Compare commits
6 Commits
boyin_summ
...
purge_prin
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
2f343179a2 | ||
|
|
bbf9e9f868 | ||
|
|
aa1f967dd7 | ||
|
|
0d082327c8 | ||
|
|
80acd9c875 | ||
|
|
17cd4f8210 |
@@ -1,3 +1,4 @@
|
|||||||
|
from loguru import logger
|
||||||
|
|
||||||
def check_proxy(proxies, return_ip=False):
|
def check_proxy(proxies, return_ip=False):
|
||||||
import requests
|
import requests
|
||||||
@@ -19,14 +20,14 @@ def check_proxy(proxies, return_ip=False):
|
|||||||
else:
|
else:
|
||||||
result = f"代理配置 {proxies_https}, 代理数据解析失败:{data}"
|
result = f"代理配置 {proxies_https}, 代理数据解析失败:{data}"
|
||||||
if not return_ip:
|
if not return_ip:
|
||||||
print(result)
|
logger.warning(result)
|
||||||
return result
|
return result
|
||||||
else:
|
else:
|
||||||
return ip
|
return ip
|
||||||
except:
|
except:
|
||||||
result = f"代理配置 {proxies_https}, 代理所在地查询超时,代理可能无效"
|
result = f"代理配置 {proxies_https}, 代理所在地查询超时,代理可能无效"
|
||||||
if not return_ip:
|
if not return_ip:
|
||||||
print(result)
|
logger.warning(result)
|
||||||
return result
|
return result
|
||||||
else:
|
else:
|
||||||
return ip
|
return ip
|
||||||
@@ -82,25 +83,25 @@ def patch_and_restart(path):
|
|||||||
import sys
|
import sys
|
||||||
import time
|
import time
|
||||||
import glob
|
import glob
|
||||||
from shared_utils.colorful import print亮黄, print亮绿, print亮红
|
from shared_utils.colorful import log亮黄, log亮绿, log亮红
|
||||||
# if not using config_private, move origin config.py as config_private.py
|
# if not using config_private, move origin config.py as config_private.py
|
||||||
if not os.path.exists('config_private.py'):
|
if not os.path.exists('config_private.py'):
|
||||||
print亮黄('由于您没有设置config_private.py私密配置,现将您的现有配置移动至config_private.py以防止配置丢失,',
|
log亮黄('由于您没有设置config_private.py私密配置,现将您的现有配置移动至config_private.py以防止配置丢失,',
|
||||||
'另外您可以随时在history子文件夹下找回旧版的程序。')
|
'另外您可以随时在history子文件夹下找回旧版的程序。')
|
||||||
shutil.copyfile('config.py', 'config_private.py')
|
shutil.copyfile('config.py', 'config_private.py')
|
||||||
path_new_version = glob.glob(path + '/*-master')[0]
|
path_new_version = glob.glob(path + '/*-master')[0]
|
||||||
dir_util.copy_tree(path_new_version, './')
|
dir_util.copy_tree(path_new_version, './')
|
||||||
print亮绿('代码已经更新,即将更新pip包依赖……')
|
log亮绿('代码已经更新,即将更新pip包依赖……')
|
||||||
for i in reversed(range(5)): time.sleep(1); print(i)
|
for i in reversed(range(5)): time.sleep(1); log亮绿(i)
|
||||||
try:
|
try:
|
||||||
import subprocess
|
import subprocess
|
||||||
subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-r', 'requirements.txt'])
|
subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-r', 'requirements.txt'])
|
||||||
except:
|
except:
|
||||||
print亮红('pip包依赖安装出现问题,需要手动安装新增的依赖库 `python -m pip install -r requirements.txt`,然后在用常规的`python main.py`的方式启动。')
|
log亮红('pip包依赖安装出现问题,需要手动安装新增的依赖库 `python -m pip install -r requirements.txt`,然后在用常规的`python main.py`的方式启动。')
|
||||||
print亮绿('更新完成,您可以随时在history子文件夹下找回旧版的程序,5s之后重启')
|
log亮绿('更新完成,您可以随时在history子文件夹下找回旧版的程序,5s之后重启')
|
||||||
print亮红('假如重启失败,您可能需要手动安装新增的依赖库 `python -m pip install -r requirements.txt`,然后在用常规的`python main.py`的方式启动。')
|
log亮红('假如重启失败,您可能需要手动安装新增的依赖库 `python -m pip install -r requirements.txt`,然后在用常规的`python main.py`的方式启动。')
|
||||||
print(' ------------------------------ -----------------------------------')
|
log亮绿(' ------------------------------ -----------------------------------')
|
||||||
for i in reversed(range(8)): time.sleep(1); print(i)
|
for i in reversed(range(8)): time.sleep(1); log亮绿(i)
|
||||||
os.execl(sys.executable, sys.executable, *sys.argv)
|
os.execl(sys.executable, sys.executable, *sys.argv)
|
||||||
|
|
||||||
|
|
||||||
@@ -135,9 +136,9 @@ def auto_update(raise_error=False):
|
|||||||
current_version = f.read()
|
current_version = f.read()
|
||||||
current_version = json.loads(current_version)['version']
|
current_version = json.loads(current_version)['version']
|
||||||
if (remote_version - current_version) >= 0.01-1e-5:
|
if (remote_version - current_version) >= 0.01-1e-5:
|
||||||
from shared_utils.colorful import print亮黄
|
from shared_utils.colorful import log亮黄
|
||||||
print亮黄(f'\n新版本可用。新版本:{remote_version},当前版本:{current_version}。{new_feature}')
|
log亮黄(f'\n新版本可用。新版本:{remote_version},当前版本:{current_version}。{new_feature}')
|
||||||
print('(1)Github更新地址:\nhttps://github.com/binary-husky/chatgpt_academic\n')
|
logger.info('(1)Github更新地址:\nhttps://github.com/binary-husky/chatgpt_academic\n')
|
||||||
user_instruction = input('(2)是否一键更新代码(Y+回车=确认,输入其他/无输入+回车=不更新)?')
|
user_instruction = input('(2)是否一键更新代码(Y+回车=确认,输入其他/无输入+回车=不更新)?')
|
||||||
if user_instruction in ['Y', 'y']:
|
if user_instruction in ['Y', 'y']:
|
||||||
path = backup_and_download(current_version, remote_version)
|
path = backup_and_download(current_version, remote_version)
|
||||||
@@ -148,9 +149,9 @@ def auto_update(raise_error=False):
|
|||||||
if raise_error:
|
if raise_error:
|
||||||
from toolbox import trimmed_format_exc
|
from toolbox import trimmed_format_exc
|
||||||
msg += trimmed_format_exc()
|
msg += trimmed_format_exc()
|
||||||
print(msg)
|
logger.warning(msg)
|
||||||
else:
|
else:
|
||||||
print('自动更新程序:已禁用')
|
logger.info('自动更新程序:已禁用')
|
||||||
return
|
return
|
||||||
else:
|
else:
|
||||||
return
|
return
|
||||||
@@ -159,10 +160,10 @@ def auto_update(raise_error=False):
|
|||||||
if raise_error:
|
if raise_error:
|
||||||
from toolbox import trimmed_format_exc
|
from toolbox import trimmed_format_exc
|
||||||
msg += trimmed_format_exc()
|
msg += trimmed_format_exc()
|
||||||
print(msg)
|
logger.info(msg)
|
||||||
|
|
||||||
def warm_up_modules():
|
def warm_up_modules():
|
||||||
print('正在执行一些模块的预热 ...')
|
logger.info('正在执行一些模块的预热 ...')
|
||||||
from toolbox import ProxyNetworkActivate
|
from toolbox import ProxyNetworkActivate
|
||||||
from request_llms.bridge_all import model_info
|
from request_llms.bridge_all import model_info
|
||||||
with ProxyNetworkActivate("Warmup_Modules"):
|
with ProxyNetworkActivate("Warmup_Modules"):
|
||||||
@@ -172,7 +173,7 @@ def warm_up_modules():
|
|||||||
enc.encode("模块预热", disallowed_special=())
|
enc.encode("模块预热", disallowed_special=())
|
||||||
|
|
||||||
def warm_up_vectordb():
|
def warm_up_vectordb():
|
||||||
print('正在执行一些模块的预热 ...')
|
logger.info('正在执行一些模块的预热 ...')
|
||||||
from toolbox import ProxyNetworkActivate
|
from toolbox import ProxyNetworkActivate
|
||||||
with ProxyNetworkActivate("Warmup_Modules"):
|
with ProxyNetworkActivate("Warmup_Modules"):
|
||||||
import nltk
|
import nltk
|
||||||
|
|||||||
@@ -1,5 +1,6 @@
|
|||||||
from toolbox import HotReload # HotReload 的意思是热更新,修改函数插件后,不需要重启程序,代码直接生效
|
from toolbox import HotReload # HotReload 的意思是热更新,修改函数插件后,不需要重启程序,代码直接生效
|
||||||
from toolbox import trimmed_format_exc
|
from toolbox import trimmed_format_exc
|
||||||
|
from loguru import logger
|
||||||
|
|
||||||
|
|
||||||
def get_crazy_functions():
|
def get_crazy_functions():
|
||||||
@@ -429,8 +430,8 @@ def get_crazy_functions():
|
|||||||
}
|
}
|
||||||
)
|
)
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
print("Load function plugin failed")
|
logger.error("Load function plugin failed")
|
||||||
|
|
||||||
# try:
|
# try:
|
||||||
# from crazy_functions.联网的ChatGPT import 连接网络回答问题
|
# from crazy_functions.联网的ChatGPT import 连接网络回答问题
|
||||||
@@ -460,8 +461,8 @@ def get_crazy_functions():
|
|||||||
# }
|
# }
|
||||||
# )
|
# )
|
||||||
# except:
|
# except:
|
||||||
# print(trimmed_format_exc())
|
# logger.error(trimmed_format_exc())
|
||||||
# print("Load function plugin failed")
|
# logger.error("Load function plugin failed")
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from crazy_functions.SourceCode_Analyse import 解析任意code项目
|
from crazy_functions.SourceCode_Analyse import 解析任意code项目
|
||||||
@@ -479,8 +480,8 @@ def get_crazy_functions():
|
|||||||
}
|
}
|
||||||
)
|
)
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
print("Load function plugin failed")
|
logger.error("Load function plugin failed")
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from crazy_functions.询问多个大语言模型 import 同时问询_指定模型
|
from crazy_functions.询问多个大语言模型 import 同时问询_指定模型
|
||||||
@@ -498,8 +499,8 @@ def get_crazy_functions():
|
|||||||
}
|
}
|
||||||
)
|
)
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
print("Load function plugin failed")
|
logger.error("Load function plugin failed")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@@ -520,8 +521,8 @@ def get_crazy_functions():
|
|||||||
}
|
}
|
||||||
)
|
)
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
print("Load function plugin failed")
|
logger.error("Load function plugin failed")
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from crazy_functions.数学动画生成manim import 动画生成
|
from crazy_functions.数学动画生成manim import 动画生成
|
||||||
@@ -538,8 +539,8 @@ def get_crazy_functions():
|
|||||||
}
|
}
|
||||||
)
|
)
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
print("Load function plugin failed")
|
logger.error("Load function plugin failed")
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from crazy_functions.Markdown_Translate import Markdown翻译指定语言
|
from crazy_functions.Markdown_Translate import Markdown翻译指定语言
|
||||||
@@ -557,8 +558,8 @@ def get_crazy_functions():
|
|||||||
}
|
}
|
||||||
)
|
)
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
print("Load function plugin failed")
|
logger.error("Load function plugin failed")
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from crazy_functions.知识库问答 import 知识库文件注入
|
from crazy_functions.知识库问答 import 知识库文件注入
|
||||||
@@ -576,8 +577,8 @@ def get_crazy_functions():
|
|||||||
}
|
}
|
||||||
)
|
)
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
print("Load function plugin failed")
|
logger.error("Load function plugin failed")
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from crazy_functions.知识库问答 import 读取知识库作答
|
from crazy_functions.知识库问答 import 读取知识库作答
|
||||||
@@ -595,8 +596,8 @@ def get_crazy_functions():
|
|||||||
}
|
}
|
||||||
)
|
)
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
print("Load function plugin failed")
|
logger.error("Load function plugin failed")
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from crazy_functions.交互功能函数模板 import 交互功能模板函数
|
from crazy_functions.交互功能函数模板 import 交互功能模板函数
|
||||||
@@ -612,8 +613,8 @@ def get_crazy_functions():
|
|||||||
}
|
}
|
||||||
)
|
)
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
print("Load function plugin failed")
|
logger.error("Load function plugin failed")
|
||||||
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
@@ -635,8 +636,8 @@ def get_crazy_functions():
|
|||||||
}
|
}
|
||||||
)
|
)
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
print("Load function plugin failed")
|
logger.error("Load function plugin failed")
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from crazy_functions.批量翻译PDF文档_NOUGAT import 批量翻译PDF文档
|
from crazy_functions.批量翻译PDF文档_NOUGAT import 批量翻译PDF文档
|
||||||
@@ -652,8 +653,8 @@ def get_crazy_functions():
|
|||||||
}
|
}
|
||||||
)
|
)
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
print("Load function plugin failed")
|
logger.error("Load function plugin failed")
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from crazy_functions.函数动态生成 import 函数动态生成
|
from crazy_functions.函数动态生成 import 函数动态生成
|
||||||
@@ -669,8 +670,8 @@ def get_crazy_functions():
|
|||||||
}
|
}
|
||||||
)
|
)
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
print("Load function plugin failed")
|
logger.error("Load function plugin failed")
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from crazy_functions.多智能体 import 多智能体终端
|
from crazy_functions.多智能体 import 多智能体终端
|
||||||
@@ -686,8 +687,8 @@ def get_crazy_functions():
|
|||||||
}
|
}
|
||||||
)
|
)
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
print("Load function plugin failed")
|
logger.error("Load function plugin failed")
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from crazy_functions.互动小游戏 import 随机小游戏
|
from crazy_functions.互动小游戏 import 随机小游戏
|
||||||
@@ -703,8 +704,8 @@ def get_crazy_functions():
|
|||||||
}
|
}
|
||||||
)
|
)
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
print("Load function plugin failed")
|
logger.error("Load function plugin failed")
|
||||||
|
|
||||||
# try:
|
# try:
|
||||||
# from crazy_functions.高级功能函数模板 import 测试图表渲染
|
# from crazy_functions.高级功能函数模板 import 测试图表渲染
|
||||||
@@ -717,7 +718,7 @@ def get_crazy_functions():
|
|||||||
# }
|
# }
|
||||||
# })
|
# })
|
||||||
# except:
|
# except:
|
||||||
# print(trimmed_format_exc())
|
# logger.error(trimmed_format_exc())
|
||||||
# print('Load function plugin failed')
|
# print('Load function plugin failed')
|
||||||
|
|
||||||
# try:
|
# try:
|
||||||
|
|||||||
@@ -171,7 +171,7 @@ def 载入对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
|||||||
system_prompt 给gpt的静默提醒
|
system_prompt 给gpt的静默提醒
|
||||||
user_request 当前用户的请求信息(IP地址等)
|
user_request 当前用户的请求信息(IP地址等)
|
||||||
"""
|
"""
|
||||||
from .crazy_utils import get_files_from_everything
|
from crazy_functions.crazy_utils import get_files_from_everything
|
||||||
success, file_manifest, _ = get_files_from_everything(txt, type='.html')
|
success, file_manifest, _ = get_files_from_everything(txt, type='.html')
|
||||||
|
|
||||||
if not success:
|
if not success:
|
||||||
|
|||||||
@@ -30,7 +30,7 @@ def gen_image(llm_kwargs, prompt, resolution="1024x1024", model="dall-e-2", qual
|
|||||||
if style is not None:
|
if style is not None:
|
||||||
data['style'] = style
|
data['style'] = style
|
||||||
response = requests.post(url, headers=headers, json=data, proxies=proxies)
|
response = requests.post(url, headers=headers, json=data, proxies=proxies)
|
||||||
print(response.content)
|
# logger.info(response.content)
|
||||||
try:
|
try:
|
||||||
image_url = json.loads(response.content.decode('utf8'))['data'][0]['url']
|
image_url = json.loads(response.content.decode('utf8'))['data'][0]['url']
|
||||||
except:
|
except:
|
||||||
@@ -76,7 +76,7 @@ def edit_image(llm_kwargs, prompt, image_path, resolution="1024x1024", model="da
|
|||||||
}
|
}
|
||||||
|
|
||||||
response = requests.post(url, headers=headers, files=files, proxies=proxies)
|
response = requests.post(url, headers=headers, files=files, proxies=proxies)
|
||||||
print(response.content)
|
# logger.info(response.content)
|
||||||
try:
|
try:
|
||||||
image_url = json.loads(response.content.decode('utf8'))['data'][0]['url']
|
image_url = json.loads(response.content.decode('utf8'))['data'][0]['url']
|
||||||
except:
|
except:
|
||||||
|
|||||||
@@ -1,6 +1,8 @@
|
|||||||
from toolbox import update_ui, trimmed_format_exc, get_conf, get_log_folder, promote_file_to_downloadzone, check_repeat_upload, map_file_to_sha256
|
from toolbox import update_ui, trimmed_format_exc, get_conf, get_log_folder, promote_file_to_downloadzone, check_repeat_upload, map_file_to_sha256
|
||||||
from toolbox import CatchException, report_exception, update_ui_lastest_msg, zip_result, gen_time_str
|
from toolbox import CatchException, report_exception, update_ui_lastest_msg, zip_result, gen_time_str
|
||||||
from functools import partial
|
from functools import partial
|
||||||
|
from loguru import logger
|
||||||
|
|
||||||
import glob, os, requests, time, json, tarfile
|
import glob, os, requests, time, json, tarfile
|
||||||
|
|
||||||
pj = os.path.join
|
pj = os.path.join
|
||||||
@@ -178,7 +180,7 @@ def pdf2tex_project(pdf_file_path, plugin_kwargs):
|
|||||||
|
|
||||||
if response.ok:
|
if response.ok:
|
||||||
pdf_id = response.json()["pdf_id"]
|
pdf_id = response.json()["pdf_id"]
|
||||||
print(f"PDF processing initiated. PDF ID: {pdf_id}")
|
logger.info(f"PDF processing initiated. PDF ID: {pdf_id}")
|
||||||
|
|
||||||
# Step 2: Check processing status
|
# Step 2: Check processing status
|
||||||
while True:
|
while True:
|
||||||
@@ -186,12 +188,12 @@ def pdf2tex_project(pdf_file_path, plugin_kwargs):
|
|||||||
conversion_data = conversion_response.json()
|
conversion_data = conversion_response.json()
|
||||||
|
|
||||||
if conversion_data["status"] == "completed":
|
if conversion_data["status"] == "completed":
|
||||||
print("PDF processing completed.")
|
logger.info("PDF processing completed.")
|
||||||
break
|
break
|
||||||
elif conversion_data["status"] == "error":
|
elif conversion_data["status"] == "error":
|
||||||
print("Error occurred during processing.")
|
logger.info("Error occurred during processing.")
|
||||||
else:
|
else:
|
||||||
print(f"Processing status: {conversion_data['status']}")
|
logger.info(f"Processing status: {conversion_data['status']}")
|
||||||
time.sleep(5) # wait for a few seconds before checking again
|
time.sleep(5) # wait for a few seconds before checking again
|
||||||
|
|
||||||
# Step 3: Save results to local files
|
# Step 3: Save results to local files
|
||||||
@@ -206,7 +208,7 @@ def pdf2tex_project(pdf_file_path, plugin_kwargs):
|
|||||||
output_path = os.path.join(output_dir, output_name)
|
output_path = os.path.join(output_dir, output_name)
|
||||||
with open(output_path, "wb") as output_file:
|
with open(output_path, "wb") as output_file:
|
||||||
output_file.write(response.content)
|
output_file.write(response.content)
|
||||||
print(f"tex.zip file saved at: {output_path}")
|
logger.info(f"tex.zip file saved at: {output_path}")
|
||||||
|
|
||||||
import zipfile
|
import zipfile
|
||||||
unzip_dir = os.path.join(output_dir, file_name_wo_dot)
|
unzip_dir = os.path.join(output_dir, file_name_wo_dot)
|
||||||
@@ -216,7 +218,7 @@ def pdf2tex_project(pdf_file_path, plugin_kwargs):
|
|||||||
return unzip_dir
|
return unzip_dir
|
||||||
|
|
||||||
else:
|
else:
|
||||||
print(f"Error sending PDF for processing. Status code: {response.status_code}")
|
logger.error(f"Error sending PDF for processing. Status code: {response.status_code}")
|
||||||
return None
|
return None
|
||||||
else:
|
else:
|
||||||
from crazy_functions.pdf_fns.parse_pdf_via_doc2x import 解析PDF_DOC2X_转Latex
|
from crazy_functions.pdf_fns.parse_pdf_via_doc2x import 解析PDF_DOC2X_转Latex
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
from toolbox import update_ui, trimmed_format_exc, promote_file_to_downloadzone, get_log_folder
|
from toolbox import update_ui, trimmed_format_exc, promote_file_to_downloadzone, get_log_folder
|
||||||
from toolbox import CatchException, report_exception, write_history_to_file, zip_folder
|
from toolbox import CatchException, report_exception, write_history_to_file, zip_folder
|
||||||
|
from loguru import logger
|
||||||
|
|
||||||
class PaperFileGroup():
|
class PaperFileGroup():
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
@@ -33,7 +33,7 @@ class PaperFileGroup():
|
|||||||
self.sp_file_index.append(index)
|
self.sp_file_index.append(index)
|
||||||
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.tex")
|
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.tex")
|
||||||
|
|
||||||
print('Segmentation: done')
|
logger.info('Segmentation: done')
|
||||||
def merge_result(self):
|
def merge_result(self):
|
||||||
self.file_result = ["" for _ in range(len(self.file_paths))]
|
self.file_result = ["" for _ in range(len(self.file_paths))]
|
||||||
for r, k in zip(self.sp_file_result, self.sp_file_index):
|
for r, k in zip(self.sp_file_result, self.sp_file_index):
|
||||||
@@ -56,7 +56,7 @@ class PaperFileGroup():
|
|||||||
|
|
||||||
def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en', mode='polish'):
|
def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en', mode='polish'):
|
||||||
import time, os, re
|
import time, os, re
|
||||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
|
|
||||||
|
|
||||||
# <-------- 读取Latex文件,删除其中的所有注释 ---------->
|
# <-------- 读取Latex文件,删除其中的所有注释 ---------->
|
||||||
@@ -122,7 +122,7 @@ def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
|||||||
pfg.write_result()
|
pfg.write_result()
|
||||||
pfg.zip_result()
|
pfg.zip_result()
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
|
|
||||||
# <-------- 整理结果,退出 ---------->
|
# <-------- 整理结果,退出 ---------->
|
||||||
create_report_file_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + f"-chatgpt.polish.md"
|
create_report_file_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + f"-chatgpt.polish.md"
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
from toolbox import update_ui, promote_file_to_downloadzone
|
from toolbox import update_ui, promote_file_to_downloadzone
|
||||||
from toolbox import CatchException, report_exception, write_history_to_file
|
from toolbox import CatchException, report_exception, write_history_to_file
|
||||||
fast_debug = False
|
from loguru import logger
|
||||||
|
|
||||||
class PaperFileGroup():
|
class PaperFileGroup():
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
@@ -33,11 +33,11 @@ class PaperFileGroup():
|
|||||||
self.sp_file_index.append(index)
|
self.sp_file_index.append(index)
|
||||||
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.tex")
|
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.tex")
|
||||||
|
|
||||||
print('Segmentation: done')
|
logger.info('Segmentation: done')
|
||||||
|
|
||||||
def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en'):
|
def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en'):
|
||||||
import time, os, re
|
import time, os, re
|
||||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
|
|
||||||
# <-------- 读取Latex文件,删除其中的所有注释 ---------->
|
# <-------- 读取Latex文件,删除其中的所有注释 ---------->
|
||||||
pfg = PaperFileGroup()
|
pfg = PaperFileGroup()
|
||||||
|
|||||||
@@ -1,4 +1,5 @@
|
|||||||
import glob, shutil, os, re, logging
|
import glob, shutil, os, re
|
||||||
|
from loguru import logger
|
||||||
from toolbox import update_ui, trimmed_format_exc, gen_time_str
|
from toolbox import update_ui, trimmed_format_exc, gen_time_str
|
||||||
from toolbox import CatchException, report_exception, get_log_folder
|
from toolbox import CatchException, report_exception, get_log_folder
|
||||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||||
@@ -34,7 +35,7 @@ class PaperFileGroup():
|
|||||||
self.sp_file_contents.append(segment)
|
self.sp_file_contents.append(segment)
|
||||||
self.sp_file_index.append(index)
|
self.sp_file_index.append(index)
|
||||||
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.md")
|
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.md")
|
||||||
logging.info('Segmentation: done')
|
logger.info('Segmentation: done')
|
||||||
|
|
||||||
def merge_result(self):
|
def merge_result(self):
|
||||||
self.file_result = ["" for _ in range(len(self.file_paths))]
|
self.file_result = ["" for _ in range(len(self.file_paths))]
|
||||||
@@ -51,7 +52,7 @@ class PaperFileGroup():
|
|||||||
return manifest
|
return manifest
|
||||||
|
|
||||||
def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en'):
|
def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en'):
|
||||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
|
|
||||||
# <-------- 读取Markdown文件,删除其中的所有注释 ---------->
|
# <-------- 读取Markdown文件,删除其中的所有注释 ---------->
|
||||||
pfg = PaperFileGroup()
|
pfg = PaperFileGroup()
|
||||||
@@ -106,7 +107,7 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
|||||||
expected_f_name = plugin_kwargs['markdown_expected_output_path']
|
expected_f_name = plugin_kwargs['markdown_expected_output_path']
|
||||||
shutil.copyfile(output_file, expected_f_name)
|
shutil.copyfile(output_file, expected_f_name)
|
||||||
except:
|
except:
|
||||||
logging.error(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
|
|
||||||
# <-------- 整理结果,退出 ---------->
|
# <-------- 整理结果,退出 ---------->
|
||||||
create_report_file_name = gen_time_str() + f"-chatgpt.md"
|
create_report_file_name = gen_time_str() + f"-chatgpt.md"
|
||||||
@@ -126,7 +127,7 @@ def get_files_from_everything(txt, preference=''):
|
|||||||
proxies = get_conf('proxies')
|
proxies = get_conf('proxies')
|
||||||
# 网络的远程文件
|
# 网络的远程文件
|
||||||
if preference == 'Github':
|
if preference == 'Github':
|
||||||
logging.info('正在从github下载资源 ...')
|
logger.info('正在从github下载资源 ...')
|
||||||
if not txt.endswith('.md'):
|
if not txt.endswith('.md'):
|
||||||
# Make a request to the GitHub API to retrieve the repository information
|
# Make a request to the GitHub API to retrieve the repository information
|
||||||
url = txt.replace("https://github.com/", "https://api.github.com/repos/") + '/readme'
|
url = txt.replace("https://github.com/", "https://api.github.com/repos/") + '/readme'
|
||||||
|
|||||||
@@ -5,8 +5,8 @@ from crazy_functions.crazy_utils import input_clipping
|
|||||||
|
|
||||||
def 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
def 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||||
import os, copy
|
import os, copy
|
||||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
|
|
||||||
summary_batch_isolation = True
|
summary_batch_isolation = True
|
||||||
inputs_array = []
|
inputs_array = []
|
||||||
|
|||||||
@@ -73,7 +73,7 @@ def 注释源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
|
|||||||
file_tree_struct.manifest[fp].compare_html = compare_html_path
|
file_tree_struct.manifest[fp].compare_html = compare_html_path
|
||||||
with open(compare_html_path, 'w', encoding='utf-8') as f:
|
with open(compare_html_path, 'w', encoding='utf-8') as f:
|
||||||
f.write(html_template)
|
f.write(html_template)
|
||||||
print('done 1')
|
# print('done 1')
|
||||||
|
|
||||||
chatbot.append([None, f"正在处理:"])
|
chatbot.append([None, f"正在处理:"])
|
||||||
futures = []
|
futures = []
|
||||||
|
|||||||
@@ -1,4 +1,5 @@
|
|||||||
from crazy_functions.agent_fns.pipe import PluginMultiprocessManager, PipeCom
|
from crazy_functions.agent_fns.pipe import PluginMultiprocessManager, PipeCom
|
||||||
|
from loguru import logger
|
||||||
|
|
||||||
class EchoDemo(PluginMultiprocessManager):
|
class EchoDemo(PluginMultiprocessManager):
|
||||||
def subprocess_worker(self, child_conn):
|
def subprocess_worker(self, child_conn):
|
||||||
@@ -16,4 +17,4 @@ class EchoDemo(PluginMultiprocessManager):
|
|||||||
elif msg.cmd == "terminate":
|
elif msg.cmd == "terminate":
|
||||||
self.child_conn.send(PipeCom("done", ""))
|
self.child_conn.send(PipeCom("done", ""))
|
||||||
break
|
break
|
||||||
print('[debug] subprocess_worker terminated')
|
logger.info('[debug] subprocess_worker terminated')
|
||||||
@@ -1,5 +1,6 @@
|
|||||||
from toolbox import get_log_folder, update_ui, gen_time_str, get_conf, promote_file_to_downloadzone
|
from toolbox import get_log_folder, update_ui, gen_time_str, get_conf, promote_file_to_downloadzone
|
||||||
from crazy_functions.agent_fns.watchdog import WatchDog
|
from crazy_functions.agent_fns.watchdog import WatchDog
|
||||||
|
from loguru import logger
|
||||||
import time, os
|
import time, os
|
||||||
|
|
||||||
class PipeCom:
|
class PipeCom:
|
||||||
@@ -47,7 +48,7 @@ class PluginMultiprocessManager:
|
|||||||
def terminate(self):
|
def terminate(self):
|
||||||
self.p.terminate()
|
self.p.terminate()
|
||||||
self.alive = False
|
self.alive = False
|
||||||
print("[debug] instance terminated")
|
logger.info("[debug] instance terminated")
|
||||||
|
|
||||||
def subprocess_worker(self, child_conn):
|
def subprocess_worker(self, child_conn):
|
||||||
# ⭐⭐ run in subprocess
|
# ⭐⭐ run in subprocess
|
||||||
|
|||||||
@@ -1,10 +1,12 @@
|
|||||||
from toolbox import CatchException, update_ui
|
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
|
||||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
|
||||||
import datetime
|
import datetime
|
||||||
import re
|
import re
|
||||||
import os
|
import os
|
||||||
|
from loguru import logger
|
||||||
from textwrap import dedent
|
from textwrap import dedent
|
||||||
|
from toolbox import CatchException, update_ui
|
||||||
|
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||||
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
|
|
||||||
# TODO: 解决缩进问题
|
# TODO: 解决缩进问题
|
||||||
|
|
||||||
find_function_end_prompt = '''
|
find_function_end_prompt = '''
|
||||||
@@ -355,7 +357,7 @@ class PythonCodeComment():
|
|||||||
try:
|
try:
|
||||||
successful, hint = self.verify_successful(next_batch, result)
|
successful, hint = self.verify_successful(next_batch, result)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print('ignored exception:\n' + str(e))
|
logger.error('ignored exception:\n' + str(e))
|
||||||
break
|
break
|
||||||
if successful:
|
if successful:
|
||||||
break
|
break
|
||||||
|
|||||||
@@ -1,4 +1,5 @@
|
|||||||
import threading, time
|
import threading, time
|
||||||
|
from loguru import logger
|
||||||
|
|
||||||
class WatchDog():
|
class WatchDog():
|
||||||
def __init__(self, timeout, bark_fn, interval=3, msg="") -> None:
|
def __init__(self, timeout, bark_fn, interval=3, msg="") -> None:
|
||||||
@@ -13,7 +14,7 @@ class WatchDog():
|
|||||||
while True:
|
while True:
|
||||||
if self.kill_dog: break
|
if self.kill_dog: break
|
||||||
if time.time() - self.last_feed > self.timeout:
|
if time.time() - self.last_feed > self.timeout:
|
||||||
if len(self.msg) > 0: print(self.msg)
|
if len(self.msg) > 0: logger.info(self.msg)
|
||||||
self.bark_fn()
|
self.bark_fn()
|
||||||
break
|
break
|
||||||
time.sleep(self.interval)
|
time.sleep(self.interval)
|
||||||
|
|||||||
@@ -1,5 +1,5 @@
|
|||||||
from toolbox import CatchException, update_ui, promote_file_to_downloadzone
|
from toolbox import CatchException, update_ui, promote_file_to_downloadzone
|
||||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
import datetime, json
|
import datetime, json
|
||||||
|
|
||||||
def fetch_items(list_of_items, batch_size):
|
def fetch_items(list_of_items, batch_size):
|
||||||
|
|||||||
@@ -1,8 +1,8 @@
|
|||||||
from toolbox import update_ui, get_conf, trimmed_format_exc, get_max_token, Singleton
|
|
||||||
from shared_utils.char_visual_effect import scolling_visual_effect
|
|
||||||
import threading
|
|
||||||
import os
|
import os
|
||||||
import logging
|
import threading
|
||||||
|
from loguru import logger
|
||||||
|
from shared_utils.char_visual_effect import scolling_visual_effect
|
||||||
|
from toolbox import update_ui, get_conf, trimmed_format_exc, get_max_token, Singleton
|
||||||
|
|
||||||
def input_clipping(inputs, history, max_token_limit, return_clip_flags=False):
|
def input_clipping(inputs, history, max_token_limit, return_clip_flags=False):
|
||||||
"""
|
"""
|
||||||
@@ -133,7 +133,7 @@ def request_gpt_model_in_new_thread_with_ui_alive(
|
|||||||
except:
|
except:
|
||||||
# 【第三种情况】:其他错误:重试几次
|
# 【第三种情况】:其他错误:重试几次
|
||||||
tb_str = '```\n' + trimmed_format_exc() + '```'
|
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||||
print(tb_str)
|
logger.error(tb_str)
|
||||||
mutable[0] += f"[Local Message] 警告,在执行过程中遭遇问题, Traceback:\n\n{tb_str}\n\n"
|
mutable[0] += f"[Local Message] 警告,在执行过程中遭遇问题, Traceback:\n\n{tb_str}\n\n"
|
||||||
if retry_op > 0:
|
if retry_op > 0:
|
||||||
retry_op -= 1
|
retry_op -= 1
|
||||||
@@ -283,7 +283,7 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
|||||||
# 【第三种情况】:其他错误
|
# 【第三种情况】:其他错误
|
||||||
if detect_timeout(): raise RuntimeError("检测到程序终止。")
|
if detect_timeout(): raise RuntimeError("检测到程序终止。")
|
||||||
tb_str = '```\n' + trimmed_format_exc() + '```'
|
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||||
print(tb_str)
|
logger.error(tb_str)
|
||||||
gpt_say += f"[Local Message] 警告,线程{index}在执行过程中遭遇问题, Traceback:\n\n{tb_str}\n\n"
|
gpt_say += f"[Local Message] 警告,线程{index}在执行过程中遭遇问题, Traceback:\n\n{tb_str}\n\n"
|
||||||
if len(mutable[index][0]) > 0: gpt_say += "此线程失败前收到的回答:\n\n" + mutable[index][0]
|
if len(mutable[index][0]) > 0: gpt_say += "此线程失败前收到的回答:\n\n" + mutable[index][0]
|
||||||
if retry_op > 0:
|
if retry_op > 0:
|
||||||
@@ -378,7 +378,7 @@ def read_and_clean_pdf_text(fp):
|
|||||||
import fitz, copy
|
import fitz, copy
|
||||||
import re
|
import re
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from shared_utils.colorful import print亮黄, print亮绿
|
# from shared_utils.colorful import print亮黄, print亮绿
|
||||||
fc = 0 # Index 0 文本
|
fc = 0 # Index 0 文本
|
||||||
fs = 1 # Index 1 字体
|
fs = 1 # Index 1 字体
|
||||||
fb = 2 # Index 2 框框
|
fb = 2 # Index 2 框框
|
||||||
@@ -595,7 +595,7 @@ class nougat_interface():
|
|||||||
def nougat_with_timeout(self, command, cwd, timeout=3600):
|
def nougat_with_timeout(self, command, cwd, timeout=3600):
|
||||||
import subprocess
|
import subprocess
|
||||||
from toolbox import ProxyNetworkActivate
|
from toolbox import ProxyNetworkActivate
|
||||||
logging.info(f'正在执行命令 {command}')
|
logger.info(f'正在执行命令 {command}')
|
||||||
with ProxyNetworkActivate("Nougat_Download"):
|
with ProxyNetworkActivate("Nougat_Download"):
|
||||||
process = subprocess.Popen(command, shell=False, cwd=cwd, env=os.environ)
|
process = subprocess.Popen(command, shell=False, cwd=cwd, env=os.environ)
|
||||||
try:
|
try:
|
||||||
@@ -603,7 +603,7 @@ class nougat_interface():
|
|||||||
except subprocess.TimeoutExpired:
|
except subprocess.TimeoutExpired:
|
||||||
process.kill()
|
process.kill()
|
||||||
stdout, stderr = process.communicate()
|
stdout, stderr = process.communicate()
|
||||||
print("Process timed out!")
|
logger.error("Process timed out!")
|
||||||
return False
|
return False
|
||||||
return True
|
return True
|
||||||
|
|
||||||
|
|||||||
@@ -1,5 +1,6 @@
|
|||||||
import os
|
import os
|
||||||
from textwrap import indent
|
from textwrap import indent
|
||||||
|
from loguru import logger
|
||||||
|
|
||||||
class FileNode:
|
class FileNode:
|
||||||
def __init__(self, name, build_manifest=False):
|
def __init__(self, name, build_manifest=False):
|
||||||
@@ -60,7 +61,7 @@ class FileNode:
|
|||||||
current_node.children.append(term)
|
current_node.children.append(term)
|
||||||
|
|
||||||
def print_files_recursively(self, level=0, code="R0"):
|
def print_files_recursively(self, level=0, code="R0"):
|
||||||
print(' '*level + self.name + ' ' + str(self.is_leaf) + ' ' + str(self.level))
|
logger.info(' '*level + self.name + ' ' + str(self.is_leaf) + ' ' + str(self.level))
|
||||||
for j, child in enumerate(self.children):
|
for j, child in enumerate(self.children):
|
||||||
child.print_files_recursively(level=level+1, code=code+str(j))
|
child.print_files_recursively(level=level+1, code=code+str(j))
|
||||||
self.parenting_ship.extend(child.parenting_ship)
|
self.parenting_ship.extend(child.parenting_ship)
|
||||||
@@ -123,4 +124,4 @@ if __name__ == "__main__":
|
|||||||
"用于加载和分割文件中的文本的通用文件加载器用于加载和分割文件中的文本的通用文件加载器用于加载和分割文件中的文本的通用文件加载器",
|
"用于加载和分割文件中的文本的通用文件加载器用于加载和分割文件中的文本的通用文件加载器用于加载和分割文件中的文本的通用文件加载器",
|
||||||
"包含了用于构建和管理向量数据库的函数和类包含了用于构建和管理向量数据库的函数和类包含了用于构建和管理向量数据库的函数和类",
|
"包含了用于构建和管理向量数据库的函数和类包含了用于构建和管理向量数据库的函数和类包含了用于构建和管理向量数据库的函数和类",
|
||||||
]
|
]
|
||||||
print(build_file_tree_mermaid_diagram(file_manifest, file_comments, "项目文件树"))
|
logger.info(build_file_tree_mermaid_diagram(file_manifest, file_comments, "项目文件树"))
|
||||||
@@ -24,8 +24,8 @@ class Actor(BaseModel):
|
|||||||
film_names: List[str] = Field(description="list of names of films they starred in")
|
film_names: List[str] = Field(description="list of names of films they starred in")
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import json, re, logging
|
import json, re
|
||||||
|
from loguru import logger as logging
|
||||||
|
|
||||||
PYDANTIC_FORMAT_INSTRUCTIONS = """The output should be formatted as a JSON instance that conforms to the JSON schema below.
|
PYDANTIC_FORMAT_INSTRUCTIONS = """The output should be formatted as a JSON instance that conforms to the JSON schema below.
|
||||||
|
|
||||||
|
|||||||
@@ -1,15 +1,17 @@
|
|||||||
|
import os
|
||||||
|
import re
|
||||||
|
import shutil
|
||||||
|
import numpy as np
|
||||||
|
from loguru import logger
|
||||||
from toolbox import update_ui, update_ui_lastest_msg, get_log_folder
|
from toolbox import update_ui, update_ui_lastest_msg, get_log_folder
|
||||||
from toolbox import get_conf, promote_file_to_downloadzone
|
from toolbox import get_conf, promote_file_to_downloadzone
|
||||||
from .latex_toolbox import PRESERVE, TRANSFORM
|
from crazy_functions.latex_fns.latex_toolbox import PRESERVE, TRANSFORM
|
||||||
from .latex_toolbox import set_forbidden_text, set_forbidden_text_begin_end, set_forbidden_text_careful_brace
|
from crazy_functions.latex_fns.latex_toolbox import set_forbidden_text, set_forbidden_text_begin_end, set_forbidden_text_careful_brace
|
||||||
from .latex_toolbox import reverse_forbidden_text_careful_brace, reverse_forbidden_text, convert_to_linklist, post_process
|
from crazy_functions.latex_fns.latex_toolbox import reverse_forbidden_text_careful_brace, reverse_forbidden_text, convert_to_linklist, post_process
|
||||||
from .latex_toolbox import fix_content, find_main_tex_file, merge_tex_files, compile_latex_with_timeout
|
from crazy_functions.latex_fns.latex_toolbox import fix_content, find_main_tex_file, merge_tex_files, compile_latex_with_timeout
|
||||||
from .latex_toolbox import find_title_and_abs
|
from crazy_functions.latex_fns.latex_toolbox import find_title_and_abs
|
||||||
from .latex_pickle_io import objdump, objload
|
from crazy_functions.latex_fns.latex_pickle_io import objdump, objload
|
||||||
|
|
||||||
import os, shutil
|
|
||||||
import re
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
pj = os.path.join
|
pj = os.path.join
|
||||||
|
|
||||||
@@ -323,7 +325,7 @@ def remove_buggy_lines(file_path, log_path, tex_name, tex_name_pure, n_fix, work
|
|||||||
buggy_lines = [int(l) for l in buggy_lines]
|
buggy_lines = [int(l) for l in buggy_lines]
|
||||||
buggy_lines = sorted(buggy_lines)
|
buggy_lines = sorted(buggy_lines)
|
||||||
buggy_line = buggy_lines[0]-1
|
buggy_line = buggy_lines[0]-1
|
||||||
print("reversing tex line that has errors", buggy_line)
|
logger.warning("reversing tex line that has errors", buggy_line)
|
||||||
|
|
||||||
# 重组,逆转出错的段落
|
# 重组,逆转出错的段落
|
||||||
if buggy_line not in fixed_line:
|
if buggy_line not in fixed_line:
|
||||||
@@ -337,7 +339,7 @@ def remove_buggy_lines(file_path, log_path, tex_name, tex_name_pure, n_fix, work
|
|||||||
|
|
||||||
return True, f"{tex_name_pure}_fix_{n_fix}", buggy_lines
|
return True, f"{tex_name_pure}_fix_{n_fix}", buggy_lines
|
||||||
except:
|
except:
|
||||||
print("Fatal error occurred, but we cannot identify error, please download zip, read latex log, and compile manually.")
|
logger.error("Fatal error occurred, but we cannot identify error, please download zip, read latex log, and compile manually.")
|
||||||
return False, -1, [-1]
|
return False, -1, [-1]
|
||||||
|
|
||||||
|
|
||||||
@@ -380,7 +382,7 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
|||||||
|
|
||||||
if mode!='translate_zh':
|
if mode!='translate_zh':
|
||||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 使用latexdiff生成论文转化前后对比 ...', chatbot, history) # 刷新Gradio前端界面
|
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 使用latexdiff生成论文转化前后对比 ...', chatbot, history) # 刷新Gradio前端界面
|
||||||
print( f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex')
|
logger.info( f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex')
|
||||||
ok = compile_latex_with_timeout(f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex', os.getcwd())
|
ok = compile_latex_with_timeout(f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex', os.getcwd())
|
||||||
|
|
||||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 正在编译对比PDF ...', chatbot, history) # 刷新Gradio前端界面
|
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 正在编译对比PDF ...', chatbot, history) # 刷新Gradio前端界面
|
||||||
@@ -419,7 +421,7 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
|||||||
shutil.copyfile(concat_pdf, pj(work_folder, '..', 'translation', 'comparison.pdf'))
|
shutil.copyfile(concat_pdf, pj(work_folder, '..', 'translation', 'comparison.pdf'))
|
||||||
promote_file_to_downloadzone(concat_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
|
promote_file_to_downloadzone(concat_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(e)
|
logger.error(e)
|
||||||
pass
|
pass
|
||||||
return True # 成功啦
|
return True # 成功啦
|
||||||
else:
|
else:
|
||||||
@@ -465,4 +467,4 @@ def write_html(sp_file_contents, sp_file_result, chatbot, project_folder):
|
|||||||
promote_file_to_downloadzone(file=res, chatbot=chatbot)
|
promote_file_to_downloadzone(file=res, chatbot=chatbot)
|
||||||
except:
|
except:
|
||||||
from toolbox import trimmed_format_exc
|
from toolbox import trimmed_format_exc
|
||||||
print('writing html result failed:', trimmed_format_exc())
|
logger.error('writing html result failed:', trimmed_format_exc())
|
||||||
|
|||||||
@@ -1,6 +1,8 @@
|
|||||||
import os, shutil
|
import os
|
||||||
import re
|
import re
|
||||||
|
import shutil
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
from loguru import logger
|
||||||
|
|
||||||
PRESERVE = 0
|
PRESERVE = 0
|
||||||
TRANSFORM = 1
|
TRANSFORM = 1
|
||||||
@@ -55,7 +57,7 @@ def post_process(root):
|
|||||||
str_stack.append("{")
|
str_stack.append("{")
|
||||||
elif c == "}":
|
elif c == "}":
|
||||||
if len(str_stack) == 1:
|
if len(str_stack) == 1:
|
||||||
print("stack fix")
|
logger.warning("fixing brace error")
|
||||||
return i
|
return i
|
||||||
str_stack.pop(-1)
|
str_stack.pop(-1)
|
||||||
else:
|
else:
|
||||||
@@ -601,7 +603,7 @@ def compile_latex_with_timeout(command, cwd, timeout=60):
|
|||||||
except subprocess.TimeoutExpired:
|
except subprocess.TimeoutExpired:
|
||||||
process.kill()
|
process.kill()
|
||||||
stdout, stderr = process.communicate()
|
stdout, stderr = process.communicate()
|
||||||
print("Process timed out!")
|
logger.error("Process timed out (compile_latex_with_timeout)!")
|
||||||
return False
|
return False
|
||||||
return True
|
return True
|
||||||
|
|
||||||
|
|||||||
@@ -1,5 +1,6 @@
|
|||||||
import time, logging, json, sys, struct
|
import time, json, sys, struct
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
from loguru import logger as logging
|
||||||
from scipy.io.wavfile import WAVE_FORMAT
|
from scipy.io.wavfile import WAVE_FORMAT
|
||||||
|
|
||||||
def write_numpy_to_wave(filename, rate, data, add_header=False):
|
def write_numpy_to_wave(filename, rate, data, add_header=False):
|
||||||
@@ -106,18 +107,14 @@ def is_speaker_speaking(vad, data, sample_rate):
|
|||||||
class AliyunASR():
|
class AliyunASR():
|
||||||
|
|
||||||
def test_on_sentence_begin(self, message, *args):
|
def test_on_sentence_begin(self, message, *args):
|
||||||
# print("test_on_sentence_begin:{}".format(message))
|
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def test_on_sentence_end(self, message, *args):
|
def test_on_sentence_end(self, message, *args):
|
||||||
# print("test_on_sentence_end:{}".format(message))
|
|
||||||
message = json.loads(message)
|
message = json.loads(message)
|
||||||
self.parsed_sentence = message['payload']['result']
|
self.parsed_sentence = message['payload']['result']
|
||||||
self.event_on_entence_end.set()
|
self.event_on_entence_end.set()
|
||||||
# print(self.parsed_sentence)
|
|
||||||
|
|
||||||
def test_on_start(self, message, *args):
|
def test_on_start(self, message, *args):
|
||||||
# print("test_on_start:{}".format(message))
|
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def test_on_error(self, message, *args):
|
def test_on_error(self, message, *args):
|
||||||
@@ -129,13 +126,11 @@ class AliyunASR():
|
|||||||
pass
|
pass
|
||||||
|
|
||||||
def test_on_result_chg(self, message, *args):
|
def test_on_result_chg(self, message, *args):
|
||||||
# print("test_on_chg:{}".format(message))
|
|
||||||
message = json.loads(message)
|
message = json.loads(message)
|
||||||
self.parsed_text = message['payload']['result']
|
self.parsed_text = message['payload']['result']
|
||||||
self.event_on_result_chg.set()
|
self.event_on_result_chg.set()
|
||||||
|
|
||||||
def test_on_completed(self, message, *args):
|
def test_on_completed(self, message, *args):
|
||||||
# print("on_completed:args=>{} message=>{}".format(args, message))
|
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def audio_convertion_thread(self, uuid):
|
def audio_convertion_thread(self, uuid):
|
||||||
@@ -248,14 +243,14 @@ class AliyunASR():
|
|||||||
|
|
||||||
try:
|
try:
|
||||||
response = client.do_action_with_exception(request)
|
response = client.do_action_with_exception(request)
|
||||||
print(response)
|
logging.info(response)
|
||||||
jss = json.loads(response)
|
jss = json.loads(response)
|
||||||
if 'Token' in jss and 'Id' in jss['Token']:
|
if 'Token' in jss and 'Id' in jss['Token']:
|
||||||
token = jss['Token']['Id']
|
token = jss['Token']['Id']
|
||||||
expireTime = jss['Token']['ExpireTime']
|
expireTime = jss['Token']['ExpireTime']
|
||||||
print("token = " + token)
|
logging.info("token = " + token)
|
||||||
print("expireTime = " + str(expireTime))
|
logging.info("expireTime = " + str(expireTime))
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(e)
|
logging.error(e)
|
||||||
|
|
||||||
return token
|
return token
|
||||||
|
|||||||
@@ -1,4 +1,5 @@
|
|||||||
from crazy_functions.ipc_fns.mp import run_in_subprocess_with_timeout
|
from crazy_functions.ipc_fns.mp import run_in_subprocess_with_timeout
|
||||||
|
from loguru import logger
|
||||||
|
|
||||||
def force_breakdown(txt, limit, get_token_fn):
|
def force_breakdown(txt, limit, get_token_fn):
|
||||||
""" 当无法用标点、空行分割时,我们用最暴力的方法切割
|
""" 当无法用标点、空行分割时,我们用最暴力的方法切割
|
||||||
@@ -76,7 +77,7 @@ def cut(limit, get_token_fn, txt_tocut, must_break_at_empty_line, break_anyway=F
|
|||||||
remain_txt_to_cut = post
|
remain_txt_to_cut = post
|
||||||
remain_txt_to_cut, remain_txt_to_cut_storage = maintain_storage(remain_txt_to_cut, remain_txt_to_cut_storage)
|
remain_txt_to_cut, remain_txt_to_cut_storage = maintain_storage(remain_txt_to_cut, remain_txt_to_cut_storage)
|
||||||
process = fin_len/total_len
|
process = fin_len/total_len
|
||||||
print(f'正在文本切分 {int(process*100)}%')
|
logger.info(f'正在文本切分 {int(process*100)}%')
|
||||||
if len(remain_txt_to_cut.strip()) == 0:
|
if len(remain_txt_to_cut.strip()) == 0:
|
||||||
break
|
break
|
||||||
return res
|
return res
|
||||||
@@ -119,7 +120,7 @@ if __name__ == '__main__':
|
|||||||
for i in range(5):
|
for i in range(5):
|
||||||
file_content += file_content
|
file_content += file_content
|
||||||
|
|
||||||
print(len(file_content))
|
logger.info(len(file_content))
|
||||||
TOKEN_LIMIT_PER_FRAGMENT = 2500
|
TOKEN_LIMIT_PER_FRAGMENT = 2500
|
||||||
res = breakdown_text_to_satisfy_token_limit(file_content, TOKEN_LIMIT_PER_FRAGMENT)
|
res = breakdown_text_to_satisfy_token_limit(file_content, TOKEN_LIMIT_PER_FRAGMENT)
|
||||||
|
|
||||||
|
|||||||
@@ -5,6 +5,7 @@ from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_
|
|||||||
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
from crazy_functions.crazy_utils import read_and_clean_pdf_text
|
from crazy_functions.crazy_utils import read_and_clean_pdf_text
|
||||||
from shared_utils.colorful import *
|
from shared_utils.colorful import *
|
||||||
|
from loguru import logger
|
||||||
import os
|
import os
|
||||||
|
|
||||||
def 解析PDF_简单拆解(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
def 解析PDF_简单拆解(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||||
@@ -93,7 +94,7 @@ def 解析PDF_简单拆解(file_manifest, project_folder, llm_kwargs, plugin_kwa
|
|||||||
generated_html_files.append(ch.save_file(create_report_file_name))
|
generated_html_files.append(ch.save_file(create_report_file_name))
|
||||||
except:
|
except:
|
||||||
from toolbox import trimmed_format_exc
|
from toolbox import trimmed_format_exc
|
||||||
print('writing html result failed:', trimmed_format_exc())
|
logger.error('writing html result failed:', trimmed_format_exc())
|
||||||
|
|
||||||
# 准备文件的下载
|
# 准备文件的下载
|
||||||
for pdf_path in generated_conclusion_files:
|
for pdf_path in generated_conclusion_files:
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
import llama_index
|
import llama_index
|
||||||
import os
|
import os
|
||||||
import atexit
|
import atexit
|
||||||
|
from loguru import logger
|
||||||
from typing import List
|
from typing import List
|
||||||
from llama_index.core import Document
|
from llama_index.core import Document
|
||||||
from llama_index.core.schema import TextNode
|
from llama_index.core.schema import TextNode
|
||||||
@@ -41,14 +42,14 @@ class SaveLoad():
|
|||||||
return True
|
return True
|
||||||
|
|
||||||
def save_to_checkpoint(self, checkpoint_dir=None):
|
def save_to_checkpoint(self, checkpoint_dir=None):
|
||||||
print(f'saving vector store to: {checkpoint_dir}')
|
logger.info(f'saving vector store to: {checkpoint_dir}')
|
||||||
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
|
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
|
||||||
self.vs_index.storage_context.persist(persist_dir=checkpoint_dir)
|
self.vs_index.storage_context.persist(persist_dir=checkpoint_dir)
|
||||||
|
|
||||||
def load_from_checkpoint(self, checkpoint_dir=None):
|
def load_from_checkpoint(self, checkpoint_dir=None):
|
||||||
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
|
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
|
||||||
if self.does_checkpoint_exist(checkpoint_dir=checkpoint_dir):
|
if self.does_checkpoint_exist(checkpoint_dir=checkpoint_dir):
|
||||||
print('loading checkpoint from disk')
|
logger.info('loading checkpoint from disk')
|
||||||
from llama_index.core import StorageContext, load_index_from_storage
|
from llama_index.core import StorageContext, load_index_from_storage
|
||||||
storage_context = StorageContext.from_defaults(persist_dir=checkpoint_dir)
|
storage_context = StorageContext.from_defaults(persist_dir=checkpoint_dir)
|
||||||
self.vs_index = load_index_from_storage(storage_context, embed_model=self.embed_model)
|
self.vs_index = load_index_from_storage(storage_context, embed_model=self.embed_model)
|
||||||
@@ -85,9 +86,9 @@ class LlamaIndexRagWorker(SaveLoad):
|
|||||||
self.vs_index.storage_context.index_store.to_dict()
|
self.vs_index.storage_context.index_store.to_dict()
|
||||||
docstore = self.vs_index.storage_context.docstore.docs
|
docstore = self.vs_index.storage_context.docstore.docs
|
||||||
vector_store_preview = "\n".join([ f"{_id} | {tn.text}" for _id, tn in docstore.items() ])
|
vector_store_preview = "\n".join([ f"{_id} | {tn.text}" for _id, tn in docstore.items() ])
|
||||||
print('\n++ --------inspect_vector_store begin--------')
|
logger.info('\n++ --------inspect_vector_store begin--------')
|
||||||
print(vector_store_preview)
|
logger.info(vector_store_preview)
|
||||||
print('oo --------inspect_vector_store end--------')
|
logger.info('oo --------inspect_vector_store end--------')
|
||||||
return vector_store_preview
|
return vector_store_preview
|
||||||
|
|
||||||
def add_documents_to_vector_store(self, document_list):
|
def add_documents_to_vector_store(self, document_list):
|
||||||
@@ -125,5 +126,5 @@ class LlamaIndexRagWorker(SaveLoad):
|
|||||||
|
|
||||||
def generate_node_array_preview(self, nodes):
|
def generate_node_array_preview(self, nodes):
|
||||||
buf = "\n".join(([f"(No.{i+1} | score {n.score:.3f}): {n.text}" for i, n in enumerate(nodes)]))
|
buf = "\n".join(([f"(No.{i+1} | score {n.score:.3f}): {n.text}" for i, n in enumerate(nodes)]))
|
||||||
if self.debug_mode: print(buf)
|
if self.debug_mode: logger.info(buf)
|
||||||
return buf
|
return buf
|
||||||
|
|||||||
@@ -2,6 +2,7 @@ import llama_index
|
|||||||
import os
|
import os
|
||||||
import atexit
|
import atexit
|
||||||
from typing import List
|
from typing import List
|
||||||
|
from loguru import logger
|
||||||
from llama_index.core import Document
|
from llama_index.core import Document
|
||||||
from llama_index.core.schema import TextNode
|
from llama_index.core.schema import TextNode
|
||||||
from request_llms.embed_models.openai_embed import OpenAiEmbeddingModel
|
from request_llms.embed_models.openai_embed import OpenAiEmbeddingModel
|
||||||
@@ -44,14 +45,14 @@ class MilvusSaveLoad():
|
|||||||
return True
|
return True
|
||||||
|
|
||||||
def save_to_checkpoint(self, checkpoint_dir=None):
|
def save_to_checkpoint(self, checkpoint_dir=None):
|
||||||
print(f'saving vector store to: {checkpoint_dir}')
|
logger.info(f'saving vector store to: {checkpoint_dir}')
|
||||||
# if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
|
# if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
|
||||||
# self.vs_index.storage_context.persist(persist_dir=checkpoint_dir)
|
# self.vs_index.storage_context.persist(persist_dir=checkpoint_dir)
|
||||||
|
|
||||||
def load_from_checkpoint(self, checkpoint_dir=None):
|
def load_from_checkpoint(self, checkpoint_dir=None):
|
||||||
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
|
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
|
||||||
if self.does_checkpoint_exist(checkpoint_dir=checkpoint_dir):
|
if self.does_checkpoint_exist(checkpoint_dir=checkpoint_dir):
|
||||||
print('loading checkpoint from disk')
|
logger.info('loading checkpoint from disk')
|
||||||
from llama_index.core import StorageContext, load_index_from_storage
|
from llama_index.core import StorageContext, load_index_from_storage
|
||||||
storage_context = StorageContext.from_defaults(persist_dir=checkpoint_dir)
|
storage_context = StorageContext.from_defaults(persist_dir=checkpoint_dir)
|
||||||
try:
|
try:
|
||||||
@@ -101,7 +102,7 @@ class MilvusRagWorker(MilvusSaveLoad, LlamaIndexRagWorker):
|
|||||||
vector_store_preview = "\n".join(
|
vector_store_preview = "\n".join(
|
||||||
[f"{node.id_} | {node.text}" for node in dummy_retrieve_res]
|
[f"{node.id_} | {node.text}" for node in dummy_retrieve_res]
|
||||||
)
|
)
|
||||||
print('\n++ --------inspect_vector_store begin--------')
|
logger.info('\n++ --------inspect_vector_store begin--------')
|
||||||
print(vector_store_preview)
|
logger.info(vector_store_preview)
|
||||||
print('oo --------inspect_vector_store end--------')
|
logger.info('oo --------inspect_vector_store end--------')
|
||||||
return vector_store_preview
|
return vector_store_preview
|
||||||
|
|||||||
@@ -1,16 +1,17 @@
|
|||||||
# From project chatglm-langchain
|
# From project chatglm-langchain
|
||||||
|
|
||||||
import threading
|
|
||||||
from toolbox import Singleton
|
|
||||||
import os
|
import os
|
||||||
import shutil
|
|
||||||
import os
|
import os
|
||||||
import uuid
|
import uuid
|
||||||
import tqdm
|
import tqdm
|
||||||
|
import shutil
|
||||||
|
import threading
|
||||||
|
import numpy as np
|
||||||
|
from toolbox import Singleton
|
||||||
|
from loguru import logger
|
||||||
from langchain.vectorstores import FAISS
|
from langchain.vectorstores import FAISS
|
||||||
from langchain.docstore.document import Document
|
from langchain.docstore.document import Document
|
||||||
from typing import List, Tuple
|
from typing import List, Tuple
|
||||||
import numpy as np
|
|
||||||
from crazy_functions.vector_fns.general_file_loader import load_file
|
from crazy_functions.vector_fns.general_file_loader import load_file
|
||||||
|
|
||||||
embedding_model_dict = {
|
embedding_model_dict = {
|
||||||
@@ -150,17 +151,17 @@ class LocalDocQA:
|
|||||||
failed_files = []
|
failed_files = []
|
||||||
if isinstance(filepath, str):
|
if isinstance(filepath, str):
|
||||||
if not os.path.exists(filepath):
|
if not os.path.exists(filepath):
|
||||||
print("路径不存在")
|
logger.error("路径不存在")
|
||||||
return None
|
return None
|
||||||
elif os.path.isfile(filepath):
|
elif os.path.isfile(filepath):
|
||||||
file = os.path.split(filepath)[-1]
|
file = os.path.split(filepath)[-1]
|
||||||
try:
|
try:
|
||||||
docs = load_file(filepath, SENTENCE_SIZE)
|
docs = load_file(filepath, SENTENCE_SIZE)
|
||||||
print(f"{file} 已成功加载")
|
logger.info(f"{file} 已成功加载")
|
||||||
loaded_files.append(filepath)
|
loaded_files.append(filepath)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(e)
|
logger.error(e)
|
||||||
print(f"{file} 未能成功加载")
|
logger.error(f"{file} 未能成功加载")
|
||||||
return None
|
return None
|
||||||
elif os.path.isdir(filepath):
|
elif os.path.isdir(filepath):
|
||||||
docs = []
|
docs = []
|
||||||
@@ -170,23 +171,23 @@ class LocalDocQA:
|
|||||||
docs += load_file(fullfilepath, SENTENCE_SIZE)
|
docs += load_file(fullfilepath, SENTENCE_SIZE)
|
||||||
loaded_files.append(fullfilepath)
|
loaded_files.append(fullfilepath)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(e)
|
logger.error(e)
|
||||||
failed_files.append(file)
|
failed_files.append(file)
|
||||||
|
|
||||||
if len(failed_files) > 0:
|
if len(failed_files) > 0:
|
||||||
print("以下文件未能成功加载:")
|
logger.error("以下文件未能成功加载:")
|
||||||
for file in failed_files:
|
for file in failed_files:
|
||||||
print(f"{file}\n")
|
logger.error(f"{file}\n")
|
||||||
|
|
||||||
else:
|
else:
|
||||||
docs = []
|
docs = []
|
||||||
for file in filepath:
|
for file in filepath:
|
||||||
docs += load_file(file, SENTENCE_SIZE)
|
docs += load_file(file, SENTENCE_SIZE)
|
||||||
print(f"{file} 已成功加载")
|
logger.info(f"{file} 已成功加载")
|
||||||
loaded_files.append(file)
|
loaded_files.append(file)
|
||||||
|
|
||||||
if len(docs) > 0:
|
if len(docs) > 0:
|
||||||
print("文件加载完毕,正在生成向量库")
|
logger.info("文件加载完毕,正在生成向量库")
|
||||||
if vs_path and os.path.isdir(vs_path):
|
if vs_path and os.path.isdir(vs_path):
|
||||||
try:
|
try:
|
||||||
self.vector_store = FAISS.load_local(vs_path, text2vec)
|
self.vector_store = FAISS.load_local(vs_path, text2vec)
|
||||||
@@ -233,7 +234,7 @@ class LocalDocQA:
|
|||||||
prompt += "\n\n".join([f"({k}): " + doc.page_content for k, doc in enumerate(related_docs_with_score)])
|
prompt += "\n\n".join([f"({k}): " + doc.page_content for k, doc in enumerate(related_docs_with_score)])
|
||||||
prompt += "\n\n---\n\n"
|
prompt += "\n\n---\n\n"
|
||||||
prompt = prompt.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
prompt = prompt.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||||||
# print(prompt)
|
# logger.info(prompt)
|
||||||
response = {"query": query, "source_documents": related_docs_with_score}
|
response = {"query": query, "source_documents": related_docs_with_score}
|
||||||
return response, prompt
|
return response, prompt
|
||||||
|
|
||||||
@@ -262,7 +263,7 @@ def construct_vector_store(vs_id, vs_path, files, sentence_size, history, one_co
|
|||||||
else:
|
else:
|
||||||
pass
|
pass
|
||||||
# file_status = "文件未成功加载,请重新上传文件"
|
# file_status = "文件未成功加载,请重新上传文件"
|
||||||
# print(file_status)
|
# logger.info(file_status)
|
||||||
return local_doc_qa, vs_path
|
return local_doc_qa, vs_path
|
||||||
|
|
||||||
@Singleton
|
@Singleton
|
||||||
@@ -278,7 +279,7 @@ class knowledge_archive_interface():
|
|||||||
if self.text2vec_large_chinese is None:
|
if self.text2vec_large_chinese is None:
|
||||||
# < -------------------预热文本向量化模组--------------- >
|
# < -------------------预热文本向量化模组--------------- >
|
||||||
from toolbox import ProxyNetworkActivate
|
from toolbox import ProxyNetworkActivate
|
||||||
print('Checking Text2vec ...')
|
logger.info('Checking Text2vec ...')
|
||||||
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
||||||
with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络
|
with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络
|
||||||
self.text2vec_large_chinese = HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese")
|
self.text2vec_large_chinese = HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese")
|
||||||
|
|||||||
@@ -1,17 +1,19 @@
|
|||||||
|
import re, requests, unicodedata, os
|
||||||
from toolbox import update_ui, get_log_folder
|
from toolbox import update_ui, get_log_folder
|
||||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||||
from toolbox import CatchException, report_exception, get_conf
|
from toolbox import CatchException, report_exception, get_conf
|
||||||
import re, requests, unicodedata, os
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from loguru import logger
|
||||||
|
|
||||||
def download_arxiv_(url_pdf):
|
def download_arxiv_(url_pdf):
|
||||||
if 'arxiv.org' not in url_pdf:
|
if 'arxiv.org' not in url_pdf:
|
||||||
if ('.' in url_pdf) and ('/' not in url_pdf):
|
if ('.' in url_pdf) and ('/' not in url_pdf):
|
||||||
new_url = 'https://arxiv.org/abs/'+url_pdf
|
new_url = 'https://arxiv.org/abs/'+url_pdf
|
||||||
print('下载编号:', url_pdf, '自动定位:', new_url)
|
logger.info('下载编号:', url_pdf, '自动定位:', new_url)
|
||||||
# download_arxiv_(new_url)
|
# download_arxiv_(new_url)
|
||||||
return download_arxiv_(new_url)
|
return download_arxiv_(new_url)
|
||||||
else:
|
else:
|
||||||
print('不能识别的URL!')
|
logger.info('不能识别的URL!')
|
||||||
return None
|
return None
|
||||||
if 'abs' in url_pdf:
|
if 'abs' in url_pdf:
|
||||||
url_pdf = url_pdf.replace('abs', 'pdf')
|
url_pdf = url_pdf.replace('abs', 'pdf')
|
||||||
@@ -42,15 +44,12 @@ def download_arxiv_(url_pdf):
|
|||||||
requests_pdf_url = url_pdf
|
requests_pdf_url = url_pdf
|
||||||
file_path = download_dir+title_str
|
file_path = download_dir+title_str
|
||||||
|
|
||||||
print('下载中')
|
logger.info('下载中')
|
||||||
proxies = get_conf('proxies')
|
proxies = get_conf('proxies')
|
||||||
r = requests.get(requests_pdf_url, proxies=proxies)
|
r = requests.get(requests_pdf_url, proxies=proxies)
|
||||||
with open(file_path, 'wb+') as f:
|
with open(file_path, 'wb+') as f:
|
||||||
f.write(r.content)
|
f.write(r.content)
|
||||||
print('下载完成')
|
logger.info('下载完成')
|
||||||
|
|
||||||
# print('输出下载命令:','aria2c -o \"%s\" %s'%(title_str,url_pdf))
|
|
||||||
# subprocess.call('aria2c --all-proxy=\"172.18.116.150:11084\" -o \"%s\" %s'%(download_dir+title_str,url_pdf), shell=True)
|
|
||||||
|
|
||||||
x = "%s %s %s.bib" % (paper_id, other_info['year'], other_info['authors'])
|
x = "%s %s %s.bib" % (paper_id, other_info['year'], other_info['authors'])
|
||||||
x = x.replace('?', '?')\
|
x = x.replace('?', '?')\
|
||||||
@@ -63,19 +62,9 @@ def download_arxiv_(url_pdf):
|
|||||||
|
|
||||||
|
|
||||||
def get_name(_url_):
|
def get_name(_url_):
|
||||||
import os
|
|
||||||
from bs4 import BeautifulSoup
|
from bs4 import BeautifulSoup
|
||||||
print('正在获取文献名!')
|
logger.info('正在获取文献名!')
|
||||||
print(_url_)
|
logger.info(_url_)
|
||||||
|
|
||||||
# arxiv_recall = {}
|
|
||||||
# if os.path.exists('./arxiv_recall.pkl'):
|
|
||||||
# with open('./arxiv_recall.pkl', 'rb') as f:
|
|
||||||
# arxiv_recall = pickle.load(f)
|
|
||||||
|
|
||||||
# if _url_ in arxiv_recall:
|
|
||||||
# print('在缓存中')
|
|
||||||
# return arxiv_recall[_url_]
|
|
||||||
|
|
||||||
proxies = get_conf('proxies')
|
proxies = get_conf('proxies')
|
||||||
res = requests.get(_url_, proxies=proxies)
|
res = requests.get(_url_, proxies=proxies)
|
||||||
@@ -92,7 +81,7 @@ def get_name(_url_):
|
|||||||
other_details['abstract'] = abstract
|
other_details['abstract'] = abstract
|
||||||
except:
|
except:
|
||||||
other_details['year'] = ''
|
other_details['year'] = ''
|
||||||
print('年份获取失败')
|
logger.info('年份获取失败')
|
||||||
|
|
||||||
# get author
|
# get author
|
||||||
try:
|
try:
|
||||||
@@ -101,7 +90,7 @@ def get_name(_url_):
|
|||||||
other_details['authors'] = authors
|
other_details['authors'] = authors
|
||||||
except:
|
except:
|
||||||
other_details['authors'] = ''
|
other_details['authors'] = ''
|
||||||
print('authors获取失败')
|
logger.info('authors获取失败')
|
||||||
|
|
||||||
# get comment
|
# get comment
|
||||||
try:
|
try:
|
||||||
@@ -116,11 +105,11 @@ def get_name(_url_):
|
|||||||
other_details['comment'] = ''
|
other_details['comment'] = ''
|
||||||
except:
|
except:
|
||||||
other_details['comment'] = ''
|
other_details['comment'] = ''
|
||||||
print('年份获取失败')
|
logger.info('年份获取失败')
|
||||||
|
|
||||||
title_str = BeautifulSoup(
|
title_str = BeautifulSoup(
|
||||||
res.text, 'html.parser').find('title').contents[0]
|
res.text, 'html.parser').find('title').contents[0]
|
||||||
print('获取成功:', title_str)
|
logger.info('获取成功:', title_str)
|
||||||
# arxiv_recall[_url_] = (title_str+'.pdf', other_details)
|
# arxiv_recall[_url_] = (title_str+'.pdf', other_details)
|
||||||
# with open('./arxiv_recall.pkl', 'wb') as f:
|
# with open('./arxiv_recall.pkl', 'wb') as f:
|
||||||
# pickle.dump(arxiv_recall, f)
|
# pickle.dump(arxiv_recall, f)
|
||||||
|
|||||||
@@ -1,6 +1,5 @@
|
|||||||
from toolbox import CatchException, update_ui
|
from toolbox import CatchException, update_ui
|
||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
|
|
||||||
|
|
||||||
@CatchException
|
@CatchException
|
||||||
def 交互功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
def 交互功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||||
|
|||||||
@@ -16,8 +16,8 @@ Testing:
|
|||||||
|
|
||||||
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, is_the_upload_folder
|
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, is_the_upload_folder
|
||||||
from toolbox import promote_file_to_downloadzone, get_log_folder, update_ui_lastest_msg
|
from toolbox import promote_file_to_downloadzone, get_log_folder, update_ui_lastest_msg
|
||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_plugin_arg
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_plugin_arg
|
||||||
from .crazy_utils import input_clipping, try_install_deps
|
from crazy_functions.crazy_utils import input_clipping, try_install_deps
|
||||||
from crazy_functions.gen_fns.gen_fns_shared import is_function_successfully_generated
|
from crazy_functions.gen_fns.gen_fns_shared import is_function_successfully_generated
|
||||||
from crazy_functions.gen_fns.gen_fns_shared import get_class_name
|
from crazy_functions.gen_fns.gen_fns_shared import get_class_name
|
||||||
from crazy_functions.gen_fns.gen_fns_shared import subprocess_worker
|
from crazy_functions.gen_fns.gen_fns_shared import subprocess_worker
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
from toolbox import CatchException, update_ui, gen_time_str
|
from toolbox import CatchException, update_ui, gen_time_str
|
||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from .crazy_utils import input_clipping
|
from crazy_functions.crazy_utils import input_clipping
|
||||||
import copy, json
|
import copy, json
|
||||||
|
|
||||||
@CatchException
|
@CatchException
|
||||||
|
|||||||
@@ -6,13 +6,14 @@
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import time
|
||||||
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, ProxyNetworkActivate
|
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, ProxyNetworkActivate
|
||||||
from toolbox import get_conf, select_api_key, update_ui_lastest_msg, Singleton
|
from toolbox import get_conf, select_api_key, update_ui_lastest_msg, Singleton
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_plugin_arg
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_plugin_arg
|
||||||
from crazy_functions.crazy_utils import input_clipping, try_install_deps
|
from crazy_functions.crazy_utils import input_clipping, try_install_deps
|
||||||
from crazy_functions.agent_fns.persistent import GradioMultiuserManagerForPersistentClasses
|
from crazy_functions.agent_fns.persistent import GradioMultiuserManagerForPersistentClasses
|
||||||
from crazy_functions.agent_fns.auto_agent import AutoGenMath
|
from crazy_functions.agent_fns.auto_agent import AutoGenMath
|
||||||
import time
|
from loguru import logger
|
||||||
|
|
||||||
def remove_model_prefix(llm):
|
def remove_model_prefix(llm):
|
||||||
if llm.startswith('api2d-'): llm = llm.replace('api2d-', '')
|
if llm.startswith('api2d-'): llm = llm.replace('api2d-', '')
|
||||||
@@ -80,12 +81,12 @@ def 多智能体终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
|||||||
persistent_key = f"{user_uuid}->多智能体终端"
|
persistent_key = f"{user_uuid}->多智能体终端"
|
||||||
if persistent_class_multi_user_manager.already_alive(persistent_key):
|
if persistent_class_multi_user_manager.already_alive(persistent_key):
|
||||||
# 当已经存在一个正在运行的多智能体终端时,直接将用户输入传递给它,而不是再次启动一个新的多智能体终端
|
# 当已经存在一个正在运行的多智能体终端时,直接将用户输入传递给它,而不是再次启动一个新的多智能体终端
|
||||||
print('[debug] feed new user input')
|
logger.info('[debug] feed new user input')
|
||||||
executor = persistent_class_multi_user_manager.get(persistent_key)
|
executor = persistent_class_multi_user_manager.get(persistent_key)
|
||||||
exit_reason = yield from executor.main_process_ui_control(txt, create_or_resume="resume")
|
exit_reason = yield from executor.main_process_ui_control(txt, create_or_resume="resume")
|
||||||
else:
|
else:
|
||||||
# 运行多智能体终端 (首次)
|
# 运行多智能体终端 (首次)
|
||||||
print('[debug] create new executor instance')
|
logger.info('[debug] create new executor instance')
|
||||||
history = []
|
history = []
|
||||||
chatbot.append(["正在启动: 多智能体终端", "插件动态生成, 执行开始, 作者 Microsoft & Binary-Husky."])
|
chatbot.append(["正在启动: 多智能体终端", "插件动态生成, 执行开始, 作者 Microsoft & Binary-Husky."])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|||||||
@@ -1,7 +1,7 @@
|
|||||||
from toolbox import update_ui
|
from toolbox import update_ui
|
||||||
from toolbox import CatchException, report_exception
|
from toolbox import CatchException, report_exception
|
||||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
fast_debug = False
|
fast_debug = False
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -1,5 +1,5 @@
|
|||||||
from toolbox import CatchException, report_exception, select_api_key, update_ui, get_conf
|
from toolbox import CatchException, report_exception, select_api_key, update_ui, get_conf
|
||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from toolbox import write_history_to_file, promote_file_to_downloadzone, get_log_folder
|
from toolbox import write_history_to_file, promote_file_to_downloadzone, get_log_folder
|
||||||
|
|
||||||
def split_audio_file(filename, split_duration=1000):
|
def split_audio_file(filename, split_duration=1000):
|
||||||
|
|||||||
@@ -1,16 +1,18 @@
|
|||||||
|
from loguru import logger
|
||||||
|
|
||||||
from toolbox import update_ui, promote_file_to_downloadzone, gen_time_str
|
from toolbox import update_ui, promote_file_to_downloadzone, gen_time_str
|
||||||
from toolbox import CatchException, report_exception
|
from toolbox import CatchException, report_exception
|
||||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from .crazy_utils import read_and_clean_pdf_text
|
from crazy_functions.crazy_utils import read_and_clean_pdf_text
|
||||||
from .crazy_utils import input_clipping
|
from crazy_functions.crazy_utils import input_clipping
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||||
file_write_buffer = []
|
file_write_buffer = []
|
||||||
for file_name in file_manifest:
|
for file_name in file_manifest:
|
||||||
print('begin analysis on:', file_name)
|
logger.info('begin analysis on:', file_name)
|
||||||
############################## <第 0 步,切割PDF> ##################################
|
############################## <第 0 步,切割PDF> ##################################
|
||||||
# 递归地切割PDF文件,每一块(尽量是完整的一个section,比如introduction,experiment等,必要时再进行切割)
|
# 递归地切割PDF文件,每一块(尽量是完整的一个section,比如introduction,experiment等,必要时再进行切割)
|
||||||
# 的长度必须小于 2500 个 Token
|
# 的长度必须小于 2500 个 Token
|
||||||
@@ -38,7 +40,7 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
|
|||||||
last_iteration_result = paper_meta # 初始值是摘要
|
last_iteration_result = paper_meta # 初始值是摘要
|
||||||
MAX_WORD_TOTAL = 4096 * 0.7
|
MAX_WORD_TOTAL = 4096 * 0.7
|
||||||
n_fragment = len(paper_fragments)
|
n_fragment = len(paper_fragments)
|
||||||
if n_fragment >= 20: print('文章极长,不能达到预期效果')
|
if n_fragment >= 20: logger.warning('文章极长,不能达到预期效果')
|
||||||
for i in range(n_fragment):
|
for i in range(n_fragment):
|
||||||
NUM_OF_WORD = MAX_WORD_TOTAL // n_fragment
|
NUM_OF_WORD = MAX_WORD_TOTAL // n_fragment
|
||||||
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} Chinese characters: {paper_fragments[i]}"
|
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} Chinese characters: {paper_fragments[i]}"
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
|
from loguru import logger
|
||||||
from toolbox import update_ui
|
from toolbox import update_ui
|
||||||
from toolbox import CatchException, report_exception
|
from toolbox import CatchException, report_exception
|
||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||||
|
|
||||||
fast_debug = False
|
fast_debug = False
|
||||||
@@ -57,7 +58,6 @@ def readPdf(pdfPath):
|
|||||||
layout = device.get_result()
|
layout = device.get_result()
|
||||||
for obj in layout._objs:
|
for obj in layout._objs:
|
||||||
if isinstance(obj, pdfminer.layout.LTTextBoxHorizontal):
|
if isinstance(obj, pdfminer.layout.LTTextBoxHorizontal):
|
||||||
# print(obj.get_text())
|
|
||||||
outTextList.append(obj.get_text())
|
outTextList.append(obj.get_text())
|
||||||
|
|
||||||
return outTextList
|
return outTextList
|
||||||
@@ -66,7 +66,7 @@ def readPdf(pdfPath):
|
|||||||
def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||||
import time, glob, os
|
import time, glob, os
|
||||||
from bs4 import BeautifulSoup
|
from bs4 import BeautifulSoup
|
||||||
print('begin analysis on:', file_manifest)
|
logger.info('begin analysis on:', file_manifest)
|
||||||
for index, fp in enumerate(file_manifest):
|
for index, fp in enumerate(file_manifest):
|
||||||
if ".tex" in fp:
|
if ".tex" in fp:
|
||||||
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
|
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
|
||||||
|
|||||||
@@ -1,9 +1,9 @@
|
|||||||
from toolbox import CatchException, report_exception, get_log_folder, gen_time_str
|
from toolbox import CatchException, report_exception, get_log_folder, gen_time_str
|
||||||
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
|
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
|
||||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
from .crazy_utils import read_and_clean_pdf_text
|
from crazy_functions.crazy_utils import read_and_clean_pdf_text
|
||||||
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url, translate_pdf
|
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url, translate_pdf
|
||||||
from shared_utils.colorful import *
|
from shared_utils.colorful import *
|
||||||
import copy
|
import copy
|
||||||
@@ -60,7 +60,7 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
# 清空历史,以免输入溢出
|
# 清空历史,以免输入溢出
|
||||||
history = []
|
history = []
|
||||||
|
|
||||||
from .crazy_utils import get_files_from_everything
|
from crazy_functions.crazy_utils import get_files_from_everything
|
||||||
success, file_manifest, project_folder = get_files_from_everything(txt, type='.pdf')
|
success, file_manifest, project_folder = get_files_from_everything(txt, type='.pdf')
|
||||||
if len(file_manifest) > 0:
|
if len(file_manifest) > 0:
|
||||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||||
|
|||||||
@@ -1,4 +1,5 @@
|
|||||||
import os
|
import os
|
||||||
|
from loguru import logger
|
||||||
from toolbox import CatchException, update_ui, gen_time_str, promote_file_to_downloadzone
|
from toolbox import CatchException, update_ui, gen_time_str, promote_file_to_downloadzone
|
||||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from crazy_functions.crazy_utils import input_clipping
|
from crazy_functions.crazy_utils import input_clipping
|
||||||
@@ -34,10 +35,10 @@ def eval_manim(code):
|
|||||||
return f'gpt_log/{time_str}.mp4'
|
return f'gpt_log/{time_str}.mp4'
|
||||||
except subprocess.CalledProcessError as e:
|
except subprocess.CalledProcessError as e:
|
||||||
output = e.output.decode()
|
output = e.output.decode()
|
||||||
print(f"Command returned non-zero exit status {e.returncode}: {output}.")
|
logger.error(f"Command returned non-zero exit status {e.returncode}: {output}.")
|
||||||
return f"Evaluating python script failed: {e.output}."
|
return f"Evaluating python script failed: {e.output}."
|
||||||
except:
|
except:
|
||||||
print('generating mp4 failed')
|
logger.error('generating mp4 failed')
|
||||||
return "Generating mp4 failed."
|
return "Generating mp4 failed."
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -1,13 +1,12 @@
|
|||||||
|
from loguru import logger
|
||||||
from toolbox import update_ui
|
from toolbox import update_ui
|
||||||
from toolbox import CatchException, report_exception
|
from toolbox import CatchException, report_exception
|
||||||
from .crazy_utils import read_and_clean_pdf_text
|
from crazy_functions.crazy_utils import read_and_clean_pdf_text
|
||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
fast_debug = False
|
|
||||||
|
|
||||||
|
|
||||||
def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||||
import tiktoken
|
logger.info('begin analysis on:', file_name)
|
||||||
print('begin analysis on:', file_name)
|
|
||||||
|
|
||||||
############################## <第 0 步,切割PDF> ##################################
|
############################## <第 0 步,切割PDF> ##################################
|
||||||
# 递归地切割PDF文件,每一块(尽量是完整的一个section,比如introduction,experiment等,必要时再进行切割)
|
# 递归地切割PDF文件,每一块(尽量是完整的一个section,比如introduction,experiment等,必要时再进行切割)
|
||||||
@@ -36,7 +35,7 @@ def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
|||||||
last_iteration_result = paper_meta # 初始值是摘要
|
last_iteration_result = paper_meta # 初始值是摘要
|
||||||
MAX_WORD_TOTAL = 4096
|
MAX_WORD_TOTAL = 4096
|
||||||
n_fragment = len(paper_fragments)
|
n_fragment = len(paper_fragments)
|
||||||
if n_fragment >= 20: print('文章极长,不能达到预期效果')
|
if n_fragment >= 20: logger.warning('文章极长,不能达到预期效果')
|
||||||
for i in range(n_fragment):
|
for i in range(n_fragment):
|
||||||
NUM_OF_WORD = MAX_WORD_TOTAL // n_fragment
|
NUM_OF_WORD = MAX_WORD_TOTAL // n_fragment
|
||||||
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i]}"
|
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i]}"
|
||||||
@@ -57,7 +56,7 @@ def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
|||||||
chatbot.append([i_say_show_user, gpt_say])
|
chatbot.append([i_say_show_user, gpt_say])
|
||||||
|
|
||||||
############################## <第 4 步,设置一个token上限,防止回答时Token溢出> ##################################
|
############################## <第 4 步,设置一个token上限,防止回答时Token溢出> ##################################
|
||||||
from .crazy_utils import input_clipping
|
from crazy_functions.crazy_utils import input_clipping
|
||||||
_, final_results = input_clipping("", final_results, max_token_limit=3200)
|
_, final_results = input_clipping("", final_results, max_token_limit=3200)
|
||||||
yield from update_ui(chatbot=chatbot, history=final_results) # 注意这里的历史记录被替代了
|
yield from update_ui(chatbot=chatbot, history=final_results) # 注意这里的历史记录被替代了
|
||||||
|
|
||||||
|
|||||||
@@ -1,12 +1,12 @@
|
|||||||
|
from loguru import logger
|
||||||
from toolbox import update_ui
|
from toolbox import update_ui
|
||||||
from toolbox import CatchException, report_exception
|
from toolbox import CatchException, report_exception
|
||||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
fast_debug = False
|
|
||||||
|
|
||||||
def 生成函数注释(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
def 生成函数注释(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||||
import time, os
|
import time, os
|
||||||
print('begin analysis on:', file_manifest)
|
logger.info('begin analysis on:', file_manifest)
|
||||||
for index, fp in enumerate(file_manifest):
|
for index, fp in enumerate(file_manifest):
|
||||||
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
|
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
|
||||||
file_content = f.read()
|
file_content = f.read()
|
||||||
@@ -16,7 +16,6 @@ def 生成函数注释(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
|||||||
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
|
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
if not fast_debug:
|
|
||||||
msg = '正常'
|
msg = '正常'
|
||||||
# ** gpt request **
|
# ** gpt request **
|
||||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
@@ -25,9 +24,8 @@ def 生成函数注释(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
|||||||
chatbot[-1] = (i_say_show_user, gpt_say)
|
chatbot[-1] = (i_say_show_user, gpt_say)
|
||||||
history.append(i_say_show_user); history.append(gpt_say)
|
history.append(i_say_show_user); history.append(gpt_say)
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
||||||
if not fast_debug: time.sleep(2)
|
time.sleep(2)
|
||||||
|
|
||||||
if not fast_debug:
|
|
||||||
res = write_history_to_file(history)
|
res = write_history_to_file(history)
|
||||||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
promote_file_to_downloadzone(res, chatbot=chatbot)
|
||||||
chatbot.append(("完成了吗?", res))
|
chatbot.append(("完成了吗?", res))
|
||||||
|
|||||||
@@ -1,5 +1,5 @@
|
|||||||
from toolbox import CatchException, update_ui, report_exception
|
from toolbox import CatchException, update_ui, report_exception
|
||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from crazy_functions.plugin_template.plugin_class_template import (
|
from crazy_functions.plugin_template.plugin_class_template import (
|
||||||
GptAcademicPluginTemplate,
|
GptAcademicPluginTemplate,
|
||||||
)
|
)
|
||||||
@@ -201,8 +201,7 @@ def 解析历史输入(history, llm_kwargs, file_manifest, chatbot, plugin_kwarg
|
|||||||
MAX_WORD_TOTAL = 4096
|
MAX_WORD_TOTAL = 4096
|
||||||
n_txt = len(txt)
|
n_txt = len(txt)
|
||||||
last_iteration_result = "从以下文本中提取摘要。"
|
last_iteration_result = "从以下文本中提取摘要。"
|
||||||
if n_txt >= 20:
|
|
||||||
print("文章极长,不能达到预期效果")
|
|
||||||
for i in range(n_txt):
|
for i in range(n_txt):
|
||||||
NUM_OF_WORD = MAX_WORD_TOTAL // n_txt
|
NUM_OF_WORD = MAX_WORD_TOTAL // n_txt
|
||||||
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words in Chinese: {txt[i]}"
|
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words in Chinese: {txt[i]}"
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
from toolbox import CatchException, update_ui, ProxyNetworkActivate, update_ui_lastest_msg, get_log_folder, get_user
|
from toolbox import CatchException, update_ui, ProxyNetworkActivate, update_ui_lastest_msg, get_log_folder, get_user
|
||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_files_from_everything
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_files_from_everything
|
||||||
|
from loguru import logger
|
||||||
install_msg ="""
|
install_msg ="""
|
||||||
|
|
||||||
1. python -m pip install torch --index-url https://download.pytorch.org/whl/cpu
|
1. python -m pip install torch --index-url https://download.pytorch.org/whl/cpu
|
||||||
@@ -40,7 +40,7 @@ def 知识库文件注入(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
except Exception as e:
|
except Exception as e:
|
||||||
chatbot.append(["依赖不足", f"{str(e)}\n\n导入依赖失败。请用以下命令安装" + install_msg])
|
chatbot.append(["依赖不足", f"{str(e)}\n\n导入依赖失败。请用以下命令安装" + install_msg])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
# from .crazy_utils import try_install_deps
|
# from crazy_functions.crazy_utils import try_install_deps
|
||||||
# try_install_deps(['zh_langchain==0.2.1', 'pypinyin'], reload_m=['pypinyin', 'zh_langchain'])
|
# try_install_deps(['zh_langchain==0.2.1', 'pypinyin'], reload_m=['pypinyin', 'zh_langchain'])
|
||||||
# yield from update_ui_lastest_msg("安装完成,您可以再次重试。", chatbot, history)
|
# yield from update_ui_lastest_msg("安装完成,您可以再次重试。", chatbot, history)
|
||||||
return
|
return
|
||||||
@@ -60,7 +60,7 @@ def 知识库文件注入(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
# < -------------------预热文本向量化模组--------------- >
|
# < -------------------预热文本向量化模组--------------- >
|
||||||
chatbot.append(['<br/>'.join(file_manifest), "正在预热文本向量化模组, 如果是第一次运行, 将消耗较长时间下载中文向量化模型..."])
|
chatbot.append(['<br/>'.join(file_manifest), "正在预热文本向量化模组, 如果是第一次运行, 将消耗较长时间下载中文向量化模型..."])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
print('Checking Text2vec ...')
|
logger.info('Checking Text2vec ...')
|
||||||
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
||||||
with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络
|
with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络
|
||||||
HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese")
|
HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese")
|
||||||
@@ -68,7 +68,7 @@ def 知识库文件注入(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
# < -------------------构建知识库--------------- >
|
# < -------------------构建知识库--------------- >
|
||||||
chatbot.append(['<br/>'.join(file_manifest), "正在构建知识库..."])
|
chatbot.append(['<br/>'.join(file_manifest), "正在构建知识库..."])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
print('Establishing knowledge archive ...')
|
logger.info('Establishing knowledge archive ...')
|
||||||
with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络
|
with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络
|
||||||
kai = knowledge_archive_interface()
|
kai = knowledge_archive_interface()
|
||||||
vs_path = get_log_folder(user=get_user(chatbot), plugin_name='vec_store')
|
vs_path = get_log_folder(user=get_user(chatbot), plugin_name='vec_store')
|
||||||
@@ -93,7 +93,7 @@ def 读取知识库作答(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
|||||||
except Exception as e:
|
except Exception as e:
|
||||||
chatbot.append(["依赖不足", f"{str(e)}\n\n导入依赖失败。请用以下命令安装" + install_msg])
|
chatbot.append(["依赖不足", f"{str(e)}\n\n导入依赖失败。请用以下命令安装" + install_msg])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
# from .crazy_utils import try_install_deps
|
# from crazy_functions.crazy_utils import try_install_deps
|
||||||
# try_install_deps(['zh_langchain==0.2.1', 'pypinyin'], reload_m=['pypinyin', 'zh_langchain'])
|
# try_install_deps(['zh_langchain==0.2.1', 'pypinyin'], reload_m=['pypinyin', 'zh_langchain'])
|
||||||
# yield from update_ui_lastest_msg("安装完成,您可以再次重试。", chatbot, history)
|
# yield from update_ui_lastest_msg("安装完成,您可以再次重试。", chatbot, history)
|
||||||
return
|
return
|
||||||
|
|||||||
@@ -1,5 +1,5 @@
|
|||||||
from toolbox import CatchException, update_ui
|
from toolbox import CatchException, update_ui
|
||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
|
||||||
import requests
|
import requests
|
||||||
from bs4 import BeautifulSoup
|
from bs4 import BeautifulSoup
|
||||||
from request_llms.bridge_all import model_info
|
from request_llms.bridge_all import model_info
|
||||||
@@ -23,8 +23,8 @@ def google(query, proxies):
|
|||||||
item = {'title': title, 'link': link}
|
item = {'title': title, 'link': link}
|
||||||
results.append(item)
|
results.append(item)
|
||||||
|
|
||||||
for r in results:
|
# for r in results:
|
||||||
print(r['link'])
|
# print(r['link'])
|
||||||
return results
|
return results
|
||||||
|
|
||||||
def scrape_text(url, proxies) -> str:
|
def scrape_text(url, proxies) -> str:
|
||||||
|
|||||||
@@ -1,5 +1,5 @@
|
|||||||
from toolbox import CatchException, update_ui
|
from toolbox import CatchException, update_ui
|
||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
|
||||||
import requests
|
import requests
|
||||||
from bs4 import BeautifulSoup
|
from bs4 import BeautifulSoup
|
||||||
from request_llms.bridge_all import model_info
|
from request_llms.bridge_all import model_info
|
||||||
@@ -22,8 +22,8 @@ def bing_search(query, proxies=None):
|
|||||||
item = {'title': title, 'link': link}
|
item = {'title': title, 'link': link}
|
||||||
results.append(item)
|
results.append(item)
|
||||||
|
|
||||||
for r in results:
|
# for r in results:
|
||||||
print(r['link'])
|
# print(r['link'])
|
||||||
return results
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -64,7 +64,7 @@ def parseNotebook(filename, enable_markdown=1):
|
|||||||
|
|
||||||
|
|
||||||
def ipynb解释(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
def ipynb解释(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
|
|
||||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||||
enable_markdown = plugin_kwargs.get("advanced_arg", "1")
|
enable_markdown = plugin_kwargs.get("advanced_arg", "1")
|
||||||
|
|||||||
@@ -1,5 +1,5 @@
|
|||||||
from toolbox import CatchException, update_ui, get_conf
|
from toolbox import CatchException, update_ui, get_conf
|
||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
import datetime
|
import datetime
|
||||||
@CatchException
|
@CatchException
|
||||||
def 同时问询(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
def 同时问询(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||||
|
|||||||
@@ -1,11 +1,13 @@
|
|||||||
from toolbox import update_ui
|
from toolbox import update_ui
|
||||||
from toolbox import CatchException, get_conf, markdown_convertion
|
from toolbox import CatchException, get_conf, markdown_convertion
|
||||||
|
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||||
from crazy_functions.crazy_utils import input_clipping
|
from crazy_functions.crazy_utils import input_clipping
|
||||||
from crazy_functions.agent_fns.watchdog import WatchDog
|
from crazy_functions.agent_fns.watchdog import WatchDog
|
||||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
from crazy_functions.live_audio.aliyunASR import AliyunASR
|
||||||
|
from loguru import logger
|
||||||
|
|
||||||
import threading, time
|
import threading, time
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from .live_audio.aliyunASR import AliyunASR
|
|
||||||
import json
|
import json
|
||||||
import re
|
import re
|
||||||
|
|
||||||
@@ -42,9 +44,9 @@ class AsyncGptTask():
|
|||||||
gpt_say_partial = predict_no_ui_long_connection(inputs=i_say, llm_kwargs=llm_kwargs, history=history, sys_prompt=sys_prompt,
|
gpt_say_partial = predict_no_ui_long_connection(inputs=i_say, llm_kwargs=llm_kwargs, history=history, sys_prompt=sys_prompt,
|
||||||
observe_window=observe_window[index], console_slience=True)
|
observe_window=observe_window[index], console_slience=True)
|
||||||
except ConnectionAbortedError as token_exceed_err:
|
except ConnectionAbortedError as token_exceed_err:
|
||||||
print('至少一个线程任务Token溢出而失败', e)
|
logger.error('至少一个线程任务Token溢出而失败', e)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print('至少一个线程任务意外失败', e)
|
logger.error('至少一个线程任务意外失败', e)
|
||||||
|
|
||||||
def add_async_gpt_task(self, i_say, chatbot_index, llm_kwargs, history, system_prompt):
|
def add_async_gpt_task(self, i_say, chatbot_index, llm_kwargs, history, system_prompt):
|
||||||
self.observe_future.append([""])
|
self.observe_future.append([""])
|
||||||
|
|||||||
@@ -1,12 +1,11 @@
|
|||||||
from toolbox import update_ui
|
from toolbox import update_ui
|
||||||
from toolbox import CatchException, report_exception
|
from toolbox import CatchException, report_exception
|
||||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
|
|
||||||
|
|
||||||
def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||||
import time, glob, os
|
import time, glob, os
|
||||||
print('begin analysis on:', file_manifest)
|
|
||||||
for index, fp in enumerate(file_manifest):
|
for index, fp in enumerate(file_manifest):
|
||||||
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
|
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
|
||||||
file_content = f.read()
|
file_content = f.read()
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from toolbox import CatchException, report_exception, promote_file_to_downloadzone
|
from toolbox import CatchException, report_exception, promote_file_to_downloadzone
|
||||||
from toolbox import update_ui, update_ui_lastest_msg, disable_auto_promotion, write_history_to_file
|
from toolbox import update_ui, update_ui_lastest_msg, disable_auto_promotion, write_history_to_file
|
||||||
import logging
|
import logging
|
||||||
|
|||||||
29
main.py
29
main.py
@@ -13,16 +13,10 @@ help_menu_description = \
|
|||||||
</br></br>如何语音对话: 请阅读Wiki
|
</br></br>如何语音对话: 请阅读Wiki
|
||||||
</br></br>如何临时更换API_KEY: 在输入区输入临时API_KEY后提交(网页刷新后失效)"""
|
</br></br>如何临时更换API_KEY: 在输入区输入临时API_KEY后提交(网页刷新后失效)"""
|
||||||
|
|
||||||
|
from loguru import logger
|
||||||
def enable_log(PATH_LOGGING):
|
def enable_log(PATH_LOGGING):
|
||||||
import logging
|
from shared_utils.logging import setup_logging
|
||||||
admin_log_path = os.path.join(PATH_LOGGING, "admin")
|
setup_logging(PATH_LOGGING)
|
||||||
os.makedirs(admin_log_path, exist_ok=True)
|
|
||||||
log_dir = os.path.join(admin_log_path, "chat_secrets.log")
|
|
||||||
try:logging.basicConfig(filename=log_dir, level=logging.INFO, encoding="utf-8", format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
|
|
||||||
except:logging.basicConfig(filename=log_dir, level=logging.INFO, format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
|
|
||||||
# Disable logging output from the 'httpx' logger
|
|
||||||
logging.getLogger("httpx").setLevel(logging.WARNING)
|
|
||||||
print(f"所有对话记录将自动保存在本地目录{log_dir}, 请注意自我隐私保护哦!")
|
|
||||||
|
|
||||||
def encode_plugin_info(k, plugin)->str:
|
def encode_plugin_info(k, plugin)->str:
|
||||||
import copy
|
import copy
|
||||||
@@ -42,9 +36,16 @@ def main():
|
|||||||
import gradio as gr
|
import gradio as gr
|
||||||
if gr.__version__ not in ['3.32.9', '3.32.10', '3.32.11']:
|
if gr.__version__ not in ['3.32.9', '3.32.10', '3.32.11']:
|
||||||
raise ModuleNotFoundError("使用项目内置Gradio获取最优体验! 请运行 `pip install -r requirements.txt` 指令安装内置Gradio及其他依赖, 详情信息见requirements.txt.")
|
raise ModuleNotFoundError("使用项目内置Gradio获取最优体验! 请运行 `pip install -r requirements.txt` 指令安装内置Gradio及其他依赖, 详情信息见requirements.txt.")
|
||||||
from request_llms.bridge_all import predict
|
|
||||||
|
# 一些基础工具
|
||||||
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, DummyWith
|
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, DummyWith
|
||||||
|
|
||||||
|
# 对话、日志记录
|
||||||
|
enable_log(get_conf("PATH_LOGGING"))
|
||||||
|
|
||||||
|
# 对话句柄
|
||||||
|
from request_llms.bridge_all import predict
|
||||||
|
|
||||||
# 读取配置
|
# 读取配置
|
||||||
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION = get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION')
|
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION = get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION')
|
||||||
CHATBOT_HEIGHT, LAYOUT, AVAIL_LLM_MODELS, AUTO_CLEAR_TXT = get_conf('CHATBOT_HEIGHT', 'LAYOUT', 'AVAIL_LLM_MODELS', 'AUTO_CLEAR_TXT')
|
CHATBOT_HEIGHT, LAYOUT, AVAIL_LLM_MODELS, AUTO_CLEAR_TXT = get_conf('CHATBOT_HEIGHT', 'LAYOUT', 'AVAIL_LLM_MODELS', 'AUTO_CLEAR_TXT')
|
||||||
@@ -61,8 +62,6 @@ def main():
|
|||||||
from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, assign_user_uuid
|
from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, assign_user_uuid
|
||||||
title_html = f"<h1 align=\"center\">GPT 学术优化 {get_current_version()}</h1>{theme_declaration}"
|
title_html = f"<h1 align=\"center\">GPT 学术优化 {get_current_version()}</h1>{theme_declaration}"
|
||||||
|
|
||||||
# 对话、日志记录
|
|
||||||
enable_log(PATH_LOGGING)
|
|
||||||
|
|
||||||
# 一些普通功能模块
|
# 一些普通功能模块
|
||||||
from core_functional import get_core_functions
|
from core_functional import get_core_functions
|
||||||
@@ -339,9 +338,9 @@ def main():
|
|||||||
# Gradio的inbrowser触发不太稳定,回滚代码到原始的浏览器打开函数
|
# Gradio的inbrowser触发不太稳定,回滚代码到原始的浏览器打开函数
|
||||||
def run_delayed_tasks():
|
def run_delayed_tasks():
|
||||||
import threading, webbrowser, time
|
import threading, webbrowser, time
|
||||||
print(f"如果浏览器没有自动打开,请复制并转到以下URL:")
|
logger.info(f"如果浏览器没有自动打开,请复制并转到以下URL:")
|
||||||
if DARK_MODE: print(f"\t「暗色主题已启用(支持动态切换主题)」: http://localhost:{PORT}")
|
if DARK_MODE: logger.info(f"\t「暗色主题已启用(支持动态切换主题)」: http://localhost:{PORT}")
|
||||||
else: print(f"\t「亮色主题已启用(支持动态切换主题)」: http://localhost:{PORT}")
|
else: logger.info(f"\t「亮色主题已启用(支持动态切换主题)」: http://localhost:{PORT}")
|
||||||
|
|
||||||
def auto_updates(): time.sleep(0); auto_update()
|
def auto_updates(): time.sleep(0); auto_update()
|
||||||
def open_browser(): time.sleep(2); webbrowser.open_new_tab(f"http://localhost:{PORT}")
|
def open_browser(): time.sleep(2); webbrowser.open_new_tab(f"http://localhost:{PORT}")
|
||||||
|
|||||||
@@ -9,6 +9,7 @@
|
|||||||
2. predict_no_ui_long_connection(...)
|
2. predict_no_ui_long_connection(...)
|
||||||
"""
|
"""
|
||||||
import tiktoken, copy, re
|
import tiktoken, copy, re
|
||||||
|
from loguru import logger
|
||||||
from functools import lru_cache
|
from functools import lru_cache
|
||||||
from concurrent.futures import ThreadPoolExecutor
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
from toolbox import get_conf, trimmed_format_exc, apply_gpt_academic_string_mask, read_one_api_model_name
|
from toolbox import get_conf, trimmed_format_exc, apply_gpt_academic_string_mask, read_one_api_model_name
|
||||||
@@ -51,9 +52,9 @@ class LazyloadTiktoken(object):
|
|||||||
@staticmethod
|
@staticmethod
|
||||||
@lru_cache(maxsize=128)
|
@lru_cache(maxsize=128)
|
||||||
def get_encoder(model):
|
def get_encoder(model):
|
||||||
print('正在加载tokenizer,如果是第一次运行,可能需要一点时间下载参数')
|
logger.info('正在加载tokenizer,如果是第一次运行,可能需要一点时间下载参数')
|
||||||
tmp = tiktoken.encoding_for_model(model)
|
tmp = tiktoken.encoding_for_model(model)
|
||||||
print('加载tokenizer完毕')
|
logger.info('加载tokenizer完毕')
|
||||||
return tmp
|
return tmp
|
||||||
|
|
||||||
def encode(self, *args, **kwargs):
|
def encode(self, *args, **kwargs):
|
||||||
@@ -83,7 +84,7 @@ try:
|
|||||||
API_URL = get_conf("API_URL")
|
API_URL = get_conf("API_URL")
|
||||||
if API_URL != "https://api.openai.com/v1/chat/completions":
|
if API_URL != "https://api.openai.com/v1/chat/completions":
|
||||||
openai_endpoint = API_URL
|
openai_endpoint = API_URL
|
||||||
print("警告!API_URL配置选项将被弃用,请更换为API_URL_REDIRECT配置")
|
logger.warning("警告!API_URL配置选项将被弃用,请更换为API_URL_REDIRECT配置")
|
||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
# 新版配置
|
# 新版配置
|
||||||
@@ -248,6 +249,23 @@ model_info = {
|
|||||||
"token_cnt": get_token_num_gpt4,
|
"token_cnt": get_token_num_gpt4,
|
||||||
},
|
},
|
||||||
|
|
||||||
|
"o1-preview": {
|
||||||
|
"fn_with_ui": chatgpt_ui,
|
||||||
|
"fn_without_ui": chatgpt_noui,
|
||||||
|
"endpoint": openai_endpoint,
|
||||||
|
"max_token": 128000,
|
||||||
|
"tokenizer": tokenizer_gpt4,
|
||||||
|
"token_cnt": get_token_num_gpt4,
|
||||||
|
},
|
||||||
|
"o1-mini": {
|
||||||
|
"fn_with_ui": chatgpt_ui,
|
||||||
|
"fn_without_ui": chatgpt_noui,
|
||||||
|
"endpoint": openai_endpoint,
|
||||||
|
"max_token": 128000,
|
||||||
|
"tokenizer": tokenizer_gpt4,
|
||||||
|
"token_cnt": get_token_num_gpt4,
|
||||||
|
},
|
||||||
|
|
||||||
"gpt-4-turbo": {
|
"gpt-4-turbo": {
|
||||||
"fn_with_ui": chatgpt_ui,
|
"fn_with_ui": chatgpt_ui,
|
||||||
"fn_without_ui": chatgpt_noui,
|
"fn_without_ui": chatgpt_noui,
|
||||||
@@ -662,7 +680,7 @@ if "newbing" in AVAIL_LLM_MODELS: # same with newbing-free
|
|||||||
}
|
}
|
||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
if "chatglmft" in AVAIL_LLM_MODELS: # same with newbing-free
|
if "chatglmft" in AVAIL_LLM_MODELS: # same with newbing-free
|
||||||
try:
|
try:
|
||||||
from .bridge_chatglmft import predict_no_ui_long_connection as chatglmft_noui
|
from .bridge_chatglmft import predict_no_ui_long_connection as chatglmft_noui
|
||||||
@@ -678,7 +696,7 @@ if "chatglmft" in AVAIL_LLM_MODELS: # same with newbing-free
|
|||||||
}
|
}
|
||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
# -=-=-=-=-=-=- 上海AI-LAB书生大模型 -=-=-=-=-=-=-
|
# -=-=-=-=-=-=- 上海AI-LAB书生大模型 -=-=-=-=-=-=-
|
||||||
if "internlm" in AVAIL_LLM_MODELS:
|
if "internlm" in AVAIL_LLM_MODELS:
|
||||||
try:
|
try:
|
||||||
@@ -695,7 +713,7 @@ if "internlm" in AVAIL_LLM_MODELS:
|
|||||||
}
|
}
|
||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
if "chatglm_onnx" in AVAIL_LLM_MODELS:
|
if "chatglm_onnx" in AVAIL_LLM_MODELS:
|
||||||
try:
|
try:
|
||||||
from .bridge_chatglmonnx import predict_no_ui_long_connection as chatglm_onnx_noui
|
from .bridge_chatglmonnx import predict_no_ui_long_connection as chatglm_onnx_noui
|
||||||
@@ -711,7 +729,7 @@ if "chatglm_onnx" in AVAIL_LLM_MODELS:
|
|||||||
}
|
}
|
||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
# -=-=-=-=-=-=- 通义-本地模型 -=-=-=-=-=-=-
|
# -=-=-=-=-=-=- 通义-本地模型 -=-=-=-=-=-=-
|
||||||
if "qwen-local" in AVAIL_LLM_MODELS:
|
if "qwen-local" in AVAIL_LLM_MODELS:
|
||||||
try:
|
try:
|
||||||
@@ -729,7 +747,7 @@ if "qwen-local" in AVAIL_LLM_MODELS:
|
|||||||
}
|
}
|
||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
# -=-=-=-=-=-=- 通义-在线模型 -=-=-=-=-=-=-
|
# -=-=-=-=-=-=- 通义-在线模型 -=-=-=-=-=-=-
|
||||||
if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-max" in AVAIL_LLM_MODELS: # zhipuai
|
if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-max" in AVAIL_LLM_MODELS: # zhipuai
|
||||||
try:
|
try:
|
||||||
@@ -765,7 +783,7 @@ if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-
|
|||||||
}
|
}
|
||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
# -=-=-=-=-=-=- 零一万物模型 -=-=-=-=-=-=-
|
# -=-=-=-=-=-=- 零一万物模型 -=-=-=-=-=-=-
|
||||||
yi_models = ["yi-34b-chat-0205","yi-34b-chat-200k","yi-large","yi-medium","yi-spark","yi-large-turbo","yi-large-preview"]
|
yi_models = ["yi-34b-chat-0205","yi-34b-chat-200k","yi-large","yi-medium","yi-spark","yi-large-turbo","yi-large-preview"]
|
||||||
if any(item in yi_models for item in AVAIL_LLM_MODELS):
|
if any(item in yi_models for item in AVAIL_LLM_MODELS):
|
||||||
@@ -845,7 +863,7 @@ if any(item in yi_models for item in AVAIL_LLM_MODELS):
|
|||||||
},
|
},
|
||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
# -=-=-=-=-=-=- 讯飞星火认知大模型 -=-=-=-=-=-=-
|
# -=-=-=-=-=-=- 讯飞星火认知大模型 -=-=-=-=-=-=-
|
||||||
if "spark" in AVAIL_LLM_MODELS:
|
if "spark" in AVAIL_LLM_MODELS:
|
||||||
try:
|
try:
|
||||||
@@ -863,7 +881,7 @@ if "spark" in AVAIL_LLM_MODELS:
|
|||||||
}
|
}
|
||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
if "sparkv2" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
|
if "sparkv2" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
|
||||||
try:
|
try:
|
||||||
from .bridge_spark import predict_no_ui_long_connection as spark_noui
|
from .bridge_spark import predict_no_ui_long_connection as spark_noui
|
||||||
@@ -880,7 +898,7 @@ if "sparkv2" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
|
|||||||
}
|
}
|
||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
if any(x in AVAIL_LLM_MODELS for x in ("sparkv3", "sparkv3.5", "sparkv4")): # 讯飞星火认知大模型
|
if any(x in AVAIL_LLM_MODELS for x in ("sparkv3", "sparkv3.5", "sparkv4")): # 讯飞星火认知大模型
|
||||||
try:
|
try:
|
||||||
from .bridge_spark import predict_no_ui_long_connection as spark_noui
|
from .bridge_spark import predict_no_ui_long_connection as spark_noui
|
||||||
@@ -915,7 +933,7 @@ if any(x in AVAIL_LLM_MODELS for x in ("sparkv3", "sparkv3.5", "sparkv4")): #
|
|||||||
}
|
}
|
||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
if "llama2" in AVAIL_LLM_MODELS: # llama2
|
if "llama2" in AVAIL_LLM_MODELS: # llama2
|
||||||
try:
|
try:
|
||||||
from .bridge_llama2 import predict_no_ui_long_connection as llama2_noui
|
from .bridge_llama2 import predict_no_ui_long_connection as llama2_noui
|
||||||
@@ -931,7 +949,7 @@ if "llama2" in AVAIL_LLM_MODELS: # llama2
|
|||||||
}
|
}
|
||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
# -=-=-=-=-=-=- 智谱 -=-=-=-=-=-=-
|
# -=-=-=-=-=-=- 智谱 -=-=-=-=-=-=-
|
||||||
if "zhipuai" in AVAIL_LLM_MODELS: # zhipuai 是glm-4的别名,向后兼容配置
|
if "zhipuai" in AVAIL_LLM_MODELS: # zhipuai 是glm-4的别名,向后兼容配置
|
||||||
try:
|
try:
|
||||||
@@ -946,7 +964,7 @@ if "zhipuai" in AVAIL_LLM_MODELS: # zhipuai 是glm-4的别名,向后兼容
|
|||||||
},
|
},
|
||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
# -=-=-=-=-=-=- 幻方-深度求索大模型 -=-=-=-=-=-=-
|
# -=-=-=-=-=-=- 幻方-深度求索大模型 -=-=-=-=-=-=-
|
||||||
if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
|
if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
|
||||||
try:
|
try:
|
||||||
@@ -963,7 +981,7 @@ if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
|
|||||||
}
|
}
|
||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
# -=-=-=-=-=-=- 幻方-深度求索大模型在线API -=-=-=-=-=-=-
|
# -=-=-=-=-=-=- 幻方-深度求索大模型在线API -=-=-=-=-=-=-
|
||||||
if "deepseek-chat" in AVAIL_LLM_MODELS or "deepseek-coder" in AVAIL_LLM_MODELS:
|
if "deepseek-chat" in AVAIL_LLM_MODELS or "deepseek-coder" in AVAIL_LLM_MODELS:
|
||||||
try:
|
try:
|
||||||
@@ -991,7 +1009,7 @@ if "deepseek-chat" in AVAIL_LLM_MODELS or "deepseek-coder" in AVAIL_LLM_MODELS:
|
|||||||
},
|
},
|
||||||
})
|
})
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
# -=-=-=-=-=-=- one-api 对齐支持 -=-=-=-=-=-=-
|
# -=-=-=-=-=-=- one-api 对齐支持 -=-=-=-=-=-=-
|
||||||
for model in [m for m in AVAIL_LLM_MODELS if m.startswith("one-api-")]:
|
for model in [m for m in AVAIL_LLM_MODELS if m.startswith("one-api-")]:
|
||||||
# 为了更灵活地接入one-api多模型管理界面,设计了此接口,例子:AVAIL_LLM_MODELS = ["one-api-mixtral-8x7b(max_token=6666)"]
|
# 为了更灵活地接入one-api多模型管理界面,设计了此接口,例子:AVAIL_LLM_MODELS = ["one-api-mixtral-8x7b(max_token=6666)"]
|
||||||
@@ -1004,7 +1022,7 @@ for model in [m for m in AVAIL_LLM_MODELS if m.startswith("one-api-")]:
|
|||||||
# 如果是已知模型,则尝试获取其信息
|
# 如果是已知模型,则尝试获取其信息
|
||||||
original_model_info = model_info.get(origin_model_name.replace("one-api-", "", 1), None)
|
original_model_info = model_info.get(origin_model_name.replace("one-api-", "", 1), None)
|
||||||
except:
|
except:
|
||||||
print(f"one-api模型 {model} 的 max_token 配置不是整数,请检查配置文件。")
|
logger.error(f"one-api模型 {model} 的 max_token 配置不是整数,请检查配置文件。")
|
||||||
continue
|
continue
|
||||||
this_model_info = {
|
this_model_info = {
|
||||||
"fn_with_ui": chatgpt_ui,
|
"fn_with_ui": chatgpt_ui,
|
||||||
@@ -1035,7 +1053,7 @@ for model in [m for m in AVAIL_LLM_MODELS if m.startswith("vllm-")]:
|
|||||||
try:
|
try:
|
||||||
_, max_token_tmp = read_one_api_model_name(model)
|
_, max_token_tmp = read_one_api_model_name(model)
|
||||||
except:
|
except:
|
||||||
print(f"vllm模型 {model} 的 max_token 配置不是整数,请检查配置文件。")
|
logger.error(f"vllm模型 {model} 的 max_token 配置不是整数,请检查配置文件。")
|
||||||
continue
|
continue
|
||||||
model_info.update({
|
model_info.update({
|
||||||
model: {
|
model: {
|
||||||
@@ -1062,7 +1080,7 @@ for model in [m for m in AVAIL_LLM_MODELS if m.startswith("ollama-")]:
|
|||||||
try:
|
try:
|
||||||
_, max_token_tmp = read_one_api_model_name(model)
|
_, max_token_tmp = read_one_api_model_name(model)
|
||||||
except:
|
except:
|
||||||
print(f"ollama模型 {model} 的 max_token 配置不是整数,请检查配置文件。")
|
logger.error(f"ollama模型 {model} 的 max_token 配置不是整数,请检查配置文件。")
|
||||||
continue
|
continue
|
||||||
model_info.update({
|
model_info.update({
|
||||||
model: {
|
model: {
|
||||||
|
|||||||
@@ -1,12 +1,13 @@
|
|||||||
|
|
||||||
from transformers import AutoModel, AutoTokenizer
|
from transformers import AutoModel, AutoTokenizer
|
||||||
|
from loguru import logger
|
||||||
|
from toolbox import update_ui, get_conf
|
||||||
|
from multiprocessing import Process, Pipe
|
||||||
import time
|
import time
|
||||||
import os
|
import os
|
||||||
import json
|
import json
|
||||||
import threading
|
import threading
|
||||||
import importlib
|
import importlib
|
||||||
from toolbox import update_ui, get_conf
|
|
||||||
from multiprocessing import Process, Pipe
|
|
||||||
|
|
||||||
load_message = "ChatGLMFT尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,ChatGLMFT消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
load_message = "ChatGLMFT尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,ChatGLMFT消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
||||||
|
|
||||||
@@ -78,7 +79,7 @@ class GetGLMFTHandle(Process):
|
|||||||
config.pre_seq_len = model_args['pre_seq_len']
|
config.pre_seq_len = model_args['pre_seq_len']
|
||||||
config.prefix_projection = model_args['prefix_projection']
|
config.prefix_projection = model_args['prefix_projection']
|
||||||
|
|
||||||
print(f"Loading prefix_encoder weight from {CHATGLM_PTUNING_CHECKPOINT}")
|
logger.info(f"Loading prefix_encoder weight from {CHATGLM_PTUNING_CHECKPOINT}")
|
||||||
model = AutoModel.from_pretrained(model_args['model_name_or_path'], config=config, trust_remote_code=True)
|
model = AutoModel.from_pretrained(model_args['model_name_or_path'], config=config, trust_remote_code=True)
|
||||||
prefix_state_dict = torch.load(os.path.join(CHATGLM_PTUNING_CHECKPOINT, "pytorch_model.bin"))
|
prefix_state_dict = torch.load(os.path.join(CHATGLM_PTUNING_CHECKPOINT, "pytorch_model.bin"))
|
||||||
new_prefix_state_dict = {}
|
new_prefix_state_dict = {}
|
||||||
@@ -88,7 +89,7 @@ class GetGLMFTHandle(Process):
|
|||||||
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
|
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
|
||||||
|
|
||||||
if model_args['quantization_bit'] is not None and model_args['quantization_bit'] != 0:
|
if model_args['quantization_bit'] is not None and model_args['quantization_bit'] != 0:
|
||||||
print(f"Quantized to {model_args['quantization_bit']} bit")
|
logger.info(f"Quantized to {model_args['quantization_bit']} bit")
|
||||||
model = model.quantize(model_args['quantization_bit'])
|
model = model.quantize(model_args['quantization_bit'])
|
||||||
model = model.cuda()
|
model = model.cuda()
|
||||||
if model_args['pre_seq_len'] is not None:
|
if model_args['pre_seq_len'] is not None:
|
||||||
|
|||||||
@@ -12,11 +12,12 @@ import json
|
|||||||
import os
|
import os
|
||||||
import re
|
import re
|
||||||
import time
|
import time
|
||||||
import logging
|
|
||||||
import traceback
|
import traceback
|
||||||
import requests
|
import requests
|
||||||
import random
|
import random
|
||||||
|
|
||||||
|
from loguru import logger
|
||||||
|
|
||||||
# config_private.py放自己的秘密如API和代理网址
|
# config_private.py放自己的秘密如API和代理网址
|
||||||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||||
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history
|
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history
|
||||||
@@ -147,7 +148,7 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
|
|||||||
retry += 1
|
retry += 1
|
||||||
traceback.print_exc()
|
traceback.print_exc()
|
||||||
if retry > MAX_RETRY: raise TimeoutError
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
if MAX_RETRY!=0: logger.error(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||||
|
|
||||||
stream_response = response.iter_lines()
|
stream_response = response.iter_lines()
|
||||||
result = ''
|
result = ''
|
||||||
@@ -180,7 +181,7 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
|
|||||||
if (not has_content) and (not has_role): continue # raise RuntimeError("发现不标准的第三方接口:"+delta)
|
if (not has_content) and (not has_role): continue # raise RuntimeError("发现不标准的第三方接口:"+delta)
|
||||||
if has_content: # has_role = True/False
|
if has_content: # has_role = True/False
|
||||||
result += delta["content"]
|
result += delta["content"]
|
||||||
if not console_slience: print(delta["content"], end='')
|
if not console_slience: logger.info(delta["content"], end='')
|
||||||
if observe_window is not None:
|
if observe_window is not None:
|
||||||
# 观测窗,把已经获取的数据显示出去
|
# 观测窗,把已经获取的数据显示出去
|
||||||
if len(observe_window) >= 1:
|
if len(observe_window) >= 1:
|
||||||
@@ -317,7 +318,6 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
|||||||
# 前者是API2D的结束条件,后者是OPENAI的结束条件
|
# 前者是API2D的结束条件,后者是OPENAI的结束条件
|
||||||
if ('data: [DONE]' in chunk_decoded) or (len(chunkjson['choices'][0]["delta"]) == 0):
|
if ('data: [DONE]' in chunk_decoded) or (len(chunkjson['choices'][0]["delta"]) == 0):
|
||||||
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
||||||
# logging.info(f'[response] {gpt_replying_buffer}')
|
|
||||||
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
||||||
break
|
break
|
||||||
# 处理数据流的主体
|
# 处理数据流的主体
|
||||||
@@ -344,7 +344,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
|||||||
error_msg = chunk_decoded
|
error_msg = chunk_decoded
|
||||||
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
|
||||||
print(error_msg)
|
logger.error(error_msg)
|
||||||
return
|
return
|
||||||
|
|
||||||
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):
|
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):
|
||||||
@@ -486,7 +486,6 @@ def generate_payload(inputs:str, llm_kwargs:dict, history:list, system_prompt:st
|
|||||||
"gpt-3.5-turbo-16k-0613",
|
"gpt-3.5-turbo-16k-0613",
|
||||||
"gpt-3.5-turbo-0301",
|
"gpt-3.5-turbo-0301",
|
||||||
])
|
])
|
||||||
logging.info("Random select model:" + model)
|
|
||||||
|
|
||||||
payload = {
|
payload = {
|
||||||
"model": model,
|
"model": model,
|
||||||
@@ -496,10 +495,7 @@ def generate_payload(inputs:str, llm_kwargs:dict, history:list, system_prompt:st
|
|||||||
"n": 1,
|
"n": 1,
|
||||||
"stream": stream,
|
"stream": stream,
|
||||||
}
|
}
|
||||||
# try:
|
|
||||||
# print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]} ..........")
|
|
||||||
# except:
|
|
||||||
# print('输入中可能存在乱码。')
|
|
||||||
return headers,payload
|
return headers,payload
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -8,15 +8,15 @@
|
|||||||
2. predict_no_ui_long_connection:支持多线程
|
2. predict_no_ui_long_connection:支持多线程
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
import json
|
import json
|
||||||
import time
|
import time
|
||||||
import logging
|
|
||||||
import requests
|
import requests
|
||||||
import base64
|
import base64
|
||||||
import os
|
|
||||||
import glob
|
import glob
|
||||||
|
from loguru import logger
|
||||||
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc, is_the_upload_folder, \
|
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc, is_the_upload_folder, \
|
||||||
update_ui_lastest_msg, get_max_token, encode_image, have_any_recent_upload_image_files
|
update_ui_lastest_msg, get_max_token, encode_image, have_any_recent_upload_image_files, log_chat
|
||||||
|
|
||||||
|
|
||||||
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
|
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
|
||||||
@@ -100,7 +100,6 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||||
|
|
||||||
raw_input = inputs
|
raw_input = inputs
|
||||||
logging.info(f'[raw_input] {raw_input}')
|
|
||||||
def make_media_input(inputs, image_paths):
|
def make_media_input(inputs, image_paths):
|
||||||
for image_path in image_paths:
|
for image_path in image_paths:
|
||||||
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'
|
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'
|
||||||
@@ -185,7 +184,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
||||||
lastmsg = chatbot[-1][-1] + f"\n\n\n\n「{llm_kwargs['llm_model']}调用结束,该模型不具备上下文对话能力,如需追问,请及时切换模型。」"
|
lastmsg = chatbot[-1][-1] + f"\n\n\n\n「{llm_kwargs['llm_model']}调用结束,该模型不具备上下文对话能力,如需追问,请及时切换模型。」"
|
||||||
yield from update_ui_lastest_msg(lastmsg, chatbot, history, delay=1)
|
yield from update_ui_lastest_msg(lastmsg, chatbot, history, delay=1)
|
||||||
logging.info(f'[response] {gpt_replying_buffer}')
|
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
||||||
break
|
break
|
||||||
# 处理数据流的主体
|
# 处理数据流的主体
|
||||||
status_text = f"finish_reason: {chunkjson['choices'][0].get('finish_reason', 'null')}"
|
status_text = f"finish_reason: {chunkjson['choices'][0].get('finish_reason', 'null')}"
|
||||||
@@ -210,7 +209,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
error_msg = chunk_decoded
|
error_msg = chunk_decoded
|
||||||
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg, api_key)
|
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg, api_key)
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
|
||||||
print(error_msg)
|
logger.error(error_msg)
|
||||||
return
|
return
|
||||||
|
|
||||||
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg, api_key=""):
|
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg, api_key=""):
|
||||||
@@ -301,10 +300,7 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths):
|
|||||||
"presence_penalty": 0,
|
"presence_penalty": 0,
|
||||||
"frequency_penalty": 0,
|
"frequency_penalty": 0,
|
||||||
}
|
}
|
||||||
try:
|
|
||||||
print(f" {llm_kwargs['llm_model']} : {inputs[:100]} ..........")
|
|
||||||
except:
|
|
||||||
print('输入中可能存在乱码。')
|
|
||||||
return headers, payload, api_key
|
return headers, payload, api_key
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -1,281 +0,0 @@
|
|||||||
# 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目
|
|
||||||
|
|
||||||
"""
|
|
||||||
该文件中主要包含三个函数
|
|
||||||
|
|
||||||
不具备多线程能力的函数:
|
|
||||||
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
|
|
||||||
|
|
||||||
具备多线程调用能力的函数
|
|
||||||
2. predict_no_ui_long_connection:支持多线程
|
|
||||||
"""
|
|
||||||
|
|
||||||
import json
|
|
||||||
import time
|
|
||||||
import gradio as gr
|
|
||||||
import logging
|
|
||||||
import traceback
|
|
||||||
import requests
|
|
||||||
import importlib
|
|
||||||
|
|
||||||
# config_private.py放自己的秘密如API和代理网址
|
|
||||||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
|
||||||
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc
|
|
||||||
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG = \
|
|
||||||
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG')
|
|
||||||
|
|
||||||
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
|
||||||
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
|
|
||||||
|
|
||||||
def get_full_error(chunk, stream_response):
|
|
||||||
"""
|
|
||||||
获取完整的从Openai返回的报错
|
|
||||||
"""
|
|
||||||
while True:
|
|
||||||
try:
|
|
||||||
chunk += next(stream_response)
|
|
||||||
except:
|
|
||||||
break
|
|
||||||
return chunk
|
|
||||||
|
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
|
||||||
"""
|
|
||||||
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
|
||||||
inputs:
|
|
||||||
是本次问询的输入
|
|
||||||
sys_prompt:
|
|
||||||
系统静默prompt
|
|
||||||
llm_kwargs:
|
|
||||||
chatGPT的内部调优参数
|
|
||||||
history:
|
|
||||||
是之前的对话列表
|
|
||||||
observe_window = None:
|
|
||||||
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
|
||||||
"""
|
|
||||||
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
|
||||||
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
|
|
||||||
retry = 0
|
|
||||||
while True:
|
|
||||||
try:
|
|
||||||
# make a POST request to the API endpoint, stream=False
|
|
||||||
from .bridge_all import model_info
|
|
||||||
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
|
||||||
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
|
||||||
json=payload, stream=True, timeout=TIMEOUT_SECONDS); break
|
|
||||||
except requests.exceptions.ReadTimeout as e:
|
|
||||||
retry += 1
|
|
||||||
traceback.print_exc()
|
|
||||||
if retry > MAX_RETRY: raise TimeoutError
|
|
||||||
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
|
||||||
|
|
||||||
stream_response = response.iter_lines()
|
|
||||||
result = ''
|
|
||||||
while True:
|
|
||||||
try: chunk = next(stream_response).decode()
|
|
||||||
except StopIteration:
|
|
||||||
break
|
|
||||||
except requests.exceptions.ConnectionError:
|
|
||||||
chunk = next(stream_response).decode() # 失败了,重试一次?再失败就没办法了。
|
|
||||||
if len(chunk)==0: continue
|
|
||||||
if not chunk.startswith('data:'):
|
|
||||||
error_msg = get_full_error(chunk.encode('utf8'), stream_response).decode()
|
|
||||||
if "reduce the length" in error_msg:
|
|
||||||
raise ConnectionAbortedError("OpenAI拒绝了请求:" + error_msg)
|
|
||||||
else:
|
|
||||||
raise RuntimeError("OpenAI拒绝了请求:" + error_msg)
|
|
||||||
if ('data: [DONE]' in chunk): break # api2d 正常完成
|
|
||||||
json_data = json.loads(chunk.lstrip('data:'))['choices'][0]
|
|
||||||
delta = json_data["delta"]
|
|
||||||
if len(delta) == 0: break
|
|
||||||
if "role" in delta: continue
|
|
||||||
if "content" in delta:
|
|
||||||
result += delta["content"]
|
|
||||||
if not console_slience: print(delta["content"], end='')
|
|
||||||
if observe_window is not None:
|
|
||||||
# 观测窗,把已经获取的数据显示出去
|
|
||||||
if len(observe_window) >= 1: observe_window[0] += delta["content"]
|
|
||||||
# 看门狗,如果超过期限没有喂狗,则终止
|
|
||||||
if len(observe_window) >= 2:
|
|
||||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
|
||||||
raise RuntimeError("用户取消了程序。")
|
|
||||||
else: raise RuntimeError("意外Json结构:"+delta)
|
|
||||||
if json_data['finish_reason'] == 'content_filter':
|
|
||||||
raise RuntimeError("由于提问含不合规内容被Azure过滤。")
|
|
||||||
if json_data['finish_reason'] == 'length':
|
|
||||||
raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。")
|
|
||||||
return result
|
|
||||||
|
|
||||||
|
|
||||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
|
||||||
"""
|
|
||||||
发送至chatGPT,流式获取输出。
|
|
||||||
用于基础的对话功能。
|
|
||||||
inputs 是本次问询的输入
|
|
||||||
top_p, temperature是chatGPT的内部调优参数
|
|
||||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
|
||||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
|
||||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
|
||||||
"""
|
|
||||||
if additional_fn is not None:
|
|
||||||
from core_functional import handle_core_functionality
|
|
||||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
|
||||||
|
|
||||||
raw_input = inputs
|
|
||||||
logging.info(f'[raw_input] {raw_input}')
|
|
||||||
chatbot.append((inputs, ""))
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
|
||||||
|
|
||||||
try:
|
|
||||||
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
|
|
||||||
except RuntimeError as e:
|
|
||||||
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
|
|
||||||
return
|
|
||||||
|
|
||||||
history.append(inputs); history.append("")
|
|
||||||
|
|
||||||
retry = 0
|
|
||||||
while True:
|
|
||||||
try:
|
|
||||||
# make a POST request to the API endpoint, stream=True
|
|
||||||
from .bridge_all import model_info
|
|
||||||
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
|
||||||
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
|
||||||
json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
|
|
||||||
except:
|
|
||||||
retry += 1
|
|
||||||
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
|
|
||||||
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
|
|
||||||
if retry > MAX_RETRY: raise TimeoutError
|
|
||||||
|
|
||||||
gpt_replying_buffer = ""
|
|
||||||
|
|
||||||
is_head_of_the_stream = True
|
|
||||||
if stream:
|
|
||||||
stream_response = response.iter_lines()
|
|
||||||
while True:
|
|
||||||
try:
|
|
||||||
chunk = next(stream_response)
|
|
||||||
except StopIteration:
|
|
||||||
# 非OpenAI官方接口的出现这样的报错,OpenAI和API2D不会走这里
|
|
||||||
chunk_decoded = chunk.decode()
|
|
||||||
error_msg = chunk_decoded
|
|
||||||
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="非Openai官方接口返回了错误:" + chunk.decode()) # 刷新界面
|
|
||||||
return
|
|
||||||
|
|
||||||
# print(chunk.decode()[6:])
|
|
||||||
if is_head_of_the_stream and (r'"object":"error"' not in chunk.decode()):
|
|
||||||
# 数据流的第一帧不携带content
|
|
||||||
is_head_of_the_stream = False; continue
|
|
||||||
|
|
||||||
if chunk:
|
|
||||||
try:
|
|
||||||
chunk_decoded = chunk.decode()
|
|
||||||
# 前者是API2D的结束条件,后者是OPENAI的结束条件
|
|
||||||
if 'data: [DONE]' in chunk_decoded:
|
|
||||||
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
|
||||||
logging.info(f'[response] {gpt_replying_buffer}')
|
|
||||||
break
|
|
||||||
# 处理数据流的主体
|
|
||||||
chunkjson = json.loads(chunk_decoded[6:])
|
|
||||||
status_text = f"finish_reason: {chunkjson['choices'][0]['finish_reason']}"
|
|
||||||
delta = chunkjson['choices'][0]["delta"]
|
|
||||||
if "content" in delta:
|
|
||||||
gpt_replying_buffer = gpt_replying_buffer + delta["content"]
|
|
||||||
history[-1] = gpt_replying_buffer
|
|
||||||
chatbot[-1] = (history[-2], history[-1])
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
|
|
||||||
except Exception as e:
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
|
|
||||||
chunk = get_full_error(chunk, stream_response)
|
|
||||||
chunk_decoded = chunk.decode()
|
|
||||||
error_msg = chunk_decoded
|
|
||||||
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
|
|
||||||
print(error_msg)
|
|
||||||
return
|
|
||||||
|
|
||||||
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):
|
|
||||||
from .bridge_all import model_info
|
|
||||||
openai_website = ' 请登录OpenAI查看详情 https://platform.openai.com/signup'
|
|
||||||
if "reduce the length" in error_msg:
|
|
||||||
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
|
|
||||||
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
|
|
||||||
max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
|
|
||||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
|
|
||||||
# history = [] # 清除历史
|
|
||||||
elif "does not exist" in error_msg:
|
|
||||||
chatbot[-1] = (chatbot[-1][0], f"[Local Message] Model {llm_kwargs['llm_model']} does not exist. 模型不存在, 或者您没有获得体验资格.")
|
|
||||||
elif "Incorrect API key" in error_msg:
|
|
||||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. OpenAI以提供了不正确的API_KEY为由, 拒绝服务. " + openai_website)
|
|
||||||
elif "exceeded your current quota" in error_msg:
|
|
||||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] You exceeded your current quota. OpenAI以账户额度不足为由, 拒绝服务." + openai_website)
|
|
||||||
elif "account is not active" in error_msg:
|
|
||||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Your account is not active. OpenAI以账户失效为由, 拒绝服务." + openai_website)
|
|
||||||
elif "associated with a deactivated account" in error_msg:
|
|
||||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] You are associated with a deactivated account. OpenAI以账户失效为由, 拒绝服务." + openai_website)
|
|
||||||
elif "bad forward key" in error_msg:
|
|
||||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Bad forward key. API2D账户额度不足.")
|
|
||||||
elif "Not enough point" in error_msg:
|
|
||||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Not enough point. API2D账户点数不足.")
|
|
||||||
else:
|
|
||||||
from toolbox import regular_txt_to_markdown
|
|
||||||
tb_str = '```\n' + trimmed_format_exc() + '```'
|
|
||||||
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}")
|
|
||||||
return chatbot, history
|
|
||||||
|
|
||||||
def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
|
||||||
"""
|
|
||||||
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
|
|
||||||
"""
|
|
||||||
if not is_any_api_key(llm_kwargs['api_key']):
|
|
||||||
raise AssertionError("你提供了错误的API_KEY。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。")
|
|
||||||
|
|
||||||
headers = {
|
|
||||||
"Content-Type": "application/json",
|
|
||||||
}
|
|
||||||
|
|
||||||
conversation_cnt = len(history) // 2
|
|
||||||
|
|
||||||
messages = [{"role": "system", "content": system_prompt}]
|
|
||||||
if conversation_cnt:
|
|
||||||
for index in range(0, 2*conversation_cnt, 2):
|
|
||||||
what_i_have_asked = {}
|
|
||||||
what_i_have_asked["role"] = "user"
|
|
||||||
what_i_have_asked["content"] = history[index]
|
|
||||||
what_gpt_answer = {}
|
|
||||||
what_gpt_answer["role"] = "assistant"
|
|
||||||
what_gpt_answer["content"] = history[index+1]
|
|
||||||
if what_i_have_asked["content"] != "":
|
|
||||||
if what_gpt_answer["content"] == "": continue
|
|
||||||
if what_gpt_answer["content"] == timeout_bot_msg: continue
|
|
||||||
messages.append(what_i_have_asked)
|
|
||||||
messages.append(what_gpt_answer)
|
|
||||||
else:
|
|
||||||
messages[-1]['content'] = what_gpt_answer['content']
|
|
||||||
|
|
||||||
what_i_ask_now = {}
|
|
||||||
what_i_ask_now["role"] = "user"
|
|
||||||
what_i_ask_now["content"] = inputs
|
|
||||||
messages.append(what_i_ask_now)
|
|
||||||
|
|
||||||
payload = {
|
|
||||||
"model": llm_kwargs['llm_model'].strip('api2d-'),
|
|
||||||
"messages": messages,
|
|
||||||
"temperature": llm_kwargs['temperature'], # 1.0,
|
|
||||||
"top_p": llm_kwargs['top_p'], # 1.0,
|
|
||||||
"n": 1,
|
|
||||||
"stream": stream,
|
|
||||||
"presence_penalty": 0,
|
|
||||||
"frequency_penalty": 0,
|
|
||||||
}
|
|
||||||
try:
|
|
||||||
print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]} ..........")
|
|
||||||
except:
|
|
||||||
print('输入中可能存在乱码。')
|
|
||||||
return headers,payload
|
|
||||||
|
|
||||||
|
|
||||||
@@ -9,13 +9,14 @@
|
|||||||
具备多线程调用能力的函数
|
具备多线程调用能力的函数
|
||||||
2. predict_no_ui_long_connection:支持多线程
|
2. predict_no_ui_long_connection:支持多线程
|
||||||
"""
|
"""
|
||||||
import logging
|
|
||||||
import os
|
import os
|
||||||
import time
|
import time
|
||||||
import traceback
|
import traceback
|
||||||
import json
|
import json
|
||||||
import requests
|
import requests
|
||||||
|
from loguru import logger
|
||||||
from toolbox import get_conf, update_ui, trimmed_format_exc, encode_image, every_image_file_in_path, log_chat
|
from toolbox import get_conf, update_ui, trimmed_format_exc, encode_image, every_image_file_in_path, log_chat
|
||||||
|
|
||||||
picture_system_prompt = "\n当回复图像时,必须说明正在回复哪张图像。所有图像仅在最后一个问题中提供,即使它们在历史记录中被提及。请使用'这是第X张图像:'的格式来指明您正在描述的是哪张图像。"
|
picture_system_prompt = "\n当回复图像时,必须说明正在回复哪张图像。所有图像仅在最后一个问题中提供,即使它们在历史记录中被提及。请使用'这是第X张图像:'的格式来指明您正在描述的是哪张图像。"
|
||||||
Claude_3_Models = ["claude-3-haiku-20240307", "claude-3-sonnet-20240229", "claude-3-opus-20240229", "claude-3-5-sonnet-20240620"]
|
Claude_3_Models = ["claude-3-haiku-20240307", "claude-3-sonnet-20240229", "claude-3-opus-20240229", "claude-3-5-sonnet-20240620"]
|
||||||
|
|
||||||
@@ -101,7 +102,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
retry += 1
|
retry += 1
|
||||||
traceback.print_exc()
|
traceback.print_exc()
|
||||||
if retry > MAX_RETRY: raise TimeoutError
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
if MAX_RETRY!=0: logger.error(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||||
stream_response = response.iter_lines()
|
stream_response = response.iter_lines()
|
||||||
result = ''
|
result = ''
|
||||||
while True:
|
while True:
|
||||||
@@ -116,12 +117,11 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
if need_to_pass:
|
if need_to_pass:
|
||||||
pass
|
pass
|
||||||
elif is_last_chunk:
|
elif is_last_chunk:
|
||||||
# logging.info(f'[response] {result}')
|
# logger.info(f'[response] {result}')
|
||||||
break
|
break
|
||||||
else:
|
else:
|
||||||
if chunkjson and chunkjson['type'] == 'content_block_delta':
|
if chunkjson and chunkjson['type'] == 'content_block_delta':
|
||||||
result += chunkjson['delta']['text']
|
result += chunkjson['delta']['text']
|
||||||
print(chunkjson['delta']['text'], end='')
|
|
||||||
if observe_window is not None:
|
if observe_window is not None:
|
||||||
# 观测窗,把已经获取的数据显示出去
|
# 观测窗,把已经获取的数据显示出去
|
||||||
if len(observe_window) >= 1:
|
if len(observe_window) >= 1:
|
||||||
@@ -134,7 +134,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
chunk = get_full_error(chunk, stream_response)
|
chunk = get_full_error(chunk, stream_response)
|
||||||
chunk_decoded = chunk.decode()
|
chunk_decoded = chunk.decode()
|
||||||
error_msg = chunk_decoded
|
error_msg = chunk_decoded
|
||||||
print(error_msg)
|
logger.error(error_msg)
|
||||||
raise RuntimeError("Json解析不合常规")
|
raise RuntimeError("Json解析不合常规")
|
||||||
|
|
||||||
return result
|
return result
|
||||||
@@ -200,7 +200,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
retry += 1
|
retry += 1
|
||||||
traceback.print_exc()
|
traceback.print_exc()
|
||||||
if retry > MAX_RETRY: raise TimeoutError
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
if MAX_RETRY!=0: logger.error(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||||
stream_response = response.iter_lines()
|
stream_response = response.iter_lines()
|
||||||
gpt_replying_buffer = ""
|
gpt_replying_buffer = ""
|
||||||
|
|
||||||
@@ -217,7 +217,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
pass
|
pass
|
||||||
elif is_last_chunk:
|
elif is_last_chunk:
|
||||||
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
||||||
# logging.info(f'[response] {gpt_replying_buffer}')
|
# logger.info(f'[response] {gpt_replying_buffer}')
|
||||||
break
|
break
|
||||||
else:
|
else:
|
||||||
if chunkjson and chunkjson['type'] == 'content_block_delta':
|
if chunkjson and chunkjson['type'] == 'content_block_delta':
|
||||||
@@ -230,7 +230,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
chunk = get_full_error(chunk, stream_response)
|
chunk = get_full_error(chunk, stream_response)
|
||||||
chunk_decoded = chunk.decode()
|
chunk_decoded = chunk.decode()
|
||||||
error_msg = chunk_decoded
|
error_msg = chunk_decoded
|
||||||
print(error_msg)
|
logger.error(error_msg)
|
||||||
raise RuntimeError("Json解析不合常规")
|
raise RuntimeError("Json解析不合常规")
|
||||||
|
|
||||||
def multiple_picture_types(image_paths):
|
def multiple_picture_types(image_paths):
|
||||||
|
|||||||
@@ -13,11 +13,9 @@
|
|||||||
import json
|
import json
|
||||||
import time
|
import time
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
import logging
|
|
||||||
import traceback
|
import traceback
|
||||||
import requests
|
import requests
|
||||||
import importlib
|
from loguru import logger
|
||||||
import random
|
|
||||||
|
|
||||||
# config_private.py放自己的秘密如API和代理网址
|
# config_private.py放自己的秘密如API和代理网址
|
||||||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||||
@@ -98,7 +96,7 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
|
|||||||
retry += 1
|
retry += 1
|
||||||
traceback.print_exc()
|
traceback.print_exc()
|
||||||
if retry > MAX_RETRY: raise TimeoutError
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
if MAX_RETRY!=0: logger.error(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||||
|
|
||||||
stream_response = response.iter_lines()
|
stream_response = response.iter_lines()
|
||||||
result = ''
|
result = ''
|
||||||
@@ -113,7 +111,7 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
|
|||||||
if chunkjson['event_type'] == 'stream-start': continue
|
if chunkjson['event_type'] == 'stream-start': continue
|
||||||
if chunkjson['event_type'] == 'text-generation':
|
if chunkjson['event_type'] == 'text-generation':
|
||||||
result += chunkjson["text"]
|
result += chunkjson["text"]
|
||||||
if not console_slience: print(chunkjson["text"], end='')
|
if not console_slience: logger.info(chunkjson["text"], end='')
|
||||||
if observe_window is not None:
|
if observe_window is not None:
|
||||||
# 观测窗,把已经获取的数据显示出去
|
# 观测窗,把已经获取的数据显示出去
|
||||||
if len(observe_window) >= 1:
|
if len(observe_window) >= 1:
|
||||||
@@ -153,7 +151,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
|||||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||||
|
|
||||||
raw_input = inputs
|
raw_input = inputs
|
||||||
# logging.info(f'[raw_input] {raw_input}')
|
# logger.info(f'[raw_input] {raw_input}')
|
||||||
chatbot.append((inputs, ""))
|
chatbot.append((inputs, ""))
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||||
|
|
||||||
@@ -237,7 +235,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
|
|||||||
error_msg = chunk_decoded
|
error_msg = chunk_decoded
|
||||||
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
|
||||||
print(error_msg)
|
logger.error(error_msg)
|
||||||
return
|
return
|
||||||
|
|
||||||
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):
|
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):
|
||||||
|
|||||||
@@ -1,12 +1,13 @@
|
|||||||
model_name = "deepseek-coder-6.7b-instruct"
|
model_name = "deepseek-coder-6.7b-instruct"
|
||||||
cmd_to_install = "未知" # "`pip install -r request_llms/requirements_qwen.txt`"
|
cmd_to_install = "未知" # "`pip install -r request_llms/requirements_qwen.txt`"
|
||||||
|
|
||||||
import os
|
|
||||||
from toolbox import ProxyNetworkActivate
|
from toolbox import ProxyNetworkActivate
|
||||||
from toolbox import get_conf
|
from toolbox import get_conf
|
||||||
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
|
from request_llms.local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
|
||||||
from threading import Thread
|
from threading import Thread
|
||||||
|
from loguru import logger
|
||||||
import torch
|
import torch
|
||||||
|
import os
|
||||||
|
|
||||||
def download_huggingface_model(model_name, max_retry, local_dir):
|
def download_huggingface_model(model_name, max_retry, local_dir):
|
||||||
from huggingface_hub import snapshot_download
|
from huggingface_hub import snapshot_download
|
||||||
@@ -15,7 +16,7 @@ def download_huggingface_model(model_name, max_retry, local_dir):
|
|||||||
snapshot_download(repo_id=model_name, local_dir=local_dir, resume_download=True)
|
snapshot_download(repo_id=model_name, local_dir=local_dir, resume_download=True)
|
||||||
break
|
break
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f'\n\n下载失败,重试第{i}次中...\n\n')
|
logger.error(f'\n\n下载失败,重试第{i}次中...\n\n')
|
||||||
return local_dir
|
return local_dir
|
||||||
# ------------------------------------------------------------------------------------------------------------------------
|
# ------------------------------------------------------------------------------------------------------------------------
|
||||||
# 🔌💻 Local Model
|
# 🔌💻 Local Model
|
||||||
@@ -112,7 +113,6 @@ class GetCoderLMHandle(LocalLLMHandle):
|
|||||||
generated_text = ""
|
generated_text = ""
|
||||||
for new_text in self._streamer:
|
for new_text in self._streamer:
|
||||||
generated_text += new_text
|
generated_text += new_text
|
||||||
# print(generated_text)
|
|
||||||
yield generated_text
|
yield generated_text
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -65,10 +65,10 @@ class GetInternlmHandle(LocalLLMHandle):
|
|||||||
|
|
||||||
def llm_stream_generator(self, **kwargs):
|
def llm_stream_generator(self, **kwargs):
|
||||||
import torch
|
import torch
|
||||||
import logging
|
|
||||||
import copy
|
import copy
|
||||||
import warnings
|
import warnings
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
from loguru import logger as logging
|
||||||
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig
|
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig
|
||||||
|
|
||||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||||
@@ -119,7 +119,7 @@ class GetInternlmHandle(LocalLLMHandle):
|
|||||||
elif generation_config.max_new_tokens is not None:
|
elif generation_config.max_new_tokens is not None:
|
||||||
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
|
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
|
||||||
if not has_default_max_length:
|
if not has_default_max_length:
|
||||||
logging.warn(
|
logging.warning(
|
||||||
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
|
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
|
||||||
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
|
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
|
||||||
"Please refer to the documentation for more information. "
|
"Please refer to the documentation for more information. "
|
||||||
|
|||||||
@@ -5,7 +5,6 @@
|
|||||||
import json
|
import json
|
||||||
import os
|
import os
|
||||||
import time
|
import time
|
||||||
import logging
|
|
||||||
|
|
||||||
from toolbox import get_conf, update_ui, log_chat
|
from toolbox import get_conf, update_ui, log_chat
|
||||||
from toolbox import ChatBotWithCookies
|
from toolbox import ChatBotWithCookies
|
||||||
|
|||||||
@@ -13,11 +13,11 @@
|
|||||||
import json
|
import json
|
||||||
import time
|
import time
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
import logging
|
|
||||||
import traceback
|
import traceback
|
||||||
import requests
|
import requests
|
||||||
import importlib
|
import importlib
|
||||||
import random
|
import random
|
||||||
|
from loguru import logger
|
||||||
|
|
||||||
# config_private.py放自己的秘密如API和代理网址
|
# config_private.py放自己的秘密如API和代理网址
|
||||||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||||
@@ -81,7 +81,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
retry += 1
|
retry += 1
|
||||||
traceback.print_exc()
|
traceback.print_exc()
|
||||||
if retry > MAX_RETRY: raise TimeoutError
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
if MAX_RETRY!=0: logger.error(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||||
|
|
||||||
stream_response = response.iter_lines()
|
stream_response = response.iter_lines()
|
||||||
result = ''
|
result = ''
|
||||||
@@ -96,10 +96,10 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
try:
|
try:
|
||||||
if is_last_chunk:
|
if is_last_chunk:
|
||||||
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
||||||
logging.info(f'[response] {result}')
|
logger.info(f'[response] {result}')
|
||||||
break
|
break
|
||||||
result += chunkjson['message']["content"]
|
result += chunkjson['message']["content"]
|
||||||
if not console_slience: print(chunkjson['message']["content"], end='')
|
if not console_slience: logger.info(chunkjson['message']["content"], end='')
|
||||||
if observe_window is not None:
|
if observe_window is not None:
|
||||||
# 观测窗,把已经获取的数据显示出去
|
# 观测窗,把已经获取的数据显示出去
|
||||||
if len(observe_window) >= 1:
|
if len(observe_window) >= 1:
|
||||||
@@ -112,7 +112,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
chunk = get_full_error(chunk, stream_response)
|
chunk = get_full_error(chunk, stream_response)
|
||||||
chunk_decoded = chunk.decode()
|
chunk_decoded = chunk.decode()
|
||||||
error_msg = chunk_decoded
|
error_msg = chunk_decoded
|
||||||
print(error_msg)
|
logger.error(error_msg)
|
||||||
raise RuntimeError("Json解析不合常规")
|
raise RuntimeError("Json解析不合常规")
|
||||||
return result
|
return result
|
||||||
|
|
||||||
@@ -134,7 +134,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||||
|
|
||||||
raw_input = inputs
|
raw_input = inputs
|
||||||
logging.info(f'[raw_input] {raw_input}')
|
logger.info(f'[raw_input] {raw_input}')
|
||||||
chatbot.append((inputs, ""))
|
chatbot.append((inputs, ""))
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||||
|
|
||||||
@@ -183,7 +183,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
try:
|
try:
|
||||||
if is_last_chunk:
|
if is_last_chunk:
|
||||||
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
||||||
logging.info(f'[response] {gpt_replying_buffer}')
|
logger.info(f'[response] {gpt_replying_buffer}')
|
||||||
break
|
break
|
||||||
# 处理数据流的主体
|
# 处理数据流的主体
|
||||||
try:
|
try:
|
||||||
@@ -202,7 +202,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
error_msg = chunk_decoded
|
error_msg = chunk_decoded
|
||||||
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
|
||||||
print(error_msg)
|
logger.error(error_msg)
|
||||||
return
|
return
|
||||||
|
|
||||||
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):
|
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):
|
||||||
@@ -265,8 +265,5 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
|||||||
"messages": messages,
|
"messages": messages,
|
||||||
"options": options,
|
"options": options,
|
||||||
}
|
}
|
||||||
try:
|
|
||||||
print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]} ..........")
|
|
||||||
except:
|
|
||||||
print('输入中可能存在乱码。')
|
|
||||||
return headers,payload
|
return headers,payload
|
||||||
|
|||||||
@@ -1,12 +1,13 @@
|
|||||||
|
import time
|
||||||
|
import asyncio
|
||||||
|
import threading
|
||||||
|
import importlib
|
||||||
|
|
||||||
from .bridge_newbingfree import preprocess_newbing_out, preprocess_newbing_out_simple
|
from .bridge_newbingfree import preprocess_newbing_out, preprocess_newbing_out_simple
|
||||||
from multiprocessing import Process, Pipe
|
from multiprocessing import Process, Pipe
|
||||||
from toolbox import update_ui, get_conf, trimmed_format_exc
|
from toolbox import update_ui, get_conf, trimmed_format_exc
|
||||||
import threading
|
from loguru import logger as logging
|
||||||
import importlib
|
|
||||||
import logging
|
|
||||||
import time
|
|
||||||
from toolbox import get_conf
|
from toolbox import get_conf
|
||||||
import asyncio
|
|
||||||
|
|
||||||
load_message = "正在加载Claude组件,请稍候..."
|
load_message = "正在加载Claude组件,请稍候..."
|
||||||
|
|
||||||
|
|||||||
@@ -8,7 +8,6 @@ import json
|
|||||||
import random
|
import random
|
||||||
import string
|
import string
|
||||||
import websockets
|
import websockets
|
||||||
import logging
|
|
||||||
import time
|
import time
|
||||||
import threading
|
import threading
|
||||||
import importlib
|
import importlib
|
||||||
|
|||||||
@@ -218,5 +218,3 @@ class GoogleChatInit:
|
|||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
google = GoogleChatInit()
|
google = GoogleChatInit()
|
||||||
# print(gootle.generate_message_payload('你好呀', {}, ['123123', '3123123'], ''))
|
|
||||||
# gootle.input_encode_handle('123123[123123](./123123), ')
|
|
||||||
|
|||||||
@@ -1,7 +1,6 @@
|
|||||||
from http import HTTPStatus
|
from http import HTTPStatus
|
||||||
from toolbox import get_conf
|
from toolbox import get_conf
|
||||||
import threading
|
import threading
|
||||||
import logging
|
|
||||||
|
|
||||||
timeout_bot_msg = '[Local Message] Request timeout. Network error.'
|
timeout_bot_msg = '[Local Message] Request timeout. Network error.'
|
||||||
|
|
||||||
|
|||||||
@@ -1,7 +1,7 @@
|
|||||||
from toolbox import get_conf
|
|
||||||
import threading
|
|
||||||
import logging
|
|
||||||
import os
|
import os
|
||||||
|
import threading
|
||||||
|
from toolbox import get_conf
|
||||||
|
from loguru import logger as logging
|
||||||
|
|
||||||
timeout_bot_msg = '[Local Message] Request timeout. Network error.'
|
timeout_bot_msg = '[Local Message] Request timeout. Network error.'
|
||||||
#os.environ['VOLC_ACCESSKEY'] = ''
|
#os.environ['VOLC_ACCESSKEY'] = ''
|
||||||
|
|||||||
@@ -1,17 +1,18 @@
|
|||||||
from toolbox import get_conf, get_pictures_list, encode_image
|
|
||||||
import base64
|
import base64
|
||||||
import datetime
|
import datetime
|
||||||
import hashlib
|
import hashlib
|
||||||
import hmac
|
import hmac
|
||||||
import json
|
import json
|
||||||
from urllib.parse import urlparse
|
|
||||||
import ssl
|
import ssl
|
||||||
|
import websocket
|
||||||
|
import threading
|
||||||
|
from toolbox import get_conf, get_pictures_list, encode_image
|
||||||
|
from loguru import logger
|
||||||
|
from urllib.parse import urlparse
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
from time import mktime
|
from time import mktime
|
||||||
from urllib.parse import urlencode
|
from urllib.parse import urlencode
|
||||||
from wsgiref.handlers import format_date_time
|
from wsgiref.handlers import format_date_time
|
||||||
import websocket
|
|
||||||
import threading, time
|
|
||||||
|
|
||||||
timeout_bot_msg = '[Local Message] Request timeout. Network error.'
|
timeout_bot_msg = '[Local Message] Request timeout. Network error.'
|
||||||
|
|
||||||
@@ -104,7 +105,7 @@ class SparkRequestInstance():
|
|||||||
if llm_kwargs['most_recent_uploaded'].get('path'):
|
if llm_kwargs['most_recent_uploaded'].get('path'):
|
||||||
file_manifest = get_pictures_list(llm_kwargs['most_recent_uploaded']['path'])
|
file_manifest = get_pictures_list(llm_kwargs['most_recent_uploaded']['path'])
|
||||||
if len(file_manifest) > 0:
|
if len(file_manifest) > 0:
|
||||||
print('正在使用讯飞图片理解API')
|
logger.info('正在使用讯飞图片理解API')
|
||||||
gpt_url = self.gpt_url_img
|
gpt_url = self.gpt_url_img
|
||||||
wsParam = Ws_Param(self.appid, self.api_key, self.api_secret, gpt_url)
|
wsParam = Ws_Param(self.appid, self.api_key, self.api_secret, gpt_url)
|
||||||
websocket.enableTrace(False)
|
websocket.enableTrace(False)
|
||||||
@@ -123,7 +124,7 @@ class SparkRequestInstance():
|
|||||||
data = json.loads(message)
|
data = json.loads(message)
|
||||||
code = data['header']['code']
|
code = data['header']['code']
|
||||||
if code != 0:
|
if code != 0:
|
||||||
print(f'请求错误: {code}, {data}')
|
logger.error(f'请求错误: {code}, {data}')
|
||||||
self.result_buf += str(data)
|
self.result_buf += str(data)
|
||||||
ws.close()
|
ws.close()
|
||||||
self.time_to_exit_event.set()
|
self.time_to_exit_event.set()
|
||||||
@@ -140,7 +141,7 @@ class SparkRequestInstance():
|
|||||||
|
|
||||||
# 收到websocket错误的处理
|
# 收到websocket错误的处理
|
||||||
def on_error(ws, error):
|
def on_error(ws, error):
|
||||||
print("error:", error)
|
logger.error("error:", error)
|
||||||
self.time_to_exit_event.set()
|
self.time_to_exit_event.set()
|
||||||
|
|
||||||
# 收到websocket关闭的处理
|
# 收到websocket关闭的处理
|
||||||
|
|||||||
@@ -4,7 +4,7 @@
|
|||||||
# @Descr : 兼容最新的智谱Ai
|
# @Descr : 兼容最新的智谱Ai
|
||||||
from toolbox import get_conf
|
from toolbox import get_conf
|
||||||
from toolbox import get_conf, encode_image, get_pictures_list
|
from toolbox import get_conf, encode_image, get_pictures_list
|
||||||
import logging, os, requests
|
import requests
|
||||||
import json
|
import json
|
||||||
class TaichuChatInit:
|
class TaichuChatInit:
|
||||||
def __init__(self): ...
|
def __init__(self): ...
|
||||||
|
|||||||
@@ -5,7 +5,8 @@
|
|||||||
from toolbox import get_conf
|
from toolbox import get_conf
|
||||||
from zhipuai import ZhipuAI
|
from zhipuai import ZhipuAI
|
||||||
from toolbox import get_conf, encode_image, get_pictures_list
|
from toolbox import get_conf, encode_image, get_pictures_list
|
||||||
import logging, os
|
from loguru import logger
|
||||||
|
import os
|
||||||
|
|
||||||
|
|
||||||
def input_encode_handler(inputs:str, llm_kwargs:dict):
|
def input_encode_handler(inputs:str, llm_kwargs:dict):
|
||||||
@@ -24,7 +25,7 @@ class ZhipuChatInit:
|
|||||||
def __init__(self):
|
def __init__(self):
|
||||||
ZHIPUAI_API_KEY, ZHIPUAI_MODEL = get_conf("ZHIPUAI_API_KEY", "ZHIPUAI_MODEL")
|
ZHIPUAI_API_KEY, ZHIPUAI_MODEL = get_conf("ZHIPUAI_API_KEY", "ZHIPUAI_MODEL")
|
||||||
if len(ZHIPUAI_MODEL) > 0:
|
if len(ZHIPUAI_MODEL) > 0:
|
||||||
logging.error('ZHIPUAI_MODEL 配置项选项已经弃用,请在LLM_MODEL中配置')
|
logger.error('ZHIPUAI_MODEL 配置项选项已经弃用,请在LLM_MODEL中配置')
|
||||||
self.zhipu_bro = ZhipuAI(api_key=ZHIPUAI_API_KEY)
|
self.zhipu_bro = ZhipuAI(api_key=ZHIPUAI_API_KEY)
|
||||||
self.model = ''
|
self.model = ''
|
||||||
|
|
||||||
@@ -37,8 +38,7 @@ class ZhipuChatInit:
|
|||||||
what_i_have_asked['content'].append({"type": 'text', "text": user_input})
|
what_i_have_asked['content'].append({"type": 'text', "text": user_input})
|
||||||
if encode_img:
|
if encode_img:
|
||||||
if len(encode_img) > 1:
|
if len(encode_img) > 1:
|
||||||
logging.warning("glm-4v只支持一张图片,将只取第一张图片进行处理")
|
logger.warning("glm-4v只支持一张图片,将只取第一张图片进行处理")
|
||||||
print("glm-4v只支持一张图片,将只取第一张图片进行处理")
|
|
||||||
img_d = {"type": "image_url",
|
img_d = {"type": "image_url",
|
||||||
"image_url": {
|
"image_url": {
|
||||||
"url": encode_img[0]['data']
|
"url": encode_img[0]['data']
|
||||||
|
|||||||
@@ -5,6 +5,7 @@ from toolbox import ChatBotWithCookies
|
|||||||
from multiprocessing import Process, Pipe
|
from multiprocessing import Process, Pipe
|
||||||
from contextlib import redirect_stdout
|
from contextlib import redirect_stdout
|
||||||
from request_llms.queued_pipe import create_queue_pipe
|
from request_llms.queued_pipe import create_queue_pipe
|
||||||
|
from loguru import logger
|
||||||
|
|
||||||
class ThreadLock(object):
|
class ThreadLock(object):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
@@ -51,7 +52,7 @@ def reset_tqdm_output():
|
|||||||
getattr(sys.stdout, 'flush', lambda: None)()
|
getattr(sys.stdout, 'flush', lambda: None)()
|
||||||
|
|
||||||
def fp_write(s):
|
def fp_write(s):
|
||||||
print(s)
|
logger.info(s)
|
||||||
last_len = [0]
|
last_len = [0]
|
||||||
|
|
||||||
def print_status(s):
|
def print_status(s):
|
||||||
@@ -199,7 +200,7 @@ class LocalLLMHandle(Process):
|
|||||||
if res.startswith(self.std_tag):
|
if res.startswith(self.std_tag):
|
||||||
new_output = res[len(self.std_tag):]
|
new_output = res[len(self.std_tag):]
|
||||||
std_out = std_out[:std_out_clip_len]
|
std_out = std_out[:std_out_clip_len]
|
||||||
print(new_output, end='')
|
logger.info(new_output, end='')
|
||||||
std_out = new_output + std_out
|
std_out = new_output + std_out
|
||||||
yield self.std_tag + '\n```\n' + std_out + '\n```\n'
|
yield self.std_tag + '\n```\n' + std_out + '\n```\n'
|
||||||
elif res == '[Finish]':
|
elif res == '[Finish]':
|
||||||
|
|||||||
@@ -1,8 +1,8 @@
|
|||||||
import json
|
import json
|
||||||
import time
|
import time
|
||||||
import logging
|
|
||||||
import traceback
|
import traceback
|
||||||
import requests
|
import requests
|
||||||
|
from loguru import logger
|
||||||
|
|
||||||
# config_private.py放自己的秘密如API和代理网址
|
# config_private.py放自己的秘密如API和代理网址
|
||||||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||||
@@ -106,10 +106,7 @@ def generate_message(input, model, key, history, max_output_token, system_prompt
|
|||||||
"stream": True,
|
"stream": True,
|
||||||
"max_tokens": max_output_token,
|
"max_tokens": max_output_token,
|
||||||
}
|
}
|
||||||
try:
|
|
||||||
print(f" {model} : {conversation_cnt} : {input[:100]} ..........")
|
|
||||||
except:
|
|
||||||
print("输入中可能存在乱码。")
|
|
||||||
return headers, playload
|
return headers, playload
|
||||||
|
|
||||||
|
|
||||||
@@ -196,7 +193,7 @@ def get_predict_function(
|
|||||||
if retry > MAX_RETRY:
|
if retry > MAX_RETRY:
|
||||||
raise TimeoutError
|
raise TimeoutError
|
||||||
if MAX_RETRY != 0:
|
if MAX_RETRY != 0:
|
||||||
print(f"请求超时,正在重试 ({retry}/{MAX_RETRY}) ……")
|
logger.error(f"请求超时,正在重试 ({retry}/{MAX_RETRY}) ……")
|
||||||
|
|
||||||
stream_response = response.iter_lines()
|
stream_response = response.iter_lines()
|
||||||
result = ""
|
result = ""
|
||||||
@@ -219,18 +216,17 @@ def get_predict_function(
|
|||||||
):
|
):
|
||||||
chunk = get_full_error(chunk, stream_response)
|
chunk = get_full_error(chunk, stream_response)
|
||||||
chunk_decoded = chunk.decode()
|
chunk_decoded = chunk.decode()
|
||||||
print(chunk_decoded)
|
logger.error(chunk_decoded)
|
||||||
raise RuntimeError(
|
raise RuntimeError(
|
||||||
f"API异常,请检测终端输出。可能的原因是:{finish_reason}"
|
f"API异常,请检测终端输出。可能的原因是:{finish_reason}"
|
||||||
)
|
)
|
||||||
if chunk:
|
if chunk:
|
||||||
try:
|
try:
|
||||||
if finish_reason == "stop":
|
if finish_reason == "stop":
|
||||||
logging.info(f"[response] {result}")
|
if not console_slience:
|
||||||
|
logger.info(f"[response] {result}")
|
||||||
break
|
break
|
||||||
result += response_text
|
result += response_text
|
||||||
if not console_slience:
|
|
||||||
print(response_text, end="")
|
|
||||||
if observe_window is not None:
|
if observe_window is not None:
|
||||||
# 观测窗,把已经获取的数据显示出去
|
# 观测窗,把已经获取的数据显示出去
|
||||||
if len(observe_window) >= 1:
|
if len(observe_window) >= 1:
|
||||||
@@ -243,7 +239,7 @@ def get_predict_function(
|
|||||||
chunk = get_full_error(chunk, stream_response)
|
chunk = get_full_error(chunk, stream_response)
|
||||||
chunk_decoded = chunk.decode()
|
chunk_decoded = chunk.decode()
|
||||||
error_msg = chunk_decoded
|
error_msg = chunk_decoded
|
||||||
print(error_msg)
|
logger.error(error_msg)
|
||||||
raise RuntimeError("Json解析不合常规")
|
raise RuntimeError("Json解析不合常规")
|
||||||
return result
|
return result
|
||||||
|
|
||||||
@@ -276,7 +272,7 @@ def get_predict_function(
|
|||||||
inputs, history = handle_core_functionality(
|
inputs, history = handle_core_functionality(
|
||||||
additional_fn, inputs, history, chatbot
|
additional_fn, inputs, history, chatbot
|
||||||
)
|
)
|
||||||
logging.info(f"[raw_input] {inputs}")
|
logger.info(f"[raw_input] {inputs}")
|
||||||
chatbot.append((inputs, ""))
|
chatbot.append((inputs, ""))
|
||||||
yield from update_ui(
|
yield from update_ui(
|
||||||
chatbot=chatbot, history=history, msg="等待响应"
|
chatbot=chatbot, history=history, msg="等待响应"
|
||||||
@@ -376,11 +372,11 @@ def get_predict_function(
|
|||||||
history=history,
|
history=history,
|
||||||
msg="API异常:" + chunk_decoded,
|
msg="API异常:" + chunk_decoded,
|
||||||
) # 刷新界面
|
) # 刷新界面
|
||||||
print(chunk_decoded)
|
logger.error(chunk_decoded)
|
||||||
return
|
return
|
||||||
|
|
||||||
if finish_reason == "stop":
|
if finish_reason == "stop":
|
||||||
logging.info(f"[response] {gpt_replying_buffer}")
|
logger.info(f"[response] {gpt_replying_buffer}")
|
||||||
break
|
break
|
||||||
status_text = f"finish_reason: {finish_reason}"
|
status_text = f"finish_reason: {finish_reason}"
|
||||||
gpt_replying_buffer += response_text
|
gpt_replying_buffer += response_text
|
||||||
@@ -403,7 +399,7 @@ def get_predict_function(
|
|||||||
yield from update_ui(
|
yield from update_ui(
|
||||||
chatbot=chatbot, history=history, msg="Json异常" + chunk_decoded
|
chatbot=chatbot, history=history, msg="Json异常" + chunk_decoded
|
||||||
) # 刷新界面
|
) # 刷新界面
|
||||||
print(chunk_decoded)
|
logger.error(chunk_decoded)
|
||||||
return
|
return
|
||||||
|
|
||||||
return predict_no_ui_long_connection, predict
|
return predict_no_ui_long_connection, predict
|
||||||
|
|||||||
@@ -28,6 +28,7 @@ edge-tts
|
|||||||
pymupdf
|
pymupdf
|
||||||
openai
|
openai
|
||||||
rjsmin
|
rjsmin
|
||||||
|
loguru
|
||||||
arxiv
|
arxiv
|
||||||
numpy
|
numpy
|
||||||
rich
|
rich
|
||||||
|
|||||||
@@ -2,6 +2,8 @@ import markdown
|
|||||||
import re
|
import re
|
||||||
import os
|
import os
|
||||||
import math
|
import math
|
||||||
|
|
||||||
|
from loguru import logger
|
||||||
from textwrap import dedent
|
from textwrap import dedent
|
||||||
from functools import lru_cache
|
from functools import lru_cache
|
||||||
from pymdownx.superfences import fence_code_format
|
from pymdownx.superfences import fence_code_format
|
||||||
@@ -227,14 +229,14 @@ def fix_dollar_sticking_bug(txt):
|
|||||||
|
|
||||||
if single_stack_height > 0:
|
if single_stack_height > 0:
|
||||||
if txt[:(index+1)].find('\n') > 0 or txt[:(index+1)].find('<td>') > 0 or txt[:(index+1)].find('</td>') > 0:
|
if txt[:(index+1)].find('\n') > 0 or txt[:(index+1)].find('<td>') > 0 or txt[:(index+1)].find('</td>') > 0:
|
||||||
print('公式之中出现了异常 (Unexpect element in equation)')
|
logger.error('公式之中出现了异常 (Unexpect element in equation)')
|
||||||
single_stack_height = 0
|
single_stack_height = 0
|
||||||
txt_result += ' $'
|
txt_result += ' $'
|
||||||
continue
|
continue
|
||||||
|
|
||||||
if double_stack_height > 0:
|
if double_stack_height > 0:
|
||||||
if txt[:(index+1)].find('\n\n') > 0:
|
if txt[:(index+1)].find('\n\n') > 0:
|
||||||
print('公式之中出现了异常 (Unexpect element in equation)')
|
logger.error('公式之中出现了异常 (Unexpect element in equation)')
|
||||||
double_stack_height = 0
|
double_stack_height = 0
|
||||||
txt_result += '$$'
|
txt_result += '$$'
|
||||||
continue
|
continue
|
||||||
@@ -253,13 +255,13 @@ def fix_dollar_sticking_bug(txt):
|
|||||||
txt = txt[(index+2):]
|
txt = txt[(index+2):]
|
||||||
else:
|
else:
|
||||||
if double_stack_height != 0:
|
if double_stack_height != 0:
|
||||||
# print(txt[:(index)])
|
# logger.info(txt[:(index)])
|
||||||
print('发现异常嵌套公式')
|
logger.info('发现异常嵌套公式')
|
||||||
if single_stack_height == 0:
|
if single_stack_height == 0:
|
||||||
single_stack_height = 1
|
single_stack_height = 1
|
||||||
else:
|
else:
|
||||||
single_stack_height = 0
|
single_stack_height = 0
|
||||||
# print(txt[:(index)])
|
# logger.info(txt[:(index)])
|
||||||
txt_result += txt[:(index+1)]
|
txt_result += txt[:(index+1)]
|
||||||
txt = txt[(index+1):]
|
txt = txt[(index+1):]
|
||||||
break
|
break
|
||||||
|
|||||||
@@ -1,5 +1,6 @@
|
|||||||
import platform
|
import platform
|
||||||
from sys import stdout
|
from sys import stdout
|
||||||
|
from loguru import logger
|
||||||
|
|
||||||
if platform.system()=="Linux":
|
if platform.system()=="Linux":
|
||||||
pass
|
pass
|
||||||
@@ -59,3 +60,29 @@ def sprint亮紫(*kw):
|
|||||||
return "\033[1;35m"+' '.join(kw)+"\033[0m"
|
return "\033[1;35m"+' '.join(kw)+"\033[0m"
|
||||||
def sprint亮靛(*kw):
|
def sprint亮靛(*kw):
|
||||||
return "\033[1;36m"+' '.join(kw)+"\033[0m"
|
return "\033[1;36m"+' '.join(kw)+"\033[0m"
|
||||||
|
|
||||||
|
def log红(*kw,**kargs):
|
||||||
|
logger.opt(depth=1).info(sprint红(*kw))
|
||||||
|
def log绿(*kw,**kargs):
|
||||||
|
logger.opt(depth=1).info(sprint绿(*kw))
|
||||||
|
def log黄(*kw,**kargs):
|
||||||
|
logger.opt(depth=1).info(sprint黄(*kw))
|
||||||
|
def log蓝(*kw,**kargs):
|
||||||
|
logger.opt(depth=1).info(sprint蓝(*kw))
|
||||||
|
def log紫(*kw,**kargs):
|
||||||
|
logger.opt(depth=1).info(sprint紫(*kw))
|
||||||
|
def log靛(*kw,**kargs):
|
||||||
|
logger.opt(depth=1).info(sprint靛(*kw))
|
||||||
|
|
||||||
|
def log亮红(*kw,**kargs):
|
||||||
|
logger.opt(depth=1).info(sprint亮红(*kw))
|
||||||
|
def log亮绿(*kw,**kargs):
|
||||||
|
logger.opt(depth=1).info(sprint亮绿(*kw))
|
||||||
|
def log亮黄(*kw,**kargs):
|
||||||
|
logger.opt(depth=1).info(sprint亮黄(*kw))
|
||||||
|
def log亮蓝(*kw,**kargs):
|
||||||
|
logger.opt(depth=1).info(sprint亮蓝(*kw))
|
||||||
|
def log亮紫(*kw,**kargs):
|
||||||
|
logger.opt(depth=1).info(sprint亮紫(*kw))
|
||||||
|
def log亮靛(*kw,**kargs):
|
||||||
|
logger.opt(depth=1).info(sprint亮靛(*kw))
|
||||||
@@ -2,7 +2,7 @@ import importlib
|
|||||||
import time
|
import time
|
||||||
import os
|
import os
|
||||||
from functools import lru_cache
|
from functools import lru_cache
|
||||||
from shared_utils.colorful import print亮红, print亮绿, print亮蓝
|
from shared_utils.colorful import log亮红, log亮绿, log亮蓝
|
||||||
|
|
||||||
pj = os.path.join
|
pj = os.path.join
|
||||||
default_user_name = 'default_user'
|
default_user_name = 'default_user'
|
||||||
@@ -30,13 +30,13 @@ def read_env_variable(arg, default_value):
|
|||||||
env_arg = os.environ[arg]
|
env_arg = os.environ[arg]
|
||||||
else:
|
else:
|
||||||
raise KeyError
|
raise KeyError
|
||||||
print(f"[ENV_VAR] 尝试加载{arg},默认值:{default_value} --> 修正值:{env_arg}")
|
log亮绿(f"[ENV_VAR] 尝试加载{arg},默认值:{default_value} --> 修正值:{env_arg}")
|
||||||
try:
|
try:
|
||||||
if isinstance(default_value, bool):
|
if isinstance(default_value, bool):
|
||||||
env_arg = env_arg.strip()
|
env_arg = env_arg.strip()
|
||||||
if env_arg == 'True': r = True
|
if env_arg == 'True': r = True
|
||||||
elif env_arg == 'False': r = False
|
elif env_arg == 'False': r = False
|
||||||
else: print('Enter True or False, but have:', env_arg); r = default_value
|
else: log亮红('Expect `True` or `False`, but have:', env_arg); r = default_value
|
||||||
elif isinstance(default_value, int):
|
elif isinstance(default_value, int):
|
||||||
r = int(env_arg)
|
r = int(env_arg)
|
||||||
elif isinstance(default_value, float):
|
elif isinstance(default_value, float):
|
||||||
@@ -51,13 +51,13 @@ def read_env_variable(arg, default_value):
|
|||||||
assert arg == "proxies"
|
assert arg == "proxies"
|
||||||
r = eval(env_arg)
|
r = eval(env_arg)
|
||||||
else:
|
else:
|
||||||
print亮红(f"[ENV_VAR] 环境变量{arg}不支持通过环境变量设置! ")
|
log亮红(f"[ENV_VAR] 环境变量{arg}不支持通过环境变量设置! ")
|
||||||
raise KeyError
|
raise KeyError
|
||||||
except:
|
except:
|
||||||
print亮红(f"[ENV_VAR] 环境变量{arg}加载失败! ")
|
log亮红(f"[ENV_VAR] 环境变量{arg}加载失败! ")
|
||||||
raise KeyError(f"[ENV_VAR] 环境变量{arg}加载失败! ")
|
raise KeyError(f"[ENV_VAR] 环境变量{arg}加载失败! ")
|
||||||
|
|
||||||
print亮绿(f"[ENV_VAR] 成功读取环境变量{arg}")
|
log亮绿(f"[ENV_VAR] 成功读取环境变量{arg}")
|
||||||
return r
|
return r
|
||||||
|
|
||||||
|
|
||||||
@@ -80,21 +80,21 @@ def read_single_conf_with_lru_cache(arg):
|
|||||||
if arg == 'API_URL_REDIRECT':
|
if arg == 'API_URL_REDIRECT':
|
||||||
oai_rd = r.get("https://api.openai.com/v1/chat/completions", None) # API_URL_REDIRECT填写格式是错误的,请阅读`https://github.com/binary-husky/gpt_academic/wiki/项目配置说明`
|
oai_rd = r.get("https://api.openai.com/v1/chat/completions", None) # API_URL_REDIRECT填写格式是错误的,请阅读`https://github.com/binary-husky/gpt_academic/wiki/项目配置说明`
|
||||||
if oai_rd and not oai_rd.endswith('/completions'):
|
if oai_rd and not oai_rd.endswith('/completions'):
|
||||||
print亮红("\n\n[API_URL_REDIRECT] API_URL_REDIRECT填错了。请阅读`https://github.com/binary-husky/gpt_academic/wiki/项目配置说明`。如果您确信自己没填错,无视此消息即可。")
|
log亮红("\n\n[API_URL_REDIRECT] API_URL_REDIRECT填错了。请阅读`https://github.com/binary-husky/gpt_academic/wiki/项目配置说明`。如果您确信自己没填错,无视此消息即可。")
|
||||||
time.sleep(5)
|
time.sleep(5)
|
||||||
if arg == 'API_KEY':
|
if arg == 'API_KEY':
|
||||||
print亮蓝(f"[API_KEY] 本项目现已支持OpenAI和Azure的api-key。也支持同时填写多个api-key,如API_KEY=\"openai-key1,openai-key2,azure-key3\"")
|
log亮蓝(f"[API_KEY] 本项目现已支持OpenAI和Azure的api-key。也支持同时填写多个api-key,如API_KEY=\"openai-key1,openai-key2,azure-key3\"")
|
||||||
print亮蓝(f"[API_KEY] 您既可以在config.py中修改api-key(s),也可以在问题输入区输入临时的api-key(s),然后回车键提交后即可生效。")
|
log亮蓝(f"[API_KEY] 您既可以在config.py中修改api-key(s),也可以在问题输入区输入临时的api-key(s),然后回车键提交后即可生效。")
|
||||||
if is_any_api_key(r):
|
if is_any_api_key(r):
|
||||||
print亮绿(f"[API_KEY] 您的 API_KEY 是: {r[:15]}*** API_KEY 导入成功")
|
log亮绿(f"[API_KEY] 您的 API_KEY 是: {r[:15]}*** API_KEY 导入成功")
|
||||||
else:
|
else:
|
||||||
print亮红(f"[API_KEY] 您的 API_KEY({r[:15]}***)不满足任何一种已知的密钥格式,请在config文件中修改API密钥之后再运行(详见`https://github.com/binary-husky/gpt_academic/wiki/api_key`)。")
|
log亮红(f"[API_KEY] 您的 API_KEY({r[:15]}***)不满足任何一种已知的密钥格式,请在config文件中修改API密钥之后再运行(详见`https://github.com/binary-husky/gpt_academic/wiki/api_key`)。")
|
||||||
if arg == 'proxies':
|
if arg == 'proxies':
|
||||||
if not read_single_conf_with_lru_cache('USE_PROXY'): r = None # 检查USE_PROXY,防止proxies单独起作用
|
if not read_single_conf_with_lru_cache('USE_PROXY'): r = None # 检查USE_PROXY,防止proxies单独起作用
|
||||||
if r is None:
|
if r is None:
|
||||||
print亮红('[PROXY] 网络代理状态:未配置。无代理状态下很可能无法访问OpenAI家族的模型。建议:检查USE_PROXY选项是否修改。')
|
log亮红('[PROXY] 网络代理状态:未配置。无代理状态下很可能无法访问OpenAI家族的模型。建议:检查USE_PROXY选项是否修改。')
|
||||||
else:
|
else:
|
||||||
print亮绿('[PROXY] 网络代理状态:已配置。配置信息如下:', r)
|
log亮绿('[PROXY] 网络代理状态:已配置。配置信息如下:', r)
|
||||||
assert isinstance(r, dict), 'proxies格式错误,请注意proxies选项的格式,不要遗漏括号。'
|
assert isinstance(r, dict), 'proxies格式错误,请注意proxies选项的格式,不要遗漏括号。'
|
||||||
return r
|
return r
|
||||||
|
|
||||||
|
|||||||
@@ -8,6 +8,7 @@ import gradio
|
|||||||
import shutil
|
import shutil
|
||||||
import glob
|
import glob
|
||||||
from shared_utils.config_loader import get_conf
|
from shared_utils.config_loader import get_conf
|
||||||
|
from loguru import logger
|
||||||
|
|
||||||
def html_local_file(file):
|
def html_local_file(file):
|
||||||
base_path = os.path.dirname(__file__) # 项目目录
|
base_path = os.path.dirname(__file__) # 项目目录
|
||||||
@@ -100,7 +101,7 @@ def extract_archive(file_path, dest_dir):
|
|||||||
with zipfile.ZipFile(file_path, "r") as zipobj:
|
with zipfile.ZipFile(file_path, "r") as zipobj:
|
||||||
zipobj._extract_member = lambda a,b,c: zip_extract_member_new(zipobj, a,b,c) # 修复中文乱码的问题
|
zipobj._extract_member = lambda a,b,c: zip_extract_member_new(zipobj, a,b,c) # 修复中文乱码的问题
|
||||||
zipobj.extractall(path=dest_dir)
|
zipobj.extractall(path=dest_dir)
|
||||||
print("Successfully extracted zip archive to {}".format(dest_dir))
|
logger.info("Successfully extracted zip archive to {}".format(dest_dir))
|
||||||
|
|
||||||
elif file_extension in [".tar", ".gz", ".bz2"]:
|
elif file_extension in [".tar", ".gz", ".bz2"]:
|
||||||
with tarfile.open(file_path, "r:*") as tarobj:
|
with tarfile.open(file_path, "r:*") as tarobj:
|
||||||
@@ -113,7 +114,7 @@ def extract_archive(file_path, dest_dir):
|
|||||||
raise Exception(f"Attempted Path Traversal in {member.name}")
|
raise Exception(f"Attempted Path Traversal in {member.name}")
|
||||||
|
|
||||||
tarobj.extractall(path=dest_dir)
|
tarobj.extractall(path=dest_dir)
|
||||||
print("Successfully extracted tar archive to {}".format(dest_dir))
|
logger.info("Successfully extracted tar archive to {}".format(dest_dir))
|
||||||
|
|
||||||
# 第三方库,需要预先pip install rarfile
|
# 第三方库,需要预先pip install rarfile
|
||||||
# 此外,Windows上还需要安装winrar软件,配置其Path环境变量,如"C:\Program Files\WinRAR"才可以
|
# 此外,Windows上还需要安装winrar软件,配置其Path环境变量,如"C:\Program Files\WinRAR"才可以
|
||||||
@@ -123,9 +124,9 @@ def extract_archive(file_path, dest_dir):
|
|||||||
|
|
||||||
with rarfile.RarFile(file_path) as rf:
|
with rarfile.RarFile(file_path) as rf:
|
||||||
rf.extractall(path=dest_dir)
|
rf.extractall(path=dest_dir)
|
||||||
print("Successfully extracted rar archive to {}".format(dest_dir))
|
logger.info("Successfully extracted rar archive to {}".format(dest_dir))
|
||||||
except:
|
except:
|
||||||
print("Rar format requires additional dependencies to install")
|
logger.info("Rar format requires additional dependencies to install")
|
||||||
return "\n\n解压失败! 需要安装pip install rarfile来解压rar文件。建议:使用zip压缩格式。"
|
return "\n\n解压失败! 需要安装pip install rarfile来解压rar文件。建议:使用zip压缩格式。"
|
||||||
|
|
||||||
# 第三方库,需要预先pip install py7zr
|
# 第三方库,需要预先pip install py7zr
|
||||||
@@ -135,9 +136,9 @@ def extract_archive(file_path, dest_dir):
|
|||||||
|
|
||||||
with py7zr.SevenZipFile(file_path, mode="r") as f:
|
with py7zr.SevenZipFile(file_path, mode="r") as f:
|
||||||
f.extractall(path=dest_dir)
|
f.extractall(path=dest_dir)
|
||||||
print("Successfully extracted 7z archive to {}".format(dest_dir))
|
logger.info("Successfully extracted 7z archive to {}".format(dest_dir))
|
||||||
except:
|
except:
|
||||||
print("7z format requires additional dependencies to install")
|
logger.info("7z format requires additional dependencies to install")
|
||||||
return "\n\n解压失败! 需要安装pip install py7zr来解压7z文件"
|
return "\n\n解压失败! 需要安装pip install py7zr来解压7z文件"
|
||||||
else:
|
else:
|
||||||
return ""
|
return ""
|
||||||
|
|||||||
@@ -74,7 +74,7 @@ def select_api_key(keys, llm_model):
|
|||||||
avail_key_list = []
|
avail_key_list = []
|
||||||
key_list = keys.split(',')
|
key_list = keys.split(',')
|
||||||
|
|
||||||
if llm_model.startswith('gpt-') or llm_model.startswith('one-api-'):
|
if llm_model.startswith('gpt-') or llm_model.startswith('one-api-') or llm_model.startswith('o1-'):
|
||||||
for k in key_list:
|
for k in key_list:
|
||||||
if is_openai_api_key(k): avail_key_list.append(k)
|
if is_openai_api_key(k): avail_key_list.append(k)
|
||||||
|
|
||||||
|
|||||||
69
shared_utils/logging.py
Normal file
69
shared_utils/logging.py
Normal file
@@ -0,0 +1,69 @@
|
|||||||
|
from loguru import logger
|
||||||
|
import logging
|
||||||
|
import sys
|
||||||
|
import os
|
||||||
|
|
||||||
|
def chat_log_filter(record):
|
||||||
|
return "chat_msg" in record["extra"]
|
||||||
|
|
||||||
|
def not_chat_log_filter(record):
|
||||||
|
return "chat_msg" not in record["extra"]
|
||||||
|
|
||||||
|
def formatter_with_clip(record):
|
||||||
|
# Note this function returns the string to be formatted, not the actual message to be logged
|
||||||
|
record["extra"]["serialized"] = "555555"
|
||||||
|
max_len = 12
|
||||||
|
record['function_x'] = record['function'].center(max_len)
|
||||||
|
if len(record['function_x']) > max_len:
|
||||||
|
record['function_x'] = ".." + record['function_x'][-(max_len-2):]
|
||||||
|
record['line_x'] = str(record['line']).ljust(3)
|
||||||
|
return '<green>{time:HH:mm}</green> | <cyan>{function_x}</cyan>:<cyan>{line_x}</cyan> | <level>{message}</level>\n'
|
||||||
|
|
||||||
|
def setup_logging(PATH_LOGGING):
|
||||||
|
|
||||||
|
admin_log_path = os.path.join(PATH_LOGGING, "admin")
|
||||||
|
os.makedirs(admin_log_path, exist_ok=True)
|
||||||
|
sensitive_log_path = os.path.join(admin_log_path, "chat_secrets.log")
|
||||||
|
regular_log_path = os.path.join(admin_log_path, "console_log.log")
|
||||||
|
logger.remove()
|
||||||
|
logger.configure(
|
||||||
|
levels=[dict(name="WARNING", color="<g>")],
|
||||||
|
)
|
||||||
|
|
||||||
|
logger.add(
|
||||||
|
sys.stderr,
|
||||||
|
format=formatter_with_clip,
|
||||||
|
# format='<green>{time:HH:mm}</green> | <cyan>{function}</cyan>:<cyan>{line}</cyan> - <level>{message}</level>',
|
||||||
|
filter=(lambda record: not chat_log_filter(record)),
|
||||||
|
colorize=True,
|
||||||
|
enqueue=True
|
||||||
|
)
|
||||||
|
|
||||||
|
logger.add(
|
||||||
|
sensitive_log_path,
|
||||||
|
format='<green>{time:MM-DD HH:mm:ss}</green> | <level>{level: <8}</level> | <cyan>{name}</cyan>:<cyan>{function}</cyan>:<cyan>{line}</cyan> - <level>{message}</level>',
|
||||||
|
rotation="10 MB",
|
||||||
|
filter=chat_log_filter,
|
||||||
|
enqueue=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
logger.add(
|
||||||
|
regular_log_path,
|
||||||
|
format='<green>{time:MM-DD HH:mm:ss}</green> | <level>{level: <8}</level> | <cyan>{name}</cyan>:<cyan>{function}</cyan>:<cyan>{line}</cyan> - <level>{message}</level>',
|
||||||
|
rotation="10 MB",
|
||||||
|
filter=not_chat_log_filter,
|
||||||
|
enqueue=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.getLogger("httpx").setLevel(logging.WARNING)
|
||||||
|
|
||||||
|
logger.warning(f"所有对话记录将自动保存在本地目录{sensitive_log_path}, 请注意自我隐私保护哦!")
|
||||||
|
|
||||||
|
|
||||||
|
# logger.bind(chat_msg=True).info("This message is logged to the file!")
|
||||||
|
# logger.debug(f"debug message")
|
||||||
|
# logger.info(f"info message")
|
||||||
|
# logger.success(f"success message")
|
||||||
|
# logger.error(f"error message")
|
||||||
|
# logger.add("special.log", filter=lambda record: "special" in record["extra"])
|
||||||
|
# logger.debug("This message is not logged to the file")
|
||||||
@@ -1,6 +1,7 @@
|
|||||||
import os
|
import os
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
from toolbox import get_conf
|
from toolbox import get_conf
|
||||||
|
from loguru import logger
|
||||||
|
|
||||||
CODE_HIGHLIGHT, ADD_WAIFU, LAYOUT = get_conf("CODE_HIGHLIGHT", "ADD_WAIFU", "LAYOUT")
|
CODE_HIGHLIGHT, ADD_WAIFU, LAYOUT = get_conf("CODE_HIGHLIGHT", "ADD_WAIFU", "LAYOUT")
|
||||||
theme_dir = os.path.dirname(__file__)
|
theme_dir = os.path.dirname(__file__)
|
||||||
@@ -85,7 +86,7 @@ def adjust_theme():
|
|||||||
)
|
)
|
||||||
except:
|
except:
|
||||||
set_theme = None
|
set_theme = None
|
||||||
print("gradio版本较旧, 不能自定义字体和颜色")
|
logger.error("gradio版本较旧, 不能自定义字体和颜色")
|
||||||
return set_theme
|
return set_theme
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
import os
|
import os
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
from toolbox import get_conf
|
from toolbox import get_conf
|
||||||
|
from loguru import logger
|
||||||
|
|
||||||
CODE_HIGHLIGHT, ADD_WAIFU, LAYOUT = get_conf("CODE_HIGHLIGHT", "ADD_WAIFU", "LAYOUT")
|
CODE_HIGHLIGHT, ADD_WAIFU, LAYOUT = get_conf("CODE_HIGHLIGHT", "ADD_WAIFU", "LAYOUT")
|
||||||
theme_dir = os.path.dirname(__file__)
|
theme_dir = os.path.dirname(__file__)
|
||||||
@@ -84,7 +85,7 @@ def adjust_theme():
|
|||||||
)
|
)
|
||||||
except:
|
except:
|
||||||
set_theme = None
|
set_theme = None
|
||||||
print("gradio版本较旧, 不能自定义字体和颜色")
|
logger.error("gradio版本较旧, 不能自定义字体和颜色")
|
||||||
return set_theme
|
return set_theme
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
import os
|
import os
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
from toolbox import get_conf, ProxyNetworkActivate
|
from toolbox import get_conf, ProxyNetworkActivate
|
||||||
|
from loguru import logger
|
||||||
|
|
||||||
CODE_HIGHLIGHT, ADD_WAIFU, LAYOUT = get_conf("CODE_HIGHLIGHT", "ADD_WAIFU", "LAYOUT")
|
CODE_HIGHLIGHT, ADD_WAIFU, LAYOUT = get_conf("CODE_HIGHLIGHT", "ADD_WAIFU", "LAYOUT")
|
||||||
theme_dir = os.path.dirname(__file__)
|
theme_dir = os.path.dirname(__file__)
|
||||||
@@ -9,7 +10,7 @@ theme_dir = os.path.dirname(__file__)
|
|||||||
def dynamic_set_theme(THEME):
|
def dynamic_set_theme(THEME):
|
||||||
set_theme = gr.themes.ThemeClass()
|
set_theme = gr.themes.ThemeClass()
|
||||||
with ProxyNetworkActivate("Download_Gradio_Theme"):
|
with ProxyNetworkActivate("Download_Gradio_Theme"):
|
||||||
print("正在下载Gradio主题,请稍等。")
|
logger.info("正在下载Gradio主题,请稍等。")
|
||||||
try:
|
try:
|
||||||
if THEME.startswith("Huggingface-"):
|
if THEME.startswith("Huggingface-"):
|
||||||
THEME = THEME.lstrip("Huggingface-")
|
THEME = THEME.lstrip("Huggingface-")
|
||||||
@@ -17,7 +18,7 @@ def dynamic_set_theme(THEME):
|
|||||||
THEME = THEME.lstrip("huggingface-")
|
THEME = THEME.lstrip("huggingface-")
|
||||||
set_theme = set_theme.from_hub(THEME.lower())
|
set_theme = set_theme.from_hub(THEME.lower())
|
||||||
except:
|
except:
|
||||||
print("下载Gradio主题时出现异常。")
|
logger.error("下载Gradio主题时出现异常。")
|
||||||
return set_theme
|
return set_theme
|
||||||
|
|
||||||
|
|
||||||
@@ -25,7 +26,7 @@ def adjust_theme():
|
|||||||
try:
|
try:
|
||||||
set_theme = gr.themes.ThemeClass()
|
set_theme = gr.themes.ThemeClass()
|
||||||
with ProxyNetworkActivate("Download_Gradio_Theme"):
|
with ProxyNetworkActivate("Download_Gradio_Theme"):
|
||||||
print("正在下载Gradio主题,请稍等。")
|
logger.info("正在下载Gradio主题,请稍等。")
|
||||||
try:
|
try:
|
||||||
THEME = get_conf("THEME")
|
THEME = get_conf("THEME")
|
||||||
if THEME.startswith("Huggingface-"):
|
if THEME.startswith("Huggingface-"):
|
||||||
@@ -34,7 +35,7 @@ def adjust_theme():
|
|||||||
THEME = THEME.lstrip("huggingface-")
|
THEME = THEME.lstrip("huggingface-")
|
||||||
set_theme = set_theme.from_hub(THEME.lower())
|
set_theme = set_theme.from_hub(THEME.lower())
|
||||||
except:
|
except:
|
||||||
print("下载Gradio主题时出现异常。")
|
logger.error("下载Gradio主题时出现异常。")
|
||||||
|
|
||||||
from themes.common import get_common_html_javascript_code
|
from themes.common import get_common_html_javascript_code
|
||||||
js = get_common_html_javascript_code()
|
js = get_common_html_javascript_code()
|
||||||
@@ -54,7 +55,7 @@ def adjust_theme():
|
|||||||
)
|
)
|
||||||
except Exception:
|
except Exception:
|
||||||
set_theme = None
|
set_theme = None
|
||||||
print("gradio版本较旧, 不能自定义字体和颜色。")
|
logger.error("gradio版本较旧, 不能自定义字体和颜色。")
|
||||||
return set_theme
|
return set_theme
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
import os
|
import os
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
from toolbox import get_conf
|
from toolbox import get_conf
|
||||||
|
from loguru import logger
|
||||||
|
|
||||||
CODE_HIGHLIGHT, ADD_WAIFU, LAYOUT = get_conf("CODE_HIGHLIGHT", "ADD_WAIFU", "LAYOUT")
|
CODE_HIGHLIGHT, ADD_WAIFU, LAYOUT = get_conf("CODE_HIGHLIGHT", "ADD_WAIFU", "LAYOUT")
|
||||||
theme_dir = os.path.dirname(__file__)
|
theme_dir = os.path.dirname(__file__)
|
||||||
@@ -97,7 +98,7 @@ def adjust_theme():
|
|||||||
)
|
)
|
||||||
except:
|
except:
|
||||||
set_theme = None
|
set_theme = None
|
||||||
print("gradio版本较旧, 不能自定义字体和颜色")
|
logger.error("gradio版本较旧, 不能自定义字体和颜色")
|
||||||
return set_theme
|
return set_theme
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
32
toolbox.py
32
toolbox.py
@@ -8,8 +8,8 @@ import base64
|
|||||||
import gradio
|
import gradio
|
||||||
import shutil
|
import shutil
|
||||||
import glob
|
import glob
|
||||||
import logging
|
|
||||||
import uuid
|
import uuid
|
||||||
|
from loguru import logger
|
||||||
from functools import wraps
|
from functools import wraps
|
||||||
from textwrap import dedent
|
from textwrap import dedent
|
||||||
from shared_utils.config_loader import get_conf
|
from shared_utils.config_loader import get_conf
|
||||||
@@ -673,7 +673,7 @@ def run_gradio_in_subpath(demo, auth, port, custom_path):
|
|||||||
if path == "/":
|
if path == "/":
|
||||||
return True
|
return True
|
||||||
if len(path) == 0:
|
if len(path) == 0:
|
||||||
print(
|
logger.info(
|
||||||
"ilegal custom path: {}\npath must not be empty\ndeploy on root url".format(
|
"ilegal custom path: {}\npath must not be empty\ndeploy on root url".format(
|
||||||
path
|
path
|
||||||
)
|
)
|
||||||
@@ -681,10 +681,10 @@ def run_gradio_in_subpath(demo, auth, port, custom_path):
|
|||||||
return False
|
return False
|
||||||
if path[0] == "/":
|
if path[0] == "/":
|
||||||
if path[1] != "/":
|
if path[1] != "/":
|
||||||
print("deploy on sub-path {}".format(path))
|
logger.info("deploy on sub-path {}".format(path))
|
||||||
return True
|
return True
|
||||||
return False
|
return False
|
||||||
print(
|
logger.info(
|
||||||
"ilegal custom path: {}\npath should begin with '/'\ndeploy on root url".format(
|
"ilegal custom path: {}\npath should begin with '/'\ndeploy on root url".format(
|
||||||
path
|
path
|
||||||
)
|
)
|
||||||
@@ -787,12 +787,12 @@ def zip_folder(source_folder, dest_folder, zip_name):
|
|||||||
|
|
||||||
# Make sure the source folder exists
|
# Make sure the source folder exists
|
||||||
if not os.path.exists(source_folder):
|
if not os.path.exists(source_folder):
|
||||||
print(f"{source_folder} does not exist")
|
logger.info(f"{source_folder} does not exist")
|
||||||
return
|
return
|
||||||
|
|
||||||
# Make sure the destination folder exists
|
# Make sure the destination folder exists
|
||||||
if not os.path.exists(dest_folder):
|
if not os.path.exists(dest_folder):
|
||||||
print(f"{dest_folder} does not exist")
|
logger.info(f"{dest_folder} does not exist")
|
||||||
return
|
return
|
||||||
|
|
||||||
# Create the name for the zip file
|
# Create the name for the zip file
|
||||||
@@ -811,7 +811,7 @@ def zip_folder(source_folder, dest_folder, zip_name):
|
|||||||
os.rename(zip_file, pj(dest_folder, os.path.basename(zip_file)))
|
os.rename(zip_file, pj(dest_folder, os.path.basename(zip_file)))
|
||||||
zip_file = pj(dest_folder, os.path.basename(zip_file))
|
zip_file = pj(dest_folder, os.path.basename(zip_file))
|
||||||
|
|
||||||
print(f"Zip file created at {zip_file}")
|
logger.info(f"Zip file created at {zip_file}")
|
||||||
|
|
||||||
|
|
||||||
def zip_result(folder):
|
def zip_result(folder):
|
||||||
@@ -1033,10 +1033,20 @@ def log_chat(llm_model: str, input_str: str, output_str: str):
|
|||||||
try:
|
try:
|
||||||
if output_str and input_str and llm_model:
|
if output_str and input_str and llm_model:
|
||||||
uid = str(uuid.uuid4().hex)
|
uid = str(uuid.uuid4().hex)
|
||||||
logging.info(f"[Model({uid})] {llm_model}")
|
|
||||||
input_str = input_str.rstrip('\n')
|
input_str = input_str.rstrip('\n')
|
||||||
logging.info(f"[Query({uid})]\n{input_str}")
|
|
||||||
output_str = output_str.rstrip('\n')
|
output_str = output_str.rstrip('\n')
|
||||||
logging.info(f"[Response({uid})]\n{output_str}\n\n")
|
logger.bind(chat_msg=True).info(dedent(
|
||||||
|
"""
|
||||||
|
╭──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
|
||||||
|
[UID]
|
||||||
|
{uid}
|
||||||
|
[Model]
|
||||||
|
{llm_model}
|
||||||
|
[Query]
|
||||||
|
{input_str}
|
||||||
|
[Response]
|
||||||
|
{output_str}
|
||||||
|
╰──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
|
||||||
|
""").format(uid=uid, llm_model=llm_model, input_str=input_str, output_str=output_str))
|
||||||
except:
|
except:
|
||||||
print(trimmed_format_exc())
|
logger.error(trimmed_format_exc())
|
||||||
|
|||||||
Reference in New Issue
Block a user