 外部链接:跳转到某个URI
|
|
||||||
uri = action.get("/URI")
|
|
||||||
output_writer.addPage(new_page)
|
|
||||||
# Save the merged PDF file
|
|
||||||
with open(output_path, "wb") as output_file:
|
|
||||||
output_writer.write(output_file)
|
|
||||||
|
|
||||||
|
|
||||||
def _merge_pdfs_legacy(pdf1_path, pdf2_path, output_path):
|
|
||||||
import PyPDF2 # PyPDF2这个库有严重的内存泄露问题,把它放到子进程中运行,从而方便内存的释放
|
import PyPDF2 # PyPDF2这个库有严重的内存泄露问题,把它放到子进程中运行,从而方便内存的释放
|
||||||
|
|
||||||
Percent = 0.95
|
Percent = 0.95
|
||||||
|
|||||||
@@ -1,6 +1,5 @@
|
|||||||
import time, json, sys, struct
|
import time, logging, json, sys, struct
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from loguru import logger as logging
|
|
||||||
from scipy.io.wavfile import WAVE_FORMAT
|
from scipy.io.wavfile import WAVE_FORMAT
|
||||||
|
|
||||||
def write_numpy_to_wave(filename, rate, data, add_header=False):
|
def write_numpy_to_wave(filename, rate, data, add_header=False):
|
||||||
@@ -107,14 +106,18 @@ def is_speaker_speaking(vad, data, sample_rate):
|
|||||||
class AliyunASR():
|
class AliyunASR():
|
||||||
|
|
||||||
def test_on_sentence_begin(self, message, *args):
|
def test_on_sentence_begin(self, message, *args):
|
||||||
|
# print("test_on_sentence_begin:{}".format(message))
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def test_on_sentence_end(self, message, *args):
|
def test_on_sentence_end(self, message, *args):
|
||||||
|
# print("test_on_sentence_end:{}".format(message))
|
||||||
message = json.loads(message)
|
message = json.loads(message)
|
||||||
self.parsed_sentence = message['payload']['result']
|
self.parsed_sentence = message['payload']['result']
|
||||||
self.event_on_entence_end.set()
|
self.event_on_entence_end.set()
|
||||||
|
# print(self.parsed_sentence)
|
||||||
|
|
||||||
def test_on_start(self, message, *args):
|
def test_on_start(self, message, *args):
|
||||||
|
# print("test_on_start:{}".format(message))
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def test_on_error(self, message, *args):
|
def test_on_error(self, message, *args):
|
||||||
@@ -126,11 +129,13 @@ class AliyunASR():
|
|||||||
pass
|
pass
|
||||||
|
|
||||||
def test_on_result_chg(self, message, *args):
|
def test_on_result_chg(self, message, *args):
|
||||||
|
# print("test_on_chg:{}".format(message))
|
||||||
message = json.loads(message)
|
message = json.loads(message)
|
||||||
self.parsed_text = message['payload']['result']
|
self.parsed_text = message['payload']['result']
|
||||||
self.event_on_result_chg.set()
|
self.event_on_result_chg.set()
|
||||||
|
|
||||||
def test_on_completed(self, message, *args):
|
def test_on_completed(self, message, *args):
|
||||||
|
# print("on_completed:args=>{} message=>{}".format(args, message))
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def audio_convertion_thread(self, uuid):
|
def audio_convertion_thread(self, uuid):
|
||||||
@@ -243,14 +248,14 @@ class AliyunASR():
|
|||||||
|
|
||||||
try:
|
try:
|
||||||
response = client.do_action_with_exception(request)
|
response = client.do_action_with_exception(request)
|
||||||
logging.info(response)
|
print(response)
|
||||||
jss = json.loads(response)
|
jss = json.loads(response)
|
||||||
if 'Token' in jss and 'Id' in jss['Token']:
|
if 'Token' in jss and 'Id' in jss['Token']:
|
||||||
token = jss['Token']['Id']
|
token = jss['Token']['Id']
|
||||||
expireTime = jss['Token']['ExpireTime']
|
expireTime = jss['Token']['ExpireTime']
|
||||||
logging.info("token = " + token)
|
print("token = " + token)
|
||||||
logging.info("expireTime = " + str(expireTime))
|
print("expireTime = " + str(expireTime))
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logging.error(e)
|
print(e)
|
||||||
|
|
||||||
return token
|
return token
|
||||||
|
|||||||
@@ -1,43 +0,0 @@
|
|||||||
from toolbox import update_ui, get_conf, promote_file_to_downloadzone, update_ui_lastest_msg, generate_file_link
|
|
||||||
from shared_utils.docker_as_service_api import stream_daas
|
|
||||||
from shared_utils.docker_as_service_api import DockerServiceApiComModel
|
|
||||||
import random
|
|
||||||
|
|
||||||
def download_video(video_id, only_audio, user_name, chatbot, history):
|
|
||||||
from toolbox import get_log_folder
|
|
||||||
chatbot.append([None, "Processing..."])
|
|
||||||
yield from update_ui(chatbot, history)
|
|
||||||
client_command = f'{video_id} --audio-only' if only_audio else video_id
|
|
||||||
server_urls = get_conf('DAAS_SERVER_URLS')
|
|
||||||
server_url = random.choice(server_urls)
|
|
||||||
docker_service_api_com_model = DockerServiceApiComModel(client_command=client_command)
|
|
||||||
save_file_dir = get_log_folder(user_name, plugin_name='media_downloader')
|
|
||||||
for output_manifest in stream_daas(docker_service_api_com_model, server_url, save_file_dir):
|
|
||||||
status_buf = ""
|
|
||||||
status_buf += "DaaS message: \n\n"
|
|
||||||
status_buf += output_manifest['server_message'].replace('\n', '<br/>')
|
|
||||||
status_buf += "\n\n"
|
|
||||||
status_buf += "DaaS standard error: \n\n"
|
|
||||||
status_buf += output_manifest['server_std_err'].replace('\n', '<br/>')
|
|
||||||
status_buf += "\n\n"
|
|
||||||
status_buf += "DaaS standard output: \n\n"
|
|
||||||
status_buf += output_manifest['server_std_out'].replace('\n', '<br/>')
|
|
||||||
status_buf += "\n\n"
|
|
||||||
status_buf += "DaaS file attach: \n\n"
|
|
||||||
status_buf += str(output_manifest['server_file_attach'])
|
|
||||||
yield from update_ui_lastest_msg(status_buf, chatbot, history)
|
|
||||||
|
|
||||||
return output_manifest['server_file_attach']
|
|
||||||
|
|
||||||
|
|
||||||
def search_videos(keywords):
|
|
||||||
from toolbox import get_log_folder
|
|
||||||
client_command = keywords
|
|
||||||
server_urls = get_conf('DAAS_SERVER_URLS')
|
|
||||||
server_url = random.choice(server_urls)
|
|
||||||
server_url = server_url.replace('stream', 'search')
|
|
||||||
docker_service_api_com_model = DockerServiceApiComModel(client_command=client_command)
|
|
||||||
save_file_dir = get_log_folder("default_user", plugin_name='media_downloader')
|
|
||||||
for output_manifest in stream_daas(docker_service_api_com_model, server_url, save_file_dir):
|
|
||||||
return output_manifest['server_message']
|
|
||||||
|
|
||||||
@@ -1,5 +1,4 @@
|
|||||||
from crazy_functions.ipc_fns.mp import run_in_subprocess_with_timeout
|
from crazy_functions.ipc_fns.mp import run_in_subprocess_with_timeout
|
||||||
from loguru import logger
|
|
||||||
|
|
||||||
def force_breakdown(txt, limit, get_token_fn):
|
def force_breakdown(txt, limit, get_token_fn):
|
||||||
""" 当无法用标点、空行分割时,我们用最暴力的方法切割
|
""" 当无法用标点、空行分割时,我们用最暴力的方法切割
|
||||||
@@ -77,7 +76,7 @@ def cut(limit, get_token_fn, txt_tocut, must_break_at_empty_line, break_anyway=F
|
|||||||
remain_txt_to_cut = post
|
remain_txt_to_cut = post
|
||||||
remain_txt_to_cut, remain_txt_to_cut_storage = maintain_storage(remain_txt_to_cut, remain_txt_to_cut_storage)
|
remain_txt_to_cut, remain_txt_to_cut_storage = maintain_storage(remain_txt_to_cut, remain_txt_to_cut_storage)
|
||||||
process = fin_len/total_len
|
process = fin_len/total_len
|
||||||
logger.info(f'正在文本切分 {int(process*100)}%')
|
print(f'正在文本切分 {int(process*100)}%')
|
||||||
if len(remain_txt_to_cut.strip()) == 0:
|
if len(remain_txt_to_cut.strip()) == 0:
|
||||||
break
|
break
|
||||||
return res
|
return res
|
||||||
@@ -120,7 +119,7 @@ if __name__ == '__main__':
|
|||||||
for i in range(5):
|
for i in range(5):
|
||||||
file_content += file_content
|
file_content += file_content
|
||||||
|
|
||||||
logger.info(len(file_content))
|
print(len(file_content))
|
||||||
TOKEN_LIMIT_PER_FRAGMENT = 2500
|
TOKEN_LIMIT_PER_FRAGMENT = 2500
|
||||||
res = breakdown_text_to_satisfy_token_limit(file_content, TOKEN_LIMIT_PER_FRAGMENT)
|
res = breakdown_text_to_satisfy_token_limit(file_content, TOKEN_LIMIT_PER_FRAGMENT)
|
||||||
|
|
||||||
|
|||||||
@@ -4,7 +4,7 @@ from toolbox import promote_file_to_downloadzone
|
|||||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||||
from toolbox import get_conf
|
from toolbox import get_conf
|
||||||
from toolbox import ProxyNetworkActivate
|
from toolbox import ProxyNetworkActivate
|
||||||
from shared_utils.colorful import *
|
from colorful import *
|
||||||
import requests
|
import requests
|
||||||
import random
|
import random
|
||||||
import copy
|
import copy
|
||||||
@@ -72,7 +72,7 @@ def produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chat
|
|||||||
generated_conclusion_files.append(res_path)
|
generated_conclusion_files.append(res_path)
|
||||||
return res_path
|
return res_path
|
||||||
|
|
||||||
def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG, plugin_kwargs={}):
|
def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG):
|
||||||
from crazy_functions.pdf_fns.report_gen_html import construct_html
|
from crazy_functions.pdf_fns.report_gen_html import construct_html
|
||||||
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
@@ -138,7 +138,7 @@ def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_fi
|
|||||||
chatbot=chatbot,
|
chatbot=chatbot,
|
||||||
history_array=[meta for _ in inputs_array],
|
history_array=[meta for _ in inputs_array],
|
||||||
sys_prompt_array=[
|
sys_prompt_array=[
|
||||||
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" + plugin_kwargs.get("additional_prompt", "") for _ in inputs_array],
|
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array],
|
||||||
)
|
)
|
||||||
# -=-=-=-=-=-=-=-= 写出Markdown文件 -=-=-=-=-=-=-=-=
|
# -=-=-=-=-=-=-=-= 写出Markdown文件 -=-=-=-=-=-=-=-=
|
||||||
produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chatbot, fp, generated_conclusion_files)
|
produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chatbot, fp, generated_conclusion_files)
|
||||||
|
|||||||
@@ -1,26 +0,0 @@
|
|||||||
import os
|
|
||||||
from toolbox import CatchException, report_exception, get_log_folder, gen_time_str, check_packages
|
|
||||||
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
|
|
||||||
from toolbox import write_history_to_file, promote_file_to_downloadzone, get_conf, extract_archive
|
|
||||||
from crazy_functions.pdf_fns.parse_pdf import parse_pdf, translate_pdf
|
|
||||||
|
|
||||||
def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url):
|
|
||||||
import copy, json
|
|
||||||
TOKEN_LIMIT_PER_FRAGMENT = 1024
|
|
||||||
generated_conclusion_files = []
|
|
||||||
generated_html_files = []
|
|
||||||
DST_LANG = "中文"
|
|
||||||
from crazy_functions.pdf_fns.report_gen_html import construct_html
|
|
||||||
for index, fp in enumerate(file_manifest):
|
|
||||||
chatbot.append(["当前进度:", f"正在连接GROBID服务,请稍候: {grobid_url}\n如果等待时间过长,请修改config中的GROBID_URL,可修改成本地GROBID服务。"]); yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
article_dict = parse_pdf(fp, grobid_url)
|
|
||||||
grobid_json_res = os.path.join(get_log_folder(), gen_time_str() + "grobid.json")
|
|
||||||
with open(grobid_json_res, 'w+', encoding='utf8') as f:
|
|
||||||
f.write(json.dumps(article_dict, indent=4, ensure_ascii=False))
|
|
||||||
promote_file_to_downloadzone(grobid_json_res, chatbot=chatbot)
|
|
||||||
if article_dict is None: raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
|
|
||||||
yield from translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG, plugin_kwargs=plugin_kwargs)
|
|
||||||
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
|
|
||||||
|
|
||||||
@@ -1,335 +0,0 @@
|
|||||||
from toolbox import get_log_folder, gen_time_str, get_conf
|
|
||||||
from toolbox import update_ui, promote_file_to_downloadzone
|
|
||||||
from toolbox import promote_file_to_downloadzone, extract_archive
|
|
||||||
from toolbox import generate_file_link, zip_folder
|
|
||||||
from crazy_functions.crazy_utils import get_files_from_everything
|
|
||||||
from shared_utils.colorful import *
|
|
||||||
from loguru import logger
|
|
||||||
import os
|
|
||||||
import requests
|
|
||||||
import time
|
|
||||||
|
|
||||||
|
|
||||||
def retry_request(max_retries=3, delay=3):
|
|
||||||
"""
|
|
||||||
Decorator for retrying HTTP requests
|
|
||||||
Args:
|
|
||||||
max_retries: Maximum number of retry attempts
|
|
||||||
delay: Delay between retries in seconds
|
|
||||||
"""
|
|
||||||
|
|
||||||
def decorator(func):
|
|
||||||
def wrapper(*args, **kwargs):
|
|
||||||
for attempt in range(max_retries):
|
|
||||||
try:
|
|
||||||
return func(*args, **kwargs)
|
|
||||||
except Exception as e:
|
|
||||||
if attempt < max_retries - 1:
|
|
||||||
logger.error(
|
|
||||||
f"Request failed, retrying... ({attempt + 1}/{max_retries}) Error: {e}"
|
|
||||||
)
|
|
||||||
time.sleep(delay)
|
|
||||||
continue
|
|
||||||
raise e
|
|
||||||
return None
|
|
||||||
|
|
||||||
return wrapper
|
|
||||||
|
|
||||||
return decorator
|
|
||||||
|
|
||||||
|
|
||||||
@retry_request()
|
|
||||||
def make_request(method, url, **kwargs):
|
|
||||||
"""
|
|
||||||
Make HTTP request with retry mechanism
|
|
||||||
"""
|
|
||||||
return requests.request(method, url, **kwargs)
|
|
||||||
|
|
||||||
|
|
||||||
def doc2x_api_response_status(response, uid=""):
|
|
||||||
"""
|
|
||||||
Check the status of Doc2x API response
|
|
||||||
Args:
|
|
||||||
response_data: Response object from Doc2x API
|
|
||||||
"""
|
|
||||||
response_json = response.json()
|
|
||||||
response_data = response_json.get("data", {})
|
|
||||||
code = response_json.get("code", "Unknown")
|
|
||||||
meg = response_data.get("message", response_json)
|
|
||||||
trace_id = response.headers.get("trace-id", "Failed to get trace-id")
|
|
||||||
if response.status_code != 200:
|
|
||||||
raise RuntimeError(
|
|
||||||
f"Doc2x return an error:\nTrace ID: {trace_id} {uid}\n{response.status_code} - {response_json}"
|
|
||||||
)
|
|
||||||
if code in ["parse_page_limit_exceeded", "parse_concurrency_limit"]:
|
|
||||||
raise RuntimeError(
|
|
||||||
f"Reached the limit of Doc2x:\nTrace ID: {trace_id} {uid}\n{code} - {meg}"
|
|
||||||
)
|
|
||||||
if code not in ["ok", "success"]:
|
|
||||||
raise RuntimeError(
|
|
||||||
f"Doc2x return an error:\nTrace ID: {trace_id} {uid}\n{code} - {meg}"
|
|
||||||
)
|
|
||||||
return response_data
|
|
||||||
|
|
||||||
|
|
||||||
def 解析PDF_DOC2X_转Latex(pdf_file_path):
|
|
||||||
zip_file_path, unzipped_folder = 解析PDF_DOC2X(pdf_file_path, format="tex")
|
|
||||||
return unzipped_folder
|
|
||||||
|
|
||||||
|
|
||||||
def 解析PDF_DOC2X(pdf_file_path, format="tex"):
|
|
||||||
"""
|
|
||||||
format: 'tex', 'md', 'docx'
|
|
||||||
"""
|
|
||||||
|
|
||||||
DOC2X_API_KEY = get_conf("DOC2X_API_KEY")
|
|
||||||
latex_dir = get_log_folder(plugin_name="pdf_ocr_latex")
|
|
||||||
markdown_dir = get_log_folder(plugin_name="pdf_ocr")
|
|
||||||
doc2x_api_key = DOC2X_API_KEY
|
|
||||||
|
|
||||||
# < ------ 第1步:预上传获取URL,然后上传文件 ------ >
|
|
||||||
logger.info("Doc2x 上传文件:预上传获取URL")
|
|
||||||
res = make_request(
|
|
||||||
"POST",
|
|
||||||
"https://v2.doc2x.noedgeai.com/api/v2/parse/preupload",
|
|
||||||
headers={"Authorization": "Bearer " + doc2x_api_key},
|
|
||||||
timeout=15,
|
|
||||||
)
|
|
||||||
res_data = doc2x_api_response_status(res)
|
|
||||||
upload_url = res_data["url"]
|
|
||||||
uuid = res_data["uid"]
|
|
||||||
|
|
||||||
logger.info("Doc2x 上传文件:上传文件")
|
|
||||||
with open(pdf_file_path, "rb") as file:
|
|
||||||
res = make_request("PUT", upload_url, data=file, timeout=60)
|
|
||||||
res.raise_for_status()
|
|
||||||
|
|
||||||
# < ------ 第2步:轮询等待 ------ >
|
|
||||||
logger.info("Doc2x 处理文件中:轮询等待")
|
|
||||||
params = {"uid": uuid}
|
|
||||||
max_attempts = 60
|
|
||||||
attempt = 0
|
|
||||||
while attempt < max_attempts:
|
|
||||||
res = make_request(
|
|
||||||
"GET",
|
|
||||||
"https://v2.doc2x.noedgeai.com/api/v2/parse/status",
|
|
||||||
headers={"Authorization": "Bearer " + doc2x_api_key},
|
|
||||||
params=params,
|
|
||||||
timeout=15,
|
|
||||||
)
|
|
||||||
res_data = doc2x_api_response_status(res)
|
|
||||||
if res_data["status"] == "success":
|
|
||||||
break
|
|
||||||
elif res_data["status"] == "processing":
|
|
||||||
time.sleep(5)
|
|
||||||
logger.info(f"Doc2x is processing at {res_data['progress']}%")
|
|
||||||
attempt += 1
|
|
||||||
else:
|
|
||||||
raise RuntimeError(f"Doc2x return an error: {res_data}")
|
|
||||||
if attempt >= max_attempts:
|
|
||||||
raise RuntimeError("Doc2x processing timeout after maximum attempts")
|
|
||||||
|
|
||||||
# < ------ 第3步:提交转化 ------ >
|
|
||||||
logger.info("Doc2x 第3步:提交转化")
|
|
||||||
data = {
|
|
||||||
"uid": uuid,
|
|
||||||
"to": format,
|
|
||||||
"formula_mode": "dollar",
|
|
||||||
"filename": "output"
|
|
||||||
}
|
|
||||||
res = make_request(
|
|
||||||
"POST",
|
|
||||||
"https://v2.doc2x.noedgeai.com/api/v2/convert/parse",
|
|
||||||
headers={"Authorization": "Bearer " + doc2x_api_key},
|
|
||||||
json=data,
|
|
||||||
timeout=15,
|
|
||||||
)
|
|
||||||
doc2x_api_response_status(res, uid=f"uid: {uuid}")
|
|
||||||
|
|
||||||
# < ------ 第4步:等待结果 ------ >
|
|
||||||
logger.info("Doc2x 第4步:等待结果")
|
|
||||||
params = {"uid": uuid}
|
|
||||||
max_attempts = 36
|
|
||||||
attempt = 0
|
|
||||||
while attempt < max_attempts:
|
|
||||||
res = make_request(
|
|
||||||
"GET",
|
|
||||||
"https://v2.doc2x.noedgeai.com/api/v2/convert/parse/result",
|
|
||||||
headers={"Authorization": "Bearer " + doc2x_api_key},
|
|
||||||
params=params,
|
|
||||||
timeout=15,
|
|
||||||
)
|
|
||||||
res_data = doc2x_api_response_status(res, uid=f"uid: {uuid}")
|
|
||||||
if res_data["status"] == "success":
|
|
||||||
break
|
|
||||||
elif res_data["status"] == "processing":
|
|
||||||
time.sleep(3)
|
|
||||||
logger.info("Doc2x still processing to convert file")
|
|
||||||
attempt += 1
|
|
||||||
if attempt >= max_attempts:
|
|
||||||
raise RuntimeError("Doc2x conversion timeout after maximum attempts")
|
|
||||||
|
|
||||||
# < ------ 第5步:最后的处理 ------ >
|
|
||||||
logger.info("Doc2x 第5步:下载转换后的文件")
|
|
||||||
|
|
||||||
if format == "tex":
|
|
||||||
target_path = latex_dir
|
|
||||||
if format == "md":
|
|
||||||
target_path = markdown_dir
|
|
||||||
os.makedirs(target_path, exist_ok=True)
|
|
||||||
|
|
||||||
max_attempt = 3
|
|
||||||
# < ------ 下载 ------ >
|
|
||||||
for attempt in range(max_attempt):
|
|
||||||
try:
|
|
||||||
result_url = res_data["url"]
|
|
||||||
res = make_request("GET", result_url, timeout=60)
|
|
||||||
zip_path = os.path.join(target_path, gen_time_str() + ".zip")
|
|
||||||
unzip_path = os.path.join(target_path, gen_time_str())
|
|
||||||
if res.status_code == 200:
|
|
||||||
with open(zip_path, "wb") as f:
|
|
||||||
f.write(res.content)
|
|
||||||
else:
|
|
||||||
raise RuntimeError(f"Doc2x return an error: {res.json()}")
|
|
||||||
except Exception as e:
|
|
||||||
if attempt < max_attempt - 1:
|
|
||||||
logger.error(f"Failed to download uid = {uuid} file, retrying... {e}")
|
|
||||||
time.sleep(3)
|
|
||||||
continue
|
|
||||||
else:
|
|
||||||
raise e
|
|
||||||
|
|
||||||
# < ------ 解压 ------ >
|
|
||||||
import zipfile
|
|
||||||
with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
|
||||||
zip_ref.extractall(unzip_path)
|
|
||||||
return zip_path, unzip_path
|
|
||||||
|
|
||||||
|
|
||||||
def 解析PDF_DOC2X_单文件(
|
|
||||||
fp,
|
|
||||||
project_folder,
|
|
||||||
llm_kwargs,
|
|
||||||
plugin_kwargs,
|
|
||||||
chatbot,
|
|
||||||
history,
|
|
||||||
system_prompt,
|
|
||||||
DOC2X_API_KEY,
|
|
||||||
user_request,
|
|
||||||
):
|
|
||||||
def pdf2markdown(filepath):
|
|
||||||
chatbot.append((None, f"Doc2x 解析中"))
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
|
|
||||||
md_zip_path, unzipped_folder = 解析PDF_DOC2X(filepath, format="md")
|
|
||||||
|
|
||||||
promote_file_to_downloadzone(md_zip_path, chatbot=chatbot)
|
|
||||||
chatbot.append((None, f"完成解析 {md_zip_path} ..."))
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
return md_zip_path
|
|
||||||
|
|
||||||
def deliver_to_markdown_plugin(md_zip_path, user_request):
|
|
||||||
from crazy_functions.Markdown_Translate import Markdown英译中
|
|
||||||
import shutil, re
|
|
||||||
|
|
||||||
time_tag = gen_time_str()
|
|
||||||
target_path_base = get_log_folder(chatbot.get_user())
|
|
||||||
file_origin_name = os.path.basename(md_zip_path)
|
|
||||||
this_file_path = os.path.join(target_path_base, file_origin_name)
|
|
||||||
os.makedirs(target_path_base, exist_ok=True)
|
|
||||||
shutil.copyfile(md_zip_path, this_file_path)
|
|
||||||
ex_folder = this_file_path + ".extract"
|
|
||||||
extract_archive(file_path=this_file_path, dest_dir=ex_folder)
|
|
||||||
|
|
||||||
# edit markdown files
|
|
||||||
success, file_manifest, project_folder = get_files_from_everything(
|
|
||||||
ex_folder, type=".md"
|
|
||||||
)
|
|
||||||
for generated_fp in file_manifest:
|
|
||||||
# 修正一些公式问题
|
|
||||||
with open(generated_fp, "r", encoding="utf8") as f:
|
|
||||||
content = f.read()
|
|
||||||
# 将公式中的\[ \]替换成$$
|
|
||||||
content = content.replace(r"\[", r"$$").replace(r"\]", r"$$")
|
|
||||||
# 将公式中的\( \)替换成$
|
|
||||||
content = content.replace(r"\(", r"$").replace(r"\)", r"$")
|
|
||||||
content = content.replace("```markdown", "\n").replace("```", "\n")
|
|
||||||
with open(generated_fp, "w", encoding="utf8") as f:
|
|
||||||
f.write(content)
|
|
||||||
promote_file_to_downloadzone(generated_fp, chatbot=chatbot)
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
|
|
||||||
# 生成在线预览html
|
|
||||||
file_name = "在线预览翻译(原文)" + gen_time_str() + ".html"
|
|
||||||
preview_fp = os.path.join(ex_folder, file_name)
|
|
||||||
from shared_utils.advanced_markdown_format import (
|
|
||||||
markdown_convertion_for_file,
|
|
||||||
)
|
|
||||||
|
|
||||||
with open(generated_fp, "r", encoding="utf-8") as f:
|
|
||||||
md = f.read()
|
|
||||||
# # Markdown中使用不标准的表格,需要在表格前加上一个emoji,以便公式渲染
|
|
||||||
# md = re.sub(r'^<table>', r'.<table>', md, flags=re.MULTILINE)
|
|
||||||
html = markdown_convertion_for_file(md)
|
|
||||||
with open(preview_fp, "w", encoding="utf-8") as f:
|
|
||||||
f.write(html)
|
|
||||||
chatbot.append([None, f"生成在线预览:{generate_file_link([preview_fp])}"])
|
|
||||||
promote_file_to_downloadzone(preview_fp, chatbot=chatbot)
|
|
||||||
|
|
||||||
chatbot.append((None, f"调用Markdown插件 {ex_folder} ..."))
|
|
||||||
plugin_kwargs["markdown_expected_output_dir"] = ex_folder
|
|
||||||
|
|
||||||
translated_f_name = "translated_markdown.md"
|
|
||||||
generated_fp = plugin_kwargs["markdown_expected_output_path"] = os.path.join(
|
|
||||||
ex_folder, translated_f_name
|
|
||||||
)
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
yield from Markdown英译中(
|
|
||||||
ex_folder,
|
|
||||||
llm_kwargs,
|
|
||||||
plugin_kwargs,
|
|
||||||
chatbot,
|
|
||||||
history,
|
|
||||||
system_prompt,
|
|
||||||
user_request,
|
|
||||||
)
|
|
||||||
if os.path.exists(generated_fp):
|
|
||||||
# 修正一些公式问题
|
|
||||||
with open(generated_fp, "r", encoding="utf8") as f:
|
|
||||||
content = f.read()
|
|
||||||
content = content.replace("```markdown", "\n").replace("```", "\n")
|
|
||||||
# Markdown中使用不标准的表格,需要在表格前加上一个emoji,以便公式渲染
|
|
||||||
# content = re.sub(r'^<table>', r'.<table>', content, flags=re.MULTILINE)
|
|
||||||
with open(generated_fp, "w", encoding="utf8") as f:
|
|
||||||
f.write(content)
|
|
||||||
# 生成在线预览html
|
|
||||||
file_name = "在线预览翻译" + gen_time_str() + ".html"
|
|
||||||
preview_fp = os.path.join(ex_folder, file_name)
|
|
||||||
from shared_utils.advanced_markdown_format import (
|
|
||||||
markdown_convertion_for_file,
|
|
||||||
)
|
|
||||||
|
|
||||||
with open(generated_fp, "r", encoding="utf-8") as f:
|
|
||||||
md = f.read()
|
|
||||||
html = markdown_convertion_for_file(md)
|
|
||||||
with open(preview_fp, "w", encoding="utf-8") as f:
|
|
||||||
f.write(html)
|
|
||||||
promote_file_to_downloadzone(preview_fp, chatbot=chatbot)
|
|
||||||
# 生成包含图片的压缩包
|
|
||||||
dest_folder = get_log_folder(chatbot.get_user())
|
|
||||||
zip_name = "翻译后的带图文档.zip"
|
|
||||||
zip_folder(
|
|
||||||
source_folder=ex_folder, dest_folder=dest_folder, zip_name=zip_name
|
|
||||||
)
|
|
||||||
zip_fp = os.path.join(dest_folder, zip_name)
|
|
||||||
promote_file_to_downloadzone(zip_fp, chatbot=chatbot)
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
|
||||||
|
|
||||||
md_zip_path = yield from pdf2markdown(fp)
|
|
||||||
yield from deliver_to_markdown_plugin(md_zip_path, user_request)
|
|
||||||
|
|
||||||
|
|
||||||
def 解析PDF_基于DOC2X(file_manifest, *args):
|
|
||||||
for index, fp in enumerate(file_manifest):
|
|
||||||
yield from 解析PDF_DOC2X_单文件(fp, *args)
|
|
||||||
return
|
|
||||||
@@ -1,73 +0,0 @@
|
|||||||
<!DOCTYPE html>
|
|
||||||
<html xmlns="http://www.w3.org/1999/xhtml">
|
|
||||||
|
|
||||||
<head>
|
|
||||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
|
|
||||||
<title>GPT-Academic 翻译报告书</title>
|
|
||||||
<style>
|
|
||||||
.centered-a {
|
|
||||||
color: red;
|
|
||||||
text-align: center;
|
|
||||||
margin-bottom: 2%;
|
|
||||||
font-size: 1.5em;
|
|
||||||
}
|
|
||||||
.centered-b {
|
|
||||||
color: red;
|
|
||||||
text-align: center;
|
|
||||||
margin-top: 10%;
|
|
||||||
margin-bottom: 20%;
|
|
||||||
font-size: 1.5em;
|
|
||||||
}
|
|
||||||
.centered-c {
|
|
||||||
color: rgba(255, 0, 0, 0);
|
|
||||||
text-align: center;
|
|
||||||
margin-top: 2%;
|
|
||||||
margin-bottom: 20%;
|
|
||||||
font-size: 7em;
|
|
||||||
}
|
|
||||||
</style>
|
|
||||||
<script>
|
|
||||||
// Configure MathJax settings
|
|
||||||
MathJax = {
|
|
||||||
tex: {
|
|
||||||
inlineMath: [
|
|
||||||
['$', '$'],
|
|
||||||
['\(', '\)']
|
|
||||||
]
|
|
||||||
}
|
|
||||||
}
|
|
||||||
addEventListener('zero-md-rendered', () => {MathJax.typeset(); console.log('MathJax typeset!');})
|
|
||||||
</script>
|
|
||||||
<!-- Load MathJax library -->
|
|
||||||
<script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js"></script>
|
|
||||||
<script
|
|
||||||
type="module"
|
|
||||||
src="https://cdn.jsdelivr.net/gh/zerodevx/zero-md@2/dist/zero-md.min.js"
|
|
||||||
></script>
|
|
||||||
|
|
||||||
</head>
|
|
||||||
|
|
||||||
<body>
|
|
||||||
<div class="test_temp1" style="width:10%; height: 500px; float:left;">
|
|
||||||
|
|
||||||
</div>
|
|
||||||
<div class="test_temp2" style="width:80%; height: 500px; float:left;">
|
|
||||||
<!-- Simply set the `src` attribute to your MD file and win -->
|
|
||||||
<div class="centered-a">
|
|
||||||
请按Ctrl+S保存此页面,否则该页面可能在几分钟后失效。
|
|
||||||
</div>
|
|
||||||
<zero-md src="translated_markdown.md" no-shadow>
|
|
||||||
</zero-md>
|
|
||||||
<div class="centered-b">
|
|
||||||
本报告由GPT-Academic开源项目生成,地址:https://github.com/binary-husky/gpt_academic。
|
|
||||||
</div>
|
|
||||||
<div class="centered-c">
|
|
||||||
本报告由GPT-Academic开源项目生成,地址:https://github.com/binary-husky/gpt_academic。
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
<div class="test_temp3" style="width:10%; height: 500px; float:left;">
|
|
||||||
</div>
|
|
||||||
|
|
||||||
</body>
|
|
||||||
|
|
||||||
</html>
|
|
||||||
@@ -1,52 +0,0 @@
|
|||||||
import os, json, base64
|
|
||||||
from pydantic import BaseModel, Field
|
|
||||||
from textwrap import dedent
|
|
||||||
from typing import List
|
|
||||||
|
|
||||||
class ArgProperty(BaseModel): # PLUGIN_ARG_MENU
|
|
||||||
title: str = Field(description="The title", default="")
|
|
||||||
description: str = Field(description="The description", default="")
|
|
||||||
default_value: str = Field(description="The default value", default="")
|
|
||||||
type: str = Field(description="The type", default="") # currently we support ['string', 'dropdown']
|
|
||||||
options: List[str] = Field(default=[], description="List of options available for the argument") # only used when type is 'dropdown'
|
|
||||||
|
|
||||||
class GptAcademicPluginTemplate():
|
|
||||||
def __init__(self):
|
|
||||||
# please note that `execute` method may run in different threads,
|
|
||||||
# thus you should not store any state in the plugin instance,
|
|
||||||
# which may be accessed by multiple threads
|
|
||||||
pass
|
|
||||||
|
|
||||||
|
|
||||||
def define_arg_selection_menu(self):
|
|
||||||
"""
|
|
||||||
An example as below:
|
|
||||||
```
|
|
||||||
def define_arg_selection_menu(self):
|
|
||||||
gui_definition = {
|
|
||||||
"main_input":
|
|
||||||
ArgProperty(title="main input", description="description", default_value="default_value", type="string").model_dump_json(),
|
|
||||||
"advanced_arg":
|
|
||||||
ArgProperty(title="advanced arguments", description="description", default_value="default_value", type="string").model_dump_json(),
|
|
||||||
"additional_arg_01":
|
|
||||||
ArgProperty(title="additional", description="description", default_value="default_value", type="string").model_dump_json(),
|
|
||||||
}
|
|
||||||
return gui_definition
|
|
||||||
```
|
|
||||||
"""
|
|
||||||
raise NotImplementedError("You need to implement this method in your plugin class")
|
|
||||||
|
|
||||||
|
|
||||||
def get_js_code_for_generating_menu(self, btnName):
|
|
||||||
define_arg_selection = self.define_arg_selection_menu()
|
|
||||||
|
|
||||||
if len(define_arg_selection.keys()) > 8:
|
|
||||||
raise ValueError("You can only have up to 8 arguments in the define_arg_selection")
|
|
||||||
# if "main_input" not in define_arg_selection:
|
|
||||||
# raise ValueError("You must have a 'main_input' in the define_arg_selection")
|
|
||||||
|
|
||||||
DEFINE_ARG_INPUT_INTERFACE = json.dumps(define_arg_selection)
|
|
||||||
return base64.b64encode(DEFINE_ARG_INPUT_INTERFACE.encode('utf-8')).decode('utf-8')
|
|
||||||
|
|
||||||
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
|
||||||
raise NotImplementedError("You need to implement this method in your plugin class")
|
|
||||||
@@ -1,87 +0,0 @@
|
|||||||
SearchOptimizerPrompt="""作为一个网页搜索助手,你的任务是结合历史记录,从不同角度,为“原问题”生成个不同版本的“检索词”,从而提高网页检索的精度。生成的问题要求指向对象清晰明确,并与“原问题语言相同”。例如:
|
|
||||||
历史记录:
|
|
||||||
"
|
|
||||||
Q: 对话背景。
|
|
||||||
A: 当前对话是关于 Nginx 的介绍和在Ubuntu上的使用等。
|
|
||||||
"
|
|
||||||
原问题: 怎么下载
|
|
||||||
检索词: ["Nginx 下载","Ubuntu Nginx","Ubuntu安装Nginx"]
|
|
||||||
----------------
|
|
||||||
历史记录:
|
|
||||||
"
|
|
||||||
Q: 对话背景。
|
|
||||||
A: 当前对话是关于 Nginx 的介绍和使用等。
|
|
||||||
Q: 报错 "no connection"
|
|
||||||
A: 报错"no connection"可能是因为……
|
|
||||||
"
|
|
||||||
原问题: 怎么解决
|
|
||||||
检索词: ["Nginx报错"no connection" 解决","Nginx'no connection'报错 原因","Nginx提示'no connection'"]
|
|
||||||
----------------
|
|
||||||
历史记录:
|
|
||||||
"
|
|
||||||
|
|
||||||
"
|
|
||||||
原问题: 你知道 Python 么?
|
|
||||||
检索词: ["Python","Python 使用教程。","Python 特点和优势"]
|
|
||||||
----------------
|
|
||||||
历史记录:
|
|
||||||
"
|
|
||||||
Q: 列出Java的三种特点?
|
|
||||||
A: 1. Java 是一种编译型语言。
|
|
||||||
2. Java 是一种面向对象的编程语言。
|
|
||||||
3. Java 是一种跨平台的编程语言。
|
|
||||||
"
|
|
||||||
原问题: 介绍下第2点。
|
|
||||||
检索词: ["Java 面向对象特点","Java 面向对象编程优势。","Java 面向对象编程"]
|
|
||||||
----------------
|
|
||||||
现在有历史记录:
|
|
||||||
"
|
|
||||||
{history}
|
|
||||||
"
|
|
||||||
有其原问题: {query}
|
|
||||||
直接给出最多{num}个检索词,必须以json形式给出,不得有多余字符:
|
|
||||||
"""
|
|
||||||
|
|
||||||
SearchAcademicOptimizerPrompt="""作为一个学术论文搜索助手,你的任务是结合历史记录,从不同角度,为“原问题”生成个不同版本的“检索词”,从而提高学术论文检索的精度。生成的问题要求指向对象清晰明确,并与“原问题语言相同”。例如:
|
|
||||||
历史记录:
|
|
||||||
"
|
|
||||||
Q: 对话背景。
|
|
||||||
A: 当前对话是关于深度学习的介绍和在图像识别中的应用等。
|
|
||||||
"
|
|
||||||
原问题: 怎么下载相关论文
|
|
||||||
检索词: ["深度学习 图像识别 论文下载","图像识别 深度学习 研究论文","深度学习 图像识别 论文资源","Deep Learning Image Recognition Paper Download","Image Recognition Deep Learning Research Paper"]
|
|
||||||
----------------
|
|
||||||
历史记录:
|
|
||||||
"
|
|
||||||
Q: 对话背景。
|
|
||||||
A: 当前对话是关于深度学习的介绍和应用等。
|
|
||||||
Q: 报错 "模型不收敛"
|
|
||||||
A: 报错"模型不收敛"可能是因为……
|
|
||||||
"
|
|
||||||
原问题: 怎么解决
|
|
||||||
检索词: ["深度学习 模型不收敛 解决方案 论文","深度学习 模型不收敛 原因 研究","深度学习 模型不收敛 论文","Deep Learning Model Convergence Issue Solution Paper","Deep Learning Model Convergence Problem Research"]
|
|
||||||
----------------
|
|
||||||
历史记录:
|
|
||||||
"
|
|
||||||
|
|
||||||
"
|
|
||||||
原问题: 你知道 GAN 么?
|
|
||||||
检索词: ["生成对抗网络 论文","GAN 使用教程 论文","GAN 特点和优势 研究","Generative Adversarial Network Paper","GAN Usage Tutorial Paper"]
|
|
||||||
----------------
|
|
||||||
历史记录:
|
|
||||||
"
|
|
||||||
Q: 列出机器学习的三种应用?
|
|
||||||
A: 1. 机器学习在图像识别中的应用。
|
|
||||||
2. 机器学习在自然语言处理中的应用。
|
|
||||||
3. 机器学习在推荐系统中的应用。
|
|
||||||
"
|
|
||||||
原问题: 介绍下第2点。
|
|
||||||
检索词: ["机器学习 自然语言处理 应用 论文","机器学习 自然语言处理 研究","机器学习 NLP 应用 论文","Machine Learning Natural Language Processing Application Paper","Machine Learning NLP Research"]
|
|
||||||
----------------
|
|
||||||
现在有历史记录:
|
|
||||||
"
|
|
||||||
{history}
|
|
||||||
"
|
|
||||||
有其原问题: {query}
|
|
||||||
直接给出最多{num}个检索词,必须以json形式给出,不得有多余字符:
|
|
||||||
"""
|
|
||||||
@@ -1,138 +0,0 @@
|
|||||||
import atexit
|
|
||||||
from loguru import logger
|
|
||||||
from typing import List
|
|
||||||
|
|
||||||
from llama_index.core import Document
|
|
||||||
from llama_index.core.ingestion import run_transformations
|
|
||||||
from llama_index.core.schema import TextNode
|
|
||||||
|
|
||||||
from crazy_functions.rag_fns.vector_store_index import GptacVectorStoreIndex
|
|
||||||
from request_llms.embed_models.openai_embed import OpenAiEmbeddingModel
|
|
||||||
|
|
||||||
DEFAULT_QUERY_GENERATION_PROMPT = """\
|
|
||||||
Now, you have context information as below:
|
|
||||||
---------------------
|
|
||||||
{context_str}
|
|
||||||
---------------------
|
|
||||||
Answer the user request below (use the context information if necessary, otherwise you can ignore them):
|
|
||||||
---------------------
|
|
||||||
{query_str}
|
|
||||||
"""
|
|
||||||
|
|
||||||
QUESTION_ANSWER_RECORD = """\
|
|
||||||
{{
|
|
||||||
"type": "This is a previous conversation with the user",
|
|
||||||
"question": "{question}",
|
|
||||||
"answer": "{answer}",
|
|
||||||
}}
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
|
||||||
class SaveLoad():
|
|
||||||
|
|
||||||
def does_checkpoint_exist(self, checkpoint_dir=None):
|
|
||||||
import os, glob
|
|
||||||
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
|
|
||||||
if not os.path.exists(checkpoint_dir): return False
|
|
||||||
if len(glob.glob(os.path.join(checkpoint_dir, "*.json"))) == 0: return False
|
|
||||||
return True
|
|
||||||
|
|
||||||
def save_to_checkpoint(self, checkpoint_dir=None):
|
|
||||||
logger.info(f'saving vector store to: {checkpoint_dir}')
|
|
||||||
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
|
|
||||||
self.vs_index.storage_context.persist(persist_dir=checkpoint_dir)
|
|
||||||
|
|
||||||
def load_from_checkpoint(self, checkpoint_dir=None):
|
|
||||||
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
|
|
||||||
if self.does_checkpoint_exist(checkpoint_dir=checkpoint_dir):
|
|
||||||
logger.info('loading checkpoint from disk')
|
|
||||||
from llama_index.core import StorageContext, load_index_from_storage
|
|
||||||
storage_context = StorageContext.from_defaults(persist_dir=checkpoint_dir)
|
|
||||||
self.vs_index = load_index_from_storage(storage_context, embed_model=self.embed_model)
|
|
||||||
return self.vs_index
|
|
||||||
else:
|
|
||||||
return self.create_new_vs()
|
|
||||||
|
|
||||||
def create_new_vs(self):
|
|
||||||
return GptacVectorStoreIndex.default_vector_store(embed_model=self.embed_model)
|
|
||||||
|
|
||||||
def purge(self):
|
|
||||||
import shutil
|
|
||||||
shutil.rmtree(self.checkpoint_dir, ignore_errors=True)
|
|
||||||
self.vs_index = self.create_new_vs(self.checkpoint_dir)
|
|
||||||
|
|
||||||
|
|
||||||
class LlamaIndexRagWorker(SaveLoad):
|
|
||||||
def __init__(self, user_name, llm_kwargs, auto_load_checkpoint=True, checkpoint_dir=None) -> None:
|
|
||||||
self.debug_mode = True
|
|
||||||
self.embed_model = OpenAiEmbeddingModel(llm_kwargs)
|
|
||||||
self.user_name = user_name
|
|
||||||
self.checkpoint_dir = checkpoint_dir
|
|
||||||
if auto_load_checkpoint:
|
|
||||||
self.vs_index = self.load_from_checkpoint(checkpoint_dir)
|
|
||||||
else:
|
|
||||||
self.vs_index = self.create_new_vs()
|
|
||||||
atexit.register(lambda: self.save_to_checkpoint(checkpoint_dir))
|
|
||||||
|
|
||||||
def assign_embedding_model(self):
|
|
||||||
pass
|
|
||||||
|
|
||||||
def inspect_vector_store(self):
|
|
||||||
# This function is for debugging
|
|
||||||
self.vs_index.storage_context.index_store.to_dict()
|
|
||||||
docstore = self.vs_index.storage_context.docstore.docs
|
|
||||||
vector_store_preview = "\n".join([ f"{_id} | {tn.text}" for _id, tn in docstore.items() ])
|
|
||||||
logger.info('\n++ --------inspect_vector_store begin--------')
|
|
||||||
logger.info(vector_store_preview)
|
|
||||||
logger.info('oo --------inspect_vector_store end--------')
|
|
||||||
return vector_store_preview
|
|
||||||
|
|
||||||
def add_documents_to_vector_store(self, document_list: List[Document]):
|
|
||||||
"""
|
|
||||||
Adds a list of Document objects to the vector store after processing.
|
|
||||||
"""
|
|
||||||
documents = document_list
|
|
||||||
documents_nodes = run_transformations(
|
|
||||||
documents, # type: ignore
|
|
||||||
self.vs_index._transformations,
|
|
||||||
show_progress=True
|
|
||||||
)
|
|
||||||
self.vs_index.insert_nodes(documents_nodes)
|
|
||||||
if self.debug_mode:
|
|
||||||
self.inspect_vector_store()
|
|
||||||
|
|
||||||
def add_text_to_vector_store(self, text: str):
|
|
||||||
node = TextNode(text=text)
|
|
||||||
documents_nodes = run_transformations(
|
|
||||||
[node],
|
|
||||||
self.vs_index._transformations,
|
|
||||||
show_progress=True
|
|
||||||
)
|
|
||||||
self.vs_index.insert_nodes(documents_nodes)
|
|
||||||
if self.debug_mode:
|
|
||||||
self.inspect_vector_store()
|
|
||||||
|
|
||||||
def remember_qa(self, question, answer):
|
|
||||||
formatted_str = QUESTION_ANSWER_RECORD.format(question=question, answer=answer)
|
|
||||||
self.add_text_to_vector_store(formatted_str)
|
|
||||||
|
|
||||||
def retrieve_from_store_with_query(self, query):
|
|
||||||
if self.debug_mode:
|
|
||||||
self.inspect_vector_store()
|
|
||||||
retriever = self.vs_index.as_retriever()
|
|
||||||
return retriever.retrieve(query)
|
|
||||||
|
|
||||||
def build_prompt(self, query, nodes):
|
|
||||||
context_str = self.generate_node_array_preview(nodes)
|
|
||||||
return DEFAULT_QUERY_GENERATION_PROMPT.format(context_str=context_str, query_str=query)
|
|
||||||
|
|
||||||
def generate_node_array_preview(self, nodes):
|
|
||||||
buf = "\n".join(([f"(No.{i+1} | score {n.score:.3f}): {n.text}" for i, n in enumerate(nodes)]))
|
|
||||||
if self.debug_mode: logger.info(buf)
|
|
||||||
return buf
|
|
||||||
|
|
||||||
def purge_vector_store(self):
|
|
||||||
"""
|
|
||||||
Purges the current vector store and creates a new one.
|
|
||||||
"""
|
|
||||||
self.purge()
|
|
||||||
@@ -1,108 +0,0 @@
|
|||||||
import llama_index
|
|
||||||
import os
|
|
||||||
import atexit
|
|
||||||
from typing import List
|
|
||||||
from loguru import logger
|
|
||||||
from llama_index.core import Document
|
|
||||||
from llama_index.core.schema import TextNode
|
|
||||||
from request_llms.embed_models.openai_embed import OpenAiEmbeddingModel
|
|
||||||
from shared_utils.connect_void_terminal import get_chat_default_kwargs
|
|
||||||
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
|
|
||||||
from crazy_functions.rag_fns.vector_store_index import GptacVectorStoreIndex
|
|
||||||
from llama_index.core.ingestion import run_transformations
|
|
||||||
from llama_index.core import PromptTemplate
|
|
||||||
from llama_index.core.response_synthesizers import TreeSummarize
|
|
||||||
from llama_index.core import StorageContext
|
|
||||||
from llama_index.vector_stores.milvus import MilvusVectorStore
|
|
||||||
from crazy_functions.rag_fns.llama_index_worker import LlamaIndexRagWorker
|
|
||||||
|
|
||||||
DEFAULT_QUERY_GENERATION_PROMPT = """\
|
|
||||||
Now, you have context information as below:
|
|
||||||
---------------------
|
|
||||||
{context_str}
|
|
||||||
---------------------
|
|
||||||
Answer the user request below (use the context information if necessary, otherwise you can ignore them):
|
|
||||||
---------------------
|
|
||||||
{query_str}
|
|
||||||
"""
|
|
||||||
|
|
||||||
QUESTION_ANSWER_RECORD = """\
|
|
||||||
{{
|
|
||||||
"type": "This is a previous conversation with the user",
|
|
||||||
"question": "{question}",
|
|
||||||
"answer": "{answer}",
|
|
||||||
}}
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
|
||||||
class MilvusSaveLoad():
|
|
||||||
|
|
||||||
def does_checkpoint_exist(self, checkpoint_dir=None):
|
|
||||||
import os, glob
|
|
||||||
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
|
|
||||||
if not os.path.exists(checkpoint_dir): return False
|
|
||||||
if len(glob.glob(os.path.join(checkpoint_dir, "*.json"))) == 0: return False
|
|
||||||
return True
|
|
||||||
|
|
||||||
def save_to_checkpoint(self, checkpoint_dir=None):
|
|
||||||
logger.info(f'saving vector store to: {checkpoint_dir}')
|
|
||||||
# if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
|
|
||||||
# self.vs_index.storage_context.persist(persist_dir=checkpoint_dir)
|
|
||||||
|
|
||||||
def load_from_checkpoint(self, checkpoint_dir=None):
|
|
||||||
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
|
|
||||||
if self.does_checkpoint_exist(checkpoint_dir=checkpoint_dir):
|
|
||||||
logger.info('loading checkpoint from disk')
|
|
||||||
from llama_index.core import StorageContext, load_index_from_storage
|
|
||||||
storage_context = StorageContext.from_defaults(persist_dir=checkpoint_dir)
|
|
||||||
try:
|
|
||||||
self.vs_index = load_index_from_storage(storage_context, embed_model=self.embed_model)
|
|
||||||
return self.vs_index
|
|
||||||
except:
|
|
||||||
return self.create_new_vs(checkpoint_dir)
|
|
||||||
else:
|
|
||||||
return self.create_new_vs(checkpoint_dir)
|
|
||||||
|
|
||||||
def create_new_vs(self, checkpoint_dir, overwrite=False):
|
|
||||||
vector_store = MilvusVectorStore(
|
|
||||||
uri=os.path.join(checkpoint_dir, "milvus_demo.db"),
|
|
||||||
dim=self.embed_model.embedding_dimension(),
|
|
||||||
overwrite=overwrite
|
|
||||||
)
|
|
||||||
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
|
||||||
index = GptacVectorStoreIndex.default_vector_store(storage_context=storage_context, embed_model=self.embed_model)
|
|
||||||
return index
|
|
||||||
|
|
||||||
def purge(self):
|
|
||||||
self.vs_index = self.create_new_vs(self.checkpoint_dir, overwrite=True)
|
|
||||||
|
|
||||||
class MilvusRagWorker(MilvusSaveLoad, LlamaIndexRagWorker):
|
|
||||||
|
|
||||||
def __init__(self, user_name, llm_kwargs, auto_load_checkpoint=True, checkpoint_dir=None) -> None:
|
|
||||||
self.debug_mode = True
|
|
||||||
self.embed_model = OpenAiEmbeddingModel(llm_kwargs)
|
|
||||||
self.user_name = user_name
|
|
||||||
self.checkpoint_dir = checkpoint_dir
|
|
||||||
if auto_load_checkpoint:
|
|
||||||
self.vs_index = self.load_from_checkpoint(checkpoint_dir)
|
|
||||||
else:
|
|
||||||
self.vs_index = self.create_new_vs(checkpoint_dir)
|
|
||||||
atexit.register(lambda: self.save_to_checkpoint(checkpoint_dir))
|
|
||||||
|
|
||||||
def inspect_vector_store(self):
|
|
||||||
# This function is for debugging
|
|
||||||
try:
|
|
||||||
self.vs_index.storage_context.index_store.to_dict()
|
|
||||||
docstore = self.vs_index.storage_context.docstore.docs
|
|
||||||
if not docstore.items():
|
|
||||||
raise ValueError("cannot inspect")
|
|
||||||
vector_store_preview = "\n".join([ f"{_id} | {tn.text}" for _id, tn in docstore.items() ])
|
|
||||||
except:
|
|
||||||
dummy_retrieve_res: List["NodeWithScore"] = self.vs_index.as_retriever().retrieve(' ')
|
|
||||||
vector_store_preview = "\n".join(
|
|
||||||
[f"{node.id_} | {node.text}" for node in dummy_retrieve_res]
|
|
||||||
)
|
|
||||||
logger.info('\n++ --------inspect_vector_store begin--------')
|
|
||||||
logger.info(vector_store_preview)
|
|
||||||
logger.info('oo --------inspect_vector_store end--------')
|
|
||||||
return vector_store_preview
|
|
||||||
@@ -1,22 +0,0 @@
|
|||||||
import os
|
|
||||||
from llama_index.core import SimpleDirectoryReader
|
|
||||||
|
|
||||||
supports_format = ['.csv', '.docx', '.epub', '.ipynb', '.mbox', '.md', '.pdf', '.txt', '.ppt',
|
|
||||||
'.pptm', '.pptx']
|
|
||||||
|
|
||||||
|
|
||||||
# 修改后的 extract_text 函数,结合 SimpleDirectoryReader 和自定义解析逻辑
|
|
||||||
def extract_text(file_path):
|
|
||||||
_, ext = os.path.splitext(file_path.lower())
|
|
||||||
|
|
||||||
# 使用 SimpleDirectoryReader 处理它支持的文件格式
|
|
||||||
if ext in supports_format:
|
|
||||||
try:
|
|
||||||
reader = SimpleDirectoryReader(input_files=[file_path])
|
|
||||||
documents = reader.load_data()
|
|
||||||
if len(documents) > 0:
|
|
||||||
return documents[0].text
|
|
||||||
except Exception as e:
|
|
||||||
pass
|
|
||||||
|
|
||||||
return None
|
|
||||||
@@ -1,58 +0,0 @@
|
|||||||
from llama_index.core import VectorStoreIndex
|
|
||||||
from typing import Any, List, Optional
|
|
||||||
|
|
||||||
from llama_index.core.callbacks.base import CallbackManager
|
|
||||||
from llama_index.core.schema import TransformComponent
|
|
||||||
from llama_index.core.service_context import ServiceContext
|
|
||||||
from llama_index.core.settings import (
|
|
||||||
Settings,
|
|
||||||
callback_manager_from_settings_or_context,
|
|
||||||
transformations_from_settings_or_context,
|
|
||||||
)
|
|
||||||
from llama_index.core.storage.storage_context import StorageContext
|
|
||||||
|
|
||||||
|
|
||||||
class GptacVectorStoreIndex(VectorStoreIndex):
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def default_vector_store(
|
|
||||||
cls,
|
|
||||||
storage_context: Optional[StorageContext] = None,
|
|
||||||
show_progress: bool = False,
|
|
||||||
callback_manager: Optional[CallbackManager] = None,
|
|
||||||
transformations: Optional[List[TransformComponent]] = None,
|
|
||||||
# deprecated
|
|
||||||
service_context: Optional[ServiceContext] = None,
|
|
||||||
embed_model = None,
|
|
||||||
**kwargs: Any,
|
|
||||||
):
|
|
||||||
"""Create index from documents.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
documents (Optional[Sequence[BaseDocument]]): List of documents to
|
|
||||||
build the index from.
|
|
||||||
|
|
||||||
"""
|
|
||||||
storage_context = storage_context or StorageContext.from_defaults()
|
|
||||||
docstore = storage_context.docstore
|
|
||||||
callback_manager = (
|
|
||||||
callback_manager
|
|
||||||
or callback_manager_from_settings_or_context(Settings, service_context)
|
|
||||||
)
|
|
||||||
transformations = transformations or transformations_from_settings_or_context(
|
|
||||||
Settings, service_context
|
|
||||||
)
|
|
||||||
|
|
||||||
with callback_manager.as_trace("index_construction"):
|
|
||||||
|
|
||||||
return cls(
|
|
||||||
nodes=[],
|
|
||||||
storage_context=storage_context,
|
|
||||||
callback_manager=callback_manager,
|
|
||||||
show_progress=show_progress,
|
|
||||||
transformations=transformations,
|
|
||||||
service_context=service_context,
|
|
||||||
embed_model=embed_model,
|
|
||||||
**kwargs,
|
|
||||||
)
|
|
||||||
|
|
||||||
@@ -1,17 +1,16 @@
|
|||||||
# From project chatglm-langchain
|
# From project chatglm-langchain
|
||||||
|
|
||||||
|
import threading
|
||||||
|
from toolbox import Singleton
|
||||||
import os
|
import os
|
||||||
|
import shutil
|
||||||
import os
|
import os
|
||||||
import uuid
|
import uuid
|
||||||
import tqdm
|
import tqdm
|
||||||
import shutil
|
|
||||||
import threading
|
|
||||||
import numpy as np
|
|
||||||
from toolbox import Singleton
|
|
||||||
from loguru import logger
|
|
||||||
from langchain.vectorstores import FAISS
|
from langchain.vectorstores import FAISS
|
||||||
from langchain.docstore.document import Document
|
from langchain.docstore.document import Document
|
||||||
from typing import List, Tuple
|
from typing import List, Tuple
|
||||||
|
import numpy as np
|
||||||
from crazy_functions.vector_fns.general_file_loader import load_file
|
from crazy_functions.vector_fns.general_file_loader import load_file
|
||||||
|
|
||||||
embedding_model_dict = {
|
embedding_model_dict = {
|
||||||
@@ -151,17 +150,17 @@ class LocalDocQA:
|
|||||||
failed_files = []
|
failed_files = []
|
||||||
if isinstance(filepath, str):
|
if isinstance(filepath, str):
|
||||||
if not os.path.exists(filepath):
|
if not os.path.exists(filepath):
|
||||||
logger.error("路径不存在")
|
print("路径不存在")
|
||||||
return None
|
return None
|
||||||
elif os.path.isfile(filepath):
|
elif os.path.isfile(filepath):
|
||||||
file = os.path.split(filepath)[-1]
|
file = os.path.split(filepath)[-1]
|
||||||
try:
|
try:
|
||||||
docs = load_file(filepath, SENTENCE_SIZE)
|
docs = load_file(filepath, SENTENCE_SIZE)
|
||||||
logger.info(f"{file} 已成功加载")
|
print(f"{file} 已成功加载")
|
||||||
loaded_files.append(filepath)
|
loaded_files.append(filepath)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(e)
|
print(e)
|
||||||
logger.error(f"{file} 未能成功加载")
|
print(f"{file} 未能成功加载")
|
||||||
return None
|
return None
|
||||||
elif os.path.isdir(filepath):
|
elif os.path.isdir(filepath):
|
||||||
docs = []
|
docs = []
|
||||||
@@ -171,23 +170,23 @@ class LocalDocQA:
|
|||||||
docs += load_file(fullfilepath, SENTENCE_SIZE)
|
docs += load_file(fullfilepath, SENTENCE_SIZE)
|
||||||
loaded_files.append(fullfilepath)
|
loaded_files.append(fullfilepath)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(e)
|
print(e)
|
||||||
failed_files.append(file)
|
failed_files.append(file)
|
||||||
|
|
||||||
if len(failed_files) > 0:
|
if len(failed_files) > 0:
|
||||||
logger.error("以下文件未能成功加载:")
|
print("以下文件未能成功加载:")
|
||||||
for file in failed_files:
|
for file in failed_files:
|
||||||
logger.error(f"{file}\n")
|
print(f"{file}\n")
|
||||||
|
|
||||||
else:
|
else:
|
||||||
docs = []
|
docs = []
|
||||||
for file in filepath:
|
for file in filepath:
|
||||||
docs += load_file(file, SENTENCE_SIZE)
|
docs += load_file(file, SENTENCE_SIZE)
|
||||||
logger.info(f"{file} 已成功加载")
|
print(f"{file} 已成功加载")
|
||||||
loaded_files.append(file)
|
loaded_files.append(file)
|
||||||
|
|
||||||
if len(docs) > 0:
|
if len(docs) > 0:
|
||||||
logger.info("文件加载完毕,正在生成向量库")
|
print("文件加载完毕,正在生成向量库")
|
||||||
if vs_path and os.path.isdir(vs_path):
|
if vs_path and os.path.isdir(vs_path):
|
||||||
try:
|
try:
|
||||||
self.vector_store = FAISS.load_local(vs_path, text2vec)
|
self.vector_store = FAISS.load_local(vs_path, text2vec)
|
||||||
@@ -234,7 +233,7 @@ class LocalDocQA:
|
|||||||
prompt += "\n\n".join([f"({k}): " + doc.page_content for k, doc in enumerate(related_docs_with_score)])
|
prompt += "\n\n".join([f"({k}): " + doc.page_content for k, doc in enumerate(related_docs_with_score)])
|
||||||
prompt += "\n\n---\n\n"
|
prompt += "\n\n---\n\n"
|
||||||
prompt = prompt.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
prompt = prompt.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||||||
# logger.info(prompt)
|
# print(prompt)
|
||||||
response = {"query": query, "source_documents": related_docs_with_score}
|
response = {"query": query, "source_documents": related_docs_with_score}
|
||||||
return response, prompt
|
return response, prompt
|
||||||
|
|
||||||
@@ -263,7 +262,7 @@ def construct_vector_store(vs_id, vs_path, files, sentence_size, history, one_co
|
|||||||
else:
|
else:
|
||||||
pass
|
pass
|
||||||
# file_status = "文件未成功加载,请重新上传文件"
|
# file_status = "文件未成功加载,请重新上传文件"
|
||||||
# logger.info(file_status)
|
# print(file_status)
|
||||||
return local_doc_qa, vs_path
|
return local_doc_qa, vs_path
|
||||||
|
|
||||||
@Singleton
|
@Singleton
|
||||||
@@ -279,7 +278,7 @@ class knowledge_archive_interface():
|
|||||||
if self.text2vec_large_chinese is None:
|
if self.text2vec_large_chinese is None:
|
||||||
# < -------------------预热文本向量化模组--------------- >
|
# < -------------------预热文本向量化模组--------------- >
|
||||||
from toolbox import ProxyNetworkActivate
|
from toolbox import ProxyNetworkActivate
|
||||||
logger.info('Checking Text2vec ...')
|
print('Checking Text2vec ...')
|
||||||
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
||||||
with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络
|
with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络
|
||||||
self.text2vec_large_chinese = HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese")
|
self.text2vec_large_chinese = HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese")
|
||||||
|
|||||||
@@ -10,7 +10,7 @@ def read_avail_plugin_enum():
|
|||||||
from crazy_functional import get_crazy_functions
|
from crazy_functional import get_crazy_functions
|
||||||
plugin_arr = get_crazy_functions()
|
plugin_arr = get_crazy_functions()
|
||||||
# remove plugins with out explaination
|
# remove plugins with out explaination
|
||||||
plugin_arr = {k:v for k, v in plugin_arr.items() if ('Info' in v) and ('Function' in v)}
|
plugin_arr = {k:v for k, v in plugin_arr.items() if 'Info' in v}
|
||||||
plugin_arr_info = {"F_{:04d}".format(i):v["Info"] for i, v in enumerate(plugin_arr.values(), start=1)}
|
plugin_arr_info = {"F_{:04d}".format(i):v["Info"] for i, v in enumerate(plugin_arr.values(), start=1)}
|
||||||
plugin_arr_dict = {"F_{:04d}".format(i):v for i, v in enumerate(plugin_arr.values(), start=1)}
|
plugin_arr_dict = {"F_{:04d}".format(i):v for i, v in enumerate(plugin_arr.values(), start=1)}
|
||||||
plugin_arr_dict_parse = {"F_{:04d}".format(i):v for i, v in enumerate(plugin_arr.values(), start=1)}
|
plugin_arr_dict_parse = {"F_{:04d}".format(i):v for i, v in enumerate(plugin_arr.values(), start=1)}
|
||||||
|
|||||||
File diff suppressed because it is too large
Load Diff
@@ -1,19 +1,17 @@
|
|||||||
import re, requests, unicodedata, os
|
|
||||||
from toolbox import update_ui, get_log_folder
|
from toolbox import update_ui, get_log_folder
|
||||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||||
from toolbox import CatchException, report_exception, get_conf
|
from toolbox import CatchException, report_exception, get_conf
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
import re, requests, unicodedata, os
|
||||||
from loguru import logger
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
|
|
||||||
def download_arxiv_(url_pdf):
|
def download_arxiv_(url_pdf):
|
||||||
if 'arxiv.org' not in url_pdf:
|
if 'arxiv.org' not in url_pdf:
|
||||||
if ('.' in url_pdf) and ('/' not in url_pdf):
|
if ('.' in url_pdf) and ('/' not in url_pdf):
|
||||||
new_url = 'https://arxiv.org/abs/'+url_pdf
|
new_url = 'https://arxiv.org/abs/'+url_pdf
|
||||||
logger.info('下载编号:', url_pdf, '自动定位:', new_url)
|
print('下载编号:', url_pdf, '自动定位:', new_url)
|
||||||
# download_arxiv_(new_url)
|
# download_arxiv_(new_url)
|
||||||
return download_arxiv_(new_url)
|
return download_arxiv_(new_url)
|
||||||
else:
|
else:
|
||||||
logger.info('不能识别的URL!')
|
print('不能识别的URL!')
|
||||||
return None
|
return None
|
||||||
if 'abs' in url_pdf:
|
if 'abs' in url_pdf:
|
||||||
url_pdf = url_pdf.replace('abs', 'pdf')
|
url_pdf = url_pdf.replace('abs', 'pdf')
|
||||||
@@ -44,12 +42,15 @@ def download_arxiv_(url_pdf):
|
|||||||
requests_pdf_url = url_pdf
|
requests_pdf_url = url_pdf
|
||||||
file_path = download_dir+title_str
|
file_path = download_dir+title_str
|
||||||
|
|
||||||
logger.info('下载中')
|
print('下载中')
|
||||||
proxies = get_conf('proxies')
|
proxies = get_conf('proxies')
|
||||||
r = requests.get(requests_pdf_url, proxies=proxies)
|
r = requests.get(requests_pdf_url, proxies=proxies)
|
||||||
with open(file_path, 'wb+') as f:
|
with open(file_path, 'wb+') as f:
|
||||||
f.write(r.content)
|
f.write(r.content)
|
||||||
logger.info('下载完成')
|
print('下载完成')
|
||||||
|
|
||||||
|
# print('输出下载命令:','aria2c -o \"%s\" %s'%(title_str,url_pdf))
|
||||||
|
# subprocess.call('aria2c --all-proxy=\"172.18.116.150:11084\" -o \"%s\" %s'%(download_dir+title_str,url_pdf), shell=True)
|
||||||
|
|
||||||
x = "%s %s %s.bib" % (paper_id, other_info['year'], other_info['authors'])
|
x = "%s %s %s.bib" % (paper_id, other_info['year'], other_info['authors'])
|
||||||
x = x.replace('?', '?')\
|
x = x.replace('?', '?')\
|
||||||
@@ -62,9 +63,19 @@ def download_arxiv_(url_pdf):
|
|||||||
|
|
||||||
|
|
||||||
def get_name(_url_):
|
def get_name(_url_):
|
||||||
|
import os
|
||||||
from bs4 import BeautifulSoup
|
from bs4 import BeautifulSoup
|
||||||
logger.info('正在获取文献名!')
|
print('正在获取文献名!')
|
||||||
logger.info(_url_)
|
print(_url_)
|
||||||
|
|
||||||
|
# arxiv_recall = {}
|
||||||
|
# if os.path.exists('./arxiv_recall.pkl'):
|
||||||
|
# with open('./arxiv_recall.pkl', 'rb') as f:
|
||||||
|
# arxiv_recall = pickle.load(f)
|
||||||
|
|
||||||
|
# if _url_ in arxiv_recall:
|
||||||
|
# print('在缓存中')
|
||||||
|
# return arxiv_recall[_url_]
|
||||||
|
|
||||||
proxies = get_conf('proxies')
|
proxies = get_conf('proxies')
|
||||||
res = requests.get(_url_, proxies=proxies)
|
res = requests.get(_url_, proxies=proxies)
|
||||||
@@ -81,7 +92,7 @@ def get_name(_url_):
|
|||||||
other_details['abstract'] = abstract
|
other_details['abstract'] = abstract
|
||||||
except:
|
except:
|
||||||
other_details['year'] = ''
|
other_details['year'] = ''
|
||||||
logger.info('年份获取失败')
|
print('年份获取失败')
|
||||||
|
|
||||||
# get author
|
# get author
|
||||||
try:
|
try:
|
||||||
@@ -90,7 +101,7 @@ def get_name(_url_):
|
|||||||
other_details['authors'] = authors
|
other_details['authors'] = authors
|
||||||
except:
|
except:
|
||||||
other_details['authors'] = ''
|
other_details['authors'] = ''
|
||||||
logger.info('authors获取失败')
|
print('authors获取失败')
|
||||||
|
|
||||||
# get comment
|
# get comment
|
||||||
try:
|
try:
|
||||||
@@ -105,11 +116,11 @@ def get_name(_url_):
|
|||||||
other_details['comment'] = ''
|
other_details['comment'] = ''
|
||||||
except:
|
except:
|
||||||
other_details['comment'] = ''
|
other_details['comment'] = ''
|
||||||
logger.info('年份获取失败')
|
print('年份获取失败')
|
||||||
|
|
||||||
title_str = BeautifulSoup(
|
title_str = BeautifulSoup(
|
||||||
res.text, 'html.parser').find('title').contents[0]
|
res.text, 'html.parser').find('title').contents[0]
|
||||||
logger.info('获取成功:', title_str)
|
print('获取成功:', title_str)
|
||||||
# arxiv_recall[_url_] = (title_str+'.pdf', other_details)
|
# arxiv_recall[_url_] = (title_str+'.pdf', other_details)
|
||||||
# with open('./arxiv_recall.pkl', 'wb') as f:
|
# with open('./arxiv_recall.pkl', 'wb') as f:
|
||||||
# pickle.dump(arxiv_recall, f)
|
# pickle.dump(arxiv_recall, f)
|
||||||
|
|||||||
@@ -1,5 +1,6 @@
|
|||||||
from toolbox import CatchException, update_ui
|
from toolbox import CatchException, update_ui
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
|
|
||||||
|
|
||||||
@CatchException
|
@CatchException
|
||||||
def 交互功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
def 交互功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||||
|
|||||||
@@ -16,8 +16,8 @@ Testing:
|
|||||||
|
|
||||||
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, is_the_upload_folder
|
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, is_the_upload_folder
|
||||||
from toolbox import promote_file_to_downloadzone, get_log_folder, update_ui_lastest_msg
|
from toolbox import promote_file_to_downloadzone, get_log_folder, update_ui_lastest_msg
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_plugin_arg
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_plugin_arg
|
||||||
from crazy_functions.crazy_utils import input_clipping, try_install_deps
|
from .crazy_utils import input_clipping, try_install_deps
|
||||||
from crazy_functions.gen_fns.gen_fns_shared import is_function_successfully_generated
|
from crazy_functions.gen_fns.gen_fns_shared import is_function_successfully_generated
|
||||||
from crazy_functions.gen_fns.gen_fns_shared import get_class_name
|
from crazy_functions.gen_fns.gen_fns_shared import get_class_name
|
||||||
from crazy_functions.gen_fns.gen_fns_shared import subprocess_worker
|
from crazy_functions.gen_fns.gen_fns_shared import subprocess_worker
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
from toolbox import CatchException, update_ui, gen_time_str
|
from toolbox import CatchException, update_ui, gen_time_str
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from crazy_functions.crazy_utils import input_clipping
|
from .crazy_utils import input_clipping
|
||||||
import copy, json
|
import copy, json
|
||||||
|
|
||||||
@CatchException
|
@CatchException
|
||||||
|
|||||||
@@ -30,7 +30,7 @@ def gen_image(llm_kwargs, prompt, resolution="1024x1024", model="dall-e-2", qual
|
|||||||
if style is not None:
|
if style is not None:
|
||||||
data['style'] = style
|
data['style'] = style
|
||||||
response = requests.post(url, headers=headers, json=data, proxies=proxies)
|
response = requests.post(url, headers=headers, json=data, proxies=proxies)
|
||||||
# logger.info(response.content)
|
print(response.content)
|
||||||
try:
|
try:
|
||||||
image_url = json.loads(response.content.decode('utf8'))['data'][0]['url']
|
image_url = json.loads(response.content.decode('utf8'))['data'][0]['url']
|
||||||
except:
|
except:
|
||||||
@@ -76,7 +76,7 @@ def edit_image(llm_kwargs, prompt, image_path, resolution="1024x1024", model="da
|
|||||||
}
|
}
|
||||||
|
|
||||||
response = requests.post(url, headers=headers, files=files, proxies=proxies)
|
response = requests.post(url, headers=headers, files=files, proxies=proxies)
|
||||||
# logger.info(response.content)
|
print(response.content)
|
||||||
try:
|
try:
|
||||||
image_url = json.loads(response.content.decode('utf8'))['data'][0]['url']
|
image_url = json.loads(response.content.decode('utf8'))['data'][0]['url']
|
||||||
except:
|
except:
|
||||||
@@ -108,7 +108,7 @@ def 图片生成_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, sys
|
|||||||
chatbot.append((prompt, "[Local Message] 图像生成提示为空白,请在“输入区”输入图像生成提示。"))
|
chatbot.append((prompt, "[Local Message] 图像生成提示为空白,请在“输入区”输入图像生成提示。"))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新
|
||||||
return
|
return
|
||||||
chatbot.append(("您正在调用“图像生成”插件。", "[Local Message] 生成图像, 使用前请切换模型到GPT系列。如果中文Prompt效果不理想, 请尝试英文Prompt。正在处理中 ....."))
|
chatbot.append(("您正在调用“图像生成”插件。", "[Local Message] 生成图像, 请先把模型切换至gpt-*。如果中文Prompt效果不理想, 请尝试英文Prompt。正在处理中 ....."))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||||
resolution = plugin_kwargs.get("advanced_arg", '1024x1024')
|
resolution = plugin_kwargs.get("advanced_arg", '1024x1024')
|
||||||
@@ -129,7 +129,7 @@ def 图片生成_DALLE3(prompt, llm_kwargs, plugin_kwargs, chatbot, history, sys
|
|||||||
chatbot.append((prompt, "[Local Message] 图像生成提示为空白,请在“输入区”输入图像生成提示。"))
|
chatbot.append((prompt, "[Local Message] 图像生成提示为空白,请在“输入区”输入图像生成提示。"))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新
|
||||||
return
|
return
|
||||||
chatbot.append(("您正在调用“图像生成”插件。", "[Local Message] 生成图像, 使用前请切换模型到GPT系列。如果中文Prompt效果不理想, 请尝试英文Prompt。正在处理中 ....."))
|
chatbot.append(("您正在调用“图像生成”插件。", "[Local Message] 生成图像, 请先把模型切换至gpt-*。如果中文Prompt效果不理想, 请尝试英文Prompt。正在处理中 ....."))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||||
resolution_arg = plugin_kwargs.get("advanced_arg", '1024x1024-standard-vivid').lower()
|
resolution_arg = plugin_kwargs.get("advanced_arg", '1024x1024-standard-vivid').lower()
|
||||||
@@ -166,7 +166,7 @@ class ImageEditState(GptAcademicState):
|
|||||||
return confirm, file
|
return confirm, file
|
||||||
|
|
||||||
def lock_plugin(self, chatbot):
|
def lock_plugin(self, chatbot):
|
||||||
chatbot._cookies['lock_plugin'] = 'crazy_functions.Image_Generate->图片修改_DALLE2'
|
chatbot._cookies['lock_plugin'] = 'crazy_functions.图片生成->图片修改_DALLE2'
|
||||||
self.dump_state(chatbot)
|
self.dump_state(chatbot)
|
||||||
|
|
||||||
def unlock_plugin(self, chatbot):
|
def unlock_plugin(self, chatbot):
|
||||||
@@ -6,14 +6,13 @@
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
import time
|
|
||||||
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, ProxyNetworkActivate
|
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, ProxyNetworkActivate
|
||||||
from toolbox import get_conf, select_api_key, update_ui_lastest_msg, Singleton
|
from toolbox import get_conf, select_api_key, update_ui_lastest_msg, Singleton
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_plugin_arg
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_plugin_arg
|
||||||
from crazy_functions.crazy_utils import input_clipping, try_install_deps
|
from crazy_functions.crazy_utils import input_clipping, try_install_deps
|
||||||
from crazy_functions.agent_fns.persistent import GradioMultiuserManagerForPersistentClasses
|
from crazy_functions.agent_fns.persistent import GradioMultiuserManagerForPersistentClasses
|
||||||
from crazy_functions.agent_fns.auto_agent import AutoGenMath
|
from crazy_functions.agent_fns.auto_agent import AutoGenMath
|
||||||
from loguru import logger
|
import time
|
||||||
|
|
||||||
def remove_model_prefix(llm):
|
def remove_model_prefix(llm):
|
||||||
if llm.startswith('api2d-'): llm = llm.replace('api2d-', '')
|
if llm.startswith('api2d-'): llm = llm.replace('api2d-', '')
|
||||||
@@ -81,12 +80,12 @@ def 多智能体终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
|||||||
persistent_key = f"{user_uuid}->多智能体终端"
|
persistent_key = f"{user_uuid}->多智能体终端"
|
||||||
if persistent_class_multi_user_manager.already_alive(persistent_key):
|
if persistent_class_multi_user_manager.already_alive(persistent_key):
|
||||||
# 当已经存在一个正在运行的多智能体终端时,直接将用户输入传递给它,而不是再次启动一个新的多智能体终端
|
# 当已经存在一个正在运行的多智能体终端时,直接将用户输入传递给它,而不是再次启动一个新的多智能体终端
|
||||||
logger.info('[debug] feed new user input')
|
print('[debug] feed new user input')
|
||||||
executor = persistent_class_multi_user_manager.get(persistent_key)
|
executor = persistent_class_multi_user_manager.get(persistent_key)
|
||||||
exit_reason = yield from executor.main_process_ui_control(txt, create_or_resume="resume")
|
exit_reason = yield from executor.main_process_ui_control(txt, create_or_resume="resume")
|
||||||
else:
|
else:
|
||||||
# 运行多智能体终端 (首次)
|
# 运行多智能体终端 (首次)
|
||||||
logger.info('[debug] create new executor instance')
|
print('[debug] create new executor instance')
|
||||||
history = []
|
history = []
|
||||||
chatbot.append(["正在启动: 多智能体终端", "插件动态生成, 执行开始, 作者 Microsoft & Binary-Husky."])
|
chatbot.append(["正在启动: 多智能体终端", "插件动态生成, 执行开始, 作者 Microsoft & Binary-Husky."])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|||||||
@@ -1,5 +1,4 @@
|
|||||||
from toolbox import CatchException, update_ui, promote_file_to_downloadzone, get_log_folder, get_user
|
from toolbox import CatchException, update_ui, promote_file_to_downloadzone, get_log_folder, get_user
|
||||||
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
|
|
||||||
import re
|
import re
|
||||||
|
|
||||||
f_prefix = 'GPT-Academic对话存档'
|
f_prefix = 'GPT-Academic对话存档'
|
||||||
@@ -10,61 +9,27 @@ def write_chat_to_file(chatbot, history=None, file_name=None):
|
|||||||
"""
|
"""
|
||||||
import os
|
import os
|
||||||
import time
|
import time
|
||||||
from themes.theme import advanced_css
|
|
||||||
|
|
||||||
if file_name is None:
|
if file_name is None:
|
||||||
file_name = f_prefix + time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + '.html'
|
file_name = f_prefix + time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + '.html'
|
||||||
fp = os.path.join(get_log_folder(get_user(chatbot), plugin_name='chat_history'), file_name)
|
fp = os.path.join(get_log_folder(get_user(chatbot), plugin_name='chat_history'), file_name)
|
||||||
|
|
||||||
with open(fp, 'w', encoding='utf8') as f:
|
with open(fp, 'w', encoding='utf8') as f:
|
||||||
from textwrap import dedent
|
from themes.theme import advanced_css
|
||||||
form = dedent("""
|
f.write(f'<!DOCTYPE html><head><meta charset="utf-8"><title>对话历史</title><style>{advanced_css}</style></head>')
|
||||||
<!DOCTYPE html><head><meta charset="utf-8"><title>对话存档</title><style>{CSS}</style></head>
|
|
||||||
<body>
|
|
||||||
<div class="test_temp1" style="width:10%; height: 500px; float:left;"></div>
|
|
||||||
<div class="test_temp2" style="width:80%;padding: 40px;float:left;padding-left: 20px;padding-right: 20px;box-shadow: rgba(0, 0, 0, 0.2) 0px 0px 8px 8px;border-radius: 10px;">
|
|
||||||
<div class="chat-body" style="display: flex;justify-content: center;flex-direction: column;align-items: center;flex-wrap: nowrap;">
|
|
||||||
{CHAT_PREVIEW}
|
|
||||||
<div></div>
|
|
||||||
<div></div>
|
|
||||||
<div style="text-align: center;width:80%;padding: 0px;float:left;padding-left:20px;padding-right:20px;box-shadow: rgba(0, 0, 0, 0.05) 0px 0px 1px 2px;border-radius: 1px;">对话(原始数据)</div>
|
|
||||||
{HISTORY_PREVIEW}
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
<div class="test_temp3" style="width:10%; height: 500px; float:left;"></div>
|
|
||||||
</body>
|
|
||||||
""")
|
|
||||||
|
|
||||||
qa_from = dedent("""
|
|
||||||
<div class="QaBox" style="width:80%;padding: 20px;margin-bottom: 20px;box-shadow: rgb(0 255 159 / 50%) 0px 0px 1px 2px;border-radius: 4px;">
|
|
||||||
<div class="Question" style="border-radius: 2px;">{QUESTION}</div>
|
|
||||||
<hr color="blue" style="border-top: dotted 2px #ccc;">
|
|
||||||
<div class="Answer" style="border-radius: 2px;">{ANSWER}</div>
|
|
||||||
</div>
|
|
||||||
""")
|
|
||||||
|
|
||||||
history_from = dedent("""
|
|
||||||
<div class="historyBox" style="width:80%;padding: 0px;float:left;padding-left:20px;padding-right:20px;box-shadow: rgba(0, 0, 0, 0.05) 0px 0px 1px 2px;border-radius: 1px;">
|
|
||||||
<div class="entry" style="border-radius: 2px;">{ENTRY}</div>
|
|
||||||
</div>
|
|
||||||
""")
|
|
||||||
CHAT_PREVIEW_BUF = ""
|
|
||||||
for i, contents in enumerate(chatbot):
|
for i, contents in enumerate(chatbot):
|
||||||
question, answer = contents[0], contents[1]
|
for j, content in enumerate(contents):
|
||||||
if question is None: question = ""
|
try: # 这个bug没找到触发条件,暂时先这样顶一下
|
||||||
try: question = str(question)
|
if type(content) != str: content = str(content)
|
||||||
except: question = ""
|
except:
|
||||||
if answer is None: answer = ""
|
continue
|
||||||
try: answer = str(answer)
|
f.write(content)
|
||||||
except: answer = ""
|
if j == 0:
|
||||||
CHAT_PREVIEW_BUF += qa_from.format(QUESTION=question, ANSWER=answer)
|
f.write('<hr style="border-top: dotted 3px #ccc;">')
|
||||||
|
f.write('<hr color="red"> \n\n')
|
||||||
HISTORY_PREVIEW_BUF = ""
|
f.write('<hr color="blue"> \n\n raw chat context:\n')
|
||||||
|
f.write('<code>')
|
||||||
for h in history:
|
for h in history:
|
||||||
HISTORY_PREVIEW_BUF += history_from.format(ENTRY=h)
|
f.write("\n>>>" + h)
|
||||||
html_content = form.format(CHAT_PREVIEW=CHAT_PREVIEW_BUF, HISTORY_PREVIEW=HISTORY_PREVIEW_BUF, CSS=advanced_css)
|
f.write('</code>')
|
||||||
f.write(html_content)
|
|
||||||
|
|
||||||
promote_file_to_downloadzone(fp, rename_file=file_name, chatbot=chatbot)
|
promote_file_to_downloadzone(fp, rename_file=file_name, chatbot=chatbot)
|
||||||
return '对话历史写入:' + fp
|
return '对话历史写入:' + fp
|
||||||
|
|
||||||
@@ -75,7 +40,7 @@ def gen_file_preview(file_name):
|
|||||||
# pattern to match the text between <head> and </head>
|
# pattern to match the text between <head> and </head>
|
||||||
pattern = re.compile(r'<head>.*?</head>', flags=re.DOTALL)
|
pattern = re.compile(r'<head>.*?</head>', flags=re.DOTALL)
|
||||||
file_content = re.sub(pattern, '', file_content)
|
file_content = re.sub(pattern, '', file_content)
|
||||||
html, history = file_content.split('<hr color="blue"> \n\n 对话数据 (无渲染):\n')
|
html, history = file_content.split('<hr color="blue"> \n\n raw chat context:\n')
|
||||||
history = history.strip('<code>')
|
history = history.strip('<code>')
|
||||||
history = history.strip('</code>')
|
history = history.strip('</code>')
|
||||||
history = history.split("\n>>>")
|
history = history.split("\n>>>")
|
||||||
@@ -86,25 +51,21 @@ def gen_file_preview(file_name):
|
|||||||
def read_file_to_chat(chatbot, history, file_name):
|
def read_file_to_chat(chatbot, history, file_name):
|
||||||
with open(file_name, 'r', encoding='utf8') as f:
|
with open(file_name, 'r', encoding='utf8') as f:
|
||||||
file_content = f.read()
|
file_content = f.read()
|
||||||
from bs4 import BeautifulSoup
|
# pattern to match the text between <head> and </head>
|
||||||
soup = BeautifulSoup(file_content, 'lxml')
|
pattern = re.compile(r'<head>.*?</head>', flags=re.DOTALL)
|
||||||
# 提取QaBox信息
|
file_content = re.sub(pattern, '', file_content)
|
||||||
|
html, history = file_content.split('<hr color="blue"> \n\n raw chat context:\n')
|
||||||
|
history = history.strip('<code>')
|
||||||
|
history = history.strip('</code>')
|
||||||
|
history = history.split("\n>>>")
|
||||||
|
history = list(filter(lambda x:x!="", history))
|
||||||
|
html = html.split('<hr color="red"> \n\n')
|
||||||
|
html = list(filter(lambda x:x!="", html))
|
||||||
chatbot.clear()
|
chatbot.clear()
|
||||||
qa_box_list = []
|
for i, h in enumerate(html):
|
||||||
qa_boxes = soup.find_all("div", class_="QaBox")
|
i_say, gpt_say = h.split('<hr style="border-top: dotted 3px #ccc;">')
|
||||||
for box in qa_boxes:
|
chatbot.append([i_say, gpt_say])
|
||||||
question = box.find("div", class_="Question").get_text(strip=False)
|
chatbot.append([f"存档文件详情?", f"[Local Message] 载入对话{len(html)}条,上下文{len(history)}条。"])
|
||||||
answer = box.find("div", class_="Answer").get_text(strip=False)
|
|
||||||
qa_box_list.append({"Question": question, "Answer": answer})
|
|
||||||
chatbot.append([question, answer])
|
|
||||||
# 提取historyBox信息
|
|
||||||
history_box_list = []
|
|
||||||
history_boxes = soup.find_all("div", class_="historyBox")
|
|
||||||
for box in history_boxes:
|
|
||||||
entry = box.find("div", class_="entry").get_text(strip=False)
|
|
||||||
history_box_list.append(entry)
|
|
||||||
history = history_box_list
|
|
||||||
chatbot.append([None, f"[Local Message] 载入对话{len(qa_box_list)}条,上下文{len(history)}条。"])
|
|
||||||
return chatbot, history
|
return chatbot, history
|
||||||
|
|
||||||
@CatchException
|
@CatchException
|
||||||
@@ -118,42 +79,11 @@ def 对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
|||||||
system_prompt 给gpt的静默提醒
|
system_prompt 给gpt的静默提醒
|
||||||
user_request 当前用户的请求信息(IP地址等)
|
user_request 当前用户的请求信息(IP地址等)
|
||||||
"""
|
"""
|
||||||
file_name = plugin_kwargs.get("file_name", None)
|
|
||||||
if (file_name is not None) and (file_name != "") and (not file_name.endswith('.html')): file_name += '.html'
|
|
||||||
else: file_name = None
|
|
||||||
|
|
||||||
chatbot.append((None, f"[Local Message] {write_chat_to_file(chatbot, history, file_name)},您可以调用下拉菜单中的“载入对话历史存档”还原当下的对话。"))
|
chatbot.append(("保存当前对话",
|
||||||
|
f"[Local Message] {write_chat_to_file(chatbot, history)},您可以调用下拉菜单中的“载入对话历史存档”还原当下的对话。"))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||||
|
|
||||||
|
|
||||||
class Conversation_To_File_Wrap(GptAcademicPluginTemplate):
|
|
||||||
def __init__(self):
|
|
||||||
"""
|
|
||||||
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
|
|
||||||
"""
|
|
||||||
pass
|
|
||||||
|
|
||||||
def define_arg_selection_menu(self):
|
|
||||||
"""
|
|
||||||
定义插件的二级选项菜单
|
|
||||||
|
|
||||||
第一个参数,名称`file_name`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
|
|
||||||
"""
|
|
||||||
gui_definition = {
|
|
||||||
"file_name": ArgProperty(title="保存文件名", description="输入对话存档文件名,留空则使用时间作为文件名", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
|
|
||||||
}
|
|
||||||
return gui_definition
|
|
||||||
|
|
||||||
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
|
||||||
"""
|
|
||||||
执行插件
|
|
||||||
"""
|
|
||||||
yield from 对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def hide_cwd(str):
|
def hide_cwd(str):
|
||||||
import os
|
import os
|
||||||
current_path = os.getcwd()
|
current_path = os.getcwd()
|
||||||
@@ -171,7 +101,7 @@ def 载入对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
|||||||
system_prompt 给gpt的静默提醒
|
system_prompt 给gpt的静默提醒
|
||||||
user_request 当前用户的请求信息(IP地址等)
|
user_request 当前用户的请求信息(IP地址等)
|
||||||
"""
|
"""
|
||||||
from crazy_functions.crazy_utils import get_files_from_everything
|
from .crazy_utils import get_files_from_everything
|
||||||
success, file_manifest, _ = get_files_from_everything(txt, type='.html')
|
success, file_manifest, _ = get_files_from_everything(txt, type='.html')
|
||||||
|
|
||||||
if not success:
|
if not success:
|
||||||
@@ -218,3 +148,5 @@ def 删除所有本地对话历史记录(txt, llm_kwargs, plugin_kwargs, chatbot
|
|||||||
chatbot.append([f"删除所有历史对话文件", f"已删除<br/>{local_history}"])
|
chatbot.append([f"删除所有历史对话文件", f"已删除<br/>{local_history}"])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
return
|
return
|
||||||
|
|
||||||
|
|
||||||
@@ -1,7 +1,7 @@
|
|||||||
from toolbox import update_ui
|
from toolbox import update_ui
|
||||||
from toolbox import CatchException, report_exception
|
from toolbox import CatchException, report_exception
|
||||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
fast_debug = False
|
fast_debug = False
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -1,5 +1,5 @@
|
|||||||
from toolbox import CatchException, report_exception, select_api_key, update_ui, get_conf
|
from toolbox import CatchException, report_exception, select_api_key, update_ui, get_conf
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from toolbox import write_history_to_file, promote_file_to_downloadzone, get_log_folder
|
from toolbox import write_history_to_file, promote_file_to_downloadzone, get_log_folder
|
||||||
|
|
||||||
def split_audio_file(filename, split_duration=1000):
|
def split_audio_file(filename, split_duration=1000):
|
||||||
|
|||||||
@@ -1,6 +1,5 @@
|
|||||||
import glob, shutil, os, re
|
import glob, time, os, re, logging
|
||||||
from loguru import logger
|
from toolbox import update_ui, trimmed_format_exc, gen_time_str, disable_auto_promotion
|
||||||
from toolbox import update_ui, trimmed_format_exc, gen_time_str
|
|
||||||
from toolbox import CatchException, report_exception, get_log_folder
|
from toolbox import CatchException, report_exception, get_log_folder
|
||||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||||
fast_debug = False
|
fast_debug = False
|
||||||
@@ -19,7 +18,7 @@ class PaperFileGroup():
|
|||||||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||||||
self.get_token_num = get_token_num
|
self.get_token_num = get_token_num
|
||||||
|
|
||||||
def run_file_split(self, max_token_limit=2048):
|
def run_file_split(self, max_token_limit=1900):
|
||||||
"""
|
"""
|
||||||
将长文本分离开来
|
将长文本分离开来
|
||||||
"""
|
"""
|
||||||
@@ -35,7 +34,7 @@ class PaperFileGroup():
|
|||||||
self.sp_file_contents.append(segment)
|
self.sp_file_contents.append(segment)
|
||||||
self.sp_file_index.append(index)
|
self.sp_file_index.append(index)
|
||||||
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.md")
|
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.md")
|
||||||
logger.info('Segmentation: done')
|
logging.info('Segmentation: done')
|
||||||
|
|
||||||
def merge_result(self):
|
def merge_result(self):
|
||||||
self.file_result = ["" for _ in range(len(self.file_paths))]
|
self.file_result = ["" for _ in range(len(self.file_paths))]
|
||||||
@@ -52,7 +51,7 @@ class PaperFileGroup():
|
|||||||
return manifest
|
return manifest
|
||||||
|
|
||||||
def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en'):
|
def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en'):
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
|
|
||||||
# <-------- 读取Markdown文件,删除其中的所有注释 ---------->
|
# <-------- 读取Markdown文件,删除其中的所有注释 ---------->
|
||||||
pfg = PaperFileGroup()
|
pfg = PaperFileGroup()
|
||||||
@@ -65,25 +64,25 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
|||||||
pfg.file_contents.append(file_content)
|
pfg.file_contents.append(file_content)
|
||||||
|
|
||||||
# <-------- 拆分过长的Markdown文件 ---------->
|
# <-------- 拆分过长的Markdown文件 ---------->
|
||||||
pfg.run_file_split(max_token_limit=1024)
|
pfg.run_file_split(max_token_limit=1500)
|
||||||
n_split = len(pfg.sp_file_contents)
|
n_split = len(pfg.sp_file_contents)
|
||||||
|
|
||||||
# <-------- 多线程翻译开始 ---------->
|
# <-------- 多线程翻译开始 ---------->
|
||||||
if language == 'en->zh':
|
if language == 'en->zh':
|
||||||
inputs_array = ["This is a Markdown file, translate it into Chinese, do NOT modify any existing Markdown commands, do NOT use code wrapper (```), ONLY answer me with translated results:" +
|
inputs_array = ["This is a Markdown file, translate it into Chinese, do not modify any existing Markdown commands:" +
|
||||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||||
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
||||||
sys_prompt_array = ["You are a professional academic paper translator." + plugin_kwargs.get("additional_prompt", "") for _ in range(n_split)]
|
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
|
||||||
elif language == 'zh->en':
|
elif language == 'zh->en':
|
||||||
inputs_array = [f"This is a Markdown file, translate it into English, do NOT modify any existing Markdown commands, do NOT use code wrapper (```), ONLY answer me with translated results:" +
|
inputs_array = [f"This is a Markdown file, translate it into English, do not modify any existing Markdown commands:" +
|
||||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||||
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
||||||
sys_prompt_array = ["You are a professional academic paper translator." + plugin_kwargs.get("additional_prompt", "") for _ in range(n_split)]
|
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
|
||||||
else:
|
else:
|
||||||
inputs_array = [f"This is a Markdown file, translate it into {language}, do NOT modify any existing Markdown commands, do NOT use code wrapper (```), ONLY answer me with translated results:" +
|
inputs_array = [f"This is a Markdown file, translate it into {language}, do not modify any existing Markdown commands, only answer me with translated results:" +
|
||||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||||
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
||||||
sys_prompt_array = ["You are a professional academic paper translator." + plugin_kwargs.get("additional_prompt", "") for _ in range(n_split)]
|
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
|
||||||
|
|
||||||
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||||
inputs_array=inputs_array,
|
inputs_array=inputs_array,
|
||||||
@@ -100,14 +99,9 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
|||||||
for i_say, gpt_say in zip(gpt_response_collection[0::2], gpt_response_collection[1::2]):
|
for i_say, gpt_say in zip(gpt_response_collection[0::2], gpt_response_collection[1::2]):
|
||||||
pfg.sp_file_result.append(gpt_say)
|
pfg.sp_file_result.append(gpt_say)
|
||||||
pfg.merge_result()
|
pfg.merge_result()
|
||||||
output_file_arr = pfg.write_result(language)
|
pfg.write_result(language)
|
||||||
for output_file in output_file_arr:
|
|
||||||
promote_file_to_downloadzone(output_file, chatbot=chatbot)
|
|
||||||
if 'markdown_expected_output_path' in plugin_kwargs:
|
|
||||||
expected_f_name = plugin_kwargs['markdown_expected_output_path']
|
|
||||||
shutil.copyfile(output_file, expected_f_name)
|
|
||||||
except:
|
except:
|
||||||
logger.error(trimmed_format_exc())
|
logging.error(trimmed_format_exc())
|
||||||
|
|
||||||
# <-------- 整理结果,退出 ---------->
|
# <-------- 整理结果,退出 ---------->
|
||||||
create_report_file_name = gen_time_str() + f"-chatgpt.md"
|
create_report_file_name = gen_time_str() + f"-chatgpt.md"
|
||||||
@@ -127,7 +121,7 @@ def get_files_from_everything(txt, preference=''):
|
|||||||
proxies = get_conf('proxies')
|
proxies = get_conf('proxies')
|
||||||
# 网络的远程文件
|
# 网络的远程文件
|
||||||
if preference == 'Github':
|
if preference == 'Github':
|
||||||
logger.info('正在从github下载资源 ...')
|
logging.info('正在从github下载资源 ...')
|
||||||
if not txt.endswith('.md'):
|
if not txt.endswith('.md'):
|
||||||
# Make a request to the GitHub API to retrieve the repository information
|
# Make a request to the GitHub API to retrieve the repository information
|
||||||
url = txt.replace("https://github.com/", "https://api.github.com/repos/") + '/readme'
|
url = txt.replace("https://github.com/", "https://api.github.com/repos/") + '/readme'
|
||||||
@@ -165,6 +159,7 @@ def Markdown英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
|
|||||||
"函数插件功能?",
|
"函数插件功能?",
|
||||||
"对整个Markdown项目进行翻译。函数插件贡献者: Binary-Husky"])
|
"对整个Markdown项目进行翻译。函数插件贡献者: Binary-Husky"])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
disable_auto_promotion(chatbot)
|
||||||
|
|
||||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||||
try:
|
try:
|
||||||
@@ -204,6 +199,7 @@ def Markdown中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
|
|||||||
"函数插件功能?",
|
"函数插件功能?",
|
||||||
"对整个Markdown项目进行翻译。函数插件贡献者: Binary-Husky"])
|
"对整个Markdown项目进行翻译。函数插件贡献者: Binary-Husky"])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
disable_auto_promotion(chatbot)
|
||||||
|
|
||||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||||
try:
|
try:
|
||||||
@@ -236,6 +232,7 @@ def Markdown翻译指定语言(txt, llm_kwargs, plugin_kwargs, chatbot, history,
|
|||||||
"函数插件功能?",
|
"函数插件功能?",
|
||||||
"对整个Markdown项目进行翻译。函数插件贡献者: Binary-Husky"])
|
"对整个Markdown项目进行翻译。函数插件贡献者: Binary-Husky"])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
disable_auto_promotion(chatbot)
|
||||||
|
|
||||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||||
try:
|
try:
|
||||||
@@ -1,18 +1,16 @@
|
|||||||
from loguru import logger
|
|
||||||
|
|
||||||
from toolbox import update_ui, promote_file_to_downloadzone, gen_time_str
|
from toolbox import update_ui, promote_file_to_downloadzone, gen_time_str
|
||||||
from toolbox import CatchException, report_exception
|
from toolbox import CatchException, report_exception
|
||||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from crazy_functions.crazy_utils import read_and_clean_pdf_text
|
from .crazy_utils import read_and_clean_pdf_text
|
||||||
from crazy_functions.crazy_utils import input_clipping
|
from .crazy_utils import input_clipping
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||||
file_write_buffer = []
|
file_write_buffer = []
|
||||||
for file_name in file_manifest:
|
for file_name in file_manifest:
|
||||||
logger.info('begin analysis on:', file_name)
|
print('begin analysis on:', file_name)
|
||||||
############################## <第 0 步,切割PDF> ##################################
|
############################## <第 0 步,切割PDF> ##################################
|
||||||
# 递归地切割PDF文件,每一块(尽量是完整的一个section,比如introduction,experiment等,必要时再进行切割)
|
# 递归地切割PDF文件,每一块(尽量是完整的一个section,比如introduction,experiment等,必要时再进行切割)
|
||||||
# 的长度必须小于 2500 个 Token
|
# 的长度必须小于 2500 个 Token
|
||||||
@@ -40,7 +38,7 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
|
|||||||
last_iteration_result = paper_meta # 初始值是摘要
|
last_iteration_result = paper_meta # 初始值是摘要
|
||||||
MAX_WORD_TOTAL = 4096 * 0.7
|
MAX_WORD_TOTAL = 4096 * 0.7
|
||||||
n_fragment = len(paper_fragments)
|
n_fragment = len(paper_fragments)
|
||||||
if n_fragment >= 20: logger.warning('文章极长,不能达到预期效果')
|
if n_fragment >= 20: print('文章极长,不能达到预期效果')
|
||||||
for i in range(n_fragment):
|
for i in range(n_fragment):
|
||||||
NUM_OF_WORD = MAX_WORD_TOTAL // n_fragment
|
NUM_OF_WORD = MAX_WORD_TOTAL // n_fragment
|
||||||
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} Chinese characters: {paper_fragments[i]}"
|
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} Chinese characters: {paper_fragments[i]}"
|
||||||
|
|||||||
@@ -1,7 +1,6 @@
|
|||||||
from loguru import logger
|
|
||||||
from toolbox import update_ui
|
from toolbox import update_ui
|
||||||
from toolbox import CatchException, report_exception
|
from toolbox import CatchException, report_exception
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||||
|
|
||||||
fast_debug = False
|
fast_debug = False
|
||||||
@@ -58,6 +57,7 @@ def readPdf(pdfPath):
|
|||||||
layout = device.get_result()
|
layout = device.get_result()
|
||||||
for obj in layout._objs:
|
for obj in layout._objs:
|
||||||
if isinstance(obj, pdfminer.layout.LTTextBoxHorizontal):
|
if isinstance(obj, pdfminer.layout.LTTextBoxHorizontal):
|
||||||
|
# print(obj.get_text())
|
||||||
outTextList.append(obj.get_text())
|
outTextList.append(obj.get_text())
|
||||||
|
|
||||||
return outTextList
|
return outTextList
|
||||||
@@ -66,7 +66,7 @@ def readPdf(pdfPath):
|
|||||||
def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||||
import time, glob, os
|
import time, glob, os
|
||||||
from bs4 import BeautifulSoup
|
from bs4 import BeautifulSoup
|
||||||
logger.info('begin analysis on:', file_manifest)
|
print('begin analysis on:', file_manifest)
|
||||||
for index, fp in enumerate(file_manifest):
|
for index, fp in enumerate(file_manifest):
|
||||||
if ".tex" in fp:
|
if ".tex" in fp:
|
||||||
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
|
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
|
||||||
@@ -77,7 +77,7 @@ def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbo
|
|||||||
|
|
||||||
prefix = "接下来请你逐文件分析下面的论文文件,概括其内容" if index==0 else ""
|
prefix = "接下来请你逐文件分析下面的论文文件,概括其内容" if index==0 else ""
|
||||||
i_say = prefix + f'请对下面的文章片段用中文做一个概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{file_content}```'
|
i_say = prefix + f'请对下面的文章片段用中文做一个概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{file_content}```'
|
||||||
i_say_show_user = prefix + f'[{index+1}/{len(file_manifest)}] 请对下面的文章片段做一个概述: {os.path.abspath(fp)}'
|
i_say_show_user = prefix + f'[{index}/{len(file_manifest)}] 请对下面的文章片段做一个概述: {os.path.abspath(fp)}'
|
||||||
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
|
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
|
|||||||
@@ -1,11 +1,11 @@
|
|||||||
from toolbox import CatchException, report_exception, get_log_folder, gen_time_str
|
from toolbox import CatchException, report_exception, get_log_folder, gen_time_str
|
||||||
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
|
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
|
||||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
from crazy_functions.crazy_utils import read_and_clean_pdf_text
|
from .crazy_utils import read_and_clean_pdf_text
|
||||||
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url, translate_pdf
|
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url, translate_pdf
|
||||||
from shared_utils.colorful import *
|
from colorful import *
|
||||||
import copy
|
import copy
|
||||||
import os
|
import os
|
||||||
import math
|
import math
|
||||||
@@ -60,7 +60,7 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
# 清空历史,以免输入溢出
|
# 清空历史,以免输入溢出
|
||||||
history = []
|
history = []
|
||||||
|
|
||||||
from crazy_functions.crazy_utils import get_files_from_everything
|
from .crazy_utils import get_files_from_everything
|
||||||
success, file_manifest, project_folder = get_files_from_everything(txt, type='.pdf')
|
success, file_manifest, project_folder = get_files_from_everything(txt, type='.pdf')
|
||||||
if len(file_manifest) > 0:
|
if len(file_manifest) > 0:
|
||||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||||
|
|||||||
@@ -1,16 +1,83 @@
|
|||||||
from toolbox import get_log_folder
|
from toolbox import CatchException, report_exception, get_log_folder, gen_time_str, check_packages
|
||||||
from toolbox import update_ui, promote_file_to_downloadzone
|
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
|
||||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
from crazy_functions.crazy_utils import read_and_clean_pdf_text
|
from .crazy_utils import read_and_clean_pdf_text
|
||||||
from shared_utils.colorful import *
|
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url, translate_pdf
|
||||||
from loguru import logger
|
from colorful import *
|
||||||
import os
|
import os
|
||||||
|
|
||||||
def 解析PDF_简单拆解(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
|
||||||
|
@CatchException
|
||||||
|
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||||
|
|
||||||
|
disable_auto_promotion(chatbot)
|
||||||
|
# 基本信息:功能、贡献者
|
||||||
|
chatbot.append([
|
||||||
|
"函数插件功能?",
|
||||||
|
"批量翻译PDF文档。函数插件贡献者: Binary-Husky"])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
|
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||||
|
try:
|
||||||
|
check_packages(["fitz", "tiktoken", "scipdf"])
|
||||||
|
except:
|
||||||
|
report_exception(chatbot, history,
|
||||||
|
a=f"解析项目: {txt}",
|
||||||
|
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf tiktoken scipdf_parser```。")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
# 清空历史,以免输入溢出
|
||||||
|
history = []
|
||||||
|
|
||||||
|
from .crazy_utils import get_files_from_everything
|
||||||
|
success, file_manifest, project_folder = get_files_from_everything(txt, type='.pdf')
|
||||||
|
# 检测输入参数,如没有给定输入参数,直接退出
|
||||||
|
if not success:
|
||||||
|
if txt == "": txt = '空空如也的输入栏'
|
||||||
|
|
||||||
|
# 如果没找到任何文件
|
||||||
|
if len(file_manifest) == 0:
|
||||||
|
report_exception(chatbot, history,
|
||||||
|
a=f"解析项目: {txt}", b=f"找不到任何.pdf拓展名的文件: {txt}")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
# 开始正式执行任务
|
||||||
|
grobid_url = get_avail_grobid_url()
|
||||||
|
if grobid_url is not None:
|
||||||
|
yield from 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url)
|
||||||
|
else:
|
||||||
|
yield from update_ui_lastest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
|
||||||
|
yield from 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||||
|
|
||||||
|
|
||||||
|
def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url):
|
||||||
|
import copy, json
|
||||||
|
TOKEN_LIMIT_PER_FRAGMENT = 1024
|
||||||
|
generated_conclusion_files = []
|
||||||
|
generated_html_files = []
|
||||||
|
DST_LANG = "中文"
|
||||||
|
from crazy_functions.pdf_fns.report_gen_html import construct_html
|
||||||
|
for index, fp in enumerate(file_manifest):
|
||||||
|
chatbot.append(["当前进度:", f"正在连接GROBID服务,请稍候: {grobid_url}\n如果等待时间过长,请修改config中的GROBID_URL,可修改成本地GROBID服务。"]); yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
article_dict = parse_pdf(fp, grobid_url)
|
||||||
|
grobid_json_res = os.path.join(get_log_folder(), gen_time_str() + "grobid.json")
|
||||||
|
with open(grobid_json_res, 'w+', encoding='utf8') as f:
|
||||||
|
f.write(json.dumps(article_dict, indent=4, ensure_ascii=False))
|
||||||
|
promote_file_to_downloadzone(grobid_json_res, chatbot=chatbot)
|
||||||
|
|
||||||
|
if article_dict is None: raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
|
||||||
|
yield from translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG)
|
||||||
|
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
|
|
||||||
|
def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||||
"""
|
"""
|
||||||
注意:此函数已经弃用!!新函数位于:crazy_functions/pdf_fns/parse_pdf.py
|
此函数已经弃用
|
||||||
"""
|
"""
|
||||||
import copy
|
import copy
|
||||||
TOKEN_LIMIT_PER_FRAGMENT = 1024
|
TOKEN_LIMIT_PER_FRAGMENT = 1024
|
||||||
@@ -49,8 +116,7 @@ def 解析PDF_简单拆解(file_manifest, project_folder, llm_kwargs, plugin_kwa
|
|||||||
chatbot=chatbot,
|
chatbot=chatbot,
|
||||||
history_array=[[paper_meta] for _ in paper_fragments],
|
history_array=[[paper_meta] for _ in paper_fragments],
|
||||||
sys_prompt_array=[
|
sys_prompt_array=[
|
||||||
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" + plugin_kwargs.get("additional_prompt", "")
|
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in paper_fragments],
|
||||||
for _ in paper_fragments],
|
|
||||||
# max_workers=5 # OpenAI所允许的最大并行过载
|
# max_workers=5 # OpenAI所允许的最大并行过载
|
||||||
)
|
)
|
||||||
gpt_response_collection_md = copy.deepcopy(gpt_response_collection)
|
gpt_response_collection_md = copy.deepcopy(gpt_response_collection)
|
||||||
@@ -94,7 +160,7 @@ def 解析PDF_简单拆解(file_manifest, project_folder, llm_kwargs, plugin_kwa
|
|||||||
generated_html_files.append(ch.save_file(create_report_file_name))
|
generated_html_files.append(ch.save_file(create_report_file_name))
|
||||||
except:
|
except:
|
||||||
from toolbox import trimmed_format_exc
|
from toolbox import trimmed_format_exc
|
||||||
logger.error('writing html result failed:', trimmed_format_exc())
|
print('writing html result failed:', trimmed_format_exc())
|
||||||
|
|
||||||
# 准备文件的下载
|
# 准备文件的下载
|
||||||
for pdf_path in generated_conclusion_files:
|
for pdf_path in generated_conclusion_files:
|
||||||
@@ -1,5 +1,4 @@
|
|||||||
import os
|
import os
|
||||||
from loguru import logger
|
|
||||||
from toolbox import CatchException, update_ui, gen_time_str, promote_file_to_downloadzone
|
from toolbox import CatchException, update_ui, gen_time_str, promote_file_to_downloadzone
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from crazy_functions.crazy_utils import input_clipping
|
from crazy_functions.crazy_utils import input_clipping
|
||||||
@@ -35,10 +34,10 @@ def eval_manim(code):
|
|||||||
return f'gpt_log/{time_str}.mp4'
|
return f'gpt_log/{time_str}.mp4'
|
||||||
except subprocess.CalledProcessError as e:
|
except subprocess.CalledProcessError as e:
|
||||||
output = e.output.decode()
|
output = e.output.decode()
|
||||||
logger.error(f"Command returned non-zero exit status {e.returncode}: {output}.")
|
print(f"Command returned non-zero exit status {e.returncode}: {output}.")
|
||||||
return f"Evaluating python script failed: {e.output}."
|
return f"Evaluating python script failed: {e.output}."
|
||||||
except:
|
except:
|
||||||
logger.error('generating mp4 failed')
|
print('generating mp4 failed')
|
||||||
return "Generating mp4 failed."
|
return "Generating mp4 failed."
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -1,12 +1,13 @@
|
|||||||
from loguru import logger
|
|
||||||
from toolbox import update_ui
|
from toolbox import update_ui
|
||||||
from toolbox import CatchException, report_exception
|
from toolbox import CatchException, report_exception
|
||||||
from crazy_functions.crazy_utils import read_and_clean_pdf_text
|
from .crazy_utils import read_and_clean_pdf_text
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
|
fast_debug = False
|
||||||
|
|
||||||
|
|
||||||
def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||||
logger.info('begin analysis on:', file_name)
|
import tiktoken
|
||||||
|
print('begin analysis on:', file_name)
|
||||||
|
|
||||||
############################## <第 0 步,切割PDF> ##################################
|
############################## <第 0 步,切割PDF> ##################################
|
||||||
# 递归地切割PDF文件,每一块(尽量是完整的一个section,比如introduction,experiment等,必要时再进行切割)
|
# 递归地切割PDF文件,每一块(尽量是完整的一个section,比如introduction,experiment等,必要时再进行切割)
|
||||||
@@ -35,7 +36,7 @@ def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
|||||||
last_iteration_result = paper_meta # 初始值是摘要
|
last_iteration_result = paper_meta # 初始值是摘要
|
||||||
MAX_WORD_TOTAL = 4096
|
MAX_WORD_TOTAL = 4096
|
||||||
n_fragment = len(paper_fragments)
|
n_fragment = len(paper_fragments)
|
||||||
if n_fragment >= 20: logger.warning('文章极长,不能达到预期效果')
|
if n_fragment >= 20: print('文章极长,不能达到预期效果')
|
||||||
for i in range(n_fragment):
|
for i in range(n_fragment):
|
||||||
NUM_OF_WORD = MAX_WORD_TOTAL // n_fragment
|
NUM_OF_WORD = MAX_WORD_TOTAL // n_fragment
|
||||||
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i]}"
|
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i]}"
|
||||||
@@ -56,7 +57,7 @@ def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
|||||||
chatbot.append([i_say_show_user, gpt_say])
|
chatbot.append([i_say_show_user, gpt_say])
|
||||||
|
|
||||||
############################## <第 4 步,设置一个token上限,防止回答时Token溢出> ##################################
|
############################## <第 4 步,设置一个token上限,防止回答时Token溢出> ##################################
|
||||||
from crazy_functions.crazy_utils import input_clipping
|
from .crazy_utils import input_clipping
|
||||||
_, final_results = input_clipping("", final_results, max_token_limit=3200)
|
_, final_results = input_clipping("", final_results, max_token_limit=3200)
|
||||||
yield from update_ui(chatbot=chatbot, history=final_results) # 注意这里的历史记录被替代了
|
yield from update_ui(chatbot=chatbot, history=final_results) # 注意这里的历史记录被替代了
|
||||||
|
|
||||||
|
|||||||
@@ -1,21 +1,22 @@
|
|||||||
from loguru import logger
|
|
||||||
from toolbox import update_ui
|
from toolbox import update_ui
|
||||||
from toolbox import CatchException, report_exception
|
from toolbox import CatchException, report_exception
|
||||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
|
fast_debug = False
|
||||||
|
|
||||||
def 生成函数注释(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
def 生成函数注释(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||||
import time, os
|
import time, os
|
||||||
logger.info('begin analysis on:', file_manifest)
|
print('begin analysis on:', file_manifest)
|
||||||
for index, fp in enumerate(file_manifest):
|
for index, fp in enumerate(file_manifest):
|
||||||
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
|
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
|
||||||
file_content = f.read()
|
file_content = f.read()
|
||||||
|
|
||||||
i_say = f'请对下面的程序文件做一个概述,并对文件中的所有函数生成注释,使用markdown表格输出结果,文件名是{os.path.relpath(fp, project_folder)},文件内容是 ```{file_content}```'
|
i_say = f'请对下面的程序文件做一个概述,并对文件中的所有函数生成注释,使用markdown表格输出结果,文件名是{os.path.relpath(fp, project_folder)},文件内容是 ```{file_content}```'
|
||||||
i_say_show_user = f'[{index+1}/{len(file_manifest)}] 请对下面的程序文件做一个概述,并对文件中的所有函数生成注释: {os.path.abspath(fp)}'
|
i_say_show_user = f'[{index}/{len(file_manifest)}] 请对下面的程序文件做一个概述,并对文件中的所有函数生成注释: {os.path.abspath(fp)}'
|
||||||
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
|
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
|
if not fast_debug:
|
||||||
msg = '正常'
|
msg = '正常'
|
||||||
# ** gpt request **
|
# ** gpt request **
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
@@ -24,8 +25,9 @@ def 生成函数注释(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
|||||||
chatbot[-1] = (i_say_show_user, gpt_say)
|
chatbot[-1] = (i_say_show_user, gpt_say)
|
||||||
history.append(i_say_show_user); history.append(gpt_say)
|
history.append(i_say_show_user); history.append(gpt_say)
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
||||||
time.sleep(2)
|
if not fast_debug: time.sleep(2)
|
||||||
|
|
||||||
|
if not fast_debug:
|
||||||
res = write_history_to_file(history)
|
res = write_history_to_file(history)
|
||||||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
promote_file_to_downloadzone(res, chatbot=chatbot)
|
||||||
chatbot.append(("完成了吗?", res))
|
chatbot.append(("完成了吗?", res))
|
||||||
|
|||||||
@@ -1,11 +1,8 @@
|
|||||||
from toolbox import CatchException, update_ui, report_exception
|
from toolbox import CatchException, update_ui, report_exception
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from crazy_functions.plugin_template.plugin_class_template import (
|
import datetime
|
||||||
GptAcademicPluginTemplate,
|
|
||||||
)
|
|
||||||
from crazy_functions.plugin_template.plugin_class_template import ArgProperty
|
|
||||||
|
|
||||||
# 以下是每类图表的PROMPT
|
#以下是每类图表的PROMPT
|
||||||
SELECT_PROMPT = """
|
SELECT_PROMPT = """
|
||||||
“{subject}”
|
“{subject}”
|
||||||
=============
|
=============
|
||||||
@@ -20,24 +17,22 @@ SELECT_PROMPT = """
|
|||||||
8 象限提示图
|
8 象限提示图
|
||||||
不需要解释原因,仅需要输出单个不带任何标点符号的数字。
|
不需要解释原因,仅需要输出单个不带任何标点符号的数字。
|
||||||
"""
|
"""
|
||||||
# 没有思维导图!!!测试发现模型始终会优先选择思维导图
|
#没有思维导图!!!测试发现模型始终会优先选择思维导图
|
||||||
# 流程图
|
#流程图
|
||||||
PROMPT_1 = """
|
PROMPT_1 = """
|
||||||
请你给出围绕“{subject}”的逻辑关系图,使用mermaid语法,注意需要使用双引号将内容括起来。
|
请你给出围绕“{subject}”的逻辑关系图,使用mermaid语法,mermaid语法举例:
|
||||||
mermaid语法举例:
|
|
||||||
```mermaid
|
```mermaid
|
||||||
graph TD
|
graph TD
|
||||||
P("编程") --> L1("Python")
|
P(编程) --> L1(Python)
|
||||||
P("编程") --> L2("C")
|
P(编程) --> L2(C)
|
||||||
P("编程") --> L3("C++")
|
P(编程) --> L3(C++)
|
||||||
P("编程") --> L4("Javascipt")
|
P(编程) --> L4(Javascipt)
|
||||||
P("编程") --> L5("PHP")
|
P(编程) --> L5(PHP)
|
||||||
```
|
```
|
||||||
"""
|
"""
|
||||||
# 序列图
|
#序列图
|
||||||
PROMPT_2 = """
|
PROMPT_2 = """
|
||||||
请你给出围绕“{subject}”的序列图,使用mermaid语法。
|
请你给出围绕“{subject}”的序列图,使用mermaid语法,mermaid语法举例:
|
||||||
mermaid语法举例:
|
|
||||||
```mermaid
|
```mermaid
|
||||||
sequenceDiagram
|
sequenceDiagram
|
||||||
participant A as 用户
|
participant A as 用户
|
||||||
@@ -48,10 +43,9 @@ sequenceDiagram
|
|||||||
B->>A: 返回数据
|
B->>A: 返回数据
|
||||||
```
|
```
|
||||||
"""
|
"""
|
||||||
# 类图
|
#类图
|
||||||
PROMPT_3 = """
|
PROMPT_3 = """
|
||||||
请你给出围绕“{subject}”的类图,使用mermaid语法。
|
请你给出围绕“{subject}”的类图,使用mermaid语法,mermaid语法举例:
|
||||||
mermaid语法举例:
|
|
||||||
```mermaid
|
```mermaid
|
||||||
classDiagram
|
classDiagram
|
||||||
Class01 <|-- AveryLongClass : Cool
|
Class01 <|-- AveryLongClass : Cool
|
||||||
@@ -69,10 +63,9 @@ classDiagram
|
|||||||
Class08 <--> C2: Cool label
|
Class08 <--> C2: Cool label
|
||||||
```
|
```
|
||||||
"""
|
"""
|
||||||
# 饼图
|
#饼图
|
||||||
PROMPT_4 = """
|
PROMPT_4 = """
|
||||||
请你给出围绕“{subject}”的饼图,使用mermaid语法,注意需要使用双引号将内容括起来。
|
请你给出围绕“{subject}”的饼图,使用mermaid语法,mermaid语法举例:
|
||||||
mermaid语法举例:
|
|
||||||
```mermaid
|
```mermaid
|
||||||
pie title Pets adopted by volunteers
|
pie title Pets adopted by volunteers
|
||||||
"狗" : 386
|
"狗" : 386
|
||||||
@@ -80,41 +73,38 @@ pie title Pets adopted by volunteers
|
|||||||
"兔子" : 15
|
"兔子" : 15
|
||||||
```
|
```
|
||||||
"""
|
"""
|
||||||
# 甘特图
|
#甘特图
|
||||||
PROMPT_5 = """
|
PROMPT_5 = """
|
||||||
请你给出围绕“{subject}”的甘特图,使用mermaid语法,注意需要使用双引号将内容括起来。
|
请你给出围绕“{subject}”的甘特图,使用mermaid语法,mermaid语法举例:
|
||||||
mermaid语法举例:
|
|
||||||
```mermaid
|
```mermaid
|
||||||
gantt
|
gantt
|
||||||
title "项目开发流程"
|
title 项目开发流程
|
||||||
dateFormat YYYY-MM-DD
|
dateFormat YYYY-MM-DD
|
||||||
section "设计"
|
section 设计
|
||||||
"需求分析" :done, des1, 2024-01-06,2024-01-08
|
需求分析 :done, des1, 2024-01-06,2024-01-08
|
||||||
"原型设计" :active, des2, 2024-01-09, 3d
|
原型设计 :active, des2, 2024-01-09, 3d
|
||||||
"UI设计" : des3, after des2, 5d
|
UI设计 : des3, after des2, 5d
|
||||||
section "开发"
|
section 开发
|
||||||
"前端开发" :2024-01-20, 10d
|
前端开发 :2024-01-20, 10d
|
||||||
"后端开发" :2024-01-20, 10d
|
后端开发 :2024-01-20, 10d
|
||||||
```
|
```
|
||||||
"""
|
"""
|
||||||
# 状态图
|
#状态图
|
||||||
PROMPT_6 = """
|
PROMPT_6 = """
|
||||||
请你给出围绕“{subject}”的状态图,使用mermaid语法,注意需要使用双引号将内容括起来。
|
请你给出围绕“{subject}”的状态图,使用mermaid语法,mermaid语法举例:
|
||||||
mermaid语法举例:
|
|
||||||
```mermaid
|
```mermaid
|
||||||
stateDiagram-v2
|
stateDiagram-v2
|
||||||
[*] --> "Still"
|
[*] --> Still
|
||||||
"Still" --> [*]
|
Still --> [*]
|
||||||
"Still" --> "Moving"
|
Still --> Moving
|
||||||
"Moving" --> "Still"
|
Moving --> Still
|
||||||
"Moving" --> "Crash"
|
Moving --> Crash
|
||||||
"Crash" --> [*]
|
Crash --> [*]
|
||||||
```
|
```
|
||||||
"""
|
"""
|
||||||
# 实体关系图
|
#实体关系图
|
||||||
PROMPT_7 = """
|
PROMPT_7 = """
|
||||||
请你给出围绕“{subject}”的实体关系图,使用mermaid语法。
|
请你给出围绕“{subject}”的实体关系图,使用mermaid语法,mermaid语法举例:
|
||||||
mermaid语法举例:
|
|
||||||
```mermaid
|
```mermaid
|
||||||
erDiagram
|
erDiagram
|
||||||
CUSTOMER ||--o{ ORDER : places
|
CUSTOMER ||--o{ ORDER : places
|
||||||
@@ -134,172 +124,118 @@ erDiagram
|
|||||||
}
|
}
|
||||||
```
|
```
|
||||||
"""
|
"""
|
||||||
# 象限提示图
|
#象限提示图
|
||||||
PROMPT_8 = """
|
PROMPT_8 = """
|
||||||
请你给出围绕“{subject}”的象限图,使用mermaid语法,注意需要使用双引号将内容括起来。
|
请你给出围绕“{subject}”的象限图,使用mermaid语法,mermaid语法举例:
|
||||||
mermaid语法举例:
|
|
||||||
```mermaid
|
```mermaid
|
||||||
graph LR
|
graph LR
|
||||||
A["Hard skill"] --> B("Programming")
|
A[Hard skill] --> B(Programming)
|
||||||
A["Hard skill"] --> C("Design")
|
A[Hard skill] --> C(Design)
|
||||||
D["Soft skill"] --> E("Coordination")
|
D[Soft skill] --> E(Coordination)
|
||||||
D["Soft skill"] --> F("Communication")
|
D[Soft skill] --> F(Communication)
|
||||||
```
|
```
|
||||||
"""
|
"""
|
||||||
# 思维导图
|
#思维导图
|
||||||
PROMPT_9 = """
|
PROMPT_9 = """
|
||||||
{subject}
|
{subject}
|
||||||
==========
|
==========
|
||||||
请给出上方内容的思维导图,充分考虑其之间的逻辑,使用mermaid语法,注意需要使用双引号将内容括起来。
|
请给出上方内容的思维导图,充分考虑其之间的逻辑,使用mermaid语法,mermaid语法举例:
|
||||||
mermaid语法举例:
|
|
||||||
```mermaid
|
```mermaid
|
||||||
mindmap
|
mindmap
|
||||||
root((mindmap))
|
root((mindmap))
|
||||||
("Origins")
|
Origins
|
||||||
("Long history")
|
Long history
|
||||||
::icon(fa fa-book)
|
::icon(fa fa-book)
|
||||||
("Popularisation")
|
Popularisation
|
||||||
("British popular psychology author Tony Buzan")
|
British popular psychology author Tony Buzan
|
||||||
::icon(fa fa-user)
|
Research
|
||||||
("Research")
|
On effectiveness<br/>and features
|
||||||
("On effectiveness<br/>and features")
|
On Automatic creation
|
||||||
::icon(fa fa-search)
|
Uses
|
||||||
("On Automatic creation")
|
Creative techniques
|
||||||
::icon(fa fa-robot)
|
Strategic planning
|
||||||
("Uses")
|
Argument mapping
|
||||||
("Creative techniques")
|
Tools
|
||||||
::icon(fa fa-lightbulb-o)
|
Pen and paper
|
||||||
("Strategic planning")
|
Mermaid
|
||||||
::icon(fa fa-flag)
|
|
||||||
("Argument mapping")
|
|
||||||
::icon(fa fa-comments)
|
|
||||||
("Tools")
|
|
||||||
("Pen and paper")
|
|
||||||
::icon(fa fa-pencil)
|
|
||||||
("Mermaid")
|
|
||||||
::icon(fa fa-code)
|
|
||||||
```
|
```
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
def 解析历史输入(history,llm_kwargs,file_manifest,chatbot,plugin_kwargs):
|
||||||
def 解析历史输入(history, llm_kwargs, file_manifest, chatbot, plugin_kwargs):
|
|
||||||
############################## <第 0 步,切割输入> ##################################
|
############################## <第 0 步,切割输入> ##################################
|
||||||
# 借用PDF切割中的函数对文本进行切割
|
# 借用PDF切割中的函数对文本进行切割
|
||||||
TOKEN_LIMIT_PER_FRAGMENT = 2500
|
TOKEN_LIMIT_PER_FRAGMENT = 2500
|
||||||
txt = (
|
txt = str(history).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||||||
str(history).encode("utf-8", "ignore").decode()
|
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
||||||
) # avoid reading non-utf8 chars
|
txt = breakdown_text_to_satisfy_token_limit(txt=txt, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs['llm_model'])
|
||||||
from crazy_functions.pdf_fns.breakdown_txt import (
|
|
||||||
breakdown_text_to_satisfy_token_limit,
|
|
||||||
)
|
|
||||||
|
|
||||||
txt = breakdown_text_to_satisfy_token_limit(
|
|
||||||
txt=txt, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs["llm_model"]
|
|
||||||
)
|
|
||||||
############################## <第 1 步,迭代地历遍整个文章,提取精炼信息> ##################################
|
############################## <第 1 步,迭代地历遍整个文章,提取精炼信息> ##################################
|
||||||
results = []
|
results = []
|
||||||
MAX_WORD_TOTAL = 4096
|
MAX_WORD_TOTAL = 4096
|
||||||
n_txt = len(txt)
|
n_txt = len(txt)
|
||||||
last_iteration_result = "从以下文本中提取摘要。"
|
last_iteration_result = "从以下文本中提取摘要。"
|
||||||
|
if n_txt >= 20: print('文章极长,不能达到预期效果')
|
||||||
for i in range(n_txt):
|
for i in range(n_txt):
|
||||||
NUM_OF_WORD = MAX_WORD_TOTAL // n_txt
|
NUM_OF_WORD = MAX_WORD_TOTAL // n_txt
|
||||||
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words in Chinese: {txt[i]}"
|
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words in Chinese: {txt[i]}"
|
||||||
i_say_show_user = f"[{i+1}/{n_txt}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {txt[i][:200]} ...."
|
i_say_show_user = f"[{i+1}/{n_txt}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {txt[i][:200]} ...."
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
|
||||||
i_say,
|
llm_kwargs, chatbot,
|
||||||
i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
|
history=["The main content of the previous section is?", last_iteration_result], # 迭代上一次的结果
|
||||||
llm_kwargs,
|
sys_prompt="Extracts the main content from the text section where it is located for graphing purposes, answer me with Chinese." # 提示
|
||||||
chatbot,
|
|
||||||
history=[
|
|
||||||
"The main content of the previous section is?",
|
|
||||||
last_iteration_result,
|
|
||||||
], # 迭代上一次的结果
|
|
||||||
sys_prompt="Extracts the main content from the text section where it is located for graphing purposes, answer me with Chinese.", # 提示
|
|
||||||
)
|
)
|
||||||
results.append(gpt_say)
|
results.append(gpt_say)
|
||||||
last_iteration_result = gpt_say
|
last_iteration_result = gpt_say
|
||||||
############################## <第 2 步,根据整理的摘要选择图表类型> ##################################
|
############################## <第 2 步,根据整理的摘要选择图表类型> ##################################
|
||||||
gpt_say = str(plugin_kwargs) # 将图表类型参数赋值为插件参数
|
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||||
results_txt = "\n".join(results) # 合并摘要
|
gpt_say = plugin_kwargs.get("advanced_arg", "") #将图表类型参数赋值为插件参数
|
||||||
if gpt_say not in [
|
results_txt = '\n'.join(results) #合并摘要
|
||||||
"1",
|
if gpt_say not in ['1','2','3','4','5','6','7','8','9']: #如插件参数不正确则使用对话模型判断
|
||||||
"2",
|
i_say_show_user = f'接下来将判断适合的图表类型,如连续3次判断失败将会使用流程图进行绘制'; gpt_say = "[Local Message] 收到。" # 用户提示
|
||||||
"3",
|
chatbot.append([i_say_show_user, gpt_say]); yield from update_ui(chatbot=chatbot, history=[]) # 更新UI
|
||||||
"4",
|
|
||||||
"5",
|
|
||||||
"6",
|
|
||||||
"7",
|
|
||||||
"8",
|
|
||||||
"9",
|
|
||||||
]: # 如插件参数不正确则使用对话模型判断
|
|
||||||
i_say_show_user = (
|
|
||||||
f"接下来将判断适合的图表类型,如连续3次判断失败将会使用流程图进行绘制"
|
|
||||||
)
|
|
||||||
gpt_say = "[Local Message] 收到。" # 用户提示
|
|
||||||
chatbot.append([i_say_show_user, gpt_say])
|
|
||||||
yield from update_ui(chatbot=chatbot, history=[]) # 更新UI
|
|
||||||
i_say = SELECT_PROMPT.format(subject=results_txt)
|
i_say = SELECT_PROMPT.format(subject=results_txt)
|
||||||
i_say_show_user = f'请判断适合使用的流程图类型,其中数字对应关系为:1-流程图,2-序列图,3-类图,4-饼图,5-甘特图,6-状态图,7-实体关系图,8-象限提示图。由于不管提供文本是什么,模型大概率认为"思维导图"最合适,因此思维导图仅能通过参数调用。'
|
i_say_show_user = f'请判断适合使用的流程图类型,其中数字对应关系为:1-流程图,2-序列图,3-类图,4-饼图,5-甘特图,6-状态图,7-实体关系图,8-象限提示图。由于不管提供文本是什么,模型大概率认为"思维导图"最合适,因此思维导图仅能通过参数调用。'
|
||||||
for i in range(3):
|
for i in range(3):
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs=i_say,
|
inputs=i_say,
|
||||||
inputs_show_user=i_say_show_user,
|
inputs_show_user=i_say_show_user,
|
||||||
llm_kwargs=llm_kwargs,
|
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||||
chatbot=chatbot,
|
sys_prompt=""
|
||||||
history=[],
|
|
||||||
sys_prompt="",
|
|
||||||
)
|
)
|
||||||
if gpt_say in [
|
if gpt_say in ['1','2','3','4','5','6','7','8','9']: #判断返回是否正确
|
||||||
"1",
|
|
||||||
"2",
|
|
||||||
"3",
|
|
||||||
"4",
|
|
||||||
"5",
|
|
||||||
"6",
|
|
||||||
"7",
|
|
||||||
"8",
|
|
||||||
"9",
|
|
||||||
]: # 判断返回是否正确
|
|
||||||
break
|
break
|
||||||
if gpt_say not in ["1", "2", "3", "4", "5", "6", "7", "8", "9"]:
|
if gpt_say not in ['1','2','3','4','5','6','7','8','9']:
|
||||||
gpt_say = "1"
|
gpt_say = '1'
|
||||||
############################## <第 3 步,根据选择的图表类型绘制图表> ##################################
|
############################## <第 3 步,根据选择的图表类型绘制图表> ##################################
|
||||||
if gpt_say == "1":
|
if gpt_say == '1':
|
||||||
i_say = PROMPT_1.format(subject=results_txt)
|
i_say = PROMPT_1.format(subject=results_txt)
|
||||||
elif gpt_say == "2":
|
elif gpt_say == '2':
|
||||||
i_say = PROMPT_2.format(subject=results_txt)
|
i_say = PROMPT_2.format(subject=results_txt)
|
||||||
elif gpt_say == "3":
|
elif gpt_say == '3':
|
||||||
i_say = PROMPT_3.format(subject=results_txt)
|
i_say = PROMPT_3.format(subject=results_txt)
|
||||||
elif gpt_say == "4":
|
elif gpt_say == '4':
|
||||||
i_say = PROMPT_4.format(subject=results_txt)
|
i_say = PROMPT_4.format(subject=results_txt)
|
||||||
elif gpt_say == "5":
|
elif gpt_say == '5':
|
||||||
i_say = PROMPT_5.format(subject=results_txt)
|
i_say = PROMPT_5.format(subject=results_txt)
|
||||||
elif gpt_say == "6":
|
elif gpt_say == '6':
|
||||||
i_say = PROMPT_6.format(subject=results_txt)
|
i_say = PROMPT_6.format(subject=results_txt)
|
||||||
elif gpt_say == "7":
|
elif gpt_say == '7':
|
||||||
i_say = PROMPT_7.replace("{subject}", results_txt) # 由于实体关系图用到了{}符号
|
i_say = PROMPT_7.replace("{subject}", results_txt) #由于实体关系图用到了{}符号
|
||||||
elif gpt_say == "8":
|
elif gpt_say == '8':
|
||||||
i_say = PROMPT_8.format(subject=results_txt)
|
i_say = PROMPT_8.format(subject=results_txt)
|
||||||
elif gpt_say == "9":
|
elif gpt_say == '9':
|
||||||
i_say = PROMPT_9.format(subject=results_txt)
|
i_say = PROMPT_9.format(subject=results_txt)
|
||||||
i_say_show_user = f"请根据判断结果绘制相应的图表。如需绘制思维导图请使用参数调用,同时过大的图表可能需要复制到在线编辑器中进行渲染。"
|
i_say_show_user = f'请根据判断结果绘制相应的图表。如需绘制思维导图请使用参数调用,同时过大的图表可能需要复制到在线编辑器中进行渲染。'
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs=i_say,
|
inputs=i_say,
|
||||||
inputs_show_user=i_say_show_user,
|
inputs_show_user=i_say_show_user,
|
||||||
llm_kwargs=llm_kwargs,
|
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||||
chatbot=chatbot,
|
sys_prompt=""
|
||||||
history=[],
|
|
||||||
sys_prompt="",
|
|
||||||
)
|
)
|
||||||
history.append(gpt_say)
|
history.append(gpt_say)
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||||
|
|
||||||
|
|
||||||
@CatchException
|
@CatchException
|
||||||
def 生成多种Mermaid图表(
|
def 生成多种Mermaid图表(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||||
txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port
|
|
||||||
):
|
|
||||||
"""
|
"""
|
||||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||||
@@ -312,21 +248,15 @@ def 生成多种Mermaid图表(
|
|||||||
import os
|
import os
|
||||||
|
|
||||||
# 基本信息:功能、贡献者
|
# 基本信息:功能、贡献者
|
||||||
chatbot.append(
|
chatbot.append([
|
||||||
[
|
|
||||||
"函数插件功能?",
|
"函数插件功能?",
|
||||||
"根据当前聊天历史或指定的路径文件(文件内容优先)绘制多种mermaid图表,将会由对话模型首先判断适合的图表类型,随后绘制图表。\
|
"根据当前聊天历史或指定的路径文件(文件内容优先)绘制多种mermaid图表,将会由对话模型首先判断适合的图表类型,随后绘制图表。\
|
||||||
\n您也可以使用插件参数指定绘制的图表类型,函数插件贡献者: Menghuan1918",
|
\n您也可以使用插件参数指定绘制的图表类型,函数插件贡献者: Menghuan1918"])
|
||||||
]
|
|
||||||
)
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
if os.path.exists(txt): # 如输入区无内容则直接解析历史记录
|
if os.path.exists(txt): #如输入区无内容则直接解析历史记录
|
||||||
from crazy_functions.pdf_fns.parse_word import extract_text_from_files
|
from crazy_functions.pdf_fns.parse_word import extract_text_from_files
|
||||||
|
file_exist, final_result, page_one, file_manifest, excption = extract_text_from_files(txt, chatbot, history)
|
||||||
file_exist, final_result, page_one, file_manifest, excption = (
|
|
||||||
extract_text_from_files(txt, chatbot, history)
|
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
file_exist = False
|
file_exist = False
|
||||||
excption = ""
|
excption = ""
|
||||||
@@ -334,104 +264,33 @@ def 生成多种Mermaid图表(
|
|||||||
|
|
||||||
if excption != "":
|
if excption != "":
|
||||||
if excption == "word":
|
if excption == "word":
|
||||||
report_exception(
|
report_exception(chatbot, history,
|
||||||
chatbot,
|
a = f"解析项目: {txt}",
|
||||||
history,
|
b = f"找到了.doc文件,但是该文件格式不被支持,请先转化为.docx格式。")
|
||||||
a=f"解析项目: {txt}",
|
|
||||||
b=f"找到了.doc文件,但是该文件格式不被支持,请先转化为.docx格式。",
|
|
||||||
)
|
|
||||||
|
|
||||||
elif excption == "pdf":
|
elif excption == "pdf":
|
||||||
report_exception(
|
report_exception(chatbot, history,
|
||||||
chatbot,
|
a = f"解析项目: {txt}",
|
||||||
history,
|
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。")
|
||||||
a=f"解析项目: {txt}",
|
|
||||||
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。",
|
|
||||||
)
|
|
||||||
|
|
||||||
elif excption == "word_pip":
|
elif excption == "word_pip":
|
||||||
report_exception(
|
report_exception(chatbot, history,
|
||||||
chatbot,
|
|
||||||
history,
|
|
||||||
a=f"解析项目: {txt}",
|
a=f"解析项目: {txt}",
|
||||||
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade python-docx pywin32```。",
|
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade python-docx pywin32```。")
|
||||||
)
|
|
||||||
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
else:
|
else:
|
||||||
if not file_exist:
|
if not file_exist:
|
||||||
history.append(txt) # 如输入区不是文件则将输入区内容加入历史记录
|
history.append(txt) #如输入区不是文件则将输入区内容加入历史记录
|
||||||
i_say_show_user = f"首先你从历史记录中提取摘要。"
|
i_say_show_user = f'首先你从历史记录中提取摘要。'; gpt_say = "[Local Message] 收到。" # 用户提示
|
||||||
gpt_say = "[Local Message] 收到。" # 用户提示
|
chatbot.append([i_say_show_user, gpt_say]); yield from update_ui(chatbot=chatbot, history=history) # 更新UI
|
||||||
chatbot.append([i_say_show_user, gpt_say])
|
yield from 解析历史输入(history,llm_kwargs,file_manifest,chatbot,plugin_kwargs)
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 更新UI
|
|
||||||
yield from 解析历史输入(
|
|
||||||
history, llm_kwargs, file_manifest, chatbot, plugin_kwargs
|
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
file_num = len(file_manifest)
|
file_num = len(file_manifest)
|
||||||
for i in range(file_num): # 依次处理文件
|
for i in range(file_num): #依次处理文件
|
||||||
i_say_show_user = f"[{i+1}/{file_num}]处理文件{file_manifest[i]}"
|
i_say_show_user = f"[{i+1}/{file_num}]处理文件{file_manifest[i]}"; gpt_say = "[Local Message] 收到。" # 用户提示
|
||||||
gpt_say = "[Local Message] 收到。" # 用户提示
|
chatbot.append([i_say_show_user, gpt_say]); yield from update_ui(chatbot=chatbot, history=history) # 更新UI
|
||||||
chatbot.append([i_say_show_user, gpt_say])
|
history = [] #如输入区内容为文件则清空历史记录
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 更新UI
|
|
||||||
history = [] # 如输入区内容为文件则清空历史记录
|
|
||||||
history.append(final_result[i])
|
history.append(final_result[i])
|
||||||
yield from 解析历史输入(
|
yield from 解析历史输入(history,llm_kwargs,file_manifest,chatbot,plugin_kwargs)
|
||||||
history, llm_kwargs, file_manifest, chatbot, plugin_kwargs
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class Mermaid_Gen(GptAcademicPluginTemplate):
|
|
||||||
def __init__(self):
|
|
||||||
pass
|
|
||||||
|
|
||||||
def define_arg_selection_menu(self):
|
|
||||||
gui_definition = {
|
|
||||||
"Type_of_Mermaid": ArgProperty(
|
|
||||||
title="绘制的Mermaid图表类型",
|
|
||||||
options=[
|
|
||||||
"由LLM决定",
|
|
||||||
"流程图",
|
|
||||||
"序列图",
|
|
||||||
"类图",
|
|
||||||
"饼图",
|
|
||||||
"甘特图",
|
|
||||||
"状态图",
|
|
||||||
"实体关系图",
|
|
||||||
"象限提示图",
|
|
||||||
"思维导图",
|
|
||||||
],
|
|
||||||
default_value="由LLM决定",
|
|
||||||
description="选择'由LLM决定'时将由对话模型判断适合的图表类型(不包括思维导图),选择其他类型时将直接绘制指定的图表类型。",
|
|
||||||
type="dropdown",
|
|
||||||
).model_dump_json(),
|
|
||||||
}
|
|
||||||
return gui_definition
|
|
||||||
|
|
||||||
def execute(
|
|
||||||
txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request
|
|
||||||
):
|
|
||||||
options = [
|
|
||||||
"由LLM决定",
|
|
||||||
"流程图",
|
|
||||||
"序列图",
|
|
||||||
"类图",
|
|
||||||
"饼图",
|
|
||||||
"甘特图",
|
|
||||||
"状态图",
|
|
||||||
"实体关系图",
|
|
||||||
"象限提示图",
|
|
||||||
"思维导图",
|
|
||||||
]
|
|
||||||
plugin_kwargs = options.index(plugin_kwargs['Type_of_Mermaid'])
|
|
||||||
yield from 生成多种Mermaid图表(
|
|
||||||
txt,
|
|
||||||
llm_kwargs,
|
|
||||||
plugin_kwargs,
|
|
||||||
chatbot,
|
|
||||||
history,
|
|
||||||
system_prompt,
|
|
||||||
user_request,
|
|
||||||
)
|
|
||||||
@@ -1,6 +1,6 @@
|
|||||||
from toolbox import CatchException, update_ui, ProxyNetworkActivate, update_ui_lastest_msg, get_log_folder, get_user
|
from toolbox import CatchException, update_ui, ProxyNetworkActivate, update_ui_lastest_msg, get_log_folder, get_user
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_files_from_everything
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_files_from_everything
|
||||||
from loguru import logger
|
|
||||||
install_msg ="""
|
install_msg ="""
|
||||||
|
|
||||||
1. python -m pip install torch --index-url https://download.pytorch.org/whl/cpu
|
1. python -m pip install torch --index-url https://download.pytorch.org/whl/cpu
|
||||||
@@ -40,7 +40,7 @@ def 知识库文件注入(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
except Exception as e:
|
except Exception as e:
|
||||||
chatbot.append(["依赖不足", f"{str(e)}\n\n导入依赖失败。请用以下命令安装" + install_msg])
|
chatbot.append(["依赖不足", f"{str(e)}\n\n导入依赖失败。请用以下命令安装" + install_msg])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
# from crazy_functions.crazy_utils import try_install_deps
|
# from .crazy_utils import try_install_deps
|
||||||
# try_install_deps(['zh_langchain==0.2.1', 'pypinyin'], reload_m=['pypinyin', 'zh_langchain'])
|
# try_install_deps(['zh_langchain==0.2.1', 'pypinyin'], reload_m=['pypinyin', 'zh_langchain'])
|
||||||
# yield from update_ui_lastest_msg("安装完成,您可以再次重试。", chatbot, history)
|
# yield from update_ui_lastest_msg("安装完成,您可以再次重试。", chatbot, history)
|
||||||
return
|
return
|
||||||
@@ -60,7 +60,7 @@ def 知识库文件注入(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
# < -------------------预热文本向量化模组--------------- >
|
# < -------------------预热文本向量化模组--------------- >
|
||||||
chatbot.append(['<br/>'.join(file_manifest), "正在预热文本向量化模组, 如果是第一次运行, 将消耗较长时间下载中文向量化模型..."])
|
chatbot.append(['<br/>'.join(file_manifest), "正在预热文本向量化模组, 如果是第一次运行, 将消耗较长时间下载中文向量化模型..."])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
logger.info('Checking Text2vec ...')
|
print('Checking Text2vec ...')
|
||||||
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
||||||
with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络
|
with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络
|
||||||
HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese")
|
HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese")
|
||||||
@@ -68,7 +68,7 @@ def 知识库文件注入(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
# < -------------------构建知识库--------------- >
|
# < -------------------构建知识库--------------- >
|
||||||
chatbot.append(['<br/>'.join(file_manifest), "正在构建知识库..."])
|
chatbot.append(['<br/>'.join(file_manifest), "正在构建知识库..."])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
logger.info('Establishing knowledge archive ...')
|
print('Establishing knowledge archive ...')
|
||||||
with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络
|
with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络
|
||||||
kai = knowledge_archive_interface()
|
kai = knowledge_archive_interface()
|
||||||
vs_path = get_log_folder(user=get_user(chatbot), plugin_name='vec_store')
|
vs_path = get_log_folder(user=get_user(chatbot), plugin_name='vec_store')
|
||||||
@@ -93,7 +93,7 @@ def 读取知识库作答(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
except Exception as e:
|
except Exception as e:
|
||||||
chatbot.append(["依赖不足", f"{str(e)}\n\n导入依赖失败。请用以下命令安装" + install_msg])
|
chatbot.append(["依赖不足", f"{str(e)}\n\n导入依赖失败。请用以下命令安装" + install_msg])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
# from crazy_functions.crazy_utils import try_install_deps
|
# from .crazy_utils import try_install_deps
|
||||||
# try_install_deps(['zh_langchain==0.2.1', 'pypinyin'], reload_m=['pypinyin', 'zh_langchain'])
|
# try_install_deps(['zh_langchain==0.2.1', 'pypinyin'], reload_m=['pypinyin', 'zh_langchain'])
|
||||||
# yield from update_ui_lastest_msg("安装完成,您可以再次重试。", chatbot, history)
|
# yield from update_ui_lastest_msg("安装完成,您可以再次重试。", chatbot, history)
|
||||||
return
|
return
|
||||||
|
|||||||
@@ -1,5 +1,5 @@
|
|||||||
from toolbox import CatchException, update_ui
|
from toolbox import CatchException, update_ui
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
|
||||||
import requests
|
import requests
|
||||||
from bs4 import BeautifulSoup
|
from bs4 import BeautifulSoup
|
||||||
from request_llms.bridge_all import model_info
|
from request_llms.bridge_all import model_info
|
||||||
@@ -23,8 +23,8 @@ def google(query, proxies):
|
|||||||
item = {'title': title, 'link': link}
|
item = {'title': title, 'link': link}
|
||||||
results.append(item)
|
results.append(item)
|
||||||
|
|
||||||
# for r in results:
|
for r in results:
|
||||||
# print(r['link'])
|
print(r['link'])
|
||||||
return results
|
return results
|
||||||
|
|
||||||
def scrape_text(url, proxies) -> str:
|
def scrape_text(url, proxies) -> str:
|
||||||
|
|||||||
@@ -1,5 +1,5 @@
|
|||||||
from toolbox import CatchException, update_ui
|
from toolbox import CatchException, update_ui
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
|
||||||
import requests
|
import requests
|
||||||
from bs4 import BeautifulSoup
|
from bs4 import BeautifulSoup
|
||||||
from request_llms.bridge_all import model_info
|
from request_llms.bridge_all import model_info
|
||||||
@@ -22,8 +22,8 @@ def bing_search(query, proxies=None):
|
|||||||
item = {'title': title, 'link': link}
|
item = {'title': title, 'link': link}
|
||||||
results.append(item)
|
results.append(item)
|
||||||
|
|
||||||
# for r in results:
|
for r in results:
|
||||||
# print(r['link'])
|
print(r['link'])
|
||||||
return results
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -64,7 +64,7 @@ def parseNotebook(filename, enable_markdown=1):
|
|||||||
|
|
||||||
|
|
||||||
def ipynb解释(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
def ipynb解释(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
|
|
||||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||||
enable_markdown = plugin_kwargs.get("advanced_arg", "1")
|
enable_markdown = plugin_kwargs.get("advanced_arg", "1")
|
||||||
|
|||||||
@@ -1,12 +1,12 @@
|
|||||||
from toolbox import update_ui, promote_file_to_downloadzone
|
from toolbox import update_ui, promote_file_to_downloadzone, disable_auto_promotion
|
||||||
from toolbox import CatchException, report_exception, write_history_to_file
|
from toolbox import CatchException, report_exception, write_history_to_file
|
||||||
from shared_utils.fastapi_server import validate_path_safety
|
from .crazy_utils import input_clipping
|
||||||
from crazy_functions.crazy_utils import input_clipping
|
|
||||||
|
|
||||||
def 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
def 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||||
import os, copy
|
import os, copy
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
|
disable_auto_promotion(chatbot=chatbot)
|
||||||
|
|
||||||
summary_batch_isolation = True
|
summary_batch_isolation = True
|
||||||
inputs_array = []
|
inputs_array = []
|
||||||
@@ -23,7 +23,7 @@ def 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
|||||||
file_content = f.read()
|
file_content = f.read()
|
||||||
prefix = "接下来请你逐文件分析下面的工程" if index==0 else ""
|
prefix = "接下来请你逐文件分析下面的工程" if index==0 else ""
|
||||||
i_say = prefix + f'请对下面的程序文件做一个概述文件名是{os.path.relpath(fp, project_folder)},文件代码是 ```{file_content}```'
|
i_say = prefix + f'请对下面的程序文件做一个概述文件名是{os.path.relpath(fp, project_folder)},文件代码是 ```{file_content}```'
|
||||||
i_say_show_user = prefix + f'[{index+1}/{len(file_manifest)}] 请对下面的程序文件做一个概述: {fp}'
|
i_say_show_user = prefix + f'[{index}/{len(file_manifest)}] 请对下面的程序文件做一个概述: {fp}'
|
||||||
# 装载请求内容
|
# 装载请求内容
|
||||||
inputs_array.append(i_say)
|
inputs_array.append(i_say)
|
||||||
inputs_show_user_array.append(i_say_show_user)
|
inputs_show_user_array.append(i_say_show_user)
|
||||||
@@ -128,7 +128,6 @@ def 解析一个Python项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
|||||||
import glob, os
|
import glob, os
|
||||||
if os.path.exists(txt):
|
if os.path.exists(txt):
|
||||||
project_folder = txt
|
project_folder = txt
|
||||||
validate_path_safety(project_folder, chatbot.get_user())
|
|
||||||
else:
|
else:
|
||||||
if txt == "": txt = '空空如也的输入栏'
|
if txt == "": txt = '空空如也的输入栏'
|
||||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||||
@@ -147,7 +146,6 @@ def 解析一个Matlab项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
|||||||
import glob, os
|
import glob, os
|
||||||
if os.path.exists(txt):
|
if os.path.exists(txt):
|
||||||
project_folder = txt
|
project_folder = txt
|
||||||
validate_path_safety(project_folder, chatbot.get_user())
|
|
||||||
else:
|
else:
|
||||||
if txt == "": txt = '空空如也的输入栏'
|
if txt == "": txt = '空空如也的输入栏'
|
||||||
report_exception(chatbot, history, a = f"解析Matlab项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
report_exception(chatbot, history, a = f"解析Matlab项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||||
@@ -166,7 +164,6 @@ def 解析一个C项目的头文件(txt, llm_kwargs, plugin_kwargs, chatbot, his
|
|||||||
import glob, os
|
import glob, os
|
||||||
if os.path.exists(txt):
|
if os.path.exists(txt):
|
||||||
project_folder = txt
|
project_folder = txt
|
||||||
validate_path_safety(project_folder, chatbot.get_user())
|
|
||||||
else:
|
else:
|
||||||
if txt == "": txt = '空空如也的输入栏'
|
if txt == "": txt = '空空如也的输入栏'
|
||||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||||
@@ -187,7 +184,6 @@ def 解析一个C项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system
|
|||||||
import glob, os
|
import glob, os
|
||||||
if os.path.exists(txt):
|
if os.path.exists(txt):
|
||||||
project_folder = txt
|
project_folder = txt
|
||||||
validate_path_safety(project_folder, chatbot.get_user())
|
|
||||||
else:
|
else:
|
||||||
if txt == "": txt = '空空如也的输入栏'
|
if txt == "": txt = '空空如也的输入栏'
|
||||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||||
@@ -210,7 +206,6 @@ def 解析一个Java项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys
|
|||||||
import glob, os
|
import glob, os
|
||||||
if os.path.exists(txt):
|
if os.path.exists(txt):
|
||||||
project_folder = txt
|
project_folder = txt
|
||||||
validate_path_safety(project_folder, chatbot.get_user())
|
|
||||||
else:
|
else:
|
||||||
if txt == "": txt = '空空如也的输入栏'
|
if txt == "": txt = '空空如也的输入栏'
|
||||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
||||||
@@ -233,7 +228,6 @@ def 解析一个前端项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
|||||||
import glob, os
|
import glob, os
|
||||||
if os.path.exists(txt):
|
if os.path.exists(txt):
|
||||||
project_folder = txt
|
project_folder = txt
|
||||||
validate_path_safety(project_folder, chatbot.get_user())
|
|
||||||
else:
|
else:
|
||||||
if txt == "": txt = '空空如也的输入栏'
|
if txt == "": txt = '空空如也的输入栏'
|
||||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
||||||
@@ -263,7 +257,6 @@ def 解析一个Golang项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
|||||||
import glob, os
|
import glob, os
|
||||||
if os.path.exists(txt):
|
if os.path.exists(txt):
|
||||||
project_folder = txt
|
project_folder = txt
|
||||||
validate_path_safety(project_folder, chatbot.get_user())
|
|
||||||
else:
|
else:
|
||||||
if txt == "": txt = '空空如也的输入栏'
|
if txt == "": txt = '空空如也的输入栏'
|
||||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
||||||
@@ -285,7 +278,6 @@ def 解析一个Rust项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys
|
|||||||
import glob, os
|
import glob, os
|
||||||
if os.path.exists(txt):
|
if os.path.exists(txt):
|
||||||
project_folder = txt
|
project_folder = txt
|
||||||
validate_path_safety(project_folder, chatbot.get_user())
|
|
||||||
else:
|
else:
|
||||||
if txt == "": txt = '空空如也的输入栏'
|
if txt == "": txt = '空空如也的输入栏'
|
||||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
||||||
@@ -306,7 +298,6 @@ def 解析一个Lua项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
import glob, os
|
import glob, os
|
||||||
if os.path.exists(txt):
|
if os.path.exists(txt):
|
||||||
project_folder = txt
|
project_folder = txt
|
||||||
validate_path_safety(project_folder, chatbot.get_user())
|
|
||||||
else:
|
else:
|
||||||
if txt == "": txt = '空空如也的输入栏'
|
if txt == "": txt = '空空如也的输入栏'
|
||||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||||
@@ -329,7 +320,6 @@ def 解析一个CSharp项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
|||||||
import glob, os
|
import glob, os
|
||||||
if os.path.exists(txt):
|
if os.path.exists(txt):
|
||||||
project_folder = txt
|
project_folder = txt
|
||||||
validate_path_safety(project_folder, chatbot.get_user())
|
|
||||||
else:
|
else:
|
||||||
if txt == "": txt = '空空如也的输入栏'
|
if txt == "": txt = '空空如也的输入栏'
|
||||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||||
@@ -355,19 +345,15 @@ def 解析任意code项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys
|
|||||||
pattern_except_suffix = [_.lstrip(" ^*.,").rstrip(" ,") for _ in txt_pattern.split(" ") if _ != "" and _.strip().startswith("^*.")]
|
pattern_except_suffix = [_.lstrip(" ^*.,").rstrip(" ,") for _ in txt_pattern.split(" ") if _ != "" and _.strip().startswith("^*.")]
|
||||||
pattern_except_suffix += ['zip', 'rar', '7z', 'tar', 'gz'] # 避免解析压缩文件
|
pattern_except_suffix += ['zip', 'rar', '7z', 'tar', 'gz'] # 避免解析压缩文件
|
||||||
# 将要忽略匹配的文件名(例如: ^README.md)
|
# 将要忽略匹配的文件名(例如: ^README.md)
|
||||||
pattern_except_name = [_.lstrip(" ^*,").rstrip(" ,").replace(".", r"\.") # 移除左边通配符,移除右侧逗号,转义点号
|
pattern_except_name = [_.lstrip(" ^*,").rstrip(" ,").replace(".", "\.") for _ in txt_pattern.split(" ") if _ != "" and _.strip().startswith("^") and not _.strip().startswith("^*.")]
|
||||||
for _ in txt_pattern.split(" ") # 以空格分割
|
|
||||||
if (_ != "" and _.strip().startswith("^") and not _.strip().startswith("^*.")) # ^开始,但不是^*.开始
|
|
||||||
]
|
|
||||||
# 生成正则表达式
|
# 生成正则表达式
|
||||||
pattern_except = r'/[^/]+\.(' + "|".join(pattern_except_suffix) + ')$'
|
pattern_except = '/[^/]+\.(' + "|".join(pattern_except_suffix) + ')$'
|
||||||
pattern_except += '|/(' + "|".join(pattern_except_name) + ')$' if pattern_except_name != [] else ''
|
pattern_except += '|/(' + "|".join(pattern_except_name) + ')$' if pattern_except_name != [] else ''
|
||||||
|
|
||||||
history.clear()
|
history.clear()
|
||||||
import glob, os, re
|
import glob, os, re
|
||||||
if os.path.exists(txt):
|
if os.path.exists(txt):
|
||||||
project_folder = txt
|
project_folder = txt
|
||||||
validate_path_safety(project_folder, chatbot.get_user())
|
|
||||||
else:
|
else:
|
||||||
if txt == "": txt = '空空如也的输入栏'
|
if txt == "": txt = '空空如也的输入栏'
|
||||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||||
@@ -1,5 +1,5 @@
|
|||||||
from toolbox import CatchException, update_ui, get_conf
|
from toolbox import CatchException, update_ui, get_conf
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
import datetime
|
import datetime
|
||||||
@CatchException
|
@CatchException
|
||||||
def 同时问询(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
def 同时问询(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||||
|
|||||||
@@ -1,13 +1,11 @@
|
|||||||
from toolbox import update_ui
|
from toolbox import update_ui
|
||||||
from toolbox import CatchException, get_conf, markdown_convertion
|
from toolbox import CatchException, get_conf, markdown_convertion
|
||||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
|
||||||
from crazy_functions.crazy_utils import input_clipping
|
from crazy_functions.crazy_utils import input_clipping
|
||||||
from crazy_functions.agent_fns.watchdog import WatchDog
|
from crazy_functions.agent_fns.watchdog import WatchDog
|
||||||
from crazy_functions.live_audio.aliyunASR import AliyunASR
|
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||||
from loguru import logger
|
|
||||||
|
|
||||||
import threading, time
|
import threading, time
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
from .live_audio.aliyunASR import AliyunASR
|
||||||
import json
|
import json
|
||||||
import re
|
import re
|
||||||
|
|
||||||
@@ -44,9 +42,9 @@ class AsyncGptTask():
|
|||||||
gpt_say_partial = predict_no_ui_long_connection(inputs=i_say, llm_kwargs=llm_kwargs, history=history, sys_prompt=sys_prompt,
|
gpt_say_partial = predict_no_ui_long_connection(inputs=i_say, llm_kwargs=llm_kwargs, history=history, sys_prompt=sys_prompt,
|
||||||
observe_window=observe_window[index], console_slience=True)
|
observe_window=observe_window[index], console_slience=True)
|
||||||
except ConnectionAbortedError as token_exceed_err:
|
except ConnectionAbortedError as token_exceed_err:
|
||||||
logger.error('至少一个线程任务Token溢出而失败', e)
|
print('至少一个线程任务Token溢出而失败', e)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error('至少一个线程任务意外失败', e)
|
print('至少一个线程任务意外失败', e)
|
||||||
|
|
||||||
def add_async_gpt_task(self, i_say, chatbot_index, llm_kwargs, history, system_prompt):
|
def add_async_gpt_task(self, i_say, chatbot_index, llm_kwargs, history, system_prompt):
|
||||||
self.observe_future.append([""])
|
self.observe_future.append([""])
|
||||||
|
|||||||
@@ -1,18 +1,19 @@
|
|||||||
from toolbox import update_ui
|
from toolbox import update_ui
|
||||||
from toolbox import CatchException, report_exception
|
from toolbox import CatchException, report_exception
|
||||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
|
|
||||||
|
|
||||||
def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||||
import time, glob, os
|
import time, glob, os
|
||||||
|
print('begin analysis on:', file_manifest)
|
||||||
for index, fp in enumerate(file_manifest):
|
for index, fp in enumerate(file_manifest):
|
||||||
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
|
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
|
||||||
file_content = f.read()
|
file_content = f.read()
|
||||||
|
|
||||||
prefix = "接下来请你逐文件分析下面的论文文件,概括其内容" if index==0 else ""
|
prefix = "接下来请你逐文件分析下面的论文文件,概括其内容" if index==0 else ""
|
||||||
i_say = prefix + f'请对下面的文章片段用中文做一个概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{file_content}```'
|
i_say = prefix + f'请对下面的文章片段用中文做一个概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{file_content}```'
|
||||||
i_say_show_user = prefix + f'[{index+1}/{len(file_manifest)}] 请对下面的文章片段做一个概述: {os.path.abspath(fp)}'
|
i_say_show_user = prefix + f'[{index}/{len(file_manifest)}] 请对下面的文章片段做一个概述: {os.path.abspath(fp)}'
|
||||||
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
|
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from toolbox import CatchException, report_exception, promote_file_to_downloadzone
|
from toolbox import CatchException, report_exception, promote_file_to_downloadzone
|
||||||
from toolbox import update_ui, update_ui_lastest_msg, disable_auto_promotion, write_history_to_file
|
from toolbox import update_ui, update_ui_lastest_msg, disable_auto_promotion, write_history_to_file
|
||||||
import logging
|
import logging
|
||||||
|
|||||||
@@ -2,10 +2,6 @@ from toolbox import CatchException, update_ui
|
|||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
import datetime
|
import datetime
|
||||||
|
|
||||||
####################################################################################################################
|
|
||||||
# Demo 1: 一个非常简单的插件 #########################################################################################
|
|
||||||
####################################################################################################################
|
|
||||||
|
|
||||||
高阶功能模板函数示意图 = f"""
|
高阶功能模板函数示意图 = f"""
|
||||||
```mermaid
|
```mermaid
|
||||||
flowchart TD
|
flowchart TD
|
||||||
@@ -30,7 +26,7 @@ flowchart TD
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
@CatchException
|
@CatchException
|
||||||
def 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request, num_day=5):
|
def 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||||
"""
|
"""
|
||||||
# 高阶功能模板函数示意图:https://mermaid.live/edit#pako:eNptk1tvEkEYhv8KmattQpvlvOyFCcdeeaVXuoYssBwie8gyhCIlqVoLhrbbtAWNUpEGUkyMEDW2Fmn_DDOL_8LZHdOwxrnamX3f7_3mmZk6yKhZCfAgV1KrmYKoQ9fDuKC4yChX0nld1Aou1JzjznQ5fWmejh8LYHW6vG2a47YAnlCLNSIRolnenKBXI_zRIBrcuqRT890u7jZx7zMDt-AaMbnW1--5olGiz2sQjwfoQxsZL0hxplSSU0-rop4vrzmKR6O2JxYjHmwcL2Y_HDatVMkXlf86YzHbGY9bO5j8XE7O8Nsbc3iNB3ukL2SMcH-XIQBgWoVOZzxuOxOJOyc63EPGV6ZQLENVrznViYStTiaJ2vw2M2d9bByRnOXkgCnXylCSU5quyto_IcmkbdvctELmJ-j1ASW3uB3g5xOmKqVTmqr_Na3AtuS_dtBFm8H90XJyHkDDT7S9xXWb4HGmRChx64AOL5HRpUm411rM5uh4H78Z4V7fCZzytjZz2seto9XaNPFue07clLaVZF8UNLygJ-VES8lah_n-O-5Ozc7-77NzJ0-K0yr0ZYrmHdqAk50t2RbA4qq9uNohBASw7YpSgaRkLWCCAtxAlnRZLGbJba9bPwUAC5IsCYAnn1kpJ1ZKUACC0iBSsQLVBzUlA3ioVyQ3qGhZEUrxokiehAz4nFgqk1VNVABfB1uAD_g2_AGPl-W8nMcbCvsDblADfNCz4feyobDPy3rYEMtxwYYbPFNVUoHdCPmDHBv2cP4AMfrCbiBli-Q-3afv0X6WdsIjW2-10fgDy1SAig
|
# 高阶功能模板函数示意图:https://mermaid.live/edit#pako:eNptk1tvEkEYhv8KmattQpvlvOyFCcdeeaVXuoYssBwie8gyhCIlqVoLhrbbtAWNUpEGUkyMEDW2Fmn_DDOL_8LZHdOwxrnamX3f7_3mmZk6yKhZCfAgV1KrmYKoQ9fDuKC4yChX0nld1Aou1JzjznQ5fWmejh8LYHW6vG2a47YAnlCLNSIRolnenKBXI_zRIBrcuqRT890u7jZx7zMDt-AaMbnW1--5olGiz2sQjwfoQxsZL0hxplSSU0-rop4vrzmKR6O2JxYjHmwcL2Y_HDatVMkXlf86YzHbGY9bO5j8XE7O8Nsbc3iNB3ukL2SMcH-XIQBgWoVOZzxuOxOJOyc63EPGV6ZQLENVrznViYStTiaJ2vw2M2d9bByRnOXkgCnXylCSU5quyto_IcmkbdvctELmJ-j1ASW3uB3g5xOmKqVTmqr_Na3AtuS_dtBFm8H90XJyHkDDT7S9xXWb4HGmRChx64AOL5HRpUm411rM5uh4H78Z4V7fCZzytjZz2seto9XaNPFue07clLaVZF8UNLygJ-VES8lah_n-O-5Ozc7-77NzJ0-K0yr0ZYrmHdqAk50t2RbA4qq9uNohBASw7YpSgaRkLWCCAtxAlnRZLGbJba9bPwUAC5IsCYAnn1kpJ1ZKUACC0iBSsQLVBzUlA3ioVyQ3qGhZEUrxokiehAz4nFgqk1VNVABfB1uAD_g2_AGPl-W8nMcbCvsDblADfNCz4feyobDPy3rYEMtxwYYbPFNVUoHdCPmDHBv2cP4AMfrCbiBli-Q-3afv0X6WdsIjW2-10fgDy1SAig
|
||||||
|
|
||||||
@@ -47,7 +43,7 @@ def 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
|||||||
"您正在调用插件:历史上的今天",
|
"您正在调用插件:历史上的今天",
|
||||||
"[Local Message] 请注意,您正在调用一个[函数插件]的模板,该函数面向希望实现更多有趣功能的开发者,它可以作为创建新功能函数的模板(该函数只有20多行代码)。此外我们也提供可同步处理大量文件的多线程Demo供您参考。您若希望分享新的功能模组,请不吝PR!" + 高阶功能模板函数示意图))
|
"[Local Message] 请注意,您正在调用一个[函数插件]的模板,该函数面向希望实现更多有趣功能的开发者,它可以作为创建新功能函数的模板(该函数只有20多行代码)。此外我们也提供可同步处理大量文件的多线程Demo供您参考。您若希望分享新的功能模组,请不吝PR!" + 高阶功能模板函数示意图))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||||
for i in range(int(num_day)):
|
for i in range(5):
|
||||||
currentMonth = (datetime.date.today() + datetime.timedelta(days=i)).month
|
currentMonth = (datetime.date.today() + datetime.timedelta(days=i)).month
|
||||||
currentDay = (datetime.date.today() + datetime.timedelta(days=i)).day
|
currentDay = (datetime.date.today() + datetime.timedelta(days=i)).day
|
||||||
i_say = f'历史中哪些事件发生在{currentMonth}月{currentDay}日?列举两条并发送相关图片。发送图片时,请使用Markdown,将Unsplash API中的PUT_YOUR_QUERY_HERE替换成描述该事件的一个最重要的单词。'
|
i_say = f'历史中哪些事件发生在{currentMonth}月{currentDay}日?列举两条并发送相关图片。发送图片时,请使用Markdown,将Unsplash API中的PUT_YOUR_QUERY_HERE替换成描述该事件的一个最重要的单词。'
|
||||||
@@ -63,56 +59,6 @@ def 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
####################################################################################################################
|
|
||||||
# Demo 2: 一个带二级菜单的插件 #######################################################################################
|
|
||||||
####################################################################################################################
|
|
||||||
|
|
||||||
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
|
|
||||||
class Demo_Wrap(GptAcademicPluginTemplate):
|
|
||||||
def __init__(self):
|
|
||||||
"""
|
|
||||||
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
|
|
||||||
"""
|
|
||||||
pass
|
|
||||||
|
|
||||||
def define_arg_selection_menu(self):
|
|
||||||
"""
|
|
||||||
定义插件的二级选项菜单
|
|
||||||
"""
|
|
||||||
gui_definition = {
|
|
||||||
"num_day":
|
|
||||||
ArgProperty(title="日期选择", options=["仅今天", "未来3天", "未来5天"], default_value="未来3天", description="无", type="dropdown").model_dump_json(),
|
|
||||||
}
|
|
||||||
return gui_definition
|
|
||||||
|
|
||||||
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
|
||||||
"""
|
|
||||||
执行插件
|
|
||||||
"""
|
|
||||||
num_day = plugin_kwargs["num_day"]
|
|
||||||
if num_day == "仅今天": num_day = 1
|
|
||||||
if num_day == "未来3天": num_day = 3
|
|
||||||
if num_day == "未来5天": num_day = 5
|
|
||||||
yield from 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request, num_day=num_day)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
####################################################################################################################
|
|
||||||
# Demo 3: 绘制脑图的Demo ############################################################################################
|
|
||||||
####################################################################################################################
|
|
||||||
|
|
||||||
PROMPT = """
|
PROMPT = """
|
||||||
请你给出围绕“{subject}”的逻辑关系图,使用mermaid语法,mermaid语法举例:
|
请你给出围绕“{subject}”的逻辑关系图,使用mermaid语法,mermaid语法举例:
|
||||||
```mermaid
|
```mermaid
|
||||||
|
|||||||
@@ -4,9 +4,9 @@
|
|||||||
# 1. 请在以下方案中选择任意一种,然后删除其他的方案
|
# 1. 请在以下方案中选择任意一种,然后删除其他的方案
|
||||||
# 2. 修改你选择的方案中的environment环境变量,详情请见github wiki或者config.py
|
# 2. 修改你选择的方案中的environment环境变量,详情请见github wiki或者config.py
|
||||||
# 3. 选择一种暴露服务端口的方法,并对相应的配置做出修改:
|
# 3. 选择一种暴露服务端口的方法,并对相应的配置做出修改:
|
||||||
# 「方法1: 适用于Linux,很方便,可惜windows不支持」与宿主的网络融合为一体,这个是默认配置
|
# 【方法1: 适用于Linux,很方便,可惜windows不支持】与宿主的网络融合为一体,这个是默认配置
|
||||||
# network_mode: "host"
|
# network_mode: "host"
|
||||||
# 「方法2: 适用于所有系统包括Windows和MacOS」端口映射,把容器的端口映射到宿主的端口(注意您需要先删除network_mode: "host",再追加以下内容)
|
# 【方法2: 适用于所有系统包括Windows和MacOS】端口映射,把容器的端口映射到宿主的端口(注意您需要先删除network_mode: "host",再追加以下内容)
|
||||||
# ports:
|
# ports:
|
||||||
# - "12345:12345" # 注意!12345必须与WEB_PORT环境变量相互对应
|
# - "12345:12345" # 注意!12345必须与WEB_PORT环境变量相互对应
|
||||||
# 4. 最后`docker-compose up`运行
|
# 4. 最后`docker-compose up`运行
|
||||||
@@ -25,7 +25,7 @@
|
|||||||
## ===================================================
|
## ===================================================
|
||||||
|
|
||||||
## ===================================================
|
## ===================================================
|
||||||
## 「方案零」 部署项目的全部能力(这个是包含cuda和latex的大型镜像。如果您网速慢、硬盘小或没有显卡,则不推荐使用这个)
|
## 【方案零】 部署项目的全部能力(这个是包含cuda和latex的大型镜像。如果您网速慢、硬盘小或没有显卡,则不推荐使用这个)
|
||||||
## ===================================================
|
## ===================================================
|
||||||
version: '3'
|
version: '3'
|
||||||
services:
|
services:
|
||||||
@@ -63,10 +63,10 @@ services:
|
|||||||
# count: 1
|
# count: 1
|
||||||
# capabilities: [gpu]
|
# capabilities: [gpu]
|
||||||
|
|
||||||
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
|
# 【WEB_PORT暴露方法1: 适用于Linux】与宿主的网络融合
|
||||||
network_mode: "host"
|
network_mode: "host"
|
||||||
|
|
||||||
# 「WEB_PORT暴露方法2: 适用于所有系统」端口映射
|
# 【WEB_PORT暴露方法2: 适用于所有系统】端口映射
|
||||||
# ports:
|
# ports:
|
||||||
# - "12345:12345" # 12345必须与WEB_PORT相互对应
|
# - "12345:12345" # 12345必须与WEB_PORT相互对应
|
||||||
|
|
||||||
@@ -75,8 +75,10 @@ services:
|
|||||||
bash -c "python3 -u main.py"
|
bash -c "python3 -u main.py"
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
## ===================================================
|
## ===================================================
|
||||||
## 「方案一」 如果不需要运行本地模型(仅 chatgpt, azure, 星火, 千帆, claude 等在线大模型服务)
|
## 【方案一】 如果不需要运行本地模型(仅 chatgpt, azure, 星火, 千帆, claude 等在线大模型服务)
|
||||||
## ===================================================
|
## ===================================================
|
||||||
version: '3'
|
version: '3'
|
||||||
services:
|
services:
|
||||||
@@ -95,16 +97,16 @@ services:
|
|||||||
# DEFAULT_WORKER_NUM: ' 10 '
|
# DEFAULT_WORKER_NUM: ' 10 '
|
||||||
# AUTHENTICATION: ' [("username", "passwd"), ("username2", "passwd2")] '
|
# AUTHENTICATION: ' [("username", "passwd"), ("username2", "passwd2")] '
|
||||||
|
|
||||||
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
|
# 与宿主的网络融合
|
||||||
network_mode: "host"
|
network_mode: "host"
|
||||||
|
|
||||||
# 启动命令
|
# 不使用代理网络拉取最新代码
|
||||||
command: >
|
command: >
|
||||||
bash -c "python3 -u main.py"
|
bash -c "python3 -u main.py"
|
||||||
|
|
||||||
|
|
||||||
### ===================================================
|
### ===================================================
|
||||||
### 「方案二」 如果需要运行ChatGLM + Qwen + MOSS等本地模型
|
### 【方案二】 如果需要运行ChatGLM + Qwen + MOSS等本地模型
|
||||||
### ===================================================
|
### ===================================================
|
||||||
version: '3'
|
version: '3'
|
||||||
services:
|
services:
|
||||||
@@ -128,10 +130,8 @@ services:
|
|||||||
devices:
|
devices:
|
||||||
- /dev/nvidia0:/dev/nvidia0
|
- /dev/nvidia0:/dev/nvidia0
|
||||||
|
|
||||||
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
|
# 与宿主的网络融合
|
||||||
network_mode: "host"
|
network_mode: "host"
|
||||||
|
|
||||||
# 启动命令
|
|
||||||
command: >
|
command: >
|
||||||
bash -c "python3 -u main.py"
|
bash -c "python3 -u main.py"
|
||||||
|
|
||||||
@@ -139,9 +139,8 @@ services:
|
|||||||
# command: >
|
# command: >
|
||||||
# bash -c "pip install -r request_llms/requirements_qwen.txt && python3 -u main.py"
|
# bash -c "pip install -r request_llms/requirements_qwen.txt && python3 -u main.py"
|
||||||
|
|
||||||
|
|
||||||
### ===================================================
|
### ===================================================
|
||||||
### 「方案三」 如果需要运行ChatGPT + LLAMA + 盘古 + RWKV本地模型
|
### 【方案三】 如果需要运行ChatGPT + LLAMA + 盘古 + RWKV本地模型
|
||||||
### ===================================================
|
### ===================================================
|
||||||
version: '3'
|
version: '3'
|
||||||
services:
|
services:
|
||||||
@@ -165,22 +164,21 @@ services:
|
|||||||
devices:
|
devices:
|
||||||
- /dev/nvidia0:/dev/nvidia0
|
- /dev/nvidia0:/dev/nvidia0
|
||||||
|
|
||||||
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
|
# 与宿主的网络融合
|
||||||
network_mode: "host"
|
network_mode: "host"
|
||||||
|
|
||||||
# 启动命令
|
# 不使用代理网络拉取最新代码
|
||||||
command: >
|
command: >
|
||||||
python3 -u main.py
|
python3 -u main.py
|
||||||
|
|
||||||
|
|
||||||
## ===================================================
|
## ===================================================
|
||||||
## 「方案四」 ChatGPT + Latex
|
## 【方案四】 ChatGPT + Latex
|
||||||
## ===================================================
|
## ===================================================
|
||||||
version: '3'
|
version: '3'
|
||||||
services:
|
services:
|
||||||
gpt_academic_with_latex:
|
gpt_academic_with_latex:
|
||||||
image: ghcr.io/binary-husky/gpt_academic_with_latex:master # (Auto Built by Dockerfile: docs/GithubAction+NoLocal+Latex)
|
image: ghcr.io/binary-husky/gpt_academic_with_latex:master # (Auto Built by Dockerfile: docs/GithubAction+NoLocal+Latex)
|
||||||
# 对于ARM64设备,请将以上镜像名称替换为 ghcr.io/binary-husky/gpt_academic_with_latex_arm:master
|
|
||||||
environment:
|
environment:
|
||||||
# 请查阅 `config.py` 以查看所有的配置信息
|
# 请查阅 `config.py` 以查看所有的配置信息
|
||||||
API_KEY: ' sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx '
|
API_KEY: ' sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx '
|
||||||
@@ -192,16 +190,16 @@ services:
|
|||||||
DEFAULT_WORKER_NUM: ' 10 '
|
DEFAULT_WORKER_NUM: ' 10 '
|
||||||
WEB_PORT: ' 12303 '
|
WEB_PORT: ' 12303 '
|
||||||
|
|
||||||
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
|
# 与宿主的网络融合
|
||||||
network_mode: "host"
|
network_mode: "host"
|
||||||
|
|
||||||
# 启动命令
|
# 不使用代理网络拉取最新代码
|
||||||
command: >
|
command: >
|
||||||
bash -c "python3 -u main.py"
|
bash -c "python3 -u main.py"
|
||||||
|
|
||||||
|
|
||||||
## ===================================================
|
## ===================================================
|
||||||
## 「方案五」 ChatGPT + 语音助手 (请先阅读 docs/use_audio.md)
|
## 【方案五】 ChatGPT + 语音助手 (请先阅读 docs/use_audio.md)
|
||||||
## ===================================================
|
## ===================================================
|
||||||
version: '3'
|
version: '3'
|
||||||
services:
|
services:
|
||||||
@@ -225,9 +223,9 @@ services:
|
|||||||
# (无需填写) ALIYUN_ACCESSKEY: ' LTAI5q6BrFUzoRXVGUWnekh1 '
|
# (无需填写) ALIYUN_ACCESSKEY: ' LTAI5q6BrFUzoRXVGUWnekh1 '
|
||||||
# (无需填写) ALIYUN_SECRET: ' eHmI20AVWIaQZ0CiTD2bGQVsaP9i68 '
|
# (无需填写) ALIYUN_SECRET: ' eHmI20AVWIaQZ0CiTD2bGQVsaP9i68 '
|
||||||
|
|
||||||
# 「WEB_PORT暴露方法1: 适用于Linux」与宿主的网络融合
|
# 与宿主的网络融合
|
||||||
network_mode: "host"
|
network_mode: "host"
|
||||||
|
|
||||||
# 启动命令
|
# 不使用代理网络拉取最新代码
|
||||||
command: >
|
command: >
|
||||||
bash -c "python3 -u main.py"
|
bash -c "python3 -u main.py"
|
||||||
|
|||||||
1
docs/Dockerfile+JittorLLM
Normal file
1
docs/Dockerfile+JittorLLM
Normal file
@@ -0,0 +1 @@
|
|||||||
|
# 此Dockerfile不再维护,请前往docs/GithubAction+JittorLLMs
|
||||||
@@ -3,13 +3,6 @@
|
|||||||
# 从NVIDIA源,从而支持显卡(检查宿主的nvidia-smi中的cuda版本必须>=11.3)
|
# 从NVIDIA源,从而支持显卡(检查宿主的nvidia-smi中的cuda版本必须>=11.3)
|
||||||
FROM fuqingxu/11.3.1-runtime-ubuntu20.04-with-texlive:latest
|
FROM fuqingxu/11.3.1-runtime-ubuntu20.04-with-texlive:latest
|
||||||
|
|
||||||
# edge-tts需要的依赖,某些pip包所需的依赖
|
|
||||||
RUN apt update && apt install ffmpeg build-essential -y
|
|
||||||
RUN apt-get install -y fontconfig
|
|
||||||
RUN ln -s /usr/local/texlive/2023/texmf-dist/fonts/truetype /usr/share/fonts/truetype/texlive
|
|
||||||
RUN fc-cache -fv
|
|
||||||
RUN apt-get clean
|
|
||||||
|
|
||||||
# use python3 as the system default python
|
# use python3 as the system default python
|
||||||
WORKDIR /gpt
|
WORKDIR /gpt
|
||||||
RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.8
|
RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.8
|
||||||
@@ -34,7 +27,7 @@ RUN python3 -m pip install -r request_llms/requirements_qwen.txt
|
|||||||
RUN python3 -m pip install -r request_llms/requirements_chatglm.txt
|
RUN python3 -m pip install -r request_llms/requirements_chatglm.txt
|
||||||
RUN python3 -m pip install -r request_llms/requirements_newbing.txt
|
RUN python3 -m pip install -r request_llms/requirements_newbing.txt
|
||||||
RUN python3 -m pip install nougat-ocr
|
RUN python3 -m pip install nougat-ocr
|
||||||
RUN python3 -m pip cache purge
|
|
||||||
|
|
||||||
# 预热Tiktoken模块
|
# 预热Tiktoken模块
|
||||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||||
|
|||||||
53
docs/GithubAction+AllCapacityBeta
Normal file
53
docs/GithubAction+AllCapacityBeta
Normal file
@@ -0,0 +1,53 @@
|
|||||||
|
# docker build -t gpt-academic-all-capacity -f docs/GithubAction+AllCapacity --network=host --build-arg http_proxy=http://localhost:10881 --build-arg https_proxy=http://localhost:10881 .
|
||||||
|
# docker build -t gpt-academic-all-capacity -f docs/GithubAction+AllCapacityBeta --network=host .
|
||||||
|
# docker run -it --net=host gpt-academic-all-capacity bash
|
||||||
|
|
||||||
|
# 从NVIDIA源,从而支持显卡(检查宿主的nvidia-smi中的cuda版本必须>=11.3)
|
||||||
|
FROM fuqingxu/11.3.1-runtime-ubuntu20.04-with-texlive:latest
|
||||||
|
|
||||||
|
# use python3 as the system default python
|
||||||
|
WORKDIR /gpt
|
||||||
|
RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.8
|
||||||
|
|
||||||
|
# # 非必要步骤,更换pip源 (以下三行,可以删除)
|
||||||
|
# RUN echo '[global]' > /etc/pip.conf && \
|
||||||
|
# echo 'index-url = https://mirrors.aliyun.com/pypi/simple/' >> /etc/pip.conf && \
|
||||||
|
# echo 'trusted-host = mirrors.aliyun.com' >> /etc/pip.conf
|
||||||
|
|
||||||
|
# 下载pytorch
|
||||||
|
RUN python3 -m pip install torch torchvision --extra-index-url https://download.pytorch.org/whl/cu113
|
||||||
|
# 准备pip依赖
|
||||||
|
RUN python3 -m pip install openai numpy arxiv rich
|
||||||
|
RUN python3 -m pip install colorama Markdown pygments pymupdf
|
||||||
|
RUN python3 -m pip install python-docx moviepy pdfminer
|
||||||
|
RUN python3 -m pip install zh_langchain==0.2.1 pypinyin
|
||||||
|
RUN python3 -m pip install rarfile py7zr
|
||||||
|
RUN python3 -m pip install aliyun-python-sdk-core==2.13.3 pyOpenSSL webrtcvad scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git
|
||||||
|
# 下载分支
|
||||||
|
WORKDIR /gpt
|
||||||
|
RUN git clone --depth=1 https://github.com/binary-husky/gpt_academic.git
|
||||||
|
WORKDIR /gpt/gpt_academic
|
||||||
|
RUN git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llms/moss
|
||||||
|
|
||||||
|
RUN python3 -m pip install -r requirements.txt
|
||||||
|
RUN python3 -m pip install -r request_llms/requirements_moss.txt
|
||||||
|
RUN python3 -m pip install -r request_llms/requirements_qwen.txt
|
||||||
|
RUN python3 -m pip install -r request_llms/requirements_chatglm.txt
|
||||||
|
RUN python3 -m pip install -r request_llms/requirements_newbing.txt
|
||||||
|
RUN python3 -m pip install nougat-ocr
|
||||||
|
|
||||||
|
# 预热Tiktoken模块
|
||||||
|
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||||
|
|
||||||
|
# 安装知识库插件的额外依赖
|
||||||
|
RUN apt-get update && apt-get install libgl1 -y
|
||||||
|
RUN pip3 install transformers protobuf langchain sentence-transformers faiss-cpu nltk beautifulsoup4 bitsandbytes tabulate icetk --upgrade
|
||||||
|
RUN pip3 install unstructured[all-docs] --upgrade
|
||||||
|
RUN python3 -c 'from check_proxy import warm_up_vectordb; warm_up_vectordb()'
|
||||||
|
RUN rm -rf /usr/local/lib/python3.8/dist-packages/tests
|
||||||
|
|
||||||
|
|
||||||
|
# COPY .cache /root/.cache
|
||||||
|
# COPY config_private.py config_private.py
|
||||||
|
# 启动
|
||||||
|
CMD ["python3", "-u", "main.py"]
|
||||||
@@ -5,9 +5,6 @@ RUN apt-get update
|
|||||||
RUN apt-get install -y curl proxychains curl gcc
|
RUN apt-get install -y curl proxychains curl gcc
|
||||||
RUN apt-get install -y git python python3 python-dev python3-dev --fix-missing
|
RUN apt-get install -y git python python3 python-dev python3-dev --fix-missing
|
||||||
|
|
||||||
# edge-tts需要的依赖,某些pip包所需的依赖
|
|
||||||
RUN apt update && apt install ffmpeg build-essential -y
|
|
||||||
RUN apt-get clean
|
|
||||||
|
|
||||||
# use python3 as the system default python
|
# use python3 as the system default python
|
||||||
RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.8
|
RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.8
|
||||||
@@ -23,7 +20,7 @@ RUN python3 -m pip install -r request_llms/requirements_moss.txt
|
|||||||
RUN python3 -m pip install -r request_llms/requirements_qwen.txt
|
RUN python3 -m pip install -r request_llms/requirements_qwen.txt
|
||||||
RUN python3 -m pip install -r request_llms/requirements_chatglm.txt
|
RUN python3 -m pip install -r request_llms/requirements_chatglm.txt
|
||||||
RUN python3 -m pip install -r request_llms/requirements_newbing.txt
|
RUN python3 -m pip install -r request_llms/requirements_newbing.txt
|
||||||
RUN python3 -m pip cache purge
|
|
||||||
|
|
||||||
|
|
||||||
# 预热Tiktoken模块
|
# 预热Tiktoken模块
|
||||||
|
|||||||
@@ -23,9 +23,6 @@ RUN python3 -m pip install -r request_llms/requirements_jittorllms.txt -i https:
|
|||||||
# 下载JittorLLMs
|
# 下载JittorLLMs
|
||||||
RUN git clone https://github.com/binary-husky/JittorLLMs.git --depth 1 request_llms/jittorllms
|
RUN git clone https://github.com/binary-husky/JittorLLMs.git --depth 1 request_llms/jittorllms
|
||||||
|
|
||||||
# edge-tts需要的依赖
|
|
||||||
RUN apt update && apt install ffmpeg -y
|
|
||||||
|
|
||||||
# 禁用缓存,确保更新代码
|
# 禁用缓存,确保更新代码
|
||||||
ADD "https://www.random.org/cgi-bin/randbyte?nbytes=10&format=h" skipcache
|
ADD "https://www.random.org/cgi-bin/randbyte?nbytes=10&format=h" skipcache
|
||||||
RUN git pull
|
RUN git pull
|
||||||
|
|||||||
@@ -12,13 +12,9 @@ COPY . .
|
|||||||
# 安装依赖
|
# 安装依赖
|
||||||
RUN pip3 install -r requirements.txt
|
RUN pip3 install -r requirements.txt
|
||||||
|
|
||||||
# edge-tts需要的依赖
|
|
||||||
RUN apt update && apt install ffmpeg -y
|
|
||||||
|
|
||||||
# 可选步骤,用于预热模块
|
# 可选步骤,用于预热模块
|
||||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||||
|
|
||||||
RUN python3 -m pip cache purge && apt-get clean
|
|
||||||
|
|
||||||
# 启动
|
# 启动
|
||||||
CMD ["python3", "-u", "main.py"]
|
CMD ["python3", "-u", "main.py"]
|
||||||
|
|||||||
@@ -15,9 +15,6 @@ RUN pip3 install -r requirements.txt
|
|||||||
# 安装语音插件的额外依赖
|
# 安装语音插件的额外依赖
|
||||||
RUN pip3 install aliyun-python-sdk-core==2.13.3 pyOpenSSL webrtcvad scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git
|
RUN pip3 install aliyun-python-sdk-core==2.13.3 pyOpenSSL webrtcvad scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git
|
||||||
|
|
||||||
# edge-tts需要的依赖
|
|
||||||
RUN apt update && apt install ffmpeg -y
|
|
||||||
|
|
||||||
# 可选步骤,用于预热模块
|
# 可选步骤,用于预热模块
|
||||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||||
|
|
||||||
|
|||||||
@@ -1,36 +1,32 @@
|
|||||||
# 此Dockerfile适用于"无本地模型"的环境构建,如果需要使用chatglm等本地模型,请参考 docs/Dockerfile+ChatGLM
|
# 此Dockerfile适用于“无本地模型”的环境构建,如果需要使用chatglm等本地模型,请参考 docs/Dockerfile+ChatGLM
|
||||||
# - 1 修改 `config.py`
|
# - 1 修改 `config.py`
|
||||||
# - 2 构建 docker build -t gpt-academic-nolocal-latex -f docs/GithubAction+NoLocal+Latex .
|
# - 2 构建 docker build -t gpt-academic-nolocal-latex -f docs/GithubAction+NoLocal+Latex .
|
||||||
# - 3 运行 docker run -v /home/fuqingxu/arxiv_cache:/root/arxiv_cache --rm -it --net=host gpt-academic-nolocal-latex
|
# - 3 运行 docker run -v /home/fuqingxu/arxiv_cache:/root/arxiv_cache --rm -it --net=host gpt-academic-nolocal-latex
|
||||||
|
|
||||||
FROM menghuan1918/ubuntu_uv_ctex:latest
|
FROM fuqingxu/python311_texlive_ctex:latest
|
||||||
ENV DEBIAN_FRONTEND=noninteractive
|
ENV PATH "$PATH:/usr/local/texlive/2022/bin/x86_64-linux"
|
||||||
SHELL ["/bin/bash", "-c"]
|
ENV PATH "$PATH:/usr/local/texlive/2023/bin/x86_64-linux"
|
||||||
|
ENV PATH "$PATH:/usr/local/texlive/2024/bin/x86_64-linux"
|
||||||
|
ENV PATH "$PATH:/usr/local/texlive/2025/bin/x86_64-linux"
|
||||||
|
ENV PATH "$PATH:/usr/local/texlive/2026/bin/x86_64-linux"
|
||||||
|
|
||||||
|
# 指定路径
|
||||||
WORKDIR /gpt
|
WORKDIR /gpt
|
||||||
|
|
||||||
# 先复制依赖文件
|
RUN pip3 install openai numpy arxiv rich
|
||||||
COPY requirements.txt .
|
RUN pip3 install colorama Markdown pygments pymupdf
|
||||||
|
RUN pip3 install python-docx pdfminer
|
||||||
|
RUN pip3 install nougat-ocr
|
||||||
|
|
||||||
|
# 装载项目文件
|
||||||
|
COPY . .
|
||||||
|
|
||||||
|
|
||||||
# 安装依赖
|
# 安装依赖
|
||||||
RUN pip install --break-system-packages openai numpy arxiv rich colorama Markdown pygments pymupdf python-docx pdfminer \
|
RUN pip3 install -r requirements.txt
|
||||||
&& pip install --break-system-packages -r requirements.txt \
|
|
||||||
&& if [ "$(uname -m)" = "x86_64" ]; then \
|
|
||||||
pip install --break-system-packages nougat-ocr; \
|
|
||||||
fi \
|
|
||||||
&& pip cache purge \
|
|
||||||
&& rm -rf /root/.cache/pip/*
|
|
||||||
|
|
||||||
# 创建非root用户
|
|
||||||
RUN useradd -m gptuser && chown -R gptuser /gpt
|
|
||||||
USER gptuser
|
|
||||||
|
|
||||||
# 最后才复制代码文件,这样代码更新时只需重建最后几层,可以大幅减少docker pull所需的大小
|
|
||||||
COPY --chown=gptuser:gptuser . .
|
|
||||||
|
|
||||||
# 可选步骤,用于预热模块
|
# 可选步骤,用于预热模块
|
||||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||||
|
|
||||||
RUN python3 -m pip cache purge
|
|
||||||
|
|
||||||
# 启动
|
# 启动
|
||||||
CMD ["python3", "-u", "main.py"]
|
CMD ["python3", "-u", "main.py"]
|
||||||
|
|||||||
@@ -19,13 +19,8 @@ RUN pip3 install transformers protobuf langchain sentence-transformers faiss-cp
|
|||||||
RUN pip3 install unstructured[all-docs] --upgrade
|
RUN pip3 install unstructured[all-docs] --upgrade
|
||||||
RUN python3 -c 'from check_proxy import warm_up_vectordb; warm_up_vectordb()'
|
RUN python3 -c 'from check_proxy import warm_up_vectordb; warm_up_vectordb()'
|
||||||
|
|
||||||
# edge-tts需要的依赖
|
|
||||||
RUN apt update && apt install ffmpeg -y
|
|
||||||
|
|
||||||
# 可选步骤,用于预热模块
|
# 可选步骤,用于预热模块
|
||||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||||
RUN python3 -m pip cache purge && apt-get clean
|
|
||||||
|
|
||||||
|
|
||||||
# 启动
|
# 启动
|
||||||
CMD ["python3", "-u", "main.py"]
|
CMD ["python3", "-u", "main.py"]
|
||||||
|
|||||||
@@ -1,26 +0,0 @@
|
|||||||
@echo off
|
|
||||||
setlocal
|
|
||||||
|
|
||||||
:: 设置环境变量
|
|
||||||
set ENV_NAME=gpt
|
|
||||||
set ENV_PATH=%~dp0%ENV_NAME%
|
|
||||||
set SCRIPT_PATH=%~dp0main.py
|
|
||||||
|
|
||||||
:: 判断环境是否已解压
|
|
||||||
if not exist "%ENV_PATH%" (
|
|
||||||
echo Extracting environment...
|
|
||||||
mkdir "%ENV_PATH%"
|
|
||||||
tar -xzf gpt.tar.gz -C "%ENV_PATH%"
|
|
||||||
|
|
||||||
:: 运行conda环境激活脚本
|
|
||||||
call "%ENV_PATH%\Scripts\activate.bat"
|
|
||||||
) else (
|
|
||||||
:: 如果环境已存在,直接激活
|
|
||||||
call "%ENV_PATH%\Scripts\activate.bat"
|
|
||||||
)
|
|
||||||
echo Start to run program:
|
|
||||||
:: 运行Python脚本
|
|
||||||
python "%SCRIPT_PATH%"
|
|
||||||
|
|
||||||
endlocal
|
|
||||||
pause
|
|
||||||
@@ -4,7 +4,7 @@ We currently support fastapi in order to solve sub-path deploy issue.
|
|||||||
|
|
||||||
1. change CUSTOM_PATH setting in `config.py`
|
1. change CUSTOM_PATH setting in `config.py`
|
||||||
|
|
||||||
```sh
|
``` sh
|
||||||
nano config.py
|
nano config.py
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -35,8 +35,9 @@ if __name__ == "__main__":
|
|||||||
main()
|
main()
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
3. Go!
|
3. Go!
|
||||||
|
|
||||||
```sh
|
``` sh
|
||||||
python main.py
|
python main.py
|
||||||
```
|
```
|
||||||
|
|||||||
@@ -1,189 +0,0 @@
|
|||||||
# 实现带二级菜单的插件
|
|
||||||
|
|
||||||
## 一、如何写带有二级菜单的插件
|
|
||||||
|
|
||||||
1. 声明一个 `Class`,继承父类 `GptAcademicPluginTemplate`
|
|
||||||
|
|
||||||
```python
|
|
||||||
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate
|
|
||||||
from crazy_functions.plugin_template.plugin_class_template import ArgProperty
|
|
||||||
|
|
||||||
class Demo_Wrap(GptAcademicPluginTemplate):
|
|
||||||
def __init__(self): ...
|
|
||||||
```
|
|
||||||
|
|
||||||
2. 声明二级菜单中需要的变量,覆盖父类的`define_arg_selection_menu`函数。
|
|
||||||
|
|
||||||
```python
|
|
||||||
class Demo_Wrap(GptAcademicPluginTemplate):
|
|
||||||
...
|
|
||||||
|
|
||||||
def define_arg_selection_menu(self):
|
|
||||||
"""
|
|
||||||
定义插件的二级选项菜单
|
|
||||||
|
|
||||||
第一个参数,名称`main_input`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
|
|
||||||
第二个参数,名称`advanced_arg`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
|
|
||||||
第三个参数,名称`allow_cache`,参数`type`声明这是一个下拉菜单,下拉菜单上方显示`title`+`description`,下拉菜单的选项为`options`,`default_value`为下拉菜单默认值;
|
|
||||||
"""
|
|
||||||
gui_definition = {
|
|
||||||
"main_input":
|
|
||||||
ArgProperty(title="ArxivID", description="输入Arxiv的ID或者网址", default_value="", type="string").model_dump_json(),
|
|
||||||
"advanced_arg":
|
|
||||||
ArgProperty(title="额外的翻译提示词",
|
|
||||||
description=r"如果有必要, 请在此处给出自定义翻译命令",
|
|
||||||
default_value="", type="string").model_dump_json(),
|
|
||||||
"allow_cache":
|
|
||||||
ArgProperty(title="是否允许从缓存中调取结果", options=["允许缓存", "从头执行"], default_value="允许缓存", description="无", type="dropdown").model_dump_json(),
|
|
||||||
}
|
|
||||||
return gui_definition
|
|
||||||
...
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
> [!IMPORTANT]
|
|
||||||
>
|
|
||||||
> ArgProperty 中每个条目对应一个参数,`type == "string"`时,使用文本块,`type == dropdown`时,使用下拉菜单。
|
|
||||||
>
|
|
||||||
> 注意:`main_input` 和 `advanced_arg`是两个特殊的参数。`main_input`会自动与界面右上角的`输入区`进行同步,而`advanced_arg`会自动与界面右下角的`高级参数输入区`同步。除此之外,参数名称可以任意选取。其他细节详见`crazy_functions/plugin_template/plugin_class_template.py`。
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
3. 编写插件程序,覆盖父类的`execute`函数。
|
|
||||||
|
|
||||||
例如:
|
|
||||||
|
|
||||||
```python
|
|
||||||
class Demo_Wrap(GptAcademicPluginTemplate):
|
|
||||||
...
|
|
||||||
...
|
|
||||||
|
|
||||||
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
|
||||||
"""
|
|
||||||
执行插件
|
|
||||||
|
|
||||||
plugin_kwargs字典中会包含用户的选择,与上述 `define_arg_selection_menu` 一一对应
|
|
||||||
"""
|
|
||||||
allow_cache = plugin_kwargs["allow_cache"]
|
|
||||||
advanced_arg = plugin_kwargs["advanced_arg"]
|
|
||||||
|
|
||||||
if allow_cache == "从头执行": plugin_kwargs["advanced_arg"] = "--no-cache " + plugin_kwargs["advanced_arg"]
|
|
||||||
yield from Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
|
||||||
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
4. 注册插件
|
|
||||||
|
|
||||||
将以下条目插入`crazy_functional.py`即可。注意,与旧插件不同的是,`Function`键值应该为None,而`Class`键值为上述插件的类名称(`Demo_Wrap`)。
|
|
||||||
```
|
|
||||||
"新插件": {
|
|
||||||
"Group": "学术",
|
|
||||||
"Color": "stop",
|
|
||||||
"AsButton": True,
|
|
||||||
"Info": "插件说明",
|
|
||||||
"Function": None,
|
|
||||||
"Class": Demo_Wrap,
|
|
||||||
},
|
|
||||||
```
|
|
||||||
|
|
||||||
5. 已经结束了,启动程序测试吧~!
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
## 二、背后的原理(需要JavaScript的前置知识)
|
|
||||||
|
|
||||||
|
|
||||||
### (I) 首先介绍三个Gradio官方没有的重要前端函数
|
|
||||||
|
|
||||||
主javascript程序`common.js`中有三个Gradio官方没有的重要API
|
|
||||||
|
|
||||||
1. `get_data_from_gradio_component`
|
|
||||||
这个函数可以获取任意gradio组件的当前值,例如textbox中的字符,dropdown中的当前选项,chatbot当前的对话等等。调用方法举例:
|
|
||||||
```javascript
|
|
||||||
// 获取当前的对话
|
|
||||||
let chatbot = await get_data_from_gradio_component('gpt-chatbot');
|
|
||||||
```
|
|
||||||
|
|
||||||
2. `get_gradio_component`
|
|
||||||
有时候我们不仅需要gradio组件的当前值,还需要它的label值、是否隐藏、下拉菜单其他可选选项等等,而通过这个函数可以直接获取这个组件的句柄。举例:
|
|
||||||
```javascript
|
|
||||||
// 获取下拉菜单组件的句柄
|
|
||||||
var model_sel = await get_gradio_component("elem_model_sel");
|
|
||||||
// 获取它的所有属性,包括其所有可选选项
|
|
||||||
console.log(model_sel.props)
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
3. `push_data_to_gradio_component`
|
|
||||||
这个函数可以将数据推回gradio组件,例如textbox中的字符,dropdown中的当前选项等等。调用方法举例:
|
|
||||||
|
|
||||||
```javascript
|
|
||||||
// 修改一个按钮上面的文本
|
|
||||||
push_data_to_gradio_component("btnName", "gradio_element_id", "string");
|
|
||||||
|
|
||||||
// 隐藏一个组件
|
|
||||||
push_data_to_gradio_component({ visible: false, __type__: 'update' }, "plugin_arg_menu", "obj");
|
|
||||||
|
|
||||||
// 修改组件label
|
|
||||||
push_data_to_gradio_component({ label: '新label的值', __type__: 'update' }, "gpt-chatbot", "obj")
|
|
||||||
|
|
||||||
// 第一个参数是value,
|
|
||||||
// - 可以是字符串(调整textbox的文本,按钮的文本);
|
|
||||||
// - 还可以是 { visible: false, __type__: 'update' } 这样的字典(调整visible, label, choices)
|
|
||||||
// 第二个参数是elem_id
|
|
||||||
// 第三个参数是"string" 或者 "obj"
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
### (II) 从点击插件到执行插件的逻辑过程
|
|
||||||
|
|
||||||
简述:程序启动时把每个插件的二级菜单编码为BASE64,存储在用户的浏览器前端,用户调用对应功能时,会按照插件的BASE64编码,将平时隐藏的菜单(有选择性地)显示出来。
|
|
||||||
|
|
||||||
1. 启动阶段(主函数 `main.py` 中),遍历每个插件,生成二级菜单的BASE64编码,存入变量`register_advanced_plugin_init_code_arr`。
|
|
||||||
```python
|
|
||||||
def get_js_code_for_generating_menu(self, btnName):
|
|
||||||
define_arg_selection = self.define_arg_selection_menu()
|
|
||||||
DEFINE_ARG_INPUT_INTERFACE = json.dumps(define_arg_selection)
|
|
||||||
return base64.b64encode(DEFINE_ARG_INPUT_INTERFACE.encode('utf-8')).decode('utf-8')
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
2. 用户加载阶段(主javascript程序`common.js`中),浏览器加载`register_advanced_plugin_init_code_arr`,存入本地的字典`advanced_plugin_init_code_lib`:
|
|
||||||
|
|
||||||
```javascript
|
|
||||||
advanced_plugin_init_code_lib = {}
|
|
||||||
function register_advanced_plugin_init_code(key, code){
|
|
||||||
advanced_plugin_init_code_lib[key] = code;
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
3. 用户点击插件按钮(主函数 `main.py` 中)时,仅执行以下javascript代码,唤醒隐藏的二级菜单(生成菜单的代码在`common.js`中的`generate_menu`函数上):
|
|
||||||
|
|
||||||
|
|
||||||
```javascript
|
|
||||||
// 生成高级插件的选择菜单
|
|
||||||
function run_advanced_plugin_launch_code(key){
|
|
||||||
generate_menu(advanced_plugin_init_code_lib[key], key);
|
|
||||||
}
|
|
||||||
function on_flex_button_click(key){
|
|
||||||
run_advanced_plugin_launch_code(key);
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
```python
|
|
||||||
click_handle = plugins[k]["Button"].click(None, inputs=[], outputs=None, _js=f"""()=>run_advanced_plugin_launch_code("{k}")""")
|
|
||||||
```
|
|
||||||
|
|
||||||
4. 当用户点击二级菜单的执行键时,通过javascript脚本模拟点击一个隐藏按钮,触发后续程序(`common.js`中的`execute_current_pop_up_plugin`,会把二级菜单中的参数缓存到`invisible_current_pop_up_plugin_arg_final`,然后模拟点击`invisible_callback_btn_for_plugin_exe`按钮)。隐藏按钮的定义在(主函数 `main.py` ),该隐藏按钮会最终触发`route_switchy_bt_with_arg`函数(定义于`themes/gui_advanced_plugin_class.py`):
|
|
||||||
|
|
||||||
```python
|
|
||||||
click_handle_ng = new_plugin_callback.click(route_switchy_bt_with_arg, [
|
|
||||||
gr.State(["new_plugin_callback", "usr_confirmed_arg"] + input_combo_order),
|
|
||||||
new_plugin_callback, usr_confirmed_arg, *input_combo
|
|
||||||
], output_combo)
|
|
||||||
```
|
|
||||||
|
|
||||||
5. 最后,`route_switchy_bt_with_arg`中,会搜集所有用户参数,统一集中到`plugin_kwargs`参数中,并执行对应插件的`execute`函数。
|
|
||||||
@@ -22,13 +22,13 @@
|
|||||||
| crazy_functions\下载arxiv论文翻译摘要.py | 下载 `arxiv` 论文的 PDF 文件,并提取摘要和翻译 |
|
| crazy_functions\下载arxiv论文翻译摘要.py | 下载 `arxiv` 论文的 PDF 文件,并提取摘要和翻译 |
|
||||||
| crazy_functions\代码重写为全英文_多线程.py | 将Python源代码文件中的中文内容转化为英文 |
|
| crazy_functions\代码重写为全英文_多线程.py | 将Python源代码文件中的中文内容转化为英文 |
|
||||||
| crazy_functions\图片生成.py | 根据激励文本使用GPT模型生成相应的图像 |
|
| crazy_functions\图片生成.py | 根据激励文本使用GPT模型生成相应的图像 |
|
||||||
| crazy_functions\Conversation_To_File.py | 将每次对话记录写入Markdown格式的文件中 |
|
| crazy_functions\对话历史存档.py | 将每次对话记录写入Markdown格式的文件中 |
|
||||||
| crazy_functions\总结word文档.py | 对输入的word文档进行摘要生成 |
|
| crazy_functions\总结word文档.py | 对输入的word文档进行摘要生成 |
|
||||||
| crazy_functions\总结音视频.py | 对输入的音视频文件进行摘要生成 |
|
| crazy_functions\总结音视频.py | 对输入的音视频文件进行摘要生成 |
|
||||||
| crazy_functions\Markdown_Translate.py | 将指定目录下的Markdown文件进行中英文翻译 |
|
| crazy_functions\批量Markdown翻译.py | 将指定目录下的Markdown文件进行中英文翻译 |
|
||||||
| crazy_functions\批量总结PDF文档.py | 对PDF文件进行切割和摘要生成 |
|
| crazy_functions\批量总结PDF文档.py | 对PDF文件进行切割和摘要生成 |
|
||||||
| crazy_functions\批量总结PDF文档pdfminer.py | 对PDF文件进行文本内容的提取和摘要生成 |
|
| crazy_functions\批量总结PDF文档pdfminer.py | 对PDF文件进行文本内容的提取和摘要生成 |
|
||||||
| crazy_functions\PDF_Translate.py | 将指定目录下的PDF文件进行中英文翻译 |
|
| crazy_functions\批量翻译PDF文档_多线程.py | 将指定目录下的PDF文件进行中英文翻译 |
|
||||||
| crazy_functions\理解PDF文档内容.py | 对PDF文件进行摘要生成和问题解答 |
|
| crazy_functions\理解PDF文档内容.py | 对PDF文件进行摘要生成和问题解答 |
|
||||||
| crazy_functions\生成函数注释.py | 自动生成Python函数的注释 |
|
| crazy_functions\生成函数注释.py | 自动生成Python函数的注释 |
|
||||||
| crazy_functions\联网的ChatGPT.py | 使用网络爬虫和ChatGPT模型进行聊天回答 |
|
| crazy_functions\联网的ChatGPT.py | 使用网络爬虫和ChatGPT模型进行聊天回答 |
|
||||||
@@ -155,9 +155,9 @@ toolbox.py是一个工具类库,其中主要包含了一些函数装饰器和
|
|||||||
|
|
||||||
该程序文件提供了一个用于生成图像的函数`图片生成`。函数实现的过程中,会调用`gen_image`函数来生成图像,并返回图像生成的网址和本地文件地址。函数有多个参数,包括`prompt`(激励文本)、`llm_kwargs`(GPT模型的参数)、`plugin_kwargs`(插件模型的参数)等。函数核心代码使用了`requests`库向OpenAI API请求图像,并做了简单的处理和保存。函数还更新了交互界面,清空聊天历史并显示正在生成图像的消息和最终的图像网址和预览。
|
该程序文件提供了一个用于生成图像的函数`图片生成`。函数实现的过程中,会调用`gen_image`函数来生成图像,并返回图像生成的网址和本地文件地址。函数有多个参数,包括`prompt`(激励文本)、`llm_kwargs`(GPT模型的参数)、`plugin_kwargs`(插件模型的参数)等。函数核心代码使用了`requests`库向OpenAI API请求图像,并做了简单的处理和保存。函数还更新了交互界面,清空聊天历史并显示正在生成图像的消息和最终的图像网址和预览。
|
||||||
|
|
||||||
## [18/48] 请对下面的程序文件做一个概述: crazy_functions\Conversation_To_File.py
|
## [18/48] 请对下面的程序文件做一个概述: crazy_functions\对话历史存档.py
|
||||||
|
|
||||||
这个文件是名为crazy_functions\Conversation_To_File.py的Python程序文件,包含了4个函数:
|
这个文件是名为crazy_functions\对话历史存档.py的Python程序文件,包含了4个函数:
|
||||||
|
|
||||||
1. write_chat_to_file(chatbot, history=None, file_name=None):用来将对话记录以Markdown格式写入文件中,并且生成文件名,如果没指定文件名则用当前时间。写入完成后将文件路径打印出来。
|
1. write_chat_to_file(chatbot, history=None, file_name=None):用来将对话记录以Markdown格式写入文件中,并且生成文件名,如果没指定文件名则用当前时间。写入完成后将文件路径打印出来。
|
||||||
|
|
||||||
@@ -165,7 +165,7 @@ toolbox.py是一个工具类库,其中主要包含了一些函数装饰器和
|
|||||||
|
|
||||||
3. read_file_to_chat(chatbot, history, file_name):从传入的文件中读取内容,解析出对话历史记录并更新聊天显示框。
|
3. read_file_to_chat(chatbot, history, file_name):从传入的文件中读取内容,解析出对话历史记录并更新聊天显示框。
|
||||||
|
|
||||||
4. Conversation_To_File(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):一个主要函数,用于保存当前对话记录并提醒用户。如果用户希望加载历史记录,则调用read_file_to_chat()来更新聊天显示框。如果用户希望删除历史记录,调用删除所有本地对话历史记录()函数完成删除操作。
|
4. 对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):一个主要函数,用于保存当前对话记录并提醒用户。如果用户希望加载历史记录,则调用read_file_to_chat()来更新聊天显示框。如果用户希望删除历史记录,调用删除所有本地对话历史记录()函数完成删除操作。
|
||||||
|
|
||||||
## [19/48] 请对下面的程序文件做一个概述: crazy_functions\总结word文档.py
|
## [19/48] 请对下面的程序文件做一个概述: crazy_functions\总结word文档.py
|
||||||
|
|
||||||
@@ -175,9 +175,9 @@ toolbox.py是一个工具类库,其中主要包含了一些函数装饰器和
|
|||||||
|
|
||||||
该程序文件包括两个函数:split_audio_file()和AnalyAudio(),并且导入了一些必要的库并定义了一些工具函数。split_audio_file用于将音频文件分割成多个时长相等的片段,返回一个包含所有切割音频片段文件路径的列表,而AnalyAudio用来分析音频文件,通过调用whisper模型进行音频转文字并使用GPT模型对音频内容进行概述,最终将所有总结结果写入结果文件中。
|
该程序文件包括两个函数:split_audio_file()和AnalyAudio(),并且导入了一些必要的库并定义了一些工具函数。split_audio_file用于将音频文件分割成多个时长相等的片段,返回一个包含所有切割音频片段文件路径的列表,而AnalyAudio用来分析音频文件,通过调用whisper模型进行音频转文字并使用GPT模型对音频内容进行概述,最终将所有总结结果写入结果文件中。
|
||||||
|
|
||||||
## [21/48] 请对下面的程序文件做一个概述: crazy_functions\Markdown_Translate.py
|
## [21/48] 请对下面的程序文件做一个概述: crazy_functions\批量Markdown翻译.py
|
||||||
|
|
||||||
该程序文件名为`Markdown_Translate.py`,包含了以下功能:读取Markdown文件,将长文本分离开来,将Markdown文件进行翻译(英译中和中译英),整理结果并退出。程序使用了多线程以提高效率。程序使用了`tiktoken`依赖库,可能需要额外安装。文件中还有一些其他的函数和类,但与文件名所描述的功能无关。
|
该程序文件名为`批量Markdown翻译.py`,包含了以下功能:读取Markdown文件,将长文本分离开来,将Markdown文件进行翻译(英译中和中译英),整理结果并退出。程序使用了多线程以提高效率。程序使用了`tiktoken`依赖库,可能需要额外安装。文件中还有一些其他的函数和类,但与文件名所描述的功能无关。
|
||||||
|
|
||||||
## [22/48] 请对下面的程序文件做一个概述: crazy_functions\批量总结PDF文档.py
|
## [22/48] 请对下面的程序文件做一个概述: crazy_functions\批量总结PDF文档.py
|
||||||
|
|
||||||
@@ -187,9 +187,9 @@ toolbox.py是一个工具类库,其中主要包含了一些函数装饰器和
|
|||||||
|
|
||||||
该程序文件是一个用于批量总结PDF文档的函数插件,使用了pdfminer插件和BeautifulSoup库来提取PDF文档的文本内容,对每个PDF文件分别进行处理并生成中英文摘要。同时,该程序文件还包括一些辅助工具函数和处理异常的装饰器。
|
该程序文件是一个用于批量总结PDF文档的函数插件,使用了pdfminer插件和BeautifulSoup库来提取PDF文档的文本内容,对每个PDF文件分别进行处理并生成中英文摘要。同时,该程序文件还包括一些辅助工具函数和处理异常的装饰器。
|
||||||
|
|
||||||
## [24/48] 请对下面的程序文件做一个概述: crazy_functions\PDF_Translate.py
|
## [24/48] 请对下面的程序文件做一个概述: crazy_functions\批量翻译PDF文档_多线程.py
|
||||||
|
|
||||||
这个程序文件是一个Python脚本,文件名为“PDF_Translate.py”。它主要使用了“toolbox”、“request_gpt_model_in_new_thread_with_ui_alive”、“request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency”、“colorful”等Python库和自定义的模块“crazy_utils”的一些函数。程序实现了一个批量翻译PDF文档的功能,可以自动解析PDF文件中的基础信息,递归地切割PDF文件,翻译和处理PDF论文中的所有内容,并生成相应的翻译结果文件(包括md文件和html文件)。功能比较复杂,其中需要调用多个函数和依赖库,涉及到多线程操作和UI更新。文件中有详细的注释和变量命名,代码比较清晰易读。
|
这个程序文件是一个Python脚本,文件名为“批量翻译PDF文档_多线程.py”。它主要使用了“toolbox”、“request_gpt_model_in_new_thread_with_ui_alive”、“request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency”、“colorful”等Python库和自定义的模块“crazy_utils”的一些函数。程序实现了一个批量翻译PDF文档的功能,可以自动解析PDF文件中的基础信息,递归地切割PDF文件,翻译和处理PDF论文中的所有内容,并生成相应的翻译结果文件(包括md文件和html文件)。功能比较复杂,其中需要调用多个函数和依赖库,涉及到多线程操作和UI更新。文件中有详细的注释和变量命名,代码比较清晰易读。
|
||||||
|
|
||||||
## [25/48] 请对下面的程序文件做一个概述: crazy_functions\理解PDF文档内容.py
|
## [25/48] 请对下面的程序文件做一个概述: crazy_functions\理解PDF文档内容.py
|
||||||
|
|
||||||
@@ -331,19 +331,19 @@ check_proxy.py, colorful.py, config.py, config_private.py, core_functional.py, c
|
|||||||
这些程序源文件提供了基础的文本和语言处理功能、工具函数和高级插件,使 Chatbot 能够处理各种复杂的学术文本问题,包括润色、翻译、搜索、下载、解析等。
|
这些程序源文件提供了基础的文本和语言处理功能、工具函数和高级插件,使 Chatbot 能够处理各种复杂的学术文本问题,包括润色、翻译、搜索、下载、解析等。
|
||||||
|
|
||||||
## 用一张Markdown表格简要描述以下文件的功能:
|
## 用一张Markdown表格简要描述以下文件的功能:
|
||||||
crazy_functions\代码重写为全英文_多线程.py, crazy_functions\图片生成.py, crazy_functions\Conversation_To_File.py, crazy_functions\总结word文档.py, crazy_functions\总结音视频.py, crazy_functions\Markdown_Translate.py, crazy_functions\批量总结PDF文档.py, crazy_functions\批量总结PDF文档pdfminer.py, crazy_functions\PDF_Translate.py, crazy_functions\理解PDF文档内容.py, crazy_functions\生成函数注释.py, crazy_functions\联网的ChatGPT.py, crazy_functions\解析JupyterNotebook.py, crazy_functions\解析项目源代码.py, crazy_functions\询问多个大语言模型.py, crazy_functions\读文章写摘要.py。根据以上分析,用一句话概括程序的整体功能。
|
crazy_functions\代码重写为全英文_多线程.py, crazy_functions\图片生成.py, crazy_functions\对话历史存档.py, crazy_functions\总结word文档.py, crazy_functions\总结音视频.py, crazy_functions\批量Markdown翻译.py, crazy_functions\批量总结PDF文档.py, crazy_functions\批量总结PDF文档pdfminer.py, crazy_functions\批量翻译PDF文档_多线程.py, crazy_functions\理解PDF文档内容.py, crazy_functions\生成函数注释.py, crazy_functions\联网的ChatGPT.py, crazy_functions\解析JupyterNotebook.py, crazy_functions\解析项目源代码.py, crazy_functions\询问多个大语言模型.py, crazy_functions\读文章写摘要.py。根据以上分析,用一句话概括程序的整体功能。
|
||||||
|
|
||||||
| 文件名 | 功能简述 |
|
| 文件名 | 功能简述 |
|
||||||
| --- | --- |
|
| --- | --- |
|
||||||
| 代码重写为全英文_多线程.py | 将Python源代码文件中的中文内容转化为英文 |
|
| 代码重写为全英文_多线程.py | 将Python源代码文件中的中文内容转化为英文 |
|
||||||
| 图片生成.py | 根据激励文本使用GPT模型生成相应的图像 |
|
| 图片生成.py | 根据激励文本使用GPT模型生成相应的图像 |
|
||||||
| Conversation_To_File.py | 将每次对话记录写入Markdown格式的文件中 |
|
| 对话历史存档.py | 将每次对话记录写入Markdown格式的文件中 |
|
||||||
| 总结word文档.py | 对输入的word文档进行摘要生成 |
|
| 总结word文档.py | 对输入的word文档进行摘要生成 |
|
||||||
| 总结音视频.py | 对输入的音视频文件进行摘要生成 |
|
| 总结音视频.py | 对输入的音视频文件进行摘要生成 |
|
||||||
| Markdown_Translate.py | 将指定目录下的Markdown文件进行中英文翻译 |
|
| 批量Markdown翻译.py | 将指定目录下的Markdown文件进行中英文翻译 |
|
||||||
| 批量总结PDF文档.py | 对PDF文件进行切割和摘要生成 |
|
| 批量总结PDF文档.py | 对PDF文件进行切割和摘要生成 |
|
||||||
| 批量总结PDF文档pdfminer.py | 对PDF文件进行文本内容的提取和摘要生成 |
|
| 批量总结PDF文档pdfminer.py | 对PDF文件进行文本内容的提取和摘要生成 |
|
||||||
| PDF_Translate.py | 将指定目录下的PDF文件进行中英文翻译 |
|
| 批量翻译PDF文档_多线程.py | 将指定目录下的PDF文件进行中英文翻译 |
|
||||||
| 理解PDF文档内容.py | 对PDF文件进行摘要生成和问题解答 |
|
| 理解PDF文档内容.py | 对PDF文件进行摘要生成和问题解答 |
|
||||||
| 生成函数注释.py | 自动生成Python函数的注释 |
|
| 生成函数注释.py | 自动生成Python函数的注释 |
|
||||||
| 联网的ChatGPT.py | 使用网络爬虫和ChatGPT模型进行聊天回答 |
|
| 联网的ChatGPT.py | 使用网络爬虫和ChatGPT模型进行聊天回答 |
|
||||||
|
|||||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user