Compare commits

..

1 Commits

Author SHA1 Message Date
binary-husky
7415d532d1 solve the pdf concate error 2024-10-13 07:36:36 +00:00
255 changed files with 2318 additions and 36333 deletions

View File

@@ -1,6 +0,0 @@
.venv
.github
.vscode
gpt_log
tests
README.md

View File

@@ -1,14 +1,14 @@
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
name: build-with-latex-arm
name: build-with-all-capacity-beta
on:
push:
branches:
- "master"
- 'master'
env:
REGISTRY: ghcr.io
IMAGE_NAME: ${{ github.repository }}_with_latex_arm
IMAGE_NAME: ${{ github.repository }}_with_all_capacity_beta
jobs:
build-and-push-image:
@@ -18,17 +18,11 @@ jobs:
packages: write
steps:
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Checkout repository
uses: actions/checkout@v4
uses: actions/checkout@v3
- name: Log in to the Container registry
uses: docker/login-action@v3
uses: docker/login-action@v2
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
@@ -41,11 +35,10 @@ jobs:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
- name: Build and push Docker image
uses: docker/build-push-action@v6
uses: docker/build-push-action@v4
with:
context: .
push: true
platforms: linux/arm64
file: docs/GithubAction+NoLocal+Latex
file: docs/GithubAction+AllCapacityBeta
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}

View File

@@ -0,0 +1,44 @@
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
name: build-with-chatglm
on:
push:
branches:
- 'master'
env:
REGISTRY: ghcr.io
IMAGE_NAME: ${{ github.repository }}_chatglm_moss
jobs:
build-and-push-image:
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
steps:
- name: Checkout repository
uses: actions/checkout@v3
- name: Log in to the Container registry
uses: docker/login-action@v2
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Extract metadata (tags, labels) for Docker
id: meta
uses: docker/metadata-action@v4
with:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
- name: Build and push Docker image
uses: docker/build-push-action@v4
with:
context: .
push: true
file: docs/GithubAction+ChatGLM+Moss
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}

View File

@@ -0,0 +1,44 @@
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
name: build-with-jittorllms
on:
push:
branches:
- 'master'
env:
REGISTRY: ghcr.io
IMAGE_NAME: ${{ github.repository }}_jittorllms
jobs:
build-and-push-image:
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
steps:
- name: Checkout repository
uses: actions/checkout@v3
- name: Log in to the Container registry
uses: docker/login-action@v2
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Extract metadata (tags, labels) for Docker
id: meta
uses: docker/metadata-action@v4
with:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
- name: Build and push Docker image
uses: docker/build-push-action@v4
with:
context: .
push: true
file: docs/GithubAction+JittorLLMs
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}

View File

@@ -1,56 +0,0 @@
name: Create Conda Environment Package
on:
workflow_dispatch:
jobs:
build:
runs-on: windows-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Setup Miniconda
uses: conda-incubator/setup-miniconda@v3
with:
auto-activate-base: true
activate-environment: ""
- name: Create new Conda environment
shell: bash -l {0}
run: |
conda create -n gpt python=3.11 -y
conda activate gpt
- name: Install requirements
shell: bash -l {0}
run: |
conda activate gpt
pip install -r requirements.txt
- name: Install conda-pack
shell: bash -l {0}
run: |
conda activate gpt
conda install conda-pack -y
- name: Pack conda environment
shell: bash -l {0}
run: |
conda activate gpt
conda pack -n gpt -o gpt.tar.gz
- name: Create workspace zip
shell: pwsh
run: |
mkdir workspace
Get-ChildItem -Exclude "workspace" | Copy-Item -Destination workspace -Recurse
Remove-Item -Path workspace/.git* -Recurse -Force -ErrorAction SilentlyContinue
Copy-Item gpt.tar.gz workspace/ -Force
- name: Upload packed files
uses: actions/upload-artifact@v4
with:
name: gpt-academic-package
path: workspace

View File

@@ -7,7 +7,7 @@
name: 'Close stale issues and PRs'
on:
schedule:
- cron: '*/30 * * * *'
- cron: '*/5 * * * *'
jobs:
stale:
@@ -19,6 +19,7 @@ jobs:
steps:
- uses: actions/stale@v8
with:
stale-issue-message: 'This issue is stale because it has been open 100 days with no activity. Remove stale label or comment or this will be closed in 7 days.'
stale-issue-message: 'This issue is stale because it has been open 100 days with no activity. Remove stale label or comment or this will be closed in 1 days.'
days-before-stale: 100
days-before-close: 7
days-before-close: 1
debug-only: true

4
.gitignore vendored
View File

@@ -161,7 +161,3 @@ temp.*
objdump*
*.min.*.js
TODO
experimental_mods
search_results
gg.docx
unstructured_reader.py

View File

@@ -3,38 +3,37 @@
# - 如何构建: 先修改 `config.py` 然后 `docker build -t gpt-academic . `
# - 如何运行(Linux下): `docker run --rm -it --net=host gpt-academic `
# - 如何运行(其他操作系统选择任意一个固定端口50923): `docker run --rm -it -e WEB_PORT=50923 -p 50923:50923 gpt-academic `
FROM python:3.11
FROM ghcr.io/astral-sh/uv:python3.12-bookworm
# 非必要步骤更换pip源 (以下三行,可以删除)
RUN echo '[global]' > /etc/pip.conf && \
echo 'index-url = https://mirrors.aliyun.com/pypi/simple/' >> /etc/pip.conf && \
echo 'trusted-host = mirrors.aliyun.com' >> /etc/pip.conf
# 语音输出功能以下1,2行更换阿里源第3,4行安装ffmpeg都可以删除
RUN sed -i 's/deb.debian.org/mirrors.aliyun.com/g' /etc/apt/sources.list.d/debian.sources && \
sed -i 's/security.debian.org/mirrors.aliyun.com/g' /etc/apt/sources.list.d/debian.sources && \
apt-get update
# 语音输出功能以下两行第一行更换阿里源第二行安装ffmpeg都可以删除
RUN UBUNTU_VERSION=$(awk -F= '/^VERSION_CODENAME=/{print $2}' /etc/os-release); echo "deb https://mirrors.aliyun.com/debian/ $UBUNTU_VERSION main non-free contrib" > /etc/apt/sources.list; apt-get update
RUN apt-get install ffmpeg -y
RUN apt-get clean
# 进入工作路径(必要)
WORKDIR /gpt
# 安装大部分依赖利用Docker缓存加速以后的构建 (以下两行,可以删除)
COPY requirements.txt ./
RUN uv venv --python=3.12 && uv pip install --verbose -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
ENV PATH="/gpt/.venv/bin:$PATH"
RUN python -c 'import loguru'
RUN pip3 install -r requirements.txt
# 装载项目文件,安装剩余依赖(必要)
COPY . .
RUN uv pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
RUN pip3 install -r requirements.txt
# # 非必要步骤,用于预热模块(可以删除)
RUN python -c 'from check_proxy import warm_up_modules; warm_up_modules()'
ENV CGO_ENABLED=0
# 非必要步骤,用于预热模块(可以删除)
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
# 启动(必要)
CMD ["bash", "-c", "python main.py"]
CMD ["python3", "-u", "main.py"]

View File

@@ -1,13 +1,8 @@
> [!IMPORTANT]
> `master主分支`最新动态(2025.8.23): Dockerfile构建效率大幅优化
> `master主分支`最新动态(2025.7.31): 新GUI前端Coming Soon
>
> 2025.2.2: 三分钟快速接入最强qwen2.5-max[视频](https://www.bilibili.com/video/BV1LeFuerEG4)
> 2025.2.1: 支持自定义字体
> 2024.10.10: 突发停电,紧急恢复了提供[whl包](https://drive.google.com/drive/folders/14kR-3V-lIbvGxri4AHc8TpiA1fqsw7SK?usp=sharing)的文件服务器
> 2024.6.1: 版本3.80加入插件二级菜单功能详见wiki
> 2024.5.1: 加入Doc2x翻译PDF论文的功能[查看详情](https://github.com/binary-husky/gpt_academic/wiki/Doc2x)
> 2024.3.11: 全力支持Qwen、GLM、DeepseekCoder等中文大语言模型 SoVits语音克隆模块[查看详情](https://www.bilibili.com/video/BV1Rp421S7tF/)
> 2024.1.17: 安装依赖时,请选择`requirements.txt`中**指定的版本**。 安装命令:`pip install -r requirements.txt`。
> 2024.1.17: 安装依赖时,请选择`requirements.txt`中**指定的版本**。 安装命令:`pip install -r requirements.txt`。本项目完全开源免费,您可通过订阅[在线服务](https://github.com/binary-husky/gpt_academic/wiki/online)的方式鼓励本项目的发展。
<br>
@@ -63,6 +58,7 @@ Read this in [English](docs/README.English.md) | [日本語](docs/README.Japanes
⭐支持mermaid图像渲染 | 支持让GPT生成[流程图](https://www.bilibili.com/video/BV18c41147H9/)、状态转移图、甘特图、饼状图、GitGraph等等3.7版本)
⭐Arxiv论文精细翻译 ([Docker](https://github.com/binary-husky/gpt_academic/pkgs/container/gpt_academic_with_latex)) | [插件] 一键[以超高质量翻译arxiv论文](https://www.bilibili.com/video/BV1dz4y1v77A/),目前最好的论文翻译工具
⭐[实时语音对话输入](https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md) | [插件] 异步[监听音频](https://www.bilibili.com/video/BV1AV4y187Uy/),自动断句,自动寻找回答时机
⭐AutoGen多智能体插件 | [插件] 借助微软AutoGen探索多Agent的智能涌现可能
⭐虚空终端插件 | [插件] 能够使用自然语言直接调度本项目其他插件
润色、翻译、代码解释 | 一键润色、翻译、查找论文语法错误、解释代码
[自定义快捷键](https://www.bilibili.com/video/BV14s4y1E7jN) | 支持自定义快捷键
@@ -127,20 +123,20 @@ Latex论文一键校对 | [插件] 仿Grammarly对Latex文章进行语法、拼
```mermaid
flowchart TD
A{"安装方法"} --> W1("I 🔑直接运行 (Windows, Linux or MacOS)")
W1 --> W11["1 Python pip包管理依赖"]
W1 --> W12["2 Anaconda包管理依赖推荐⭐"]
A{"安装方法"} --> W1("I. 🔑直接运行 (Windows, Linux or MacOS)")
W1 --> W11["1. Python pip包管理依赖"]
W1 --> W12["2. Anaconda包管理依赖推荐⭐"]
A --> W2["II 🐳使用Docker (Windows, Linux or MacOS)"]
A --> W2["II. 🐳使用Docker (Windows, Linux or MacOS)"]
W2 --> k1["1 部署项目全部能力的大镜像(推荐⭐)"]
W2 --> k2["2 仅在线模型GPT, GLM4等镜像"]
W2 --> k3["3 在线模型 + Latex的大镜像"]
W2 --> k1["1. 部署项目全部能力的大镜像(推荐⭐)"]
W2 --> k2["2. 仅在线模型GPT, GLM4等镜像"]
W2 --> k3["3. 在线模型 + Latex的大镜像"]
A --> W4["IV 🚀其他部署方法"]
W4 --> C1["1 Windows/MacOS 一键安装运行脚本(推荐⭐)"]
W4 --> C2["2 Huggingface, Sealos远程部署"]
W4 --> C4["3 其他 ..."]
A --> W4["IV. 🚀其他部署方法"]
W4 --> C1["1. Windows/MacOS 一键安装运行脚本(推荐⭐)"]
W4 --> C2["2. Huggingface, Sealos远程部署"]
W4 --> C4["3. ... 其他 ..."]
```
### 安装方法I直接运行 (Windows, Linux or MacOS)
@@ -173,32 +169,26 @@ flowchart TD
```
<details><summary>如果需要支持清华ChatGLM系列/复旦MOSS/RWKV作为后端请点击展开此处</summary>
<details><summary>如果需要支持清华ChatGLM2/复旦MOSS/RWKV作为后端请点击展开此处</summary>
<p>
【可选步骤】如果需要支持清华ChatGLM系列/复旦MOSS作为后端需要额外安装更多依赖前提条件熟悉Python + 用过Pytorch + 电脑配置够强):
【可选步骤】如果需要支持清华ChatGLM3/复旦MOSS作为后端需要额外安装更多依赖前提条件熟悉Python + 用过Pytorch + 电脑配置够强):
```sh
# 【可选步骤I】支持清华ChatGLM3。清华ChatGLM备注如果遇到"Call ChatGLM fail 不能正常加载ChatGLM的参数" 错误,参考如下: 1以上默认安装的为torch+cpu版使用cuda需要卸载torch重新安装torch+cuda 2如因本机配置不够无法加载模型可以修改request_llm/bridge_chatglm.py中的模型精度, 将 AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) 都修改为 AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
python -m pip install -r request_llms/requirements_chatglm.txt
# 【可选步骤II】支持清华ChatGLM4 注意此模型至少需要24G显存
python -m pip install -r request_llms/requirements_chatglm4.txt
# 可使用modelscope下载ChatGLM4模型
# pip install modelscope
# modelscope download --model ZhipuAI/glm-4-9b-chat --local_dir ./THUDM/glm-4-9b-chat
# 【可选步骤III】支持复旦MOSS
# 【可选步骤II】支持复旦MOSS
python -m pip install -r request_llms/requirements_moss.txt
git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llms/moss # 注意执行此行代码时,必须处于项目根路径
# 【可选步骤IV】支持RWKV Runner
# 【可选步骤III】支持RWKV Runner
参考wikihttps://github.com/binary-husky/gpt_academic/wiki/%E9%80%82%E9%85%8DRWKV-Runner
# 【可选步骤V】确保config.py配置文件的AVAIL_LLM_MODELS包含了期望的模型目前支持的全部模型如下(jittorllms系列目前仅支持docker方案)
# 【可选步骤IV】确保config.py配置文件的AVAIL_LLM_MODELS包含了期望的模型目前支持的全部模型如下(jittorllms系列目前仅支持docker方案)
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
# 【可选步骤VI】支持本地模型INT8,INT4量化这里所指的模型本身不是量化版本目前deepseek-coder支持后面测试后会加入更多模型量化选择
# 【可选步骤V】支持本地模型INT8,INT4量化这里所指的模型本身不是量化版本目前deepseek-coder支持后面测试后会加入更多模型量化选择
pip install bitsandbyte
# windows用户安装bitsandbytes需要使用下面bitsandbytes-windows-webui
python -m pip install bitsandbytes --prefer-binary --extra-index-url=https://jllllll.github.io/bitsandbytes-windows-webui
@@ -426,6 +416,7 @@ timeline LR
1. `master` 分支: 主分支,稳定版
2. `frontier` 分支: 开发分支,测试版
3. 如何[接入其他大模型](request_llms/README.md)
4. 访问GPT-Academic的[在线服务并支持我们](https://github.com/binary-husky/gpt_academic/wiki/online)
### V参考与学习

View File

@@ -1,36 +1,24 @@
from loguru import logger
def check_proxy(proxies, return_ip=False):
"""
检查代理配置并返回结果。
Args:
proxies (dict): 包含http和https代理配置的字典。
return_ip (bool, optional): 是否返回代理的IP地址。默认为False。
Returns:
str or None: 检查的结果信息或代理的IP地址如果`return_ip`为True
"""
import requests
proxies_https = proxies['https'] if proxies is not None else ''
ip = None
try:
response = requests.get("https://ipapi.co/json/", proxies=proxies, timeout=4) # ⭐ 执行GET请求以获取代理信息
response = requests.get("https://ipapi.co/json/", proxies=proxies, timeout=4)
data = response.json()
if 'country_name' in data:
country = data['country_name']
result = f"代理配置 {proxies_https}, 代理所在地:{country}"
if 'ip' in data:
ip = data['ip']
if 'ip' in data: ip = data['ip']
elif 'error' in data:
alternative, ip = _check_with_backup_source(proxies) # ⭐ 调用备用方法检查代理配置
alternative, ip = _check_with_backup_source(proxies)
if alternative is None:
result = f"代理配置 {proxies_https}, 代理所在地未知IP查询频率受限"
else:
result = f"代理配置 {proxies_https}, 代理所在地:{alternative}"
else:
result = f"代理配置 {proxies_https}, 代理数据解析失败:{data}"
if not return_ip:
logger.warning(result)
return result
@@ -45,33 +33,17 @@ def check_proxy(proxies, return_ip=False):
return ip
def _check_with_backup_source(proxies):
"""
通过备份源检查代理,并获取相应信息。
Args:
proxies (dict): 包含代理信息的字典。
Returns:
tuple: 代理信息(geo)和IP地址(ip)的元组。
"""
import random, string, requests
random_string = ''.join(random.choices(string.ascii_letters + string.digits, k=32))
try:
res_json = requests.get(f"http://{random_string}.edns.ip-api.com/json", proxies=proxies, timeout=4).json() # ⭐ 执行代理检查和备份源请求
res_json = requests.get(f"http://{random_string}.edns.ip-api.com/json", proxies=proxies, timeout=4).json()
return res_json['dns']['geo'], res_json['dns']['ip']
except:
return None, None
def backup_and_download(current_version, remote_version):
"""
一键更新协议:备份当前版本,下载远程版本并解压缩。
Args:
current_version (str): 当前版本号。
remote_version (str): 远程版本号。
Returns:
str: 新版本目录的路径。
一键更新协议:备份和下载
"""
from toolbox import get_conf
import shutil
@@ -88,7 +60,7 @@ def backup_and_download(current_version, remote_version):
proxies = get_conf('proxies')
try: r = requests.get('https://github.com/binary-husky/chatgpt_academic/archive/refs/heads/master.zip', proxies=proxies, stream=True)
except: r = requests.get('https://public.agent-matrix.com/publish/master.zip', proxies=proxies, stream=True)
zip_file_path = backup_dir+'/master.zip' # ⭐ 保存备份文件的路径
zip_file_path = backup_dir+'/master.zip'
with open(zip_file_path, 'wb+') as f:
f.write(r.content)
dst_path = new_version_dir
@@ -104,17 +76,6 @@ def backup_and_download(current_version, remote_version):
def patch_and_restart(path):
"""
一键更新协议:覆盖和重启
Args:
path (str): 新版本代码所在的路径
注意事项:
如果您的程序没有使用config_private.py私密配置文件则会将config.py重命名为config_private.py以避免配置丢失。
更新流程:
- 复制最新版本代码到当前目录
- 更新pip包依赖
- 如果更新失败,则提示手动安装依赖库并重启
"""
from distutils import dir_util
import shutil
@@ -123,43 +84,32 @@ def patch_and_restart(path):
import time
import glob
from shared_utils.colorful import log亮黄, log亮绿, log亮红
# if not using config_private, move origin config.py as config_private.py
if not os.path.exists('config_private.py'):
log亮黄('由于您没有设置config_private.py私密配置现将您的现有配置移动至config_private.py以防止配置丢失',
'另外您可以随时在history子文件夹下找回旧版的程序。')
shutil.copyfile('config.py', 'config_private.py')
path_new_version = glob.glob(path + '/*-master')[0]
dir_util.copy_tree(path_new_version, './') # ⭐ 将最新版本代码复制到当前目录
dir_util.copy_tree(path_new_version, './')
log亮绿('代码已经更新即将更新pip包依赖……')
for i in reversed(range(5)): time.sleep(1); log亮绿(i)
try:
import subprocess
subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-r', 'requirements.txt'])
except:
log亮红('pip包依赖安装出现问题需要手动安装新增的依赖库 `python -m pip install -r requirements.txt`,然后在用常规的`python main.py`的方式启动。')
log亮绿('更新完成您可以随时在history子文件夹下找回旧版的程序5s之后重启')
log亮红('假如重启失败,您可能需要手动安装新增的依赖库 `python -m pip install -r requirements.txt`,然后在用常规的`python main.py`的方式启动。')
log亮绿(' ------------------------------ -----------------------------------')
for i in reversed(range(8)): time.sleep(1); log亮绿(i)
os.execl(sys.executable, sys.executable, *sys.argv) # 重启程序
os.execl(sys.executable, sys.executable, *sys.argv)
def get_current_version():
"""
获取当前的版本号。
Returns:
str: 当前的版本号。如果无法获取版本号,则返回空字符串。
"""
import json
try:
with open('./version', 'r', encoding='utf8') as f:
current_version = json.loads(f.read())['version'] # ⭐ 从读取的json数据中提取版本号
current_version = json.loads(f.read())['version']
except:
current_version = ""
return current_version
@@ -168,12 +118,6 @@ def get_current_version():
def auto_update(raise_error=False):
"""
一键更新协议:查询版本和用户意见
Args:
raise_error (bool, optional): 是否在出错时抛出错误。默认为 False。
Returns:
None
"""
try:
from toolbox import get_conf
@@ -193,13 +137,13 @@ def auto_update(raise_error=False):
current_version = json.loads(current_version)['version']
if (remote_version - current_version) >= 0.01-1e-5:
from shared_utils.colorful import log亮黄
log亮黄(f'\n新版本可用。新版本:{remote_version},当前版本:{current_version}{new_feature}') # ⭐ 在控制台打印新版本信息
log亮黄(f'\n新版本可用。新版本:{remote_version},当前版本:{current_version}{new_feature}')
logger.info('1Github更新地址:\nhttps://github.com/binary-husky/chatgpt_academic\n')
user_instruction = input('2是否一键更新代码Y+回车=确认,输入其他/无输入+回车=不更新)?')
if user_instruction in ['Y', 'y']:
path = backup_and_download(current_version, remote_version) # ⭐ 备份并下载文件
path = backup_and_download(current_version, remote_version)
try:
patch_and_restart(path) # ⭐ 执行覆盖并重启操作
patch_and_restart(path)
except:
msg = '更新失败。'
if raise_error:
@@ -219,9 +163,6 @@ def auto_update(raise_error=False):
logger.info(msg)
def warm_up_modules():
"""
预热模块,加载特定模块并执行预热操作。
"""
logger.info('正在执行一些模块的预热 ...')
from toolbox import ProxyNetworkActivate
from request_llms.bridge_all import model_info
@@ -230,60 +171,8 @@ def warm_up_modules():
enc.encode("模块预热", disallowed_special=())
enc = model_info["gpt-4"]['tokenizer']
enc.encode("模块预热", disallowed_special=())
try_warm_up_vectordb()
# def try_warm_up_vectordb():
# try:
# import os
# import nltk
# target = os.path.expanduser('~/nltk_data')
# logger.info(f'模块预热: nltk punkt (从Github下载部分文件到 {target})')
# nltk.data.path.append(target)
# nltk.download('punkt', download_dir=target)
# logger.info('模块预热完成: nltk punkt')
# except:
# logger.exception('模块预热: nltk punkt 失败,可能需要手动安装 nltk punkt')
# logger.error('模块预热: nltk punkt 失败,可能需要手动安装 nltk punkt')
def try_warm_up_vectordb():
import os
import nltk
target = os.path.expanduser('~/nltk_data')
nltk.data.path.append(target)
try:
# 尝试加载 punkt
logger.info(f'nltk模块预热')
nltk.data.find('tokenizers/punkt')
nltk.data.find('tokenizers/punkt_tab')
nltk.data.find('taggers/averaged_perceptron_tagger_eng')
logger.info('nltk模块预热完成读取本地缓存')
except:
# 如果找不到,则尝试下载
try:
logger.info(f'模块预热: nltk punkt (从 Github 下载部分文件到 {target})')
from shared_utils.nltk_downloader import Downloader
_downloader = Downloader()
_downloader.download('punkt', download_dir=target)
_downloader.download('punkt_tab', download_dir=target)
_downloader.download('averaged_perceptron_tagger_eng', download_dir=target)
logger.info('nltk模块预热完成')
except Exception:
logger.exception('模块预热: nltk punkt 失败,可能需要手动安装 nltk punkt')
def warm_up_vectordb():
"""
执行一些模块的预热操作。
本函数主要用于执行一些模块的预热操作,确保在后续的流程中能够顺利运行。
⭐ 关键作用:预热模块
Returns:
None
"""
logger.info('正在执行一些模块的预热 ...')
from toolbox import ProxyNetworkActivate
with ProxyNetworkActivate("Warmup_Modules"):

115
config.py
View File

@@ -7,37 +7,36 @@
Configuration reading priority: environment variable > config_private.py > config.py
"""
# [step 1-1]>> ( 接入OpenAI模型家族 ) API_KEY = "sk-123456789xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx123456789"。极少数情况下还需要填写组织格式如org-123456789abcdefghijklmno的请向下翻找 API_ORG 设置项
API_KEY = "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" # 可同时填写多个API-KEY用英文逗号分割例如API_KEY = "sk-openaikey1,sk-openaikey2,fkxxxx-api2dkey3,azure-apikey4"
# [step 1]>> API_KEY = "sk-123456789xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx123456789"。极少数情况下还需要填写组织格式如org-123456789abcdefghijklmno的请向下翻找 API_ORG 设置项
API_KEY = "此处填API密钥" # 可同时填写多个API-KEY用英文逗号分割例如API_KEY = "sk-openaikey1,sk-openaikey2,fkxxxx-api2dkey3,azure-apikey4"
# [step 1-2]>> ( 强烈推荐!接入通义家族 & 大模型服务平台百炼 ) 接入通义千问在线大模型api-key获取地址 https://dashscope.console.aliyun.com/
DASHSCOPE_API_KEY = "" # 阿里灵积云API_KEY用于接入qwen-maxdashscope-qwen3-14bdashscope-deepseek-r1等
# [step 1-3]>> ( 接入 deepseek-reasoner, 即 deepseek-r1 ) 深度求索(DeepSeek) API KEY默认请求地址为"https://api.deepseek.com/v1/chat/completions"
DEEPSEEK_API_KEY = "sk-d99b8cc6b7414cc88a5d950a3ff7585e"
# [step 2]>> 改为True应用代理。如果使用本地或无地域限制的大模型时此处不修改如果直接在海外服务器部署此处不修改
# [step 2]>> 改为True应用代理如果直接在海外服务器部署此处不修改如果使用本地或无地域限制的大模型时此处也不需要修改
USE_PROXY = False
if USE_PROXY:
"""
代理网络的地址,打开你的代理软件查看代理协议(socks5h / http)、地址(localhost)和端口(11284)
填写格式是 [协议]:// [地址] :[端口]填写之前不要忘记把USE_PROXY改成True如果直接在海外服务器部署此处不修改
<配置教程&视频教程> https://github.com/binary-husky/gpt_academic/issues/1>
[协议] 常见协议无非socks5h/http; 例如 v2**y 和 ss* 的默认本地协议是socks5h; 而cl**h 的默认本地协议是http
[地址] 填localhost或者127.0.0.1localhost意思是代理软件安装在本机上
[端口] 在代理软件的设置里找。虽然不同的代理软件界面不一样,但端口号都应该在最显眼的位置上
"""
proxies = {
"http":"socks5h://192.168.8.9:1070", # 再例如 "http": "http://127.0.0.1:7890",
"https":"socks5h://192.168.8.9:1070", # 再例如 "https": "http://127.0.0.1:7890",
# [协议]:// [地址] :[端口]
"http": "socks5h://localhost:11284", # 再例如 "http": "http://127.0.0.1:7890",
"https": "socks5h://localhost:11284", # 再例如 "https": "http://127.0.0.1:7890",
}
else:
proxies = None
# [step 3]>> 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
LLM_MODEL = "gpt-4" # 可选 ↓↓↓
AVAIL_LLM_MODELS = ["qwen-max", "o1-mini", "o1-mini-2024-09-12", "o1", "o1-2024-12-17", "o1-preview", "o1-preview-2024-09-12",
"gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-preview",
LLM_MODEL = "gpt-3.5-turbo-16k" # 可选 ↓↓↓
AVAIL_LLM_MODELS = ["gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-preview",
"gpt-4o", "gpt-4o-mini", "gpt-4-turbo", "gpt-4-turbo-2024-04-09",
"gpt-3.5-turbo-1106", "gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
"gpt-4", "gpt-4-32k", "azure-gpt-4", "glm-4", "glm-4v", "glm-3-turbo",
"gemini-1.5-pro", "chatglm3", "chatglm4",
"deepseek-chat", "deepseek-coder", "deepseek-reasoner",
"volcengine-deepseek-r1-250120", "volcengine-deepseek-v3-241226",
"dashscope-deepseek-r1", "dashscope-deepseek-v3",
"dashscope-qwen3-14b", "dashscope-qwen3-235b-a22b", "dashscope-qwen3-32b",
"gemini-1.5-pro", "chatglm3"
]
EMBEDDING_MODEL = "text-embedding-3-small"
@@ -48,7 +47,7 @@ EMBEDDING_MODEL = "text-embedding-3-small"
# "glm-4-0520", "glm-4-air", "glm-4-airx", "glm-4-flash",
# "qianfan", "deepseekcoder",
# "spark", "sparkv2", "sparkv3", "sparkv3.5", "sparkv4",
# "qwen-turbo", "qwen-plus", "qwen-local",
# "qwen-turbo", "qwen-plus", "qwen-max", "qwen-local",
# "moonshot-v1-128k", "moonshot-v1-32k", "moonshot-v1-8k",
# "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-turbo-0125", "gpt-4o-2024-05-13"
# "claude-3-haiku-20240307","claude-3-sonnet-20240229","claude-3-opus-20240229", "claude-2.1", "claude-instant-1.2",
@@ -56,7 +55,6 @@ EMBEDDING_MODEL = "text-embedding-3-small"
# "deepseek-chat" ,"deepseek-coder",
# "gemini-1.5-flash",
# "yi-34b-chat-0205","yi-34b-chat-200k","yi-large","yi-medium","yi-spark","yi-large-turbo","yi-large-preview",
# "grok-beta",
# ]
# --- --- --- ---
# 此外您还可以在接入one-api/vllm/ollama/Openroute时
@@ -75,7 +73,7 @@ API_URL_REDIRECT = {}
# 多线程函数插件中默认允许多少路线程同时访问OpenAI。Free trial users的限制是每分钟3次Pay-as-you-go users的限制是每分钟3500次
# 一言以蔽之免费5刀用户填3OpenAI绑了信用卡的用户可以填 16 或者更高。提高限制请查询https://platform.openai.com/docs/guides/rate-limits/overview
DEFAULT_WORKER_NUM = 8
DEFAULT_WORKER_NUM = 3
# 色彩主题, 可选 ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast"]
@@ -83,31 +81,6 @@ DEFAULT_WORKER_NUM = 8
THEME = "Default"
AVAIL_THEMES = ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast", "Gstaff/Xkcd", "NoCrypt/Miku"]
FONT = "Theme-Default-Font"
AVAIL_FONTS = [
"默认值(Theme-Default-Font)",
"宋体(SimSun)",
"黑体(SimHei)",
"楷体(KaiTi)",
"仿宋(FangSong)",
"华文细黑(STHeiti Light)",
"华文楷体(STKaiti)",
"华文仿宋(STFangsong)",
"华文宋体(STSong)",
"华文中宋(STZhongsong)",
"华文新魏(STXinwei)",
"华文隶书(STLiti)",
# 备注:以下字体需要网络支持,您可以自定义任意您喜欢的字体,如下所示,需要满足的格式为 "字体昵称(字体英文真名@字体css下载链接)"
"思源宋体(Source Han Serif CN VF@https://chinese-fonts-cdn.deno.dev/packages/syst/dist/SourceHanSerifCN/result.css)",
"月星楷(Moon Stars Kai HW@https://chinese-fonts-cdn.deno.dev/packages/moon-stars-kai/dist/MoonStarsKaiHW-Regular/result.css)",
"珠圆体(MaokenZhuyuanTi@https://chinese-fonts-cdn.deno.dev/packages/mkzyt/dist/猫啃珠圆体/result.css)",
"平方萌萌哒(PING FANG MENG MNEG DA@https://chinese-fonts-cdn.deno.dev/packages/pfmmd/dist/平方萌萌哒/result.css)",
"Helvetica",
"ui-sans-serif",
"sans-serif",
"system-ui"
]
# 默认的系统提示词system prompt
INIT_SYS_PROMPT = "Serve me as a writing and programming assistant."
@@ -134,14 +107,15 @@ TIMEOUT_SECONDS = 30
# 网页的端口, -1代表随机端口
WEB_PORT = 19998
WEB_PORT = -1
# 是否自动打开浏览器页面
AUTO_OPEN_BROWSER = True
# 如果OpenAI不响应网络卡顿、代理失败、KEY失效重试的次数限制
MAX_RETRY = 3
MAX_RETRY = 2
# 插件分类默认选项
@@ -158,15 +132,16 @@ MULTI_QUERY_LLM_MODELS = "gpt-3.5-turbo&chatglm3"
QWEN_LOCAL_MODEL_SELECTION = "Qwen/Qwen-1_8B-Chat-Int8"
# 接入通义千问在线大模型 https://dashscope.console.aliyun.com/
DASHSCOPE_API_KEY = "" # 阿里灵积云API_KEY
# 百度千帆LLM_MODEL="qianfan"
BAIDU_CLOUD_API_KEY = ''
BAIDU_CLOUD_SECRET_KEY = ''
BAIDU_CLOUD_QIANFAN_MODEL = 'ERNIE-Bot' # 可选 "ERNIE-Bot-4"(文心大模型4.0), "ERNIE-Bot"(文心一言), "ERNIE-Bot-turbo", "BLOOMZ-7B", "Llama-2-70B-Chat", "Llama-2-13B-Chat", "Llama-2-7B-Chat", "ERNIE-Speed-128K", "ERNIE-Speed-8K", "ERNIE-Lite-8K"
# 如果使用ChatGLM3或ChatGLM4本地模型请把 LLM_MODEL="chatglm3" 或LLM_MODEL="chatglm4",并在此处指定模型路径
CHATGLM_LOCAL_MODEL_PATH = "THUDM/glm-4-9b-chat" # 例如"/home/hmp/ChatGLM3-6B/"
# 如果使用ChatGLM2微调模型请把 LLM_MODEL="chatglmft",并在此处指定模型路径
CHATGLM_PTUNING_CHECKPOINT = "" # 例如"/home/hmp/ChatGLM2-6B/ptuning/output/6b-pt-128-1e-2/checkpoint-100"
@@ -185,7 +160,7 @@ AUTO_CLEAR_TXT = False
# 加一个live2d装饰
ADD_WAIFU = True
ADD_WAIFU = False
# 设置用户名和密码不需要修改相关功能不稳定与gradio版本和网络都相关如果本地使用不建议加这个
@@ -260,15 +235,13 @@ MOONSHOT_API_KEY = ""
YIMODEL_API_KEY = ""
# 接入火山引擎的在线大模型)api-key获取地址 https://console.volcengine.com/ark/region:ark+cn-beijing/endpoint
ARK_API_KEY = "00000000-0000-0000-0000-000000000000" # 火山引擎 API KEY
# 深度求索(DeepSeek) API KEY默认请求地址为"https://api.deepseek.com/v1/chat/completions"
DEEPSEEK_API_KEY = ""
# 紫东太初大模型 https://ai-maas.wair.ac.cn
TAICHU_API_KEY = ""
# Grok API KEY
GROK_API_KEY = ""
# Mathpix 拥有执行PDF的OCR功能但是需要注册账号
MATHPIX_APPID = ""
@@ -300,8 +273,8 @@ GROBID_URLS = [
]
# Searxng互联网检索服务这是一个huggingface空间请前往huggingface复制该空间然后把自己新的空间地址填在这里
SEARXNG_URLS = [ f"https://kaletianlre-beardvs{i}dd.hf.space/" for i in range(1,5) ]
# Searxng互联网检索服务
SEARXNG_URL = "https://cloud-1.agent-matrix.com/"
# 是否允许通过自然语言描述修改本页的配置,该功能具有一定的危险性,默认关闭
@@ -325,7 +298,7 @@ ARXIV_CACHE_DIR = "gpt_log/arxiv_cache"
# 除了连接OpenAI之外还有哪些场合允许使用代理请尽量不要修改
WHEN_TO_USE_PROXY = ["Connect_OpenAI", "Download_LLM", "Download_Gradio_Theme", "Connect_Grobid",
WHEN_TO_USE_PROXY = ["Download_LLM", "Download_Gradio_Theme", "Connect_Grobid",
"Warmup_Modules", "Nougat_Download", "AutoGen", "Connect_OpenAI_Embedding"]
@@ -337,27 +310,6 @@ PLUGIN_HOT_RELOAD = False
NUM_CUSTOM_BASIC_BTN = 4
# 媒体智能体的服务地址这是一个huggingface空间请前往huggingface复制该空间然后把自己新的空间地址填在这里
DAAS_SERVER_URLS = [ f"https://niuziniu-biligpt{i}.hf.space/stream" for i in range(1,5) ]
# 在互联网搜索组件中负责将搜索结果整理成干净的Markdown
JINA_API_KEY = ""
# SEMANTIC SCHOLAR API KEY
SEMANTIC_SCHOLAR_KEY = ""
# 是否自动裁剪上下文长度(是否启动,默认不启动)
AUTO_CONTEXT_CLIP_ENABLE = False
# 目标裁剪上下文的token长度如果超过这个长度则会自动裁剪
AUTO_CONTEXT_CLIP_TRIGGER_TOKEN_LEN = 30*1000
# 无条件丢弃x以上的轮数
AUTO_CONTEXT_MAX_ROUND = 64
# 在裁剪上下文时倒数第x次对话能“最多”保留的上下文token的比例占 AUTO_CONTEXT_CLIP_TRIGGER_TOKEN_LEN 的多少
AUTO_CONTEXT_MAX_CLIP_RATIO = [0.80, 0.60, 0.45, 0.25, 0.20, 0.18, 0.16, 0.14, 0.12, 0.10, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01]
"""
--------------- 配置关联关系说明 ---------------
@@ -417,7 +369,6 @@ AUTO_CONTEXT_MAX_CLIP_RATIO = [0.80, 0.60, 0.45, 0.25, 0.20, 0.18, 0.16, 0.14, 0
本地大模型示意图
├── "chatglm4"
├── "chatglm3"
├── "chatglm"
├── "chatglm_onnx"
@@ -448,7 +399,7 @@ AUTO_CONTEXT_MAX_CLIP_RATIO = [0.80, 0.60, 0.45, 0.25, 0.20, 0.18, 0.16, 0.14, 0
插件在线服务配置依赖关系示意图
├── 互联网检索
│ └── SEARXNG_URLS
│ └── SEARXNG_URL
├── 语音功能
│ ├── ENABLE_AUDIO

View File

@@ -1,466 +0,0 @@
"""
以下所有配置也都支持利用环境变量覆写环境变量配置格式见docker-compose.yml。
读取优先级:环境变量 > config_private.py > config.py
--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
All the following configurations also support using environment variables to override,
and the environment variable configuration format can be seen in docker-compose.yml.
Configuration reading priority: environment variable > config_private.py > config.py
"""
# [step 1-1]>> ( 接入OpenAI模型家族 ) API_KEY = "sk-123456789xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx123456789"。极少数情况下还需要填写组织格式如org-123456789abcdefghijklmno的请向下翻找 API_ORG 设置项
API_KEY = "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" # 可同时填写多个API-KEY用英文逗号分割例如API_KEY = "sk-openaikey1,sk-openaikey2,fkxxxx-api2dkey3,azure-apikey4"
# [step 1-2]>> ( 强烈推荐!接入通义家族 & 大模型服务平台百炼 ) 接入通义千问在线大模型api-key获取地址 https://dashscope.console.aliyun.com/
DASHSCOPE_API_KEY = "" # 阿里灵积云API_KEY用于接入qwen-maxdashscope-qwen3-14bdashscope-deepseek-r1等
# [step 1-3]>> ( 接入 deepseek-reasoner, 即 deepseek-r1 ) 深度求索(DeepSeek) API KEY默认请求地址为"https://api.deepseek.com/v1/chat/completions"
DEEPSEEK_API_KEY = "sk-d99b8cc6b7414cc88a5d950a3ff7585e"
# [step 2]>> 改为True应用代理。如果使用本地或无地域限制的大模型时此处不修改如果直接在海外服务器部署此处不修改
USE_PROXY = False
if USE_PROXY:
proxies = {
"http":"socks5h://192.168.8.9:1070", # 再例如 "http": "http://127.0.0.1:7890",
"https":"socks5h://192.168.8.9:1070", # 再例如 "https": "http://127.0.0.1:7890",
}
else:
proxies = None
# [step 3]>> 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
LLM_MODEL = "gpt-4" # 可选 ↓↓↓
AVAIL_LLM_MODELS = ["qwen-max", "o1-mini", "o1-mini-2024-09-12", "o1", "o1-2024-12-17", "o1-preview", "o1-preview-2024-09-12",
"gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-preview",
"gpt-4o", "gpt-4o-mini", "gpt-4-turbo", "gpt-4-turbo-2024-04-09",
"gpt-3.5-turbo-1106", "gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
"gpt-4", "gpt-4-32k", "azure-gpt-4", "glm-4", "glm-4v", "glm-3-turbo",
"gemini-1.5-pro", "chatglm3", "chatglm4",
"deepseek-chat", "deepseek-coder", "deepseek-reasoner",
"volcengine-deepseek-r1-250120", "volcengine-deepseek-v3-241226",
"dashscope-deepseek-r1", "dashscope-deepseek-v3",
"dashscope-qwen3-14b", "dashscope-qwen3-235b-a22b", "dashscope-qwen3-32b",
]
EMBEDDING_MODEL = "text-embedding-3-small"
# --- --- --- ---
# P.S. 其他可用的模型还包括
# AVAIL_LLM_MODELS = [
# "glm-4-0520", "glm-4-air", "glm-4-airx", "glm-4-flash",
# "qianfan", "deepseekcoder",
# "spark", "sparkv2", "sparkv3", "sparkv3.5", "sparkv4",
# "qwen-turbo", "qwen-plus", "qwen-local",
# "moonshot-v1-128k", "moonshot-v1-32k", "moonshot-v1-8k",
# "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-turbo-0125", "gpt-4o-2024-05-13"
# "claude-3-haiku-20240307","claude-3-sonnet-20240229","claude-3-opus-20240229", "claude-2.1", "claude-instant-1.2",
# "moss", "llama2", "chatglm_onnx", "internlm", "jittorllms_pangualpha", "jittorllms_llama",
# "deepseek-chat" ,"deepseek-coder",
# "gemini-1.5-flash",
# "yi-34b-chat-0205","yi-34b-chat-200k","yi-large","yi-medium","yi-spark","yi-large-turbo","yi-large-preview",
# "grok-beta",
# ]
# --- --- --- ---
# 此外您还可以在接入one-api/vllm/ollama/Openroute时
# 使用"one-api-*","vllm-*","ollama-*","openrouter-*"前缀直接使用非标准方式接入的模型,例如
# AVAIL_LLM_MODELS = ["one-api-claude-3-sonnet-20240229(max_token=100000)", "ollama-phi3(max_token=4096)","openrouter-openai/gpt-4o-mini","openrouter-openai/chatgpt-4o-latest"]
# --- --- --- ---
# --------------- 以下配置可以优化体验 ---------------
# 重新URL重新定向实现更换API_URL的作用高危设置! 常规情况下不要修改! 通过修改此设置您将把您的API-KEY和对话隐私完全暴露给您设定的中间人
# 格式: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "在这里填写重定向的api.openai.com的URL"}
# 举例: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "https://reverse-proxy-url/v1/chat/completions", "http://localhost:11434/api/chat": "在这里填写您ollama的URL"}
API_URL_REDIRECT = {}
# 多线程函数插件中默认允许多少路线程同时访问OpenAI。Free trial users的限制是每分钟3次Pay-as-you-go users的限制是每分钟3500次
# 一言以蔽之免费5刀用户填3OpenAI绑了信用卡的用户可以填 16 或者更高。提高限制请查询https://platform.openai.com/docs/guides/rate-limits/overview
DEFAULT_WORKER_NUM = 8
# 色彩主题, 可选 ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast"]
# 更多主题, 请查阅Gradio主题商店: https://huggingface.co/spaces/gradio/theme-gallery 可选 ["Gstaff/Xkcd", "NoCrypt/Miku", ...]
THEME = "Default"
AVAIL_THEMES = ["Default", "Chuanhu-Small-and-Beautiful", "High-Contrast", "Gstaff/Xkcd", "NoCrypt/Miku"]
FONT = "Theme-Default-Font"
AVAIL_FONTS = [
"默认值(Theme-Default-Font)",
"宋体(SimSun)",
"黑体(SimHei)",
"楷体(KaiTi)",
"仿宋(FangSong)",
"华文细黑(STHeiti Light)",
"华文楷体(STKaiti)",
"华文仿宋(STFangsong)",
"华文宋体(STSong)",
"华文中宋(STZhongsong)",
"华文新魏(STXinwei)",
"华文隶书(STLiti)",
# 备注:以下字体需要网络支持,您可以自定义任意您喜欢的字体,如下所示,需要满足的格式为 "字体昵称(字体英文真名@字体css下载链接)"
"思源宋体(Source Han Serif CN VF@https://chinese-fonts-cdn.deno.dev/packages/syst/dist/SourceHanSerifCN/result.css)",
"月星楷(Moon Stars Kai HW@https://chinese-fonts-cdn.deno.dev/packages/moon-stars-kai/dist/MoonStarsKaiHW-Regular/result.css)",
"珠圆体(MaokenZhuyuanTi@https://chinese-fonts-cdn.deno.dev/packages/mkzyt/dist/猫啃珠圆体/result.css)",
"平方萌萌哒(PING FANG MENG MNEG DA@https://chinese-fonts-cdn.deno.dev/packages/pfmmd/dist/平方萌萌哒/result.css)",
"Helvetica",
"ui-sans-serif",
"sans-serif",
"system-ui"
]
# 默认的系统提示词system prompt
INIT_SYS_PROMPT = "Serve me as a writing and programming assistant."
# 对话窗的高度 仅在LAYOUT="TOP-DOWN"时生效)
CHATBOT_HEIGHT = 1115
# 代码高亮
CODE_HIGHLIGHT = True
# 窗口布局
LAYOUT = "LEFT-RIGHT" # "LEFT-RIGHT"(左右布局) # "TOP-DOWN"(上下布局)
# 暗色模式 / 亮色模式
DARK_MODE = True
# 发送请求到OpenAI后等待多久判定为超时
TIMEOUT_SECONDS = 30
# 网页的端口, -1代表随机端口
WEB_PORT = 19998
# 是否自动打开浏览器页面
AUTO_OPEN_BROWSER = True
# 如果OpenAI不响应网络卡顿、代理失败、KEY失效重试的次数限制
MAX_RETRY = 3
# 插件分类默认选项
DEFAULT_FN_GROUPS = ['对话', '编程', '学术', '智能体']
# 定义界面上“询问多个GPT模型”插件应该使用哪些模型请从AVAIL_LLM_MODELS中选择并在不同模型之间用`&`间隔,例如"gpt-3.5-turbo&chatglm3&azure-gpt-4"
MULTI_QUERY_LLM_MODELS = "gpt-3.5-turbo&chatglm3"
# 选择本地模型变体只有当AVAIL_LLM_MODELS包含了对应本地模型时才会起作用
# 如果你选择Qwen系列的模型那么请在下面的QWEN_MODEL_SELECTION中指定具体的模型
# 也可以是具体的模型路径
QWEN_LOCAL_MODEL_SELECTION = "Qwen/Qwen-1_8B-Chat-Int8"
# 百度千帆LLM_MODEL="qianfan"
BAIDU_CLOUD_API_KEY = ''
BAIDU_CLOUD_SECRET_KEY = ''
BAIDU_CLOUD_QIANFAN_MODEL = 'ERNIE-Bot' # 可选 "ERNIE-Bot-4"(文心大模型4.0), "ERNIE-Bot"(文心一言), "ERNIE-Bot-turbo", "BLOOMZ-7B", "Llama-2-70B-Chat", "Llama-2-13B-Chat", "Llama-2-7B-Chat", "ERNIE-Speed-128K", "ERNIE-Speed-8K", "ERNIE-Lite-8K"
# 如果使用ChatGLM3或ChatGLM4本地模型请把 LLM_MODEL="chatglm3" 或LLM_MODEL="chatglm4",并在此处指定模型路径
CHATGLM_LOCAL_MODEL_PATH = "THUDM/glm-4-9b-chat" # 例如"/home/hmp/ChatGLM3-6B/"
# 如果使用ChatGLM2微调模型请把 LLM_MODEL="chatglmft",并在此处指定模型路径
CHATGLM_PTUNING_CHECKPOINT = "" # 例如"/home/hmp/ChatGLM2-6B/ptuning/output/6b-pt-128-1e-2/checkpoint-100"
# 本地LLM模型如ChatGLM的执行方式 CPU/GPU
LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
LOCAL_MODEL_QUANT = "FP16" # 默认 "FP16" "INT4" 启用量化INT4版本 "INT8" 启用量化INT8版本
# 设置gradio的并行线程数不需要修改
CONCURRENT_COUNT = 100
# 是否在提交时自动清空输入框
AUTO_CLEAR_TXT = False
# 加一个live2d装饰
ADD_WAIFU = True
# 设置用户名和密码不需要修改相关功能不稳定与gradio版本和网络都相关如果本地使用不建议加这个
# [("username", "password"), ("username2", "password2"), ...]
AUTHENTICATION = []
# 如果需要在二级路径下运行(常规情况下,不要修改!!
# (举例 CUSTOM_PATH = "/gpt_academic",可以让软件运行在 http://ip:port/gpt_academic/ 下。)
CUSTOM_PATH = "/"
# HTTPS 秘钥和证书(不需要修改)
SSL_KEYFILE = ""
SSL_CERTFILE = ""
# 极少数情况下openai的官方KEY需要伴随组织编码格式如org-xxxxxxxxxxxxxxxxxxxxxxxx使用
API_ORG = ""
# 如果需要使用Slack Claude使用教程详情见 request_llms/README.md
SLACK_CLAUDE_BOT_ID = ''
SLACK_CLAUDE_USER_TOKEN = ''
# 如果需要使用AZURE方法一单个azure模型部署详情请见额外文档 docs\use_azure.md
AZURE_ENDPOINT = "https://你亲手写的api名称.openai.azure.com/"
AZURE_API_KEY = "填入azure openai api的密钥" # 建议直接在API_KEY处填写该选项即将被弃用
AZURE_ENGINE = "填入你亲手写的部署名" # 读 docs\use_azure.md
# 如果需要使用AZURE方法二多个azure模型部署+动态切换)详情请见额外文档 docs\use_azure.md
AZURE_CFG_ARRAY = {}
# 阿里云实时语音识别 配置难度较高
# 参考 https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md
ENABLE_AUDIO = False
ALIYUN_TOKEN="" # 例如 f37f30e0f9934c34a992f6f64f7eba4f
ALIYUN_APPKEY="" # 例如 RoPlZrM88DnAFkZK
ALIYUN_ACCESSKEY="" # (无需填写)
ALIYUN_SECRET="" # (无需填写)
# GPT-SOVITS 文本转语音服务的运行地址(将语言模型的生成文本朗读出来)
TTS_TYPE = "EDGE_TTS" # EDGE_TTS / LOCAL_SOVITS_API / DISABLE
GPT_SOVITS_URL = ""
EDGE_TTS_VOICE = "zh-CN-XiaoxiaoNeural"
# 接入讯飞星火大模型 https://console.xfyun.cn/services/iat
XFYUN_APPID = "00000000"
XFYUN_API_SECRET = "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"
XFYUN_API_KEY = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
# 接入智谱大模型
ZHIPUAI_API_KEY = ""
ZHIPUAI_MODEL = "" # 此选项已废弃,不再需要填写
# Claude API KEY
ANTHROPIC_API_KEY = ""
# 月之暗面 API KEY
MOONSHOT_API_KEY = ""
# 零一万物(Yi Model) API KEY
YIMODEL_API_KEY = ""
# 接入火山引擎的在线大模型)api-key获取地址 https://console.volcengine.com/ark/region:ark+cn-beijing/endpoint
ARK_API_KEY = "00000000-0000-0000-0000-000000000000" # 火山引擎 API KEY
# 紫东太初大模型 https://ai-maas.wair.ac.cn
TAICHU_API_KEY = ""
# Grok API KEY
GROK_API_KEY = ""
# Mathpix 拥有执行PDF的OCR功能但是需要注册账号
MATHPIX_APPID = ""
MATHPIX_APPKEY = ""
# DOC2X的PDF解析服务注册账号并获取API KEY: https://doc2x.noedgeai.com/login
DOC2X_API_KEY = ""
# 自定义API KEY格式
CUSTOM_API_KEY_PATTERN = ""
# Google Gemini API-Key
GEMINI_API_KEY = ''
# HUGGINGFACE的TOKEN下载LLAMA时起作用 https://huggingface.co/docs/hub/security-tokens
HUGGINGFACE_ACCESS_TOKEN = "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"
# GROBID服务器地址填写多个可以均衡负载用于高质量地读取PDF文档
# 获取方法复制以下空间https://huggingface.co/spaces/qingxu98/grobid设为public然后GROBID_URL = "https://(你的hf用户名如qingxu98)-(你的填写的空间名如grobid).hf.space"
GROBID_URLS = [
"https://qingxu98-grobid.hf.space","https://qingxu98-grobid2.hf.space","https://qingxu98-grobid3.hf.space",
"https://qingxu98-grobid4.hf.space","https://qingxu98-grobid5.hf.space", "https://qingxu98-grobid6.hf.space",
"https://qingxu98-grobid7.hf.space", "https://qingxu98-grobid8.hf.space",
]
# Searxng互联网检索服务这是一个huggingface空间请前往huggingface复制该空间然后把自己新的空间地址填在这里
SEARXNG_URLS = [ f"https://kaletianlre-beardvs{i}dd.hf.space/" for i in range(1,5) ]
# 是否允许通过自然语言描述修改本页的配置,该功能具有一定的危险性,默认关闭
ALLOW_RESET_CONFIG = False
# 在使用AutoGen插件时是否使用Docker容器运行代码
AUTOGEN_USE_DOCKER = False
# 临时的上传文件夹位置,请尽量不要修改
PATH_PRIVATE_UPLOAD = "private_upload"
# 日志文件夹的位置,请尽量不要修改
PATH_LOGGING = "gpt_log"
# 存储翻译好的arxiv论文的路径请尽量不要修改
ARXIV_CACHE_DIR = "gpt_log/arxiv_cache"
# 除了连接OpenAI之外还有哪些场合允许使用代理请尽量不要修改
WHEN_TO_USE_PROXY = ["Connect_OpenAI", "Download_LLM", "Download_Gradio_Theme", "Connect_Grobid",
"Warmup_Modules", "Nougat_Download", "AutoGen", "Connect_OpenAI_Embedding"]
# 启用插件热加载
PLUGIN_HOT_RELOAD = False
# 自定义按钮的最大数量限制
NUM_CUSTOM_BASIC_BTN = 4
# 媒体智能体的服务地址这是一个huggingface空间请前往huggingface复制该空间然后把自己新的空间地址填在这里
DAAS_SERVER_URLS = [ f"https://niuziniu-biligpt{i}.hf.space/stream" for i in range(1,5) ]
# 在互联网搜索组件中负责将搜索结果整理成干净的Markdown
JINA_API_KEY = ""
# SEMANTIC SCHOLAR API KEY
SEMANTIC_SCHOLAR_KEY = ""
# 是否自动裁剪上下文长度(是否启动,默认不启动)
AUTO_CONTEXT_CLIP_ENABLE = False
# 目标裁剪上下文的token长度如果超过这个长度则会自动裁剪
AUTO_CONTEXT_CLIP_TRIGGER_TOKEN_LEN = 30*1000
# 无条件丢弃x以上的轮数
AUTO_CONTEXT_MAX_ROUND = 64
# 在裁剪上下文时倒数第x次对话能“最多”保留的上下文token的比例占 AUTO_CONTEXT_CLIP_TRIGGER_TOKEN_LEN 的多少
AUTO_CONTEXT_MAX_CLIP_RATIO = [0.80, 0.60, 0.45, 0.25, 0.20, 0.18, 0.16, 0.14, 0.12, 0.10, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01]
"""
--------------- 配置关联关系说明 ---------------
在线大模型配置关联关系示意图
├── "gpt-3.5-turbo" 等openai模型
│ ├── API_KEY
│ ├── CUSTOM_API_KEY_PATTERN不常用
│ ├── API_ORG不常用
│ └── API_URL_REDIRECT不常用
├── "azure-gpt-3.5" 等azure模型单个azure模型不需要动态切换
│ ├── API_KEY
│ ├── AZURE_ENDPOINT
│ ├── AZURE_API_KEY
│ ├── AZURE_ENGINE
│ └── API_URL_REDIRECT
├── "azure-gpt-3.5" 等azure模型多个azure模型需要动态切换高优先级
│ └── AZURE_CFG_ARRAY
├── "spark" 星火认知大模型 spark & sparkv2
│ ├── XFYUN_APPID
│ ├── XFYUN_API_SECRET
│ └── XFYUN_API_KEY
├── "claude-3-opus-20240229" 等claude模型
│ └── ANTHROPIC_API_KEY
├── "stack-claude"
│ ├── SLACK_CLAUDE_BOT_ID
│ └── SLACK_CLAUDE_USER_TOKEN
├── "qianfan" 百度千帆大模型库
│ ├── BAIDU_CLOUD_QIANFAN_MODEL
│ ├── BAIDU_CLOUD_API_KEY
│ └── BAIDU_CLOUD_SECRET_KEY
├── "glm-4", "glm-3-turbo", "zhipuai" 智谱AI大模型
│ └── ZHIPUAI_API_KEY
├── "yi-34b-chat-0205", "yi-34b-chat-200k" 等零一万物(Yi Model)大模型
│ └── YIMODEL_API_KEY
├── "qwen-turbo" 等通义千问大模型
│ └── DASHSCOPE_API_KEY
├── "Gemini"
│ └── GEMINI_API_KEY
└── "one-api-...(max_token=...)" 用一种更方便的方式接入one-api多模型管理界面
├── AVAIL_LLM_MODELS
├── API_KEY
└── API_URL_REDIRECT
本地大模型示意图
├── "chatglm4"
├── "chatglm3"
├── "chatglm"
├── "chatglm_onnx"
├── "chatglmft"
├── "internlm"
├── "moss"
├── "jittorllms_pangualpha"
├── "jittorllms_llama"
├── "deepseekcoder"
├── "qwen-local"
├── RWKV的支持见Wiki
└── "llama2"
用户图形界面布局依赖关系示意图
├── CHATBOT_HEIGHT 对话窗的高度
├── CODE_HIGHLIGHT 代码高亮
├── LAYOUT 窗口布局
├── DARK_MODE 暗色模式 / 亮色模式
├── DEFAULT_FN_GROUPS 插件分类默认选项
├── THEME 色彩主题
├── AUTO_CLEAR_TXT 是否在提交时自动清空输入框
├── ADD_WAIFU 加一个live2d装饰
└── ALLOW_RESET_CONFIG 是否允许通过自然语言描述修改本页的配置,该功能具有一定的危险性
插件在线服务配置依赖关系示意图
├── 互联网检索
│ └── SEARXNG_URLS
├── 语音功能
│ ├── ENABLE_AUDIO
│ ├── ALIYUN_TOKEN
│ ├── ALIYUN_APPKEY
│ ├── ALIYUN_ACCESSKEY
│ └── ALIYUN_SECRET
└── PDF文档精准解析
├── GROBID_URLS
├── MATHPIX_APPID
└── MATHPIX_APPKEY
"""

View File

@@ -2,9 +2,11 @@ from toolbox import HotReload # HotReload 的意思是热更新,修改函数
from toolbox import trimmed_format_exc
from loguru import logger
def get_crazy_functions():
from crazy_functions.Paper_Abstract_Writer import Paper_Abstract_Writer
from crazy_functions.Program_Comment_Gen import 批量Program_Comment_Gen
from crazy_functions.读文章写摘要 import 读文章写摘要
from crazy_functions.生成函数注释 import 批量生成函数注释
from crazy_functions.Rag_Interface import Rag问答
from crazy_functions.SourceCode_Analyse import 解析项目本身
from crazy_functions.SourceCode_Analyse import 解析一个Python项目
from crazy_functions.SourceCode_Analyse import 解析一个Matlab项目
@@ -16,27 +18,27 @@ def get_crazy_functions():
from crazy_functions.SourceCode_Analyse import 解析一个前端项目
from crazy_functions.高级功能函数模板 import 高阶功能模板函数
from crazy_functions.高级功能函数模板 import Demo_Wrap
from crazy_functions.Latex_Project_Polish import Latex英文润色
from crazy_functions.Multi_LLM_Query import 同时问询
from crazy_functions.Latex全文润色 import Latex英文润色
from crazy_functions.询问多个大语言模型 import 同时问询
from crazy_functions.SourceCode_Analyse import 解析一个Lua项目
from crazy_functions.SourceCode_Analyse import 解析一个CSharp项目
from crazy_functions.Word_Summary import Word_Summary
from crazy_functions.SourceCode_Analyse_JupyterNotebook import 解析ipynb文件
from crazy_functions.总结word文档 import 总结word文档
from crazy_functions.解析JupyterNotebook import 解析ipynb文件
from crazy_functions.Conversation_To_File import 载入对话历史存档
from crazy_functions.Conversation_To_File import 对话历史存档
from crazy_functions.Conversation_To_File import Conversation_To_File_Wrap
from crazy_functions.Conversation_To_File import 删除所有本地对话历史记录
from crazy_functions.Helpers import 清除缓存
from crazy_functions.辅助功能 import 清除缓存
from crazy_functions.Markdown_Translate import Markdown英译中
from crazy_functions.PDF_Summary import PDF_Summary
from crazy_functions.批量总结PDF文档 import 批量总结PDF文档
from crazy_functions.PDF_Translate import 批量翻译PDF文档
from crazy_functions.Google_Scholar_Assistant_Legacy import Google_Scholar_Assistant_Legacy
from crazy_functions.PDF_QA import PDF_QA标准文件输入
from crazy_functions.Latex_Project_Polish import Latex中文润色
from crazy_functions.Latex_Project_Polish import Latex英文纠错
from crazy_functions.谷歌检索小助手 import 谷歌检索小助手
from crazy_functions.理解PDF文档内容 import 理解PDF文档内容标准文件输入
from crazy_functions.Latex全文润色 import Latex中文润色
from crazy_functions.Latex全文润色 import Latex英文纠错
from crazy_functions.Markdown_Translate import Markdown中译英
from crazy_functions.Void_Terminal import Void_Terminal
from crazy_functions.Mermaid_Figure_Gen import Mermaid_Gen
from crazy_functions.虚空终端 import 虚空终端
from crazy_functions.生成多种Mermaid图表 import Mermaid_Gen
from crazy_functions.PDF_Translate_Wrap import PDF_Tran
from crazy_functions.Latex_Function import Latex英文纠错加PDF对比
from crazy_functions.Latex_Function import Latex翻译中文并重新编译PDF
@@ -48,26 +50,21 @@ def get_crazy_functions():
from crazy_functions.Image_Generate import 图片生成_DALLE2, 图片生成_DALLE3, 图片修改_DALLE2
from crazy_functions.Image_Generate_Wrap import ImageGen_Wrap
from crazy_functions.SourceCode_Comment import 注释Python项目
from crazy_functions.SourceCode_Comment_Wrap import SourceCodeComment_Wrap
from crazy_functions.VideoResource_GPT import 多媒体任务
from crazy_functions.Document_Conversation import 批量文件询问
from crazy_functions.Document_Conversation_Wrap import Document_Conversation_Wrap
function_plugins = {
"多媒体智能体": {
"Group": "智能体",
"Rag智能召回": {
"Group": "对话",
"Color": "stop",
"AsButton": False,
"Info": "【仅测试】多媒体任务",
"Function": HotReload(多媒体任务),
"Info": "将问答数据记录到向量库中,作为长期参考。",
"Function": HotReload(Rag问答),
},
"虚空终端": {
"Group": "对话|编程|学术|智能体",
"Color": "stop",
"AsButton": True,
"Info": "使用自然语言实现您的想法",
"Function": HotReload(Void_Terminal),
"Function": HotReload(虚空终端),
},
"解析整个Python项目": {
"Group": "编程",
@@ -82,7 +79,6 @@ def get_crazy_functions():
"AsButton": False,
"Info": "上传一系列python源文件(或者压缩包), 为这些代码添加docstring | 输入参数为路径",
"Function": HotReload(注释Python项目),
"Class": SourceCodeComment_Wrap,
},
"载入对话历史存档(先上传存档或输入路径)": {
"Group": "对话",
@@ -116,7 +112,7 @@ def get_crazy_functions():
"Group": "学术",
"Color": "stop",
"AsButton": True,
"Info": "ArXiv论文精细翻译 | 输入参数arxiv论文的ID比如1812.10695",
"Info": "Arixv论文精细翻译 | 输入参数arxiv论文的ID比如1812.10695",
"Function": HotReload(Latex翻译中文并重新编译PDF), # 当注册Class后Function旧接口仅会在“虚空终端”中起作用
"Class": Arxiv_Localize, # 新一代插件需要注册Class
},
@@ -125,7 +121,7 @@ def get_crazy_functions():
"Color": "stop",
"AsButton": False,
"Info": "批量总结word文档 | 输入参数为路径",
"Function": HotReload(Word_Summary),
"Function": HotReload(总结word文档),
},
"解析整个Matlab项目": {
"Group": "编程",
@@ -204,7 +200,7 @@ def get_crazy_functions():
"Color": "stop",
"AsButton": False,
"Info": "读取Tex论文并写摘要 | 输入参数为路径",
"Function": HotReload(Paper_Abstract_Writer),
"Function": HotReload(读文章写摘要),
},
"翻译README或MD": {
"Group": "编程",
@@ -225,14 +221,14 @@ def get_crazy_functions():
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "批量生成函数的注释 | 输入参数为路径",
"Function": HotReload(批量Program_Comment_Gen),
"Function": HotReload(批量生成函数注释),
},
"保存当前的对话": {
"Group": "对话",
"Color": "stop",
"AsButton": True,
"Info": "保存当前的对话 | 不需要输入参数",
"Function": HotReload(对话历史存档), # 当注册Class后Function旧接口仅会在“Void_Terminal”中起作用
"Function": HotReload(对话历史存档), # 当注册Class后Function旧接口仅会在“虚空终端”中起作用
"Class": Conversation_To_File_Wrap # 新一代插件需要注册Class
},
"[多线程Demo]解析此项目本身(源码自译解)": {
@@ -258,12 +254,12 @@ def get_crazy_functions():
"Function": None,
"Class": Demo_Wrap, # 新一代插件需要注册Class
},
"PDF论文翻译": {
"精准翻译PDF论文": {
"Group": "学术",
"Color": "stop",
"AsButton": True,
"Info": "精准翻译PDF论文为中文 | 输入参数为路径",
"Function": HotReload(批量翻译PDF文档), # 当注册Class后Function旧接口仅会在“Void_Terminal”中起作用
"Function": HotReload(批量翻译PDF文档), # 当注册Class后Function旧接口仅会在“虚空终端”中起作用
"Class": PDF_Tran, # 新一代插件需要注册Class
},
"询问多个GPT模型": {
@@ -277,21 +273,21 @@ def get_crazy_functions():
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "批量总结PDF文档的内容 | 输入参数为路径",
"Function": HotReload(PDF_Summary),
"Function": HotReload(批量总结PDF文档),
},
"谷歌学术检索助手输入谷歌学术搜索页url": {
"Group": "学术",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "使用谷歌学术检索助手搜索指定URL的结果 | 输入参数为谷歌学术搜索页的URL",
"Function": HotReload(Google_Scholar_Assistant_Legacy),
"Function": HotReload(谷歌检索小助手),
},
"理解PDF文档内容 模仿ChatPDF": {
"Group": "学术",
"Color": "stop",
"AsButton": False, # 加入下拉菜单中
"Info": "理解PDF文档的内容并进行回答 | 输入参数为路径",
"Function": HotReload(PDF_QA标准文件输入),
"Function": HotReload(理解PDF文档内容标准文件输入),
},
"英文Latex项目全文润色输入路径或上传压缩包": {
"Group": "学术",
@@ -355,8 +351,8 @@ def get_crazy_functions():
"ArgsReminder": r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
"Info": "ArXiv论文精细翻译 | 输入参数arxiv论文的ID比如1812.10695",
"Function": HotReload(Latex翻译中文并重新编译PDF), # 当注册Class后Function旧接口仅会在“Void_Terminal”中起作用
"Info": "Arixv论文精细翻译 | 输入参数arxiv论文的ID比如1812.10695",
"Function": HotReload(Latex翻译中文并重新编译PDF), # 当注册Class后Function旧接口仅会在“虚空终端”中起作用
"Class": Arxiv_Localize, # 新一代插件需要注册Class
},
"📚本地Latex论文精细翻译上传Latex项目[需Latex]": {
@@ -379,18 +375,9 @@ def get_crazy_functions():
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
"Info": "PDF翻译中文并重新编译PDF | 输入参数为路径",
"Function": HotReload(PDF翻译中文并重新编译PDF), # 当注册Class后Function旧接口仅会在“Void_Terminal”中起作用
"Function": HotReload(PDF翻译中文并重新编译PDF), # 当注册Class后Function旧接口仅会在“虚空终端”中起作用
"Class": PDF_Localize # 新一代插件需要注册Class
},
"批量文件询问 (支持自定义总结各种文件)": {
"Group": "学术",
"Color": "stop",
"AsButton": False,
"AdvancedArgs": False,
"Info": "先上传文件,点击此按钮,进行提问",
"Function": HotReload(批量文件询问),
"Class": Document_Conversation_Wrap,
},
}
}
function_plugins.update(
@@ -400,7 +387,7 @@ def get_crazy_functions():
"Color": "stop",
"AsButton": False,
"Info": "使用 DALLE2/DALLE3 生成图片 | 输入参数字符串,提供图像的内容",
"Function": HotReload(图片生成_DALLE2), # 当注册Class后Function旧接口仅会在“Void_Terminal”中起作用
"Function": HotReload(图片生成_DALLE2), # 当注册Class后Function旧接口仅会在“虚空终端”中起作用
"Class": ImageGen_Wrap # 新一代插件需要注册Class
},
}
@@ -426,8 +413,10 @@ def get_crazy_functions():
# -=--=- 尚未充分测试的实验性插件 & 需要额外依赖的插件 -=--=-
try:
from crazy_functions.Arxiv_Downloader import 下载arxiv论文并翻译摘要
from crazy_functions.下载arxiv论文翻译摘要 import 下载arxiv论文并翻译摘要
function_plugins.update(
{
@@ -444,6 +433,36 @@ def get_crazy_functions():
logger.error(trimmed_format_exc())
logger.error("Load function plugin failed")
# try:
# from crazy_functions.联网的ChatGPT import 连接网络回答问题
# function_plugins.update(
# {
# "连接网络回答问题(输入问题后点击该插件,需要访问谷歌)": {
# "Group": "对话",
# "Color": "stop",
# "AsButton": False, # 加入下拉菜单中
# # "Info": "连接网络回答问题(需要访问谷歌)| 输入参数是一个问题",
# "Function": HotReload(连接网络回答问题),
# }
# }
# )
# from crazy_functions.联网的ChatGPT_bing版 import 连接bing搜索回答问题
# function_plugins.update(
# {
# "连接网络回答问题中文Bing版输入问题后点击该插件": {
# "Group": "对话",
# "Color": "stop",
# "AsButton": False, # 加入下拉菜单中
# "Info": "连接网络回答问题需要访问中文Bing| 输入参数是一个问题",
# "Function": HotReload(连接bing搜索回答问题),
# }
# }
# )
# except:
# logger.error(trimmed_format_exc())
# logger.error("Load function plugin failed")
try:
from crazy_functions.SourceCode_Analyse import 解析任意code项目
@@ -465,7 +484,7 @@ def get_crazy_functions():
logger.error("Load function plugin failed")
try:
from crazy_functions.Multi_LLM_Query import 同时问询_指定模型
from crazy_functions.询问多个大语言模型 import 同时问询_指定模型
function_plugins.update(
{
@@ -486,7 +505,7 @@ def get_crazy_functions():
try:
from crazy_functions.Audio_Summary import Audio_Summary
from crazy_functions.总结音视频 import 总结音视频
function_plugins.update(
{
@@ -497,7 +516,7 @@ def get_crazy_functions():
"AdvancedArgs": True,
"ArgsReminder": "调用openai api 使用whisper-1模型, 目前支持的格式:mp4, m4a, wav, mpga, mpeg, mp3。此处可以输入解析提示例如解析为简体中文默认",
"Info": "批量总结音频或视频 | 输入参数为路径",
"Function": HotReload(Audio_Summary),
"Function": HotReload(总结音视频),
}
}
)
@@ -506,7 +525,7 @@ def get_crazy_functions():
logger.error("Load function plugin failed")
try:
from crazy_functions.Math_Animation_Gen import 动画生成
from crazy_functions.数学动画生成manim import 动画生成
function_plugins.update(
{
@@ -543,7 +562,7 @@ def get_crazy_functions():
logger.error("Load function plugin failed")
try:
from crazy_functions.Vectorstore_QA import 知识库文件注入
from crazy_functions.知识库问答 import 知识库文件注入
function_plugins.update(
{
@@ -562,7 +581,7 @@ def get_crazy_functions():
logger.error("Load function plugin failed")
try:
from crazy_functions.Vectorstore_QA import 读取知识库作答
from crazy_functions.知识库问答 import 读取知识库作答
function_plugins.update(
{
@@ -581,7 +600,7 @@ def get_crazy_functions():
logger.error("Load function plugin failed")
try:
from crazy_functions.Interactive_Func_Template import 交互功能模板函数
from crazy_functions.交互功能函数模板 import 交互功能模板函数
function_plugins.update(
{
@@ -603,7 +622,7 @@ def get_crazy_functions():
ENABLE_AUDIO = get_conf("ENABLE_AUDIO")
if ENABLE_AUDIO:
from crazy_functions.Audio_Assistant import Audio_Assistant
from crazy_functions.语音助手 import 语音助手
function_plugins.update(
{
@@ -612,7 +631,7 @@ def get_crazy_functions():
"Color": "stop",
"AsButton": True,
"Info": "这是一个时刻聆听着的语音对话助手 | 没有输入参数",
"Function": HotReload(Audio_Assistant),
"Function": HotReload(语音助手),
}
}
)
@@ -621,7 +640,7 @@ def get_crazy_functions():
logger.error("Load function plugin failed")
try:
from crazy_functions.PDF_Translate_Nougat import 批量翻译PDF文档
from crazy_functions.批量翻译PDF文档_NOUGAT import 批量翻译PDF文档
function_plugins.update(
{
@@ -638,7 +657,7 @@ def get_crazy_functions():
logger.error("Load function plugin failed")
try:
from crazy_functions.Dynamic_Function_Generate import Dynamic_Function_Generate
from crazy_functions.函数动态生成 import 函数动态生成
function_plugins.update(
{
@@ -646,7 +665,7 @@ def get_crazy_functions():
"Group": "智能体",
"Color": "stop",
"AsButton": False,
"Function": HotReload(Dynamic_Function_Generate),
"Function": HotReload(函数动态生成),
}
}
)
@@ -654,79 +673,40 @@ def get_crazy_functions():
logger.error(trimmed_format_exc())
logger.error("Load function plugin failed")
# try:
# from crazy_functions.Multi_Agent_Legacy import Multi_Agent_Legacy终端
# function_plugins.update(
# {
# "AutoGenMulti_Agent_Legacy终端仅供测试": {
# "Group": "智能体",
# "Color": "stop",
# "AsButton": False,
# "Function": HotReload(Multi_Agent_Legacy终端),
# }
# }
# )
# except:
# logger.error(trimmed_format_exc())
# logger.error("Load function plugin failed")
try:
from crazy_functions.Rag_Interface import Rag问答
from crazy_functions.多智能体 import 多智能体终端
function_plugins.update(
{
"Rag智能召回": {
"Group": "对话",
"AutoGen多智能体终端仅供测试": {
"Group": "智能体",
"Color": "stop",
"AsButton": False,
"Info": "将问答数据记录到向量库中,作为长期参考。",
"Function": HotReload(Rag问答),
},
"Function": HotReload(多智能体终端),
}
}
)
except:
logger.error(trimmed_format_exc())
logger.error("Load function plugin failed")
# try:
# from crazy_functions.Document_Optimize import 自定义智能文档处理
# function_plugins.update(
# {
# "一键处理文档(支持自定义全文润色、降重等)": {
# "Group": "学术",
# "Color": "stop",
# "AsButton": False,
# "AdvancedArgs": True,
# "ArgsReminder": "请输入处理指令和要求(可以详细描述),如:请帮我润色文本,要求幽默点。默认调用润色指令。",
# "Info": "保留文档结构,智能处理文档内容 | 输入参数为文件路径",
# "Function": HotReload(自定义智能文档处理)
# },
# }
# )
# except:
# logger.error(trimmed_format_exc())
# logger.error("Load function plugin failed")
try:
from crazy_functions.Paper_Reading import 快速论文解读
from crazy_functions.互动小游戏 import 随机小游戏
function_plugins.update(
{
"速读论文": {
"Group": "学术",
"随机互动小游戏(仅供测试)": {
"Group": "智能体",
"Color": "stop",
"AsButton": False,
"Info": "上传一篇论文进行快速分析和解读 | 输入参数为论文路径或DOI/arXiv ID",
"Function": HotReload(快速论文解读),
},
"Function": HotReload(随机小游戏),
}
}
)
except:
logger.error(trimmed_format_exc())
logger.error("Load function plugin failed")
# try:
# from crazy_functions.高级功能函数模板 import 测试图表渲染
# function_plugins.update({
@@ -741,6 +721,19 @@ def get_crazy_functions():
# logger.error(trimmed_format_exc())
# print('Load function plugin failed')
# try:
# from crazy_functions.chatglm微调工具 import 微调数据集生成
# function_plugins.update({
# "黑盒模型学习: 微调数据集生成 (先上传数据集)": {
# "Color": "stop",
# "AsButton": False,
# "AdvancedArgs": True,
# "ArgsReminder": "针对数据集输入(如 绿帽子*深蓝色衬衫*黑色运动裤)给出指令,例如您可以将以下命令复制到下方: --llm_to_learn=azure-gpt-3.5 --prompt_prefix='根据下面的服装类型提示想象一个穿着者对这个人外貌、身处的环境、内心世界、过去经历进行描写。要求100字以内用第二人称。' --system_prompt=''",
# "Function": HotReload(微调数据集生成)
# }
# })
# except:
# print('Load function plugin failed')
"""
设置默认值:
@@ -760,26 +753,3 @@ def get_crazy_functions():
function_plugins[name]["Color"] = "secondary"
return function_plugins
def get_multiplex_button_functions():
"""多路复用主提交按钮的功能映射
"""
return {
"常规对话":
"",
"查互联网后回答":
"查互联网后回答",
"多模型对话":
"询问多个GPT模型", # 映射到上面的 `询问多个GPT模型` 插件
"智能召回 RAG":
"Rag智能召回", # 映射到上面的 `Rag智能召回` 插件
"多媒体查询":
"多媒体智能体", # 映射到上面的 `多媒体智能体` 插件
}

View File

@@ -1,290 +0,0 @@
import re
import os
import asyncio
from typing import List, Dict, Tuple
from dataclasses import dataclass
from textwrap import dedent
from toolbox import CatchException, get_conf, update_ui, promote_file_to_downloadzone, get_log_folder, get_user
from toolbox import update_ui, CatchException, report_exception, write_history_to_file
from crazy_functions.review_fns.data_sources.semantic_source import SemanticScholarSource
from crazy_functions.review_fns.data_sources.arxiv_source import ArxivSource
from crazy_functions.review_fns.query_analyzer import QueryAnalyzer
from crazy_functions.review_fns.handlers.review_handler import 文献综述功能
from crazy_functions.review_fns.handlers.recommend_handler import 论文推荐功能
from crazy_functions.review_fns.handlers.qa_handler import 学术问答功能
from crazy_functions.review_fns.handlers.paper_handler import 单篇论文分析功能
from crazy_functions.Conversation_To_File import write_chat_to_file
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from crazy_functions.review_fns.handlers.latest_handler import Arxiv最新论文推荐功能
from datetime import datetime
@CatchException
def 学术对话(txt: str, llm_kwargs: Dict, plugin_kwargs: Dict, chatbot: List,
history: List, system_prompt: str, user_request: str):
"""主函数"""
# 初始化数据源
arxiv_source = ArxivSource()
semantic_source = SemanticScholarSource(
api_key=get_conf("SEMANTIC_SCHOLAR_KEY")
)
# 初始化处理器
handlers = {
"review": 文献综述功能(arxiv_source, semantic_source, llm_kwargs),
"recommend": 论文推荐功能(arxiv_source, semantic_source, llm_kwargs),
"qa": 学术问答功能(arxiv_source, semantic_source, llm_kwargs),
"paper": 单篇论文分析功能(arxiv_source, semantic_source, llm_kwargs),
"latest": Arxiv最新论文推荐功能(arxiv_source, semantic_source, llm_kwargs),
}
# 分析查询意图
chatbot.append([None, "正在分析研究主题和查询要求..."])
yield from update_ui(chatbot=chatbot, history=history)
query_analyzer = QueryAnalyzer()
search_criteria = yield from query_analyzer.analyze_query(txt, chatbot, llm_kwargs)
handler = handlers.get(search_criteria.query_type)
if not handler:
handler = handlers["qa"] # 默认使用QA处理器
# 处理查询
chatbot.append([None, f"使用{handler.__class__.__name__}处理...可能需要您耐心等待35分钟..."])
yield from update_ui(chatbot=chatbot, history=history)
final_prompt = asyncio.run(handler.handle(
criteria=search_criteria,
chatbot=chatbot,
history=history,
system_prompt=system_prompt,
llm_kwargs=llm_kwargs,
plugin_kwargs=plugin_kwargs
))
if final_prompt:
# 检查是否是道歉提示
if "很抱歉,我们未能找到" in final_prompt:
chatbot.append([txt, final_prompt])
yield from update_ui(chatbot=chatbot, history=history)
return
# 在 final_prompt 末尾添加用户原始查询要求
final_prompt += dedent(f"""
Original user query: "{txt}"
IMPORTANT NOTE :
- Your response must directly address the user's original user query above
- While following the previous guidelines, prioritize answering what the user specifically asked
- Make sure your response format and content align with the user's expectations
- Do not translate paper titles, keep them in their original language
- Do not generate a reference list in your response - references will be handled separately
""")
# 使用最终的prompt生成回答
response = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=final_prompt,
inputs_show_user=txt,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history=[],
sys_prompt=f"You are a helpful academic assistant. Response in Chinese by default unless specified language is required in the user's query."
)
# 1. 获取文献列表
papers_list = handler.ranked_papers # 直接使用原始论文数据
# 在新的对话中添加格式化的参考文献列表
if papers_list:
references = ""
for idx, paper in enumerate(papers_list, 1):
# 构建作者列表
authors = paper.authors[:3]
if len(paper.authors) > 3:
authors.append("et al.")
authors_str = ", ".join(authors)
# 构建期刊指标信息
metrics = []
if hasattr(paper, 'if_factor') and paper.if_factor:
metrics.append(f"IF: {paper.if_factor}")
if hasattr(paper, 'jcr_division') and paper.jcr_division:
metrics.append(f"JCR: {paper.jcr_division}")
if hasattr(paper, 'cas_division') and paper.cas_division:
metrics.append(f"中科院分区: {paper.cas_division}")
metrics_str = f" [{', '.join(metrics)}]" if metrics else ""
# 构建DOI链接
doi_link = ""
if paper.doi:
if "arxiv.org" in str(paper.doi):
doi_url = paper.doi
else:
doi_url = f"https://doi.org/{paper.doi}"
doi_link = f" <a href='{doi_url}' target='_blank'>DOI: {paper.doi}</a>"
# 构建完整的引用
reference = f"[{idx}] {authors_str}. *{paper.title}*"
if paper.venue_name:
reference += f". {paper.venue_name}"
if paper.year:
reference += f", {paper.year}"
reference += metrics_str
if doi_link:
reference += f".{doi_link}"
reference += " \n"
references += reference
# 添加新的对话显示参考文献
chatbot.append(["参考文献如下:", references])
yield from update_ui(chatbot=chatbot, history=history)
# 2. 保存为不同格式
from .review_fns.conversation_doc.word_doc import WordFormatter
from .review_fns.conversation_doc.word2pdf import WordToPdfConverter
from .review_fns.conversation_doc.markdown_doc import MarkdownFormatter
from .review_fns.conversation_doc.html_doc import HtmlFormatter
# 创建保存目录
save_dir = get_log_folder(get_user(chatbot), plugin_name='chatscholar')
if not os.path.exists(save_dir):
os.makedirs(save_dir)
# 生成文件名
def get_safe_filename(txt, max_length=10):
# 获取文本前max_length个字符作为文件名
filename = txt[:max_length].strip()
# 移除不安全的文件名字符
filename = re.sub(r'[\\/:*?"<>|]', '', filename)
# 如果文件名为空,使用时间戳
if not filename:
filename = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
return filename
base_filename = get_safe_filename(txt)
result_files = [] # 收集所有生成的文件
pdf_path = None # 用于跟踪PDF是否成功生成
# 保存为Markdown
try:
md_formatter = MarkdownFormatter()
md_content = md_formatter.create_document(txt, response, papers_list)
result_file_md = write_history_to_file(
history=[md_content],
file_basename=f"markdown_{base_filename}.md"
)
result_files.append(result_file_md)
except Exception as e:
print(f"Markdown保存失败: {str(e)}")
# 保存为HTML
try:
html_formatter = HtmlFormatter()
html_content = html_formatter.create_document(txt, response, papers_list)
result_file_html = write_history_to_file(
history=[html_content],
file_basename=f"html_{base_filename}.html"
)
result_files.append(result_file_html)
except Exception as e:
print(f"HTML保存失败: {str(e)}")
# 保存为Word
try:
word_formatter = WordFormatter()
try:
doc = word_formatter.create_document(txt, response, papers_list)
except Exception as e:
print(f"Word文档内容生成失败: {str(e)}")
raise e
try:
result_file_docx = os.path.join(
os.path.dirname(result_file_md) if result_file_md else save_dir,
f"docx_{base_filename}.docx"
)
doc.save(result_file_docx)
result_files.append(result_file_docx)
print(f"Word文档已保存到: {result_file_docx}")
# 转换为PDF
try:
pdf_path = WordToPdfConverter.convert_to_pdf(result_file_docx)
if pdf_path:
result_files.append(pdf_path)
print(f"PDF文档已生成: {pdf_path}")
except Exception as e:
print(f"PDF转换失败: {str(e)}")
except Exception as e:
print(f"Word文档保存失败: {str(e)}")
raise e
except Exception as e:
print(f"Word格式化失败: {str(e)}")
import traceback
print(f"详细错误信息: {traceback.format_exc()}")
# 保存为BibTeX格式
try:
from .review_fns.conversation_doc.reference_formatter import ReferenceFormatter
ref_formatter = ReferenceFormatter()
bibtex_content = ref_formatter.create_document(papers_list)
# 在与其他文件相同目录下创建BibTeX文件
result_file_bib = os.path.join(
os.path.dirname(result_file_md) if result_file_md else save_dir,
f"references_{base_filename}.bib"
)
# 直接写入文件
with open(result_file_bib, 'w', encoding='utf-8') as f:
f.write(bibtex_content)
result_files.append(result_file_bib)
print(f"BibTeX文件已保存到: {result_file_bib}")
except Exception as e:
print(f"BibTeX格式保存失败: {str(e)}")
# 保存为EndNote格式
try:
from .review_fns.conversation_doc.endnote_doc import EndNoteFormatter
endnote_formatter = EndNoteFormatter()
endnote_content = endnote_formatter.create_document(papers_list)
# 在与其他文件相同目录下创建EndNote文件
result_file_enw = os.path.join(
os.path.dirname(result_file_md) if result_file_md else save_dir,
f"references_{base_filename}.enw"
)
# 直接写入文件
with open(result_file_enw, 'w', encoding='utf-8') as f:
f.write(endnote_content)
result_files.append(result_file_enw)
print(f"EndNote文件已保存到: {result_file_enw}")
except Exception as e:
print(f"EndNote格式保存失败: {str(e)}")
# 添加所有文件到下载区
success_files = []
for file in result_files:
try:
promote_file_to_downloadzone(file, chatbot=chatbot)
success_files.append(os.path.basename(file))
except Exception as e:
print(f"文件添加到下载区失败: {str(e)}")
# 更新成功提示消息
if success_files:
chatbot.append(["保存对话记录成功bib和enw文件支持导入到EndNote、Zotero、JabRef、Mendeley等文献管理软件HTML文件支持在浏览器中打开里面包含详细论文源信息", "对话已保存并添加到下载区,可以在下载区找到相关文件"])
else:
chatbot.append(["保存对话记录", "所有格式的保存都失败了,请检查错误日志。"])
yield from update_ui(chatbot=chatbot, history=history)
else:
report_exception(chatbot, history, a=f"处理失败", b=f"请尝试其他查询")
yield from update_ui(chatbot=chatbot, history=history)

View File

@@ -1,11 +1,10 @@
import re
from toolbox import CatchException, update_ui, promote_file_to_downloadzone, get_log_folder, get_user, update_ui_latest_msg
from toolbox import CatchException, update_ui, promote_file_to_downloadzone, get_log_folder, get_user
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
from loguru import logger
import re
f_prefix = 'GPT-Academic对话存档'
def write_chat_to_file_legacy(chatbot, history=None, file_name=None):
def write_chat_to_file(chatbot, history=None, file_name=None):
"""
将对话记录history以Markdown格式写入文件中。如果没有指定文件名则使用当前时间生成文件名。
"""
@@ -13,9 +12,6 @@ def write_chat_to_file_legacy(chatbot, history=None, file_name=None):
import time
from themes.theme import advanced_css
if (file_name is not None) and (file_name != "") and (not file_name.endswith('.html')): file_name += '.html'
else: file_name = None
if file_name is None:
file_name = f_prefix + time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + '.html'
fp = os.path.join(get_log_folder(get_user(chatbot), plugin_name='chat_history'), file_name)
@@ -72,147 +68,6 @@ def write_chat_to_file_legacy(chatbot, history=None, file_name=None):
promote_file_to_downloadzone(fp, rename_file=file_name, chatbot=chatbot)
return '对话历史写入:' + fp
def write_chat_to_file(chatbot, history=None, file_name=None):
"""
将对话记录history以多种格式HTML、Word、Markdown写入文件中。如果没有指定文件名则使用当前时间生成文件名。
Args:
chatbot: 聊天机器人对象,包含对话内容
history: 对话历史记录
file_name: 指定的文件名如果为None则使用时间戳
Returns:
str: 提示信息,包含文件保存路径
"""
import os
import time
import asyncio
import aiofiles
from toolbox import promote_file_to_downloadzone
from crazy_functions.doc_fns.conversation_doc.excel_doc import save_chat_tables
from crazy_functions.doc_fns.conversation_doc.html_doc import HtmlFormatter
from crazy_functions.doc_fns.conversation_doc.markdown_doc import MarkdownFormatter
from crazy_functions.doc_fns.conversation_doc.word_doc import WordFormatter
from crazy_functions.doc_fns.conversation_doc.txt_doc import TxtFormatter
from crazy_functions.doc_fns.conversation_doc.word2pdf import WordToPdfConverter
async def save_html():
try:
html_formatter = HtmlFormatter(chatbot, history)
html_content = html_formatter.create_document()
html_file = os.path.join(save_dir, base_name + '.html')
async with aiofiles.open(html_file, 'w', encoding='utf8') as f:
await f.write(html_content)
return html_file
except Exception as e:
print(f"保存HTML格式失败: {str(e)}")
return None
async def save_word():
try:
word_formatter = WordFormatter()
doc = word_formatter.create_document(history)
docx_file = os.path.join(save_dir, base_name + '.docx')
# 由于python-docx不支持异步使用线程池执行
loop = asyncio.get_event_loop()
await loop.run_in_executor(None, doc.save, docx_file)
return docx_file
except Exception as e:
print(f"保存Word格式失败: {str(e)}")
return None
async def save_pdf(docx_file):
try:
if docx_file:
# 获取文件名和保存路径
pdf_file = os.path.join(save_dir, base_name + '.pdf')
# 在线程池中执行转换
loop = asyncio.get_event_loop()
pdf_file = await loop.run_in_executor(
None,
WordToPdfConverter.convert_to_pdf,
docx_file
# save_dir
)
return pdf_file
except Exception as e:
print(f"保存PDF格式失败: {str(e)}")
return None
async def save_markdown():
try:
md_formatter = MarkdownFormatter()
md_content = md_formatter.create_document(history)
md_file = os.path.join(save_dir, base_name + '.md')
async with aiofiles.open(md_file, 'w', encoding='utf8') as f:
await f.write(md_content)
return md_file
except Exception as e:
print(f"保存Markdown格式失败: {str(e)}")
return None
async def save_txt():
try:
txt_formatter = TxtFormatter()
txt_content = txt_formatter.create_document(history)
txt_file = os.path.join(save_dir, base_name + '.txt')
async with aiofiles.open(txt_file, 'w', encoding='utf8') as f:
await f.write(txt_content)
return txt_file
except Exception as e:
print(f"保存TXT格式失败: {str(e)}")
return None
async def main():
# 并发执行所有保存任务
html_task = asyncio.create_task(save_html())
word_task = asyncio.create_task(save_word())
md_task = asyncio.create_task(save_markdown())
txt_task = asyncio.create_task(save_txt())
# 等待所有任务完成
html_file = await html_task
docx_file = await word_task
md_file = await md_task
txt_file = await txt_task
# PDF转换需要等待word文件生成完成
pdf_file = await save_pdf(docx_file)
# 收集所有成功生成的文件
result_files = [f for f in [html_file, docx_file, md_file, txt_file, pdf_file] if f]
# 保存Excel表格
excel_files = save_chat_tables(history, save_dir, base_name)
result_files.extend(excel_files)
return result_files
# 生成时间戳
timestamp = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
# 获取保存目录
save_dir = get_log_folder(get_user(chatbot), plugin_name='chat_history')
# 处理文件名
base_name = file_name if file_name else f"聊天记录_{timestamp}"
# 运行异步任务
result_files = asyncio.run(main())
# 将生成的文件添加到下载区
for file in result_files:
promote_file_to_downloadzone(file, rename_file=os.path.basename(file), chatbot=chatbot)
# 如果没有成功保存任何文件,返回错误信息
if not result_files:
return "保存对话记录失败,请检查错误日志"
ext_list = [os.path.splitext(f)[1] for f in result_files]
# 返回成功信息和文件路径
return f"对话历史已保存至以下格式文件:" + "".join(ext_list)
def gen_file_preview(file_name):
try:
with open(file_name, 'r', encoding='utf8') as f:
@@ -264,21 +119,12 @@ def 对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
user_request 当前用户的请求信息IP地址等
"""
file_name = plugin_kwargs.get("file_name", None)
if (file_name is not None) and (file_name != "") and (not file_name.endswith('.html')): file_name += '.html'
else: file_name = None
chatbot.append((None, f"[Local Message] {write_chat_to_file(chatbot, history, file_name)},您可以调用下拉菜单中的“载入对话历史存档”还原当下的对话。"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间我们先及时地做一次界面更新
chatbot.append((None, f"[Local Message] {write_chat_to_file_legacy(chatbot, history, file_name)},您可以调用下拉菜单中的“载入对话历史存档”还原当下的对话。"))
try:
chatbot.append((None, f"[Local Message] 正在尝试生成pdf以及word格式的对话存档请稍等..."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求需要一段时间,我们先及时地做一次界面更新
lastmsg = f"[Local Message] {write_chat_to_file(chatbot, history, file_name)}" \
f"您可以调用下拉菜单中的“载入对话历史会话”还原当下的对话请注意目前只支持html格式载入历史。" \
f"当模型回答中存在表格将提取表格内容存储为Excel的xlsx格式如果你提供一些数据,然后输入指令要求模型帮你整理为表格" \
f"如“请帮我将下面的数据整理为表格再利用此插件就可以获取到Excel表格。"
yield from update_ui_latest_msg(lastmsg, chatbot, history) # 刷新界面 # 由于请求需要一段时间,我们先及时地做一次界面更新
except Exception as e:
logger.exception(f"已完成对话存档pdf和word格式的对话存档生成未成功{str(e)}")
lastmsg = "已完成对话存档pdf和word格式的对话存档生成未成功"
yield from update_ui_latest_msg(lastmsg, chatbot, history) # 刷新界面 # 由于请求需要一段时间,我们先及时地做一次界面更新
return
class Conversation_To_File_Wrap(GptAcademicPluginTemplate):
def __init__(self):

View File

@@ -1,537 +0,0 @@
import os
import threading
import time
from dataclasses import dataclass
from typing import List, Tuple, Dict, Generator
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
from crazy_functions.rag_fns.rag_file_support import extract_text
from request_llms.bridge_all import model_info
from toolbox import update_ui, CatchException, report_exception
from shared_utils.fastapi_server import validate_path_safety
@dataclass
class FileFragment:
"""文件片段数据类,用于组织处理单元"""
file_path: str
content: str
rel_path: str
fragment_index: int
total_fragments: int
class BatchDocumentSummarizer:
"""优化的文档总结器 - 批处理版本"""
def __init__(self, llm_kwargs: Dict, query: str, chatbot: List, history: List, system_prompt: str):
"""初始化总结器"""
self.llm_kwargs = llm_kwargs
self.query = query
self.chatbot = chatbot
self.history = history
self.system_prompt = system_prompt
self.failed_files = []
self.file_summaries_map = {}
def _get_token_limit(self) -> int:
"""获取模型token限制"""
max_token = model_info[self.llm_kwargs['llm_model']]['max_token']
return max_token * 3 // 4
def _create_batch_inputs(self, fragments: List[FileFragment]) -> Tuple[List, List, List]:
"""创建批处理输入"""
inputs_array = []
inputs_show_user_array = []
history_array = []
for frag in fragments:
if self.query:
i_say = (f'请按照用户要求对文件内容进行处理,文件名为{os.path.basename(frag.file_path)}'
f'用户要求为:{self.query}'
f'文件内容是 ```{frag.content}```')
i_say_show_user = (f'正在处理 {frag.rel_path} (片段 {frag.fragment_index + 1}/{frag.total_fragments})')
else:
i_say = (f'请对下面的内容用中文做总结不超过500字文件名是{os.path.basename(frag.file_path)}'
f'内容是 ```{frag.content}```')
i_say_show_user = f'正在处理 {frag.rel_path} (片段 {frag.fragment_index + 1}/{frag.total_fragments})'
inputs_array.append(i_say)
inputs_show_user_array.append(i_say_show_user)
history_array.append([])
return inputs_array, inputs_show_user_array, history_array
def _process_single_file_with_timeout(self, file_info: Tuple[str, str], mutable_status: List) -> List[FileFragment]:
"""包装了超时控制的文件处理函数"""
def timeout_handler():
thread = threading.current_thread()
if hasattr(thread, '_timeout_occurred'):
thread._timeout_occurred = True
# 设置超时标记
thread = threading.current_thread()
thread._timeout_occurred = False
# 设置超时时间为30秒给予更多处理时间
TIMEOUT_SECONDS = 30
timer = threading.Timer(TIMEOUT_SECONDS, timeout_handler)
timer.start()
try:
fp, project_folder = file_info
fragments = []
# 定期检查是否超时
def check_timeout():
if hasattr(thread, '_timeout_occurred') and thread._timeout_occurred:
raise TimeoutError(f"处理文件 {os.path.basename(fp)} 超时({TIMEOUT_SECONDS}秒)")
# 更新状态
mutable_status[0] = "检查文件大小"
mutable_status[1] = time.time()
check_timeout()
# 文件大小检查
if os.path.getsize(fp) > self.max_file_size:
self.failed_files.append((fp, f"文件过大:超过{self.max_file_size / 1024 / 1024}MB"))
mutable_status[2] = "文件过大"
return fragments
# 更新状态
mutable_status[0] = "提取文件内容"
mutable_status[1] = time.time()
# 提取内容 - 使用单独的超时控制
content = None
extract_start_time = time.time()
try:
while True:
check_timeout() # 检查全局超时
# 检查提取过程是否超时10秒
if time.time() - extract_start_time > 10:
raise TimeoutError("文件内容提取超时10秒")
try:
content = extract_text(fp)
break
except Exception as e:
if "timeout" in str(e).lower():
continue # 如果是临时超时,重试
raise # 其他错误直接抛出
except Exception as e:
self.failed_files.append((fp, f"文件读取失败:{str(e)}"))
mutable_status[2] = "读取失败"
return fragments
if content is None:
self.failed_files.append((fp, "文件解析失败:不支持的格式或文件损坏"))
mutable_status[2] = "格式不支持"
return fragments
elif not content.strip():
self.failed_files.append((fp, "文件内容为空"))
mutable_status[2] = "内容为空"
return fragments
check_timeout()
# 更新状态
mutable_status[0] = "分割文本"
mutable_status[1] = time.time()
# 分割文本 - 添加超时检查
split_start_time = time.time()
try:
while True:
check_timeout() # 检查全局超时
# 检查分割过程是否超时5秒
if time.time() - split_start_time > 5:
raise TimeoutError("文本分割超时5秒")
paper_fragments = breakdown_text_to_satisfy_token_limit(
txt=content,
limit=self._get_token_limit(),
llm_model=self.llm_kwargs['llm_model']
)
break
except Exception as e:
self.failed_files.append((fp, f"文本分割失败:{str(e)}"))
mutable_status[2] = "分割失败"
return fragments
# 处理片段
rel_path = os.path.relpath(fp, project_folder)
for i, frag in enumerate(paper_fragments):
check_timeout() # 每处理一个片段检查一次超时
if frag.strip():
fragments.append(FileFragment(
file_path=fp,
content=frag,
rel_path=rel_path,
fragment_index=i,
total_fragments=len(paper_fragments)
))
mutable_status[2] = "处理完成"
return fragments
except TimeoutError as e:
self.failed_files.append((fp, str(e)))
mutable_status[2] = "处理超时"
return []
except Exception as e:
self.failed_files.append((fp, f"处理失败:{str(e)}"))
mutable_status[2] = "处理异常"
return []
finally:
timer.cancel()
def prepare_fragments(self, project_folder: str, file_paths: List[str]) -> Generator:
import concurrent.futures
from concurrent.futures import ThreadPoolExecutor
from typing import Generator, List
"""并行准备所有文件的处理片段"""
all_fragments = []
total_files = len(file_paths)
# 配置参数
self.refresh_interval = 0.2 # UI刷新间隔
self.watch_dog_patience = 5 # 看门狗超时时间
self.max_file_size = 10 * 1024 * 1024 # 10MB限制
self.max_workers = min(32, len(file_paths)) # 最多32个线程
# 创建有超时控制的线程池
executor = ThreadPoolExecutor(max_workers=self.max_workers)
# 用于跨线程状态传递的可变列表 - 增加文件名信息
mutable_status_array = [["等待中", time.time(), "pending", file_path] for file_path in file_paths]
# 创建文件处理任务
file_infos = [(fp, project_folder) for fp in file_paths]
# 提交所有任务,使用带超时控制的处理函数
futures = [
executor.submit(
self._process_single_file_with_timeout,
file_info,
mutable_status_array[i]
) for i, file_info in enumerate(file_infos)
]
# 更新UI的计数器
cnt = 0
try:
# 监控任务执行
while True:
time.sleep(self.refresh_interval)
cnt += 1
# 检查任务完成状态
worker_done = [f.done() for f in futures]
# 更新状态显示
status_str = ""
for i, (status, timestamp, desc, file_path) in enumerate(mutable_status_array):
# 获取文件名(去掉路径)
file_name = os.path.basename(file_path)
if worker_done[i]:
status_str += f"文件 {file_name}: {desc}\n\n"
else:
status_str += f"文件 {file_name}: {status} {desc}\n\n"
# 更新UI
self.chatbot[-1] = [
"处理进度",
f"正在处理文件...\n\n{status_str}" + "." * (cnt % 10 + 1)
]
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 检查是否所有任务完成
if all(worker_done):
break
finally:
# 确保线程池正确关闭
executor.shutdown(wait=False)
# 收集结果
processed_files = 0
for future in futures:
try:
fragments = future.result(timeout=0.1) # 给予一个短暂的超时时间来获取结果
all_fragments.extend(fragments)
processed_files += 1
except concurrent.futures.TimeoutError:
# 处理获取结果超时
file_index = futures.index(future)
self.failed_files.append((file_paths[file_index], "结果获取超时"))
continue
except Exception as e:
# 处理其他异常
file_index = futures.index(future)
self.failed_files.append((file_paths[file_index], f"未知错误:{str(e)}"))
continue
# 最终进度更新
self.chatbot.append([
"文件处理完成",
f"成功处理 {len(all_fragments)} 个片段,失败 {len(self.failed_files)} 个文件"
])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return all_fragments
def _process_fragments_batch(self, fragments: List[FileFragment]) -> Generator:
"""批量处理文件片段"""
from collections import defaultdict
batch_size = 64 # 每批处理的片段数
max_retries = 3 # 最大重试次数
retry_delay = 5 # 重试延迟(秒)
results = defaultdict(list)
# 按批次处理
for i in range(0, len(fragments), batch_size):
batch = fragments[i:i + batch_size]
inputs_array, inputs_show_user_array, history_array = self._create_batch_inputs(batch)
sys_prompt_array = ["请总结以下内容:"] * len(batch)
# 添加重试机制
for retry in range(max_retries):
try:
response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=inputs_array,
inputs_show_user_array=inputs_show_user_array,
llm_kwargs=self.llm_kwargs,
chatbot=self.chatbot,
history_array=history_array,
sys_prompt_array=sys_prompt_array,
)
# 处理响应
for j, frag in enumerate(batch):
summary = response_collection[j * 2 + 1]
if summary and summary.strip():
results[frag.rel_path].append({
'index': frag.fragment_index,
'summary': summary,
'total': frag.total_fragments
})
break # 成功处理,跳出重试循环
except Exception as e:
if retry == max_retries - 1: # 最后一次重试失败
for frag in batch:
self.failed_files.append((frag.file_path, f"处理失败:{str(e)}"))
else:
yield from update_ui(self.chatbot.append([f"批次处理失败,{retry_delay}秒后重试...", str(e)]))
time.sleep(retry_delay)
return results
def _generate_final_summary_request(self) -> Tuple[List, List, List]:
"""准备最终总结请求"""
if not self.file_summaries_map:
return (["无可用的文件总结"], ["生成最终总结"], [[]])
summaries = list(self.file_summaries_map.values())
if all(not summary for summary in summaries):
return (["所有文件处理均失败"], ["生成最终总结"], [[]])
if self.plugin_kwargs.get("advanced_arg"):
i_say = "根据以上所有文件的处理结果,按要求进行综合处理:" + self.plugin_kwargs['advanced_arg']
else:
i_say = "请根据以上所有文件的处理结果生成最终的总结不超过1000字。"
return ([i_say], [i_say], [summaries])
def process_files(self, project_folder: str, file_paths: List[str]) -> Generator:
"""处理所有文件"""
total_files = len(file_paths)
self.chatbot.append([f"开始处理", f"总计 {total_files} 个文件"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 1. 准备所有文件片段
# 在 process_files 函数中:
fragments = yield from self.prepare_fragments(project_folder, file_paths)
if not fragments:
self.chatbot.append(["处理失败", "没有可处理的文件内容"])
return "没有可处理的文件内容"
# 2. 批量处理所有文件片段
self.chatbot.append([f"文件分析", f"共计 {len(fragments)} 个处理单元"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
try:
file_summaries = yield from self._process_fragments_batch(fragments)
except Exception as e:
self.chatbot.append(["处理错误", f"批处理过程失败:{str(e)}"])
return "处理过程发生错误"
# 3. 为每个文件生成整体总结
self.chatbot.append(["生成总结", "正在汇总文件内容..."])
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 处理每个文件的总结
for rel_path, summaries in file_summaries.items():
if len(summaries) > 1: # 多片段文件需要生成整体总结
sorted_summaries = sorted(summaries, key=lambda x: x['index'])
if self.plugin_kwargs.get("advanced_arg"):
i_say = f'请按照用户要求对文件内容进行处理,用户要求为:{self.plugin_kwargs["advanced_arg"]}'
else:
i_say = f"请总结文件 {os.path.basename(rel_path)} 的主要内容不超过500字。"
try:
summary_texts = [s['summary'] for s in sorted_summaries]
response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=[i_say],
inputs_show_user_array=[f"生成 {rel_path} 的处理结果"],
llm_kwargs=self.llm_kwargs,
chatbot=self.chatbot,
history_array=[summary_texts],
sys_prompt_array=["你是一个优秀的助手,"],
)
self.file_summaries_map[rel_path] = response_collection[1]
except Exception as e:
self.chatbot.append(["警告", f"文件 {rel_path} 总结生成失败:{str(e)}"])
self.file_summaries_map[rel_path] = "总结生成失败"
else: # 单片段文件直接使用其唯一的总结
self.file_summaries_map[rel_path] = summaries[0]['summary']
# 4. 生成最终总结
if total_files == 1:
return "文件数为1此时不调用总结模块"
else:
try:
# 收集所有文件的总结用于生成最终总结
file_summaries_for_final = []
for rel_path, summary in self.file_summaries_map.items():
file_summaries_for_final.append(f"文件 {rel_path} 的总结:\n{summary}")
if self.plugin_kwargs.get("advanced_arg"):
final_summary_prompt = ("根据以下所有文件的总结内容,按要求进行综合处理:" +
self.plugin_kwargs['advanced_arg'])
else:
final_summary_prompt = "请根据以下所有文件的总结内容,生成最终的总结报告。"
response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=[final_summary_prompt],
inputs_show_user_array=["生成最终总结报告"],
llm_kwargs=self.llm_kwargs,
chatbot=self.chatbot,
history_array=[file_summaries_for_final],
sys_prompt_array=["总结所有文件内容。"],
max_workers=1
)
return response_collection[1] if len(response_collection) > 1 else "生成总结失败"
except Exception as e:
self.chatbot.append(["错误", f"最终总结生成失败:{str(e)}"])
return "生成总结失败"
def save_results(self, final_summary: str):
"""保存结果到文件"""
from toolbox import promote_file_to_downloadzone, write_history_to_file
from crazy_functions.doc_fns.batch_file_query_doc import MarkdownFormatter, HtmlFormatter, WordFormatter
import os
timestamp = time.strftime("%Y%m%d_%H%M%S")
# 创建各种格式化器
md_formatter = MarkdownFormatter(final_summary, self.file_summaries_map, self.failed_files)
html_formatter = HtmlFormatter(final_summary, self.file_summaries_map, self.failed_files)
word_formatter = WordFormatter(final_summary, self.file_summaries_map, self.failed_files)
result_files = []
# 保存 Markdown
try:
md_content = md_formatter.create_document()
result_file_md = write_history_to_file(
history=[md_content], # 直接传入内容列表
file_basename=f"文档总结_{timestamp}.md"
)
result_files.append(result_file_md)
except:
pass
# 保存 HTML
try:
html_content = html_formatter.create_document()
result_file_html = write_history_to_file(
history=[html_content],
file_basename=f"文档总结_{timestamp}.html"
)
result_files.append(result_file_html)
except:
pass
# 保存 Word
try:
doc = word_formatter.create_document()
# 由于 Word 文档需要用 doc.save(),我们使用与 md 文件相同的目录
result_file_docx = os.path.join(
os.path.dirname(result_file_md),
f"文档总结_{timestamp}.docx"
)
doc.save(result_file_docx)
result_files.append(result_file_docx)
except:
pass
# 添加到下载区
for file in result_files:
promote_file_to_downloadzone(file, chatbot=self.chatbot)
self.chatbot.append(["处理完成", f"结果已保存至: {', '.join(result_files)}"])
@CatchException
def 批量文件询问(txt: str, llm_kwargs: Dict, plugin_kwargs: Dict, chatbot: List,
history: List, system_prompt: str, user_request: str):
"""主函数 - 优化版本"""
# 初始化
import glob
import re
from crazy_functions.rag_fns.rag_file_support import supports_format
from toolbox import report_exception
query = plugin_kwargs.get("advanced_arg")
summarizer = BatchDocumentSummarizer(llm_kwargs, query, chatbot, history, system_prompt)
chatbot.append(["函数插件功能", f"作者lbykkkk批量总结文件。支持格式: {', '.join(supports_format)}等其他文本格式文件如果长时间卡在文件处理过程请查看处理进度然后删除所有处于“pending”状态的文件然后重新上传处理。"])
yield from update_ui(chatbot=chatbot, history=history)
# 验证输入路径
if not os.path.exists(txt):
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history)
return
# 获取文件列表
project_folder = txt
user_name = chatbot.get_user()
validate_path_safety(project_folder, user_name)
extract_folder = next((d for d in glob.glob(f'{project_folder}/*')
if os.path.isdir(d) and d.endswith('.extract')), project_folder)
exclude_patterns = r'/[^/]+\.(zip|rar|7z|tar|gz)$'
file_manifest = [f for f in glob.glob(f'{extract_folder}/**', recursive=True)
if os.path.isfile(f) and not re.search(exclude_patterns, f)]
if not file_manifest:
report_exception(chatbot, history, a=f"解析项目: {txt}", b="未找到支持的文件类型")
yield from update_ui(chatbot=chatbot, history=history)
return
# 处理所有文件并生成总结
final_summary = yield from summarizer.process_files(project_folder, file_manifest)
yield from update_ui(chatbot=chatbot, history=history)
# 保存结果
summarizer.save_results(final_summary)
yield from update_ui(chatbot=chatbot, history=history)

View File

@@ -1,36 +0,0 @@
import random
from toolbox import get_conf
from crazy_functions.Document_Conversation import 批量文件询问
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
class Document_Conversation_Wrap(GptAcademicPluginTemplate):
def __init__(self):
"""
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
"""
pass
def define_arg_selection_menu(self):
"""
定义插件的二级选项菜单
第一个参数,名称`main_input`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description``default_value`为默认值;
第二个参数,名称`advanced_arg`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description``default_value`为默认值;
第三个参数,名称`allow_cache`,参数`type`声明这是一个下拉菜单,下拉菜单上方显示`title`+`description`,下拉菜单的选项为`options``default_value`为下拉菜单默认值;
"""
gui_definition = {
"main_input":
ArgProperty(title="已上传的文件", description="上传文件后自动填充", default_value="", type="string").model_dump_json(),
"searxng_url":
ArgProperty(title="对材料提问", description="提问", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
}
return gui_definition
def execute(txt, llm_kwargs, plugin_kwargs:dict, chatbot, history, system_prompt, user_request):
"""
执行插件
"""
yield from 批量文件询问(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)

View File

@@ -1,673 +0,0 @@
import os
import time
import glob
import re
import threading
from typing import Dict, List, Generator, Tuple
from dataclasses import dataclass
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
from crazy_functions.rag_fns.rag_file_support import extract_text, supports_format, convert_to_markdown
from request_llms.bridge_all import model_info
from toolbox import update_ui, CatchException, report_exception, promote_file_to_downloadzone, write_history_to_file
from shared_utils.fastapi_server import validate_path_safety
# 新增:导入结构化论文提取器
from crazy_functions.doc_fns.read_fns.unstructured_all.paper_structure_extractor import PaperStructureExtractor, ExtractorConfig, StructuredPaper
# 导入格式化器
from crazy_functions.paper_fns.file2file_doc import (
TxtFormatter,
MarkdownFormatter,
HtmlFormatter,
WordFormatter
)
@dataclass
class TextFragment:
"""文本片段数据类,用于组织处理单元"""
content: str
fragment_index: int
total_fragments: int
class DocumentProcessor:
"""文档处理器 - 处理单个文档并输出结果"""
def __init__(self, llm_kwargs: Dict, plugin_kwargs: Dict, chatbot: List, history: List, system_prompt: str):
"""初始化处理器"""
self.llm_kwargs = llm_kwargs
self.plugin_kwargs = plugin_kwargs
self.chatbot = chatbot
self.history = history
self.system_prompt = system_prompt
self.processed_results = []
self.failed_fragments = []
# 新增:初始化论文结构提取器
self.paper_extractor = PaperStructureExtractor()
def _get_token_limit(self) -> int:
"""获取模型token限制返回更小的值以确保更细粒度的分割"""
max_token = model_info[self.llm_kwargs['llm_model']]['max_token']
# 降低token限制使每个片段更小
return max_token // 4 # 从3/4降低到1/4
def _create_batch_inputs(self, fragments: List[TextFragment]) -> Tuple[List, List, List]:
"""创建批处理输入"""
inputs_array = []
inputs_show_user_array = []
history_array = []
user_instruction = self.plugin_kwargs.get("advanced_arg", "请润色以下学术文本,提高其语言表达的准确性、专业性和流畅度,保持学术风格,确保逻辑连贯,但不改变原文的科学内容和核心观点")
for frag in fragments:
i_say = (f'请按照以下要求处理文本内容:{user_instruction}\n\n'
f'请将对文本的处理结果放在<decision>和</decision>标签之间。\n\n'
f'文本内容:\n```\n{frag.content}\n```')
i_say_show_user = f'正在处理文本片段 {frag.fragment_index + 1}/{frag.total_fragments}'
inputs_array.append(i_say)
inputs_show_user_array.append(i_say_show_user)
history_array.append([])
return inputs_array, inputs_show_user_array, history_array
def _extract_decision(self, text: str) -> str:
"""从LLM响应中提取<decision>标签内的内容"""
import re
pattern = r'<decision>(.*?)</decision>'
matches = re.findall(pattern, text, re.DOTALL)
if matches:
return matches[0].strip()
else:
# 如果没有找到标签,返回原始文本
return text.strip()
def process_file(self, file_path: str) -> Generator:
"""处理单个文件"""
self.chatbot.append(["开始处理文件", f"文件路径: {file_path}"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
try:
# 首先尝试转换为Markdown
from crazy_functions.rag_fns.rag_file_support import convert_to_markdown
file_path = convert_to_markdown(file_path)
# 1. 检查文件是否为支持的论文格式
is_paper_format = any(file_path.lower().endswith(ext) for ext in self.paper_extractor.SUPPORTED_EXTENSIONS)
if is_paper_format:
# 使用结构化提取器处理论文
return (yield from self._process_structured_paper(file_path))
else:
# 使用原有方式处理普通文档
return (yield from self._process_regular_file(file_path))
except Exception as e:
self.chatbot.append(["处理错误", f"文件处理失败: {str(e)}"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return None
def _process_structured_paper(self, file_path: str) -> Generator:
"""处理结构化论文文件"""
# 1. 提取论文结构
self.chatbot[-1] = ["正在分析论文结构", f"文件路径: {file_path}"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
try:
paper = self.paper_extractor.extract_paper_structure(file_path)
if not paper or not paper.sections:
self.chatbot.append(["无法提取论文结构", "将使用全文内容进行处理"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 使用全文内容进行段落切分
if paper and paper.full_text:
# 使用增强的分割函数进行更细致的分割
fragments = self._breakdown_section_content(paper.full_text)
# 创建文本片段对象
text_fragments = []
for i, frag in enumerate(fragments):
if frag.strip():
text_fragments.append(TextFragment(
content=frag,
fragment_index=i,
total_fragments=len(fragments)
))
# 批量处理片段
if text_fragments:
self.chatbot[-1] = ["开始处理文本", f"{len(text_fragments)} 个片段"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 一次性准备所有输入
inputs_array, inputs_show_user_array, history_array = self._create_batch_inputs(text_fragments)
# 使用系统提示
instruction = self.plugin_kwargs.get("advanced_arg", "请润色以下学术文本,提高其语言表达的准确性、专业性和流畅度,保持学术风格,确保逻辑连贯,但不改变原文的科学内容和核心观点")
sys_prompt_array = [f"你是一个专业的学术文献编辑助手。请按照用户的要求:'{instruction}'处理文本。保持学术风格,增强表达的准确性和专业性。"] * len(text_fragments)
# 调用LLM一次性处理所有片段
response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=inputs_array,
inputs_show_user_array=inputs_show_user_array,
llm_kwargs=self.llm_kwargs,
chatbot=self.chatbot,
history_array=history_array,
sys_prompt_array=sys_prompt_array,
)
# 处理响应
for j, frag in enumerate(text_fragments):
try:
llm_response = response_collection[j * 2 + 1]
processed_text = self._extract_decision(llm_response)
if processed_text and processed_text.strip():
self.processed_results.append({
'index': frag.fragment_index,
'content': processed_text
})
else:
self.failed_fragments.append(frag)
self.processed_results.append({
'index': frag.fragment_index,
'content': frag.content
})
except Exception as e:
self.failed_fragments.append(frag)
self.processed_results.append({
'index': frag.fragment_index,
'content': frag.content
})
# 按原始顺序合并结果
self.processed_results.sort(key=lambda x: x['index'])
final_content = "\n".join([item['content'] for item in self.processed_results])
# 更新UI
success_count = len(text_fragments) - len(self.failed_fragments)
self.chatbot[-1] = ["处理完成", f"成功处理 {success_count}/{len(text_fragments)} 个片段"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
return final_content
else:
self.chatbot.append(["处理失败", "未能提取到有效的文本内容"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return None
else:
self.chatbot.append(["处理失败", "未能提取到论文内容"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return None
# 2. 准备处理章节内容(不处理标题)
self.chatbot[-1] = ["已提取论文结构", f"{len(paper.sections)} 个主要章节"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 3. 收集所有需要处理的章节内容并分割为合适大小
sections_to_process = []
section_map = {} # 用于映射处理前后的内容
def collect_section_contents(sections, parent_path=""):
"""递归收集章节内容,跳过参考文献部分"""
for i, section in enumerate(sections):
current_path = f"{parent_path}/{i}" if parent_path else f"{i}"
# 检查是否为参考文献部分,如果是则跳过
if section.section_type == 'references' or section.title.lower() in ['references', '参考文献', 'bibliography', '文献']:
continue # 跳过参考文献部分
# 只处理内容非空的章节
if section.content and section.content.strip():
# 使用增强的分割函数进行更细致的分割
fragments = self._breakdown_section_content(section.content)
for fragment_idx, fragment_content in enumerate(fragments):
if fragment_content.strip():
fragment_index = len(sections_to_process)
sections_to_process.append(TextFragment(
content=fragment_content,
fragment_index=fragment_index,
total_fragments=0 # 临时值,稍后更新
))
# 保存映射关系,用于稍后更新章节内容
# 为每个片段存储原始章节和片段索引信息
section_map[fragment_index] = (current_path, section, fragment_idx, len(fragments))
# 递归处理子章节
if section.subsections:
collect_section_contents(section.subsections, current_path)
# 收集所有章节内容
collect_section_contents(paper.sections)
# 更新总片段数
total_fragments = len(sections_to_process)
for frag in sections_to_process:
frag.total_fragments = total_fragments
# 4. 如果没有内容需要处理,直接返回
if not sections_to_process:
self.chatbot.append(["处理完成", "未找到需要处理的内容"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return None
# 5. 批量处理章节内容
self.chatbot[-1] = ["开始处理论文内容", f"{len(sections_to_process)} 个内容片段"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 一次性准备所有输入
inputs_array, inputs_show_user_array, history_array = self._create_batch_inputs(sections_to_process)
# 使用系统提示
instruction = self.plugin_kwargs.get("advanced_arg", "请润色以下学术文本,提高其语言表达的准确性、专业性和流畅度,保持学术风格,确保逻辑连贯,但不改变原文的科学内容和核心观点")
sys_prompt_array = [f"你是一个专业的学术文献编辑助手。请按照用户的要求:'{instruction}'处理文本。保持学术风格,增强表达的准确性和专业性。"] * len(sections_to_process)
# 调用LLM一次性处理所有片段
response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=inputs_array,
inputs_show_user_array=inputs_show_user_array,
llm_kwargs=self.llm_kwargs,
chatbot=self.chatbot,
history_array=history_array,
sys_prompt_array=sys_prompt_array,
)
# 处理响应,重组章节内容
section_contents = {} # 用于重组各章节的处理后内容
for j, frag in enumerate(sections_to_process):
try:
llm_response = response_collection[j * 2 + 1]
processed_text = self._extract_decision(llm_response)
if processed_text and processed_text.strip():
# 保存处理结果
self.processed_results.append({
'index': frag.fragment_index,
'content': processed_text
})
# 存储处理后的文本片段,用于后续重组
fragment_index = frag.fragment_index
if fragment_index in section_map:
path, section, fragment_idx, total_fragments = section_map[fragment_index]
# 初始化此章节的内容容器(如果尚未创建)
if path not in section_contents:
section_contents[path] = [""] * total_fragments
# 将处理后的片段放入正确位置
section_contents[path][fragment_idx] = processed_text
else:
self.failed_fragments.append(frag)
except Exception as e:
self.failed_fragments.append(frag)
# 重组每个章节的内容
for path, fragments in section_contents.items():
section = None
for idx in section_map:
if section_map[idx][0] == path:
section = section_map[idx][1]
break
if section:
# 合并该章节的所有处理后片段
section.content = "\n".join(fragments)
# 6. 更新UI
success_count = total_fragments - len(self.failed_fragments)
self.chatbot[-1] = ["处理完成", f"成功处理 {success_count}/{total_fragments} 个内容片段"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 收集参考文献部分(不进行处理)
references_sections = []
def collect_references(sections, parent_path=""):
"""递归收集参考文献部分"""
for i, section in enumerate(sections):
current_path = f"{parent_path}/{i}" if parent_path else f"{i}"
# 检查是否为参考文献部分
if section.section_type == 'references' or section.title.lower() in ['references', '参考文献', 'bibliography', '文献']:
references_sections.append((current_path, section))
# 递归检查子章节
if section.subsections:
collect_references(section.subsections, current_path)
# 收集参考文献
collect_references(paper.sections)
# 7. 将处理后的结构化论文转换为Markdown
markdown_content = self.paper_extractor.generate_markdown(paper)
# 8. 返回处理后的内容
self.chatbot[-1] = ["处理完成", f"成功处理 {success_count}/{total_fragments} 个内容片段,参考文献部分未处理"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
return markdown_content
except Exception as e:
self.chatbot.append(["结构化处理失败", f"错误: {str(e)},将尝试作为普通文件处理"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return (yield from self._process_regular_file(file_path))
def _process_regular_file(self, file_path: str) -> Generator:
"""使用原有方式处理普通文件"""
# 原有的文件处理逻辑
self.chatbot[-1] = ["正在读取文件", f"文件路径: {file_path}"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
content = extract_text(file_path)
if not content or not content.strip():
self.chatbot.append(["处理失败", "文件内容为空或无法提取内容"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return None
# 2. 分割文本
self.chatbot[-1] = ["正在分析文件", "将文件内容分割为适当大小的片段"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 使用增强的分割函数
fragments = self._breakdown_section_content(content)
# 3. 创建文本片段对象
text_fragments = []
for i, frag in enumerate(fragments):
if frag.strip():
text_fragments.append(TextFragment(
content=frag,
fragment_index=i,
total_fragments=len(fragments)
))
# 4. 处理所有片段
self.chatbot[-1] = ["开始处理文本", f"{len(text_fragments)} 个片段"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 批量处理片段
batch_size = 8 # 每批处理的片段数
for i in range(0, len(text_fragments), batch_size):
batch = text_fragments[i:i + batch_size]
inputs_array, inputs_show_user_array, history_array = self._create_batch_inputs(batch)
# 使用系统提示
instruction = self.plugin_kwargs.get("advanced_arg", "请润色以下文本")
sys_prompt_array = [f"你是一个专业的文本处理助手。请按照用户的要求:'{instruction}'处理文本。"] * len(batch)
# 调用LLM处理
response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=inputs_array,
inputs_show_user_array=inputs_show_user_array,
llm_kwargs=self.llm_kwargs,
chatbot=self.chatbot,
history_array=history_array,
sys_prompt_array=sys_prompt_array,
)
# 处理响应
for j, frag in enumerate(batch):
try:
llm_response = response_collection[j * 2 + 1]
processed_text = self._extract_decision(llm_response)
if processed_text and processed_text.strip():
self.processed_results.append({
'index': frag.fragment_index,
'content': processed_text
})
else:
self.failed_fragments.append(frag)
self.processed_results.append({
'index': frag.fragment_index,
'content': frag.content # 如果处理失败,使用原始内容
})
except Exception as e:
self.failed_fragments.append(frag)
self.processed_results.append({
'index': frag.fragment_index,
'content': frag.content # 如果处理失败,使用原始内容
})
# 5. 按原始顺序合并结果
self.processed_results.sort(key=lambda x: x['index'])
final_content = "\n".join([item['content'] for item in self.processed_results])
# 6. 更新UI
success_count = len(text_fragments) - len(self.failed_fragments)
self.chatbot[-1] = ["处理完成", f"成功处理 {success_count}/{len(text_fragments)} 个片段"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
return final_content
def save_results(self, content: str, original_file_path: str) -> List[str]:
"""保存处理结果为多种格式"""
if not content:
return []
timestamp = time.strftime("%Y%m%d_%H%M%S")
original_filename = os.path.basename(original_file_path)
filename_without_ext = os.path.splitext(original_filename)[0]
base_filename = f"{filename_without_ext}_processed_{timestamp}"
result_files = []
# 获取用户指定的处理类型
processing_type = self.plugin_kwargs.get("advanced_arg", "文本处理")
# 1. 保存为TXT
try:
txt_formatter = TxtFormatter()
txt_content = txt_formatter.create_document(content)
txt_file = write_history_to_file(
history=[txt_content],
file_basename=f"{base_filename}.txt"
)
result_files.append(txt_file)
except Exception as e:
self.chatbot.append(["警告", f"TXT格式保存失败: {str(e)}"])
# 2. 保存为Markdown
try:
md_formatter = MarkdownFormatter()
md_content = md_formatter.create_document(content, processing_type)
md_file = write_history_to_file(
history=[md_content],
file_basename=f"{base_filename}.md"
)
result_files.append(md_file)
except Exception as e:
self.chatbot.append(["警告", f"Markdown格式保存失败: {str(e)}"])
# 3. 保存为HTML
try:
html_formatter = HtmlFormatter(processing_type=processing_type)
html_content = html_formatter.create_document(content)
html_file = write_history_to_file(
history=[html_content],
file_basename=f"{base_filename}.html"
)
result_files.append(html_file)
except Exception as e:
self.chatbot.append(["警告", f"HTML格式保存失败: {str(e)}"])
# 4. 保存为Word
try:
word_formatter = WordFormatter()
doc = word_formatter.create_document(content, processing_type)
# 获取保存路径
from toolbox import get_log_folder
word_path = os.path.join(get_log_folder(), f"{base_filename}.docx")
doc.save(word_path)
# 5. 保存为PDF通过Word转换
try:
from crazy_functions.paper_fns.file2file_doc.word2pdf import WordToPdfConverter
pdf_path = WordToPdfConverter.convert_to_pdf(word_path)
result_files.append(pdf_path)
except Exception as e:
self.chatbot.append(["警告", f"PDF格式保存失败: {str(e)}"])
except Exception as e:
self.chatbot.append(["警告", f"Word格式保存失败: {str(e)}"])
# 添加到下载区
for file in result_files:
promote_file_to_downloadzone(file, chatbot=self.chatbot)
return result_files
def _breakdown_section_content(self, content: str) -> List[str]:
"""对文本内容进行分割与合并
主要按段落进行组织,只合并较小的段落以减少片段数量
保留原始段落结构,不对长段落进行强制分割
针对中英文设置不同的阈值,因为字符密度不同
"""
# 先按段落分割文本
paragraphs = content.split('\n\n')
# 检测语言类型
chinese_char_count = sum(1 for char in content if '\u4e00' <= char <= '\u9fff')
is_chinese_text = chinese_char_count / max(1, len(content)) > 0.3
# 根据语言类型设置不同的阈值(只用于合并小段落)
if is_chinese_text:
# 中文文本:一个汉字就是一个字符,信息密度高
min_chunk_size = 300 # 段落合并的最小阈值
target_size = 800 # 理想的段落大小
else:
# 英文文本:一个单词由多个字符组成,信息密度低
min_chunk_size = 600 # 段落合并的最小阈值
target_size = 1600 # 理想的段落大小
# 1. 只合并小段落,不对长段落进行分割
result_fragments = []
current_chunk = []
current_length = 0
for para in paragraphs:
# 如果段落太小且不会超过目标大小,则合并
if len(para) < min_chunk_size and current_length + len(para) <= target_size:
current_chunk.append(para)
current_length += len(para)
# 否则,创建新段落
else:
# 如果当前块非空且与当前段落无关,先保存它
if current_chunk and current_length > 0:
result_fragments.append('\n\n'.join(current_chunk))
# 当前段落作为新块
current_chunk = [para]
current_length = len(para)
# 如果当前块大小已接近目标大小,保存并开始新块
if current_length >= target_size:
result_fragments.append('\n\n'.join(current_chunk))
current_chunk = []
current_length = 0
# 保存最后一个块
if current_chunk:
result_fragments.append('\n\n'.join(current_chunk))
# 2. 处理可能过大的片段确保不超过token限制
final_fragments = []
max_token = self._get_token_limit()
for fragment in result_fragments:
# 检查fragment是否可能超出token限制
# 根据语言类型调整token估算
if is_chinese_text:
estimated_tokens = len(fragment) / 1.5 # 中文每个token约1-2个字符
else:
estimated_tokens = len(fragment) / 4 # 英文每个token约4个字符
if estimated_tokens > max_token:
# 即使可能超出限制,也尽量保持段落的完整性
# 使用breakdown_text但设置更大的限制来减少分割
larger_limit = max_token * 0.95 # 使用95%的限制
sub_fragments = breakdown_text_to_satisfy_token_limit(
txt=fragment,
limit=larger_limit,
llm_model=self.llm_kwargs['llm_model']
)
final_fragments.extend(sub_fragments)
else:
final_fragments.append(fragment)
return final_fragments
@CatchException
def 自定义智能文档处理(txt: str, llm_kwargs: Dict, plugin_kwargs: Dict, chatbot: List,
history: List, system_prompt: str, user_request: str):
"""主函数 - 文件到文件处理"""
# 初始化
processor = DocumentProcessor(llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
chatbot.append(["函数插件功能", "文件内容处理:将文档内容按照指定要求处理后输出为多种格式"])
yield from update_ui(chatbot=chatbot, history=history)
# 验证输入路径
if not os.path.exists(txt):
report_exception(chatbot, history, a=f"解析路径: {txt}", b=f"找不到路径或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history)
return
# 验证路径安全性
user_name = chatbot.get_user()
validate_path_safety(txt, user_name)
# 获取文件列表
if os.path.isfile(txt):
# 单个文件处理
file_paths = [txt]
else:
# 目录处理 - 类似批量文件询问插件
project_folder = txt
extract_folder = next((d for d in glob.glob(f'{project_folder}/*')
if os.path.isdir(d) and d.endswith('.extract')), project_folder)
# 排除压缩文件
exclude_patterns = r'/[^/]+\.(zip|rar|7z|tar|gz)$'
file_paths = [f for f in glob.glob(f'{extract_folder}/**', recursive=True)
if os.path.isfile(f) and not re.search(exclude_patterns, f)]
# 过滤支持的文件格式
file_paths = [f for f in file_paths if any(f.lower().endswith(ext) for ext in
list(processor.paper_extractor.SUPPORTED_EXTENSIONS) + ['.json', '.csv', '.xlsx', '.xls'])]
if not file_paths:
report_exception(chatbot, history, a=f"解析路径: {txt}", b="未找到支持的文件类型")
yield from update_ui(chatbot=chatbot, history=history)
return
# 处理文件
if len(file_paths) > 1:
chatbot.append(["发现多个文件", f"共找到 {len(file_paths)} 个文件,将处理第一个文件"])
yield from update_ui(chatbot=chatbot, history=history)
# 只处理第一个文件
file_to_process = file_paths[0]
processed_content = yield from processor.process_file(file_to_process)
if processed_content:
# 保存结果
result_files = processor.save_results(processed_content, file_to_process)
if result_files:
chatbot.append(["处理完成", f"已生成 {len(result_files)} 个结果文件"])
else:
chatbot.append(["处理完成", "但未能保存任何结果文件"])
else:
chatbot.append(["处理失败", "未能生成有效的处理结果"])
yield from update_ui(chatbot=chatbot, history=history)

View File

@@ -7,7 +7,7 @@ from bs4 import BeautifulSoup
from functools import lru_cache
from itertools import zip_longest
from check_proxy import check_proxy
from toolbox import CatchException, update_ui, get_conf, update_ui_latest_msg
from toolbox import CatchException, update_ui, get_conf
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
from request_llms.bridge_all import model_info
from request_llms.bridge_all import predict_no_ui_long_connection
@@ -49,7 +49,7 @@ def search_optimizer(
mutable = ["", time.time(), ""]
llm_kwargs["temperature"] = 0.8
try:
query_json = predict_no_ui_long_connection(
querys_json = predict_no_ui_long_connection(
inputs=query,
llm_kwargs=llm_kwargs,
history=[],
@@ -57,31 +57,31 @@ def search_optimizer(
observe_window=mutable,
)
except Exception:
query_json = "null"
querys_json = "1234"
#* 尝试解码优化后的搜索结果
query_json = re.sub(r"```json|```", "", query_json)
querys_json = re.sub(r"```json|```", "", querys_json)
try:
queries = json.loads(query_json)
querys = json.loads(querys_json)
except Exception:
#* 如果解码失败,降低温度再试一次
try:
llm_kwargs["temperature"] = 0.4
query_json = predict_no_ui_long_connection(
querys_json = predict_no_ui_long_connection(
inputs=query,
llm_kwargs=llm_kwargs,
history=[],
sys_prompt=sys_prompt,
observe_window=mutable,
)
query_json = re.sub(r"```json|```", "", query_json)
queries = json.loads(query_json)
querys_json = re.sub(r"```json|```", "", querys_json)
querys = json.loads(querys_json)
except Exception:
#* 如果再次失败,直接返回原始问题
queries = [query]
querys = [query]
links = []
success = 0
Exceptions = ""
for q in queries:
for q in querys:
try:
link = searxng_request(q, proxies, categories, searxng_url, engines=engines)
if len(link) > 0:
@@ -115,8 +115,7 @@ def get_auth_ip():
def searxng_request(query, proxies, categories='general', searxng_url=None, engines=None):
if searxng_url is None:
urls = get_conf("SEARXNG_URLS")
url = random.choice(urls)
url = get_conf("SEARXNG_URL")
else:
url = searxng_url
@@ -175,17 +174,10 @@ def scrape_text(url, proxies) -> str:
Returns:
str: The scraped text
"""
from loguru import logger
headers = {
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36',
'Content-Type': 'text/plain',
}
# 首先采用Jina进行文本提取
if get_conf("JINA_API_KEY"):
try: return jina_scrape_text(url)
except: logger.debug("Jina API 请求失败,回到旧方法")
try:
response = requests.get(url, headers=headers, proxies=proxies, timeout=8)
if response.encoding == "ISO-8859-1": response.encoding = response.apparent_encoding
@@ -201,56 +193,6 @@ def scrape_text(url, proxies) -> str:
return text
def jina_scrape_text(url) -> str:
"jina_39727421c8fa4e4fa9bd698e5211feaaDyGeVFESNrRaepWiLT0wmHYJSh-d"
headers = {
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36',
'Content-Type': 'text/plain',
"X-Retain-Images": "none",
"Authorization": f'Bearer {get_conf("JINA_API_KEY")}'
}
response = requests.get("https://r.jina.ai/" + url, headers=headers, proxies=None, timeout=8)
if response.status_code != 200:
raise ValueError("Jina API 请求失败,开始尝试旧方法!" + response.text)
if response.encoding == "ISO-8859-1": response.encoding = response.apparent_encoding
result = response.text
result = result.replace("\\[", "[").replace("\\]", "]").replace("\\(", "(").replace("\\)", ")")
return response.text
def internet_search_with_analysis_prompt(prompt, analysis_prompt, llm_kwargs, chatbot):
from toolbox import get_conf
proxies = get_conf('proxies')
categories = 'general'
searxng_url = None # 使用默认的searxng_url
engines = None # 使用默认的搜索引擎
yield from update_ui_latest_msg(lastmsg=f"检索中: {prompt} ...", chatbot=chatbot, history=[], delay=1)
urls = searxng_request(prompt, proxies, categories, searxng_url, engines=engines)
yield from update_ui_latest_msg(lastmsg=f"依次访问搜索到的网站 ...", chatbot=chatbot, history=[], delay=1)
if len(urls) == 0:
return None
max_search_result = 5 # 最多收纳多少个网页的结果
history = []
for index, url in enumerate(urls[:max_search_result]):
yield from update_ui_latest_msg(lastmsg=f"依次访问搜索到的网站: {url['link']} ...", chatbot=chatbot, history=[], delay=1)
res = scrape_text(url['link'], proxies)
prefix = f"{index}份搜索结果 [源自{url['source'][0]}搜索] {url['title'][:25]}"
history.extend([prefix, res])
i_say = f"从以上搜索结果中抽取信息,然后回答问题:{prompt} {analysis_prompt}"
i_say, history = input_clipping( # 裁剪输入从最长的条目开始裁剪防止爆token
inputs=i_say,
history=history,
max_token_limit=8192
)
gpt_say = predict_no_ui_long_connection(
inputs=i_say,
llm_kwargs=llm_kwargs,
history=history,
sys_prompt="请从搜索结果中抽取信息,对最相关的两个搜索结果进行总结,然后回答问题。",
console_silence=False,
)
return gpt_say
@CatchException
def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
optimizer_history = history[:-8]
@@ -271,52 +213,23 @@ def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
urls = search_optimizer(txt, proxies, optimizer_history, llm_kwargs, optimizer, categories, searxng_url, engines)
history = []
if len(urls) == 0:
chatbot.append((f"结论:{txt}", "[Local Message] 受到限制无法从searxng获取信息请尝试更换搜索引擎。"))
chatbot.append((f"结论:{txt}",
"[Local Message] 受到限制无法从searxng获取信息请尝试更换搜索引擎。"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# ------------- < 第2步依次访问网页 > -------------
from concurrent.futures import ThreadPoolExecutor
from textwrap import dedent
max_search_result = 5 # 最多收纳多少个网页的结果
if optimizer == "开启(增强)":
max_search_result = 8
template = dedent("""
<details>
<summary>{TITLE}</summary>
<div class="search_result">{URL}</div>
<div class="search_result">{CONTENT}</div>
</details>
""")
buffer = ""
# 创建线程池
with ThreadPoolExecutor(max_workers=5) as executor:
# 提交任务到线程池
futures = []
chatbot.append(["联网检索中 ...", None])
for index, url in enumerate(urls[:max_search_result]):
future = executor.submit(scrape_text, url['link'], proxies)
futures.append((index, future, url))
# 处理完成的任务
for index, future, url in futures:
# 开始
prefix = f"正在加载 第{index+1}份搜索结果 [源自{url['source'][0]}搜索] {url['title'][:25]}"
string_structure = template.format(TITLE=prefix, URL=url['link'], CONTENT="正在加载,请稍后 ......")
yield from update_ui_latest_msg(lastmsg=(buffer + string_structure), chatbot=chatbot, history=history, delay=0.1) # 刷新界面
# 获取结果
res = future.result()
# 显示结果
prefix = f"{index+1}份搜索结果 [源自{url['source'][0]}搜索] {url['title'][:25]}"
string_structure = template.format(TITLE=prefix, URL=url['link'], CONTENT=res[:1000] + "......")
buffer += string_structure
# 更新历史
res = scrape_text(url['link'], proxies)
prefix = f"{index}份搜索结果 [源自{url['source'][0]}搜索] {url['title'][:25]}"
history.extend([prefix, res])
yield from update_ui_latest_msg(lastmsg=buffer, chatbot=chatbot, history=history, delay=0.1) # 刷新界面
res_squeeze = res.replace('\n', '...')
chatbot[-1] = [prefix + "\n\n" + res_squeeze[:500] + "......", None]
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# ------------- < 第3步ChatGPT综合 > -------------
if (optimizer != "开启(增强)"):

View File

@@ -1,4 +1,4 @@
import random
from toolbox import get_conf
from crazy_functions.Internet_GPT import 连接网络回答问题
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
@@ -20,9 +20,6 @@ class NetworkGPT_Wrap(GptAcademicPluginTemplate):
第三个参数,名称`allow_cache`,参数`type`声明这是一个下拉菜单,下拉菜单上方显示`title`+`description`,下拉菜单的选项为`options``default_value`为下拉菜单默认值;
"""
urls = get_conf("SEARXNG_URLS")
url = random.choice(urls)
gui_definition = {
"main_input":
ArgProperty(title="输入问题", description="待通过互联网检索的问题,会自动读取输入框内容", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
@@ -33,17 +30,16 @@ class NetworkGPT_Wrap(GptAcademicPluginTemplate):
"optimizer":
ArgProperty(title="搜索优化", options=["关闭", "开启", "开启(增强)"], default_value="关闭", description="是否使用搜索增强。注意这可能会消耗较多token", type="dropdown").model_dump_json(),
"searxng_url":
ArgProperty(title="Searxng服务地址", description="输入Searxng的地址", default_value=url, type="string").model_dump_json(), # 主输入,自动从输入框同步
ArgProperty(title="Searxng服务地址", description="输入Searxng的地址", default_value=get_conf("SEARXNG_URL"), type="string").model_dump_json(), # 主输入,自动从输入框同步
}
return gui_definition
def execute(txt, llm_kwargs, plugin_kwargs:dict, chatbot, history, system_prompt, user_request):
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
"""
执行插件
"""
if plugin_kwargs.get("categories", None) == "网页": plugin_kwargs["categories"] = "general"
elif plugin_kwargs.get("categories", None) == "学术论文": plugin_kwargs["categories"] = "science"
else: plugin_kwargs["categories"] = "general"
if plugin_kwargs["categories"] == "网页": plugin_kwargs["categories"] = "general"
if plugin_kwargs["categories"] == "学术论文": plugin_kwargs["categories"] = "science"
yield from 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)

View File

@@ -1,9 +1,9 @@
from toolbox import update_ui, trimmed_format_exc, get_conf, get_log_folder, promote_file_to_downloadzone, check_repeat_upload, map_file_to_sha256
from toolbox import CatchException, report_exception, update_ui_latest_msg, zip_result, gen_time_str
from toolbox import CatchException, report_exception, update_ui_lastest_msg, zip_result, gen_time_str
from functools import partial
from loguru import logger
import glob, os, requests, time, json, tarfile, threading
import glob, os, requests, time, json, tarfile
pj = os.path.join
ARXIV_CACHE_DIR = get_conf("ARXIV_CACHE_DIR")
@@ -41,7 +41,7 @@ def switch_prompt(pfg, mode, more_requirement):
return inputs_array, sys_prompt_array
def descend_to_extracted_folder_if_exist(project_folder):
def desend_to_extracted_folder_if_exist(project_folder):
"""
Descend into the extracted folder if it exists, otherwise return the original folder.
@@ -130,7 +130,7 @@ def arxiv_download(chatbot, history, txt, allow_cache=True):
if not txt.startswith('https://arxiv.org/abs/'):
msg = f"解析arxiv网址失败, 期望格式例如: https://arxiv.org/abs/1707.06690。实际得到格式: {url_}"
yield from update_ui_latest_msg(msg, chatbot=chatbot, history=history) # 刷新界面
yield from update_ui_lastest_msg(msg, chatbot=chatbot, history=history) # 刷新界面
return msg, None
# <-------------- set format ------------->
arxiv_id = url_.split('/abs/')[-1]
@@ -138,43 +138,25 @@ def arxiv_download(chatbot, history, txt, allow_cache=True):
cached_translation_pdf = check_cached_translation_pdf(arxiv_id)
if cached_translation_pdf and allow_cache: return cached_translation_pdf, arxiv_id
extract_dst = pj(ARXIV_CACHE_DIR, arxiv_id, 'extract')
url_tar = url_.replace('/abs/', '/e-print/')
translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'e-print')
dst = pj(translation_dir, arxiv_id + '.tar')
extract_dst = pj(ARXIV_CACHE_DIR, arxiv_id, 'extract')
os.makedirs(translation_dir, exist_ok=True)
# <-------------- download arxiv source file ------------->
def fix_url_and_download():
# for url_tar in [url_.replace('/abs/', '/e-print/'), url_.replace('/abs/', '/src/')]:
for url_tar in [url_.replace('/abs/', '/src/'), url_.replace('/abs/', '/e-print/')]:
# <-------------- download arxiv source file ------------->
dst = pj(translation_dir, arxiv_id + '.tar')
if os.path.exists(dst):
yield from update_ui_lastest_msg("调用缓存", chatbot=chatbot, history=history) # 刷新界面
else:
yield from update_ui_lastest_msg("开始下载", chatbot=chatbot, history=history) # 刷新界面
proxies = get_conf('proxies')
r = requests.get(url_tar, proxies=proxies)
if r.status_code == 200:
with open(dst, 'wb+') as f:
f.write(r.content)
return True
return False
if os.path.exists(dst) and allow_cache:
yield from update_ui_latest_msg(f"调用缓存 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
success = True
else:
yield from update_ui_latest_msg(f"开始下载 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
success = fix_url_and_download()
yield from update_ui_latest_msg(f"下载完成 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
if not success:
yield from update_ui_latest_msg(f"下载失败 {arxiv_id}", chatbot=chatbot, history=history)
raise tarfile.ReadError(f"论文下载失败 {arxiv_id}")
# <-------------- extract file ------------->
yield from update_ui_lastest_msg("下载完成", chatbot=chatbot, history=history) # 刷新界面
from toolbox import extract_archive
try:
extract_archive(file_path=dst, dest_dir=extract_dst)
except tarfile.ReadError:
os.remove(dst)
raise tarfile.ReadError(f"论文下载失败")
return extract_dst, arxiv_id
@@ -288,7 +270,7 @@ def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, histo
return
# <-------------- if is a zip/tar file ------------->
project_folder = descend_to_extracted_folder_if_exist(project_folder)
project_folder = desend_to_extracted_folder_if_exist(project_folder)
# <-------------- move latex project away from temp folder ------------->
from shared_utils.fastapi_server import validate_path_safety
@@ -338,17 +320,11 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
# <-------------- more requirements ------------->
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
more_req = plugin_kwargs.get("advanced_arg", "")
no_cache = ("--no-cache" in more_req)
if no_cache: more_req = more_req.replace("--no-cache", "").strip()
allow_gptac_cloud_io = ("--allow-cloudio" in more_req) # 从云端下载翻译结果,以及上传翻译结果到云端
if allow_gptac_cloud_io: more_req = more_req.replace("--allow-cloudio", "").strip()
no_cache = more_req.startswith("--no-cache")
if no_cache: more_req.lstrip("--no-cache")
allow_cache = not no_cache
_switch_prompt_ = partial(switch_prompt, more_requirement=more_req)
# <-------------- check deps ------------->
try:
import glob, os, time, subprocess
@@ -365,7 +341,7 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
try:
txt, arxiv_id = yield from arxiv_download(chatbot, history, txt, allow_cache)
except tarfile.ReadError as e:
yield from update_ui_latest_msg(
yield from update_ui_lastest_msg(
"无法自动下载该论文的Latex源码请前往arxiv打开此论文下载页面点other Formats然后download source手动下载latex源码包。接下来调用本地Latex翻译插件即可。",
chatbot=chatbot, history=history)
return
@@ -375,20 +351,6 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# #################################################################
if allow_gptac_cloud_io and arxiv_id:
# 访问 GPTAC学术云查询云端是否存在该论文的翻译版本
from crazy_functions.latex_fns.latex_actions import check_gptac_cloud
success, downloaded = check_gptac_cloud(arxiv_id, chatbot)
if success:
chatbot.append([
f"检测到GPTAC云端存在翻译版本, 如果不满意翻译结果, 请禁用云端分享, 然后重新执行。",
None
])
yield from update_ui(chatbot=chatbot, history=history)
return
#################################################################
if os.path.exists(txt):
project_folder = txt
else:
@@ -404,7 +366,7 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
return
# <-------------- if is a zip/tar file ------------->
project_folder = descend_to_extracted_folder_if_exist(project_folder)
project_folder = desend_to_extracted_folder_if_exist(project_folder)
# <-------------- move latex project away from temp folder ------------->
from shared_utils.fastapi_server import validate_path_safety
@@ -426,21 +388,14 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
# <-------------- zip PDF ------------->
zip_res = zip_result(project_folder)
if success:
if allow_gptac_cloud_io and arxiv_id:
# 如果用户允许我们将翻译好的arxiv论文PDF上传到GPTAC学术云
from crazy_functions.latex_fns.latex_actions import upload_to_gptac_cloud_if_user_allow
threading.Thread(target=upload_to_gptac_cloud_if_user_allow,
args=(chatbot, arxiv_id), daemon=True).start()
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
yield from update_ui(chatbot=chatbot, history=history)
yield from update_ui(chatbot=chatbot, history=history);
time.sleep(1) # 刷新界面
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
else:
chatbot.append((f"失败了",
'虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 您可以到Github Issue区, 用该压缩包进行反馈。如系统是Linux请检查系统字体见Github wiki ...'))
yield from update_ui(chatbot=chatbot, history=history)
yield from update_ui(chatbot=chatbot, history=history);
time.sleep(1) # 刷新界面
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
@@ -518,7 +473,7 @@ def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, h
# repeat, project_folder = check_repeat_upload(file_manifest[0], hash_tag)
# if repeat:
# yield from update_ui_latest_msg(f"发现重复上传,请查收结果(压缩包)...", chatbot=chatbot, history=history)
# yield from update_ui_lastest_msg(f"发现重复上传,请查收结果(压缩包)...", chatbot=chatbot, history=history)
# try:
# translate_pdf = [f for f in glob.glob(f'{project_folder}/**/merge_translate_zh.pdf', recursive=True)][0]
# promote_file_to_downloadzone(translate_pdf, rename_file=None, chatbot=chatbot)
@@ -531,7 +486,7 @@ def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, h
# report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"发现重复上传,但是无法找到相关文件")
# yield from update_ui(chatbot=chatbot, history=history)
# else:
# yield from update_ui_latest_msg(f"未发现重复上传", chatbot=chatbot, history=history)
# yield from update_ui_lastest_msg(f"未发现重复上传", chatbot=chatbot, history=history)
# <-------------- convert pdf into tex ------------->
chatbot.append([f"解析项目: {txt}", "正在将PDF转换为tex项目请耐心等待..."])
@@ -543,7 +498,7 @@ def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, h
return False
# <-------------- translate latex file into Chinese ------------->
yield from update_ui_latest_msg("正在tex项目将翻译为中文...", chatbot=chatbot, history=history)
yield from update_ui_lastest_msg("正在tex项目将翻译为中文...", chatbot=chatbot, history=history)
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex文件: {txt}")
@@ -551,7 +506,7 @@ def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, h
return
# <-------------- if is a zip/tar file ------------->
project_folder = descend_to_extracted_folder_if_exist(project_folder)
project_folder = desend_to_extracted_folder_if_exist(project_folder)
# <-------------- move latex project away from temp folder ------------->
from shared_utils.fastapi_server import validate_path_safety
@@ -559,7 +514,7 @@ def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, h
project_folder = move_project(project_folder)
# <-------------- set a hash tag for repeat-checking ------------->
with open(pj(project_folder, hash_tag + '.tag'), 'w', encoding='utf8') as f:
with open(pj(project_folder, hash_tag + '.tag'), 'w') as f:
f.write(hash_tag)
f.close()
@@ -571,7 +526,7 @@ def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, h
switch_prompt=_switch_prompt_)
# <-------------- compile PDF ------------->
yield from update_ui_latest_msg("正在将翻译好的项目tex项目编译为PDF...", chatbot=chatbot, history=history)
yield from update_ui_lastest_msg("正在将翻译好的项目tex项目编译为PDF...", chatbot=chatbot, history=history)
success = yield from 编译Latex(chatbot, history, main_file_original='merge',
main_file_modified='merge_translate_zh', mode='translate_zh',
work_folder_original=project_folder, work_folder_modified=project_folder,

View File

@@ -30,8 +30,6 @@ class Arxiv_Localize(GptAcademicPluginTemplate):
default_value="", type="string").model_dump_json(), # 高级参数输入区,自动同步
"allow_cache":
ArgProperty(title="是否允许从缓存中调取结果", options=["允许缓存", "从头执行"], default_value="允许缓存", description="", type="dropdown").model_dump_json(),
"allow_cloudio":
ArgProperty(title="是否允许从GPTAC学术云下载(或者上传)翻译结果(仅针对Arxiv论文)", options=["允许", "禁止"], default_value="禁止", description="共享文献,互助互利", type="dropdown").model_dump_json(),
}
return gui_definition
@@ -40,14 +38,9 @@ class Arxiv_Localize(GptAcademicPluginTemplate):
执行插件
"""
allow_cache = plugin_kwargs["allow_cache"]
allow_cloudio = plugin_kwargs["allow_cloudio"]
advanced_arg = plugin_kwargs["advanced_arg"]
if allow_cache == "从头执行": plugin_kwargs["advanced_arg"] = "--no-cache " + plugin_kwargs["advanced_arg"]
# 从云端下载翻译结果,以及上传翻译结果到云端;人人为我,我为人人。
if allow_cloudio == "允许": plugin_kwargs["advanced_arg"] = "--allow-cloudio " + plugin_kwargs["advanced_arg"]
yield from Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)

View File

@@ -65,7 +65,7 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
pfg.file_contents.append(file_content)
# <-------- 拆分过长的Markdown文件 ---------->
pfg.run_file_split(max_token_limit=1024)
pfg.run_file_split(max_token_limit=2048)
n_split = len(pfg.sp_file_contents)
# <-------- 多线程翻译开始 ---------->

View File

@@ -1,5 +1,5 @@
from toolbox import CatchException, check_packages, get_conf
from toolbox import update_ui, update_ui_latest_msg, disable_auto_promotion
from toolbox import update_ui, update_ui_lastest_msg, disable_auto_promotion
from toolbox import trimmed_format_exc_markdown
from crazy_functions.crazy_utils import get_files_from_everything
from crazy_functions.pdf_fns.parse_pdf import get_avail_grobid_url
@@ -47,7 +47,7 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
yield from 解析PDF_基于DOC2X(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, DOC2X_API_KEY, user_request)
return
except:
chatbot.append([None, f"DOC2X服务不可用请检查报错详细{trimmed_format_exc_markdown()}"])
chatbot.append([None, f"DOC2X服务不可用现在将执行效果稍差的旧版代码{trimmed_format_exc_markdown()}"])
yield from update_ui(chatbot=chatbot, history=history)
if method == "GROBID":
@@ -57,9 +57,9 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
yield from 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url)
return
if method == "Classic":
if method == "ClASSIC":
# ------- 第三种方法,早期代码,效果不理想 -------
yield from update_ui_latest_msg("GROBID服务不可用请检查config中的GROBID_URL。作为替代现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
yield from update_ui_lastest_msg("GROBID服务不可用请检查config中的GROBID_URL。作为替代现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
yield from 解析PDF_简单拆解(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
return
@@ -77,7 +77,7 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
if grobid_url is not None:
yield from 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url)
return
yield from update_ui_latest_msg("GROBID服务不可用请检查config中的GROBID_URL。作为替代现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
yield from update_ui_lastest_msg("GROBID服务不可用请检查config中的GROBID_URL。作为替代现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
yield from 解析PDF_简单拆解(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
return

View File

@@ -19,7 +19,7 @@ class PDF_Tran(GptAcademicPluginTemplate):
"additional_prompt":
ArgProperty(title="额外提示词", description="例如:对专有名词、翻译语气等方面的要求", default_value="", type="string").model_dump_json(), # 高级参数输入区,自动同步
"pdf_parse_method":
ArgProperty(title="PDF解析方法", options=["DOC2X", "GROBID", "Classic"], description="", default_value="GROBID", type="dropdown").model_dump_json(),
ArgProperty(title="PDF解析方法", options=["DOC2X", "GROBID", "ClASSIC"], description="", default_value="GROBID", type="dropdown").model_dump_json(),
}
return gui_definition

View File

@@ -1,360 +0,0 @@
import os
import time
import glob
from pathlib import Path
from datetime import datetime
from dataclasses import dataclass
from typing import Dict, List, Generator, Tuple
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from toolbox import update_ui, promote_file_to_downloadzone, write_history_to_file, CatchException, report_exception
from shared_utils.fastapi_server import validate_path_safety
from crazy_functions.paper_fns.paper_download import extract_paper_id, extract_paper_ids, get_arxiv_paper, format_arxiv_id
@dataclass
class PaperQuestion:
"""论文分析问题类"""
id: str # 问题ID
question: str # 问题内容
importance: int # 重要性 (1-55最高)
description: str # 问题描述
class PaperAnalyzer:
"""论文快速分析器"""
def __init__(self, llm_kwargs: Dict, plugin_kwargs: Dict, chatbot: List, history: List, system_prompt: str):
"""初始化分析器"""
self.llm_kwargs = llm_kwargs
self.plugin_kwargs = plugin_kwargs
self.chatbot = chatbot
self.history = history
self.system_prompt = system_prompt
self.paper_content = ""
self.results = {}
# 定义论文分析问题库已合并为4个核心问题
self.questions = [
PaperQuestion(
id="research_and_methods",
question="这篇论文的主要研究问题、目标和方法是什么请分析1)论文的核心研究问题和研究动机2)论文提出的关键方法、模型或理论框架3)这些方法如何解决研究问题。",
importance=5,
description="研究问题与方法"
),
PaperQuestion(
id="findings_and_innovation",
question="论文的主要发现、结论及创新点是什么请分析1)论文的核心结果与主要发现2)作者得出的关键结论3)研究的创新点与对领域的贡献4)与已有工作的区别。",
importance=4,
description="研究发现与创新"
),
PaperQuestion(
id="methodology_and_data",
question="论文使用了什么研究方法和数据请详细分析1)研究设计与实验设置2)数据收集方法与数据集特点3)分析技术与评估方法4)方法学上的合理性。",
importance=3,
description="研究方法与数据"
),
PaperQuestion(
id="limitations_and_impact",
question="论文的局限性、未来方向及潜在影响是什么请分析1)研究的不足与限制因素2)作者提出的未来研究方向3)该研究对学术界和行业可能产生的影响4)研究结果的适用范围与推广价值。",
importance=2,
description="局限性与影响"
),
]
# 按重要性排序
self.questions.sort(key=lambda q: q.importance, reverse=True)
def _load_paper(self, paper_path: str) -> Generator:
from crazy_functions.doc_fns.text_content_loader import TextContentLoader
"""加载论文内容"""
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 使用TextContentLoader读取文件
loader = TextContentLoader(self.chatbot, self.history)
yield from loader.execute_single_file(paper_path)
# 获取加载的内容
if len(self.history) >= 2 and self.history[-2]:
self.paper_content = self.history[-2]
yield from update_ui(chatbot=self.chatbot, history=self.history)
return True
else:
self.chatbot.append(["错误", "无法读取论文内容,请检查文件是否有效"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return False
def _analyze_question(self, question: PaperQuestion) -> Generator:
"""分析单个问题 - 直接显示问题和答案"""
try:
# 创建分析提示
prompt = f"请基于以下论文内容回答问题:\n\n{self.paper_content}\n\n问题:{question.question}"
# 使用单线程版本的请求函数
response = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=prompt,
inputs_show_user=question.question, # 显示问题本身
llm_kwargs=self.llm_kwargs,
chatbot=self.chatbot,
history=[], # 空历史,确保每个问题独立分析
sys_prompt="你是一个专业的科研论文分析助手,需要仔细阅读论文内容并回答问题。请保持客观、准确,并基于论文内容提供深入分析。"
)
if response:
self.results[question.id] = response
return True
return False
except Exception as e:
self.chatbot.append(["错误", f"分析问题时出错: {str(e)}"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return False
def _generate_summary(self) -> Generator:
"""生成最终总结报告"""
self.chatbot.append(["生成报告", "正在整合分析结果,生成最终报告..."])
yield from update_ui(chatbot=self.chatbot, history=self.history)
summary_prompt = "请基于以下对论文的各个方面的分析,生成一份全面的论文解读报告。报告应该简明扼要地呈现论文的关键内容,并保持逻辑连贯性。"
for q in self.questions:
if q.id in self.results:
summary_prompt += f"\n\n关于{q.description}的分析:\n{self.results[q.id]}"
try:
# 使用单线程版本的请求函数,可以在前端实时显示生成结果
response = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=summary_prompt,
inputs_show_user="生成论文解读报告",
llm_kwargs=self.llm_kwargs,
chatbot=self.chatbot,
history=[],
sys_prompt="你是一个科研论文解读专家,请将多个方面的分析整合为一份完整、连贯、有条理的报告。报告应当重点突出,层次分明,并且保持学术性和客观性。"
)
if response:
return response
return "报告生成失败"
except Exception as e:
self.chatbot.append(["错误", f"生成报告时出错: {str(e)}"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return "报告生成失败: " + str(e)
def save_report(self, report: str) -> Generator:
"""保存分析报告"""
timestamp = time.strftime("%Y%m%d_%H%M%S")
# 保存为Markdown文件
try:
md_content = f"# 论文快速解读报告\n\n{report}"
for q in self.questions:
if q.id in self.results:
md_content += f"\n\n## {q.description}\n\n{self.results[q.id]}"
result_file = write_history_to_file(
history=[md_content],
file_basename=f"论文解读_{timestamp}.md"
)
if result_file and os.path.exists(result_file):
promote_file_to_downloadzone(result_file, chatbot=self.chatbot)
self.chatbot.append(["保存成功", f"解读报告已保存至: {os.path.basename(result_file)}"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
else:
self.chatbot.append(["警告", "保存报告成功但找不到文件"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
except Exception as e:
self.chatbot.append(["警告", f"保存报告失败: {str(e)}"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
def analyze_paper(self, paper_path: str) -> Generator:
"""分析论文主流程"""
# 加载论文
success = yield from self._load_paper(paper_path)
if not success:
return
# 分析关键问题 - 直接询问每个问题,不显示进度信息
for question in self.questions:
yield from self._analyze_question(question)
# 生成总结报告
final_report = yield from self._generate_summary()
# 显示最终报告
# self.chatbot.append(["论文解读报告", final_report])
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 保存报告
yield from self.save_report(final_report)
def _find_paper_file(path: str) -> str:
"""查找路径中的论文文件(简化版)"""
if os.path.isfile(path):
return path
# 支持的文件扩展名(按优先级排序)
extensions = ["pdf", "docx", "doc", "txt", "md", "tex"]
# 简单地遍历目录
if os.path.isdir(path):
try:
for ext in extensions:
# 手动检查每个可能的文件而不使用glob
potential_file = os.path.join(path, f"paper.{ext}")
if os.path.exists(potential_file) and os.path.isfile(potential_file):
return potential_file
# 如果没找到特定命名的文件,检查目录中的所有文件
for file in os.listdir(path):
file_path = os.path.join(path, file)
if os.path.isfile(file_path):
file_ext = file.split('.')[-1].lower() if '.' in file else ""
if file_ext in extensions:
return file_path
except Exception:
pass # 忽略任何错误
return None
def download_paper_by_id(paper_info, chatbot, history) -> str:
"""下载论文并返回保存路径
Args:
paper_info: 元组包含论文ID类型arxiv或doi和ID值
chatbot: 聊天机器人对象
history: 历史记录
Returns:
str: 下载的论文路径或None
"""
from crazy_functions.review_fns.data_sources.scihub_source import SciHub
id_type, paper_id = paper_info
# 创建保存目录 - 使用时间戳创建唯一文件夹
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
user_name = chatbot.get_user() if hasattr(chatbot, 'get_user') else "default"
from toolbox import get_log_folder, get_user
base_save_dir = get_log_folder(get_user(chatbot), plugin_name='paper_download')
save_dir = os.path.join(base_save_dir, f"papers_{timestamp}")
if not os.path.exists(save_dir):
os.makedirs(save_dir)
save_path = Path(save_dir)
chatbot.append([f"下载论文", f"正在下载{'arXiv' if id_type == 'arxiv' else 'DOI'} {paper_id} 的论文..."])
update_ui(chatbot=chatbot, history=history)
pdf_path = None
try:
if id_type == 'arxiv':
# 使用改进的arxiv查询方法
formatted_id = format_arxiv_id(paper_id)
paper_result = get_arxiv_paper(formatted_id)
if not paper_result:
chatbot.append([f"下载失败", f"未找到arXiv论文: {paper_id}"])
update_ui(chatbot=chatbot, history=history)
return None
# 下载PDF
filename = f"arxiv_{paper_id.replace('/', '_')}.pdf"
pdf_path = str(save_path / filename)
paper_result.download_pdf(filename=pdf_path)
else: # doi
# 下载DOI
sci_hub = SciHub(
doi=paper_id,
path=save_path
)
pdf_path = sci_hub.fetch()
# 检查下载结果
if pdf_path and os.path.exists(pdf_path):
promote_file_to_downloadzone(pdf_path, chatbot=chatbot)
chatbot.append([f"下载成功", f"已成功下载论文: {os.path.basename(pdf_path)}"])
update_ui(chatbot=chatbot, history=history)
return pdf_path
else:
chatbot.append([f"下载失败", f"论文下载失败: {paper_id}"])
update_ui(chatbot=chatbot, history=history)
return None
except Exception as e:
chatbot.append([f"下载错误", f"下载论文时出错: {str(e)}"])
update_ui(chatbot=chatbot, history=history)
return None
@CatchException
def 快速论文解读(txt: str, llm_kwargs: Dict, plugin_kwargs: Dict, chatbot: List,
history: List, system_prompt: str, user_request: str):
"""主函数 - 论文快速解读"""
# 初始化分析器
chatbot.append(["函数插件功能及使用方式", "论文快速解读:通过分析论文的关键要素,帮助您迅速理解论文内容,适用于各学科领域的科研论文。 <br><br>📋 使用方式:<br>1、直接上传PDF文件或者输入DOI号仅针对SCI hub存在的论文或arXiv ID如2501.03916<br>2、点击插件开始分析"])
yield from update_ui(chatbot=chatbot, history=history)
paper_file = None
# 检查输入是否为论文IDarxiv或DOI
paper_info = extract_paper_id(txt)
if paper_info:
# 如果是论文ID下载论文
chatbot.append(["检测到论文ID", f"检测到{'arXiv' if paper_info[0] == 'arxiv' else 'DOI'} ID: {paper_info[1]},准备下载论文..."])
yield from update_ui(chatbot=chatbot, history=history)
# 下载论文 - 完全重新实现
paper_file = download_paper_by_id(paper_info, chatbot, history)
if not paper_file:
report_exception(chatbot, history, a=f"下载论文失败", b=f"无法下载{'arXiv' if paper_info[0] == 'arxiv' else 'DOI'}论文: {paper_info[1]}")
yield from update_ui(chatbot=chatbot, history=history)
return
else:
# 检查输入路径
if not os.path.exists(txt):
report_exception(chatbot, history, a=f"解析论文: {txt}", b=f"找不到文件或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history)
return
# 验证路径安全性
user_name = chatbot.get_user()
validate_path_safety(txt, user_name)
# 查找论文文件
paper_file = _find_paper_file(txt)
if not paper_file:
report_exception(chatbot, history, a=f"解析论文", b=f"在路径 {txt} 中未找到支持的论文文件")
yield from update_ui(chatbot=chatbot, history=history)
return
yield from update_ui(chatbot=chatbot, history=history)
# 增加调试信息检查paper_file的类型和值
chatbot.append(["文件类型检查", f"paper_file类型: {type(paper_file)}, 值: {paper_file}"])
yield from update_ui(chatbot=chatbot, history=history)
chatbot.pop() # 移除调试信息
# 确保paper_file是字符串
if paper_file is not None and not isinstance(paper_file, str):
# 尝试转换为字符串
try:
paper_file = str(paper_file)
except:
report_exception(chatbot, history, a=f"类型错误", b=f"论文路径不是有效的字符串: {type(paper_file)}")
yield from update_ui(chatbot=chatbot, history=history)
return
# 分析论文
chatbot.append(["开始分析", f"正在分析论文: {os.path.basename(paper_file)}"])
yield from update_ui(chatbot=chatbot, history=history)
analyzer = PaperAnalyzer(llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
yield from analyzer.analyze_paper(paper_file)

View File

@@ -1,67 +1,31 @@
import os,glob
from typing import List
from shared_utils.fastapi_server import validate_path_safety
from toolbox import report_exception
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_latest_msg
from shared_utils.fastapi_server import validate_path_safety
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_lastest_msg
from crazy_functions.crazy_utils import input_clipping
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
RAG_WORKER_REGISTER = {}
MAX_HISTORY_ROUND = 5
MAX_CONTEXT_TOKEN_LIMIT = 4096
REMEMBER_PREVIEW = 1000
@CatchException
def handle_document_upload(files: List[str], llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request, rag_worker):
"""
Handles document uploads by extracting text and adding it to the vector store.
"""
from llama_index.core import Document
from crazy_functions.rag_fns.rag_file_support import extract_text, supports_format
user_name = chatbot.get_user()
checkpoint_dir = get_log_folder(user_name, plugin_name='experimental_rag')
for file_path in files:
try:
validate_path_safety(file_path, user_name)
text = extract_text(file_path)
if text is None:
chatbot.append(
[f"上传文件: {os.path.basename(file_path)}", f"文件解析失败无法提取文本内容请更换文件。失败原因可能为1.文档格式过于复杂2. 不支持的文件格式,支持的文件格式后缀有:" + ", ".join(supports_format)])
else:
chatbot.append(
[f"上传文件: {os.path.basename(file_path)}", f"上传文件前50个字符为:{text[:50]}"])
document = Document(text=text, metadata={"source": file_path})
rag_worker.add_documents_to_vector_store([document])
chatbot.append([f"上传文件: {os.path.basename(file_path)}", "文件已成功添加到知识库。"])
except Exception as e:
report_exception(chatbot, history, a=f"处理文件: {file_path}", b=str(e))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# Main Q&A function with document upload support
@CatchException
def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
# import vector store lib
VECTOR_STORE_TYPE = "Milvus"
if VECTOR_STORE_TYPE == "Milvus":
try:
from crazy_functions.rag_fns.milvus_worker import MilvusRagWorker as LlamaIndexRagWorker
except:
VECTOR_STORE_TYPE = "Simple"
if VECTOR_STORE_TYPE == "Simple":
from crazy_functions.rag_fns.llama_index_worker import LlamaIndexRagWorker
RAG_WORKER_REGISTER = {}
MAX_HISTORY_ROUND = 5
MAX_CONTEXT_TOKEN_LIMIT = 4096
REMEMBER_PREVIEW = 1000
@CatchException
def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
# 1. we retrieve rag worker from global context
user_name = chatbot.get_user()
checkpoint_dir = get_log_folder(user_name, plugin_name='experimental_rag')
if user_name in RAG_WORKER_REGISTER:
rag_worker = RAG_WORKER_REGISTER[user_name]
else:
@@ -69,37 +33,21 @@ def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, u
user_name,
llm_kwargs,
checkpoint_dir=checkpoint_dir,
auto_load_checkpoint=True
)
auto_load_checkpoint=True)
current_context = f"{VECTOR_STORE_TYPE} @ {checkpoint_dir}"
tip = "提示输入“清空向量数据库”可以清空RAG向量数据库"
# 2. Handle special commands
if os.path.exists(txt) and os.path.isdir(txt):
project_folder = txt
validate_path_safety(project_folder, chatbot.get_user())
# Extract file paths from the user input
# Assuming the user inputs file paths separated by commas after the command
file_paths = [f for f in glob.glob(f'{project_folder}/**/*', recursive=True)]
chatbot.append([txt, f'正在处理上传的文档 ({current_context}) ...'])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
yield from handle_document_upload(file_paths, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request, rag_worker)
return
elif txt == "清空向量数据库":
if txt == "清空向量数据库":
chatbot.append([txt, f'正在清空 ({current_context}) ...'])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
rag_worker.purge_vector_store()
yield from update_ui_latest_msg('已清空', chatbot, history, delay=0) # 刷新界面
rag_worker.purge()
yield from update_ui_lastest_msg('已清空', chatbot, history, delay=0) # 刷新界面
return
# 3. Normal Q&A processing
chatbot.append([txt, f'正在召回知识 ({current_context}) ...'])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 4. Clip history to reduce token consumption
# 2. clip history to reduce token consumption
# 2-1. reduce chat round
txt_origin = txt
if len(history) > MAX_HISTORY_ROUND * 2:
@@ -107,47 +55,41 @@ def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, u
txt_clip, history, flags = input_clipping(txt, history, max_token_limit=MAX_CONTEXT_TOKEN_LIMIT, return_clip_flags=True)
input_is_clipped_flag = (flags["original_input_len"] != flags["clipped_input_len"])
# 5. If input is clipped, add input to vector store before retrieve
# 2-2. if input is clipped, add input to vector store before retrieve
if input_is_clipped_flag:
yield from update_ui_latest_msg('检测到长输入, 正在向量化 ...', chatbot, history, delay=0) # 刷新界面
# Save input to vector store
yield from update_ui_lastest_msg('检测到长输入, 正在向量化 ...', chatbot, history, delay=0) # 刷新界面
# save input to vector store
rag_worker.add_text_to_vector_store(txt_origin)
yield from update_ui_latest_msg('向量化完成 ...', chatbot, history, delay=0) # 刷新界面
yield from update_ui_lastest_msg('向量化完成 ...', chatbot, history, delay=0) # 刷新界面
if len(txt_origin) > REMEMBER_PREVIEW:
HALF = REMEMBER_PREVIEW//2
i_say_to_remember = txt[:HALF] + f" ...\n...(省略{len(txt_origin)-REMEMBER_PREVIEW}字)...\n... " + txt[-HALF:]
if (flags["original_input_len"] - flags["clipped_input_len"]) > HALF:
txt_clip = txt_clip + f" ...\n...(省略{len(txt_origin)-len(txt_clip)-HALF}字)...\n... " + txt[-HALF:]
else:
pass
i_say = txt_clip
else:
i_say_to_remember = i_say = txt_clip
else:
i_say_to_remember = i_say = txt_clip
# 6. Search vector store and build prompts
# 3. we search vector store and build prompts
nodes = rag_worker.retrieve_from_store_with_query(i_say)
prompt = rag_worker.build_prompt(query=i_say, nodes=nodes)
# 7. Query language model
if len(chatbot) != 0:
chatbot.pop(-1) # Pop temp chat, because we are going to add them again inside `request_gpt_model_in_new_thread_with_ui_alive`
# 4. it is time to query llms
if len(chatbot) != 0: chatbot.pop(-1) # pop temp chat, because we are going to add them again inside `request_gpt_model_in_new_thread_with_ui_alive`
model_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=prompt,
inputs_show_user=i_say,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history=history,
inputs=prompt, inputs_show_user=i_say,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
sys_prompt=system_prompt,
retry_times_at_unknown_error=0
)
# 8. Remember Q&A
yield from update_ui_latest_msg(
model_say + '</br></br>' + f'对话记忆中, 请稍等 ({current_context}) ...',
chatbot, history, delay=0.5
)
# 5. remember what has been asked / answered
yield from update_ui_lastest_msg(model_say + '</br></br>' + f'对话记忆中, 请稍等 ({current_context}) ...', chatbot, history, delay=0.5) # 刷新界面
rag_worker.remember_qa(i_say_to_remember, model_say)
history.extend([i_say, model_say])
# 9. Final UI Update
yield from update_ui_latest_msg(model_say, chatbot, history, delay=0, msg=tip)
yield from update_ui_lastest_msg(model_say, chatbot, history, delay=0, msg=tip) # 刷新界面

View File

@@ -1,5 +1,5 @@
import pickle, os, random
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_latest_msg
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_lastest_msg
from crazy_functions.crazy_utils import input_clipping
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from request_llms.bridge_all import predict_no_ui_long_connection
@@ -9,7 +9,7 @@ from loguru import logger
from typing import List
SOCIAL_NETWORK_WORKER_REGISTER = {}
SOCIAL_NETWOK_WORKER_REGISTER = {}
class SocialNetwork():
def __init__(self):
@@ -78,7 +78,7 @@ class SocialNetworkWorker(SaveAndLoad):
for f in friend.friends_list:
self.add_friend(f)
msg = f"成功添加{len(friend.friends_list)}个联系人: {str(friend.friends_list)}"
yield from update_ui_latest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=0)
yield from update_ui_lastest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=0)
def run(self, txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
@@ -104,12 +104,12 @@ class SocialNetworkWorker(SaveAndLoad):
}
try:
Explanation = '\n'.join([f'{k}: {v["explain_to_llm"]}' for k, v in self.tools_to_select.items()])
Explaination = '\n'.join([f'{k}: {v["explain_to_llm"]}' for k, v in self.tools_to_select.items()])
class UserSociaIntention(BaseModel):
intention_type: str = Field(
description=
f"The type of user intention. You must choose from {self.tools_to_select.keys()}.\n\n"
f"Explanation:\n{Explanation}",
f"Explaination:\n{Explaination}",
default="SocialAdvice"
)
pydantic_cls_instance, err_msg = select_tool(
@@ -118,7 +118,7 @@ class SocialNetworkWorker(SaveAndLoad):
pydantic_cls=UserSociaIntention
)
except Exception as e:
yield from update_ui_latest_msg(
yield from update_ui_lastest_msg(
lastmsg=f"无法理解用户意图 {err_msg}",
chatbot=chatbot,
history=history,
@@ -150,10 +150,10 @@ def I人助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt,
# 1. we retrieve worker from global context
user_name = chatbot.get_user()
checkpoint_dir=get_log_folder(user_name, plugin_name='experimental_rag')
if user_name in SOCIAL_NETWORK_WORKER_REGISTER:
social_network_worker = SOCIAL_NETWORK_WORKER_REGISTER[user_name]
if user_name in SOCIAL_NETWOK_WORKER_REGISTER:
social_network_worker = SOCIAL_NETWOK_WORKER_REGISTER[user_name]
else:
social_network_worker = SOCIAL_NETWORK_WORKER_REGISTER[user_name] = SocialNetworkWorker(
social_network_worker = SOCIAL_NETWOK_WORKER_REGISTER[user_name] = SocialNetworkWorker(
user_name,
llm_kwargs,
checkpoint_dir=checkpoint_dir,

View File

@@ -1,15 +1,12 @@
import os, copy, time
from toolbox import CatchException, report_exception, update_ui, zip_result, promote_file_to_downloadzone, update_ui_latest_msg, get_conf, generate_file_link
from toolbox import CatchException, report_exception, update_ui, zip_result, promote_file_to_downloadzone, update_ui_lastest_msg, get_conf, generate_file_link
from shared_utils.fastapi_server import validate_path_safety
from crazy_functions.crazy_utils import input_clipping
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from crazy_functions.agent_fns.python_comment_agent import PythonCodeComment
from crazy_functions.diagram_fns.file_tree import FileNode
from crazy_functions.agent_fns.watchdog import WatchDog
from shared_utils.advanced_markdown_format import markdown_convertion_for_file
from loguru import logger
def 注释源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
@@ -27,13 +24,12 @@ def 注释源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
file_tree_struct.add_file(file_path, file_path)
# <第一步,逐个文件分析,多线程>
lang = "" if not plugin_kwargs["use_chinese"] else " (you must use Chinese)"
for index, fp in enumerate(file_manifest):
# 读取文件
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read()
prefix = ""
i_say = prefix + f'Please conclude the following source code at {os.path.relpath(fp, project_folder)} with only one sentence{lang}, the code is:\n```{file_content}```'
i_say = prefix + f'Please conclude the following source code at {os.path.relpath(fp, project_folder)} with only one sentence, the code is:\n```{file_content}```'
i_say_show_user = prefix + f'[{index+1}/{len(file_manifest)}] 请用一句话对下面的程序文件做一个整体概述: {fp}'
# 装载请求内容
MAX_TOKEN_SINGLE_FILE = 2560
@@ -41,7 +37,7 @@ def 注释源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
inputs_array.append(i_say)
inputs_show_user_array.append(i_say_show_user)
history_array.append([])
sys_prompt_array.append(f"You are a software architecture analyst analyzing a source code project. Do not dig into details, tell me what the code is doing in general. Your answer must be short, simple and clear{lang}.")
sys_prompt_array.append("You are a software architecture analyst analyzing a source code project. Do not dig into details, tell me what the code is doing in general. Your answer must be short, simple and clear.")
# 文件读取完成,对每一个源代码文件,生成一个请求线程,发送到大模型进行分析
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array = inputs_array,
@@ -54,20 +50,10 @@ def 注释源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
)
# <第二步,逐个文件分析,生成带注释文件>
tasks = ["" for _ in range(len(file_manifest))]
def bark_fn(tasks):
for i in range(len(tasks)): tasks[i] = "watchdog is dead"
wd = WatchDog(timeout=10, bark_fn=lambda: bark_fn(tasks), interval=3, msg="ThreadWatcher timeout")
wd.begin_watch()
from concurrent.futures import ThreadPoolExecutor
executor = ThreadPoolExecutor(max_workers=get_conf('DEFAULT_WORKER_NUM'))
def _task_multi_threading(i_say, gpt_say, fp, file_tree_struct, index):
language = 'Chinese' if plugin_kwargs["use_chinese"] else 'English'
def observe_window_update(x):
if tasks[index] == "watchdog is dead":
raise TimeoutError("ThreadWatcher: watchdog is dead")
tasks[index] = x
pcc = PythonCodeComment(llm_kwargs, plugin_kwargs, language=language, observe_window_update=observe_window_update)
def _task_multi_threading(i_say, gpt_say, fp, file_tree_struct):
pcc = PythonCodeComment(llm_kwargs, language='English')
pcc.read_file(path=fp, brief=gpt_say)
revised_path, revised_content = pcc.begin_comment_source_code(None, None)
file_tree_struct.manifest[fp].revised_path = revised_path
@@ -79,8 +65,7 @@ def 注释源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
with open("crazy_functions/agent_fns/python_comment_compare.html", 'r', encoding='utf-8') as f:
html_template = f.read()
warp = lambda x: "```python\n\n" + x + "\n\n```"
from themes.theme import load_dynamic_theme
_, advanced_css, _, _ = load_dynamic_theme("Default")
from themes.theme import advanced_css
html_template = html_template.replace("ADVANCED_CSS", advanced_css)
html_template = html_template.replace("REPLACE_CODE_FILE_LEFT", pcc.get_markdown_block_in_html(markdown_convertion_for_file(warp(pcc.original_content))))
html_template = html_template.replace("REPLACE_CODE_FILE_RIGHT", pcc.get_markdown_block_in_html(markdown_convertion_for_file(warp(revised_content))))
@@ -88,21 +73,17 @@ def 注释源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
file_tree_struct.manifest[fp].compare_html = compare_html_path
with open(compare_html_path, 'w', encoding='utf-8') as f:
f.write(html_template)
tasks[index] = ""
# print('done 1')
chatbot.append([None, f"正在处理:"])
futures = []
index = 0
for i_say, gpt_say, fp in zip(gpt_response_collection[0::2], gpt_response_collection[1::2], file_manifest):
future = executor.submit(_task_multi_threading, i_say, gpt_say, fp, file_tree_struct, index)
index += 1
future = executor.submit(_task_multi_threading, i_say, gpt_say, fp, file_tree_struct)
futures.append(future)
# <第三步,等待任务完成>
cnt = 0
while True:
cnt += 1
wd.feed()
time.sleep(3)
worker_done = [h.done() for h in futures]
remain = len(worker_done) - sum(worker_done)
@@ -111,18 +92,14 @@ def 注释源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
preview_html_list = []
for done, fp in zip(worker_done, file_manifest):
if not done: continue
if hasattr(file_tree_struct.manifest[fp], 'compare_html'):
preview_html_list.append(file_tree_struct.manifest[fp].compare_html)
else:
logger.error(f"文件: {fp} 的注释结果未能成功")
file_links = generate_file_link(preview_html_list)
yield from update_ui_latest_msg(
f"当前任务: <br/>{'<br/>'.join(tasks)}.<br/>" +
f"剩余源文件数量: {remain}.<br/>" +
f"已完成的文件: {sum(worker_done)}.<br/>" +
yield from update_ui_lastest_msg(
f"剩余源文件数量: {remain}.\n\n" +
f"已完成的文件: {sum(worker_done)}.\n\n" +
file_links +
"<br/>" +
"\n\n" +
''.join(['.']*(cnt % 10 + 1)
), chatbot=chatbot, history=history, delay=0)
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
@@ -143,7 +120,6 @@ def 注释源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
@CatchException
def 注释Python项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
history = [] # 清空历史,以免输入溢出
plugin_kwargs["use_chinese"] = plugin_kwargs.get("use_chinese", False)
import glob, os
if os.path.exists(txt):
project_folder = txt

View File

@@ -1,36 +0,0 @@
from toolbox import get_conf, update_ui
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
from crazy_functions.SourceCode_Comment import 注释Python项目
class SourceCodeComment_Wrap(GptAcademicPluginTemplate):
def __init__(self):
"""
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
"""
pass
def define_arg_selection_menu(self):
"""
定义插件的二级选项菜单
"""
gui_definition = {
"main_input":
ArgProperty(title="路径", description="程序路径(上传文件后自动填写)", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
"use_chinese":
ArgProperty(title="注释语言", options=["英文", "中文"], default_value="英文", description="", type="dropdown").model_dump_json(),
# "use_emoji":
# ArgProperty(title="在注释中使用emoji", options=["禁止", "允许"], default_value="禁止", description="无", type="dropdown").model_dump_json(),
}
return gui_definition
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
"""
执行插件
"""
if plugin_kwargs["use_chinese"] == "中文":
plugin_kwargs["use_chinese"] = True
else:
plugin_kwargs["use_chinese"] = False
yield from 注释Python项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)

View File

@@ -1,204 +0,0 @@
import requests
import random
import time
import re
import json
from bs4 import BeautifulSoup
from functools import lru_cache
from itertools import zip_longest
from check_proxy import check_proxy
from toolbox import CatchException, update_ui, get_conf, promote_file_to_downloadzone, update_ui_latest_msg, generate_file_link
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
from request_llms.bridge_all import model_info
from request_llms.bridge_all import predict_no_ui_long_connection
from crazy_functions.prompts.internet import SearchOptimizerPrompt, SearchAcademicOptimizerPrompt
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
from textwrap import dedent
from loguru import logger
from pydantic import BaseModel, Field
class Query(BaseModel):
search_keyword: str = Field(description="search query for video resource")
class VideoResource(BaseModel):
thought: str = Field(description="analysis of the search results based on the user's query")
title: str = Field(description="title of the video")
author: str = Field(description="author/uploader of the video")
bvid: str = Field(description="unique ID of the video")
another_failsafe_bvid: str = Field(description="provide another bvid, the other one is not working")
def get_video_resource(search_keyword):
from crazy_functions.media_fns.get_media import search_videos
# Search for videos and return the first result
videos = search_videos(
search_keyword
)
# Return the first video if results exist, otherwise return None
return videos
def download_video(bvid, user_name, chatbot, history):
# from experimental_mods.get_bilibili_resource import download_bilibili
from crazy_functions.media_fns.get_media import download_video
# pause a while
tic_time = 8
for i in range(tic_time):
yield from update_ui_latest_msg(
lastmsg=f"即将下载音频。等待{tic_time-i}秒后自动继续, 点击“停止”键取消此操作。",
chatbot=chatbot, history=[], delay=1)
# download audio
chatbot.append((None, "下载音频, 请稍等...")); yield from update_ui(chatbot=chatbot, history=history)
downloaded_files = yield from download_video(bvid, only_audio=True, user_name=user_name, chatbot=chatbot, history=history)
if len(downloaded_files) == 0:
# failed to download audio
return []
# preview
preview_list = [promote_file_to_downloadzone(fp) for fp in downloaded_files]
file_links = generate_file_link(preview_list)
yield from update_ui_latest_msg(f"已完成的文件: <br/>" + file_links, chatbot=chatbot, history=history, delay=0)
chatbot.append((None, f"即将下载视频。"))
# pause a while
tic_time = 16
for i in range(tic_time):
yield from update_ui_latest_msg(
lastmsg=f"即将下载视频。等待{tic_time-i}秒后自动继续, 点击“停止”键取消此操作。",
chatbot=chatbot, history=[], delay=1)
# download video
chatbot.append((None, "下载视频, 请稍等...")); yield from update_ui(chatbot=chatbot, history=history)
downloaded_files_part2 = yield from download_video(bvid, only_audio=False, user_name=user_name, chatbot=chatbot, history=history)
# preview
preview_list = [promote_file_to_downloadzone(fp) for fp in downloaded_files_part2]
file_links = generate_file_link(preview_list)
yield from update_ui_latest_msg(f"已完成的文件: <br/>" + file_links, chatbot=chatbot, history=history, delay=0)
# return
return downloaded_files + downloaded_files_part2
class Strategy(BaseModel):
thought: str = Field(description="analysis of the user's wish, for example, can you recall the name of the resource?")
which_methods: str = Field(description="Which method to use to find the necessary information? choose from 'method_1' and 'method_2'.")
method_1_search_keywords: str = Field(description="Generate keywords to search the internet if you choose method 1, otherwise empty.")
method_2_generate_keywords: str = Field(description="Generate keywords for video download engine if you choose method 2, otherwise empty.")
@CatchException
def 多媒体任务(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
user_wish: str = txt
# query demos:
# - "我想找一首歌里面有句歌词是“turn your face towards the sun”"
# - "一首歌,第一句是红豆生南国"
# - "一首音乐,中国航天任务专用的那首"
# - "戴森球计划在熔岩星球的音乐"
# - "hanser的百变什么精"
# - "打大圣残躯时的bgm"
# - "渊下宫战斗音乐"
# 搜索
chatbot.append((txt, "检索中, 请稍等..."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if "跳过联网搜索" not in user_wish:
# 结构化生成
internet_search_keyword = user_wish
yield from update_ui_latest_msg(lastmsg=f"发起互联网检索: {internet_search_keyword} ...", chatbot=chatbot, history=[], delay=1)
from crazy_functions.Internet_GPT import internet_search_with_analysis_prompt
result = yield from internet_search_with_analysis_prompt(
prompt=internet_search_keyword,
analysis_prompt="请根据搜索结果分析,获取用户需要找的资源的名称、作者、出处等信息。",
llm_kwargs=llm_kwargs,
chatbot=chatbot
)
yield from update_ui_latest_msg(lastmsg=f"互联网检索结论: {result} \n\n 正在生成进一步检索方案 ...", chatbot=chatbot, history=[], delay=1)
rf_req = dedent(f"""
The user wish to get the following resource:
{user_wish}
Meanwhile, you can access another expert's opinion on the user's wish:
{result}
Generate search keywords (less than 5 keywords) for video download engine accordingly.
""")
else:
user_wish = user_wish.replace("跳过联网搜索", "").strip()
rf_req = dedent(f"""
The user wish to get the following resource:
{user_wish}
Generate research keywords (less than 5 keywords) accordingly.
""")
gpt_json_io = GptJsonIO(Query)
inputs = rf_req + gpt_json_io.format_instructions
run_gpt_fn = lambda inputs, sys_prompt: predict_no_ui_long_connection(inputs=inputs, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=[])
analyze_res = run_gpt_fn(inputs, "")
logger.info(analyze_res)
query: Query = gpt_json_io.generate_output_auto_repair(analyze_res, run_gpt_fn)
video_engine_keywords = query.search_keyword
# 关键词展示
chatbot.append((None, f"检索关键词已确认: {video_engine_keywords}。筛选中, 请稍等..."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 获取候选资源
candidate_dictionary: dict = get_video_resource(video_engine_keywords)
candidate_dictionary_as_str = json.dumps(candidate_dictionary, ensure_ascii=False, indent=4)
# 展示候选资源
candidate_display = "\n".join([f"{i+1}. {it['title']}" for i, it in enumerate(candidate_dictionary)])
chatbot.append((None, f"候选:\n\n{candidate_display}"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 结构化生成
rf_req_2 = dedent(f"""
The user wish to get the following resource:
{user_wish}
Select the most relevant and suitable video resource from the following search results:
{candidate_dictionary_as_str}
Note:
1. The first several search video results are more likely to satisfy the user's wish.
2. The time duration of the video should be less than 10 minutes.
3. You should analyze the search results first, before giving your answer.
4. Use Chinese if possible.
5. Beside the primary video selection, give a backup video resource `bvid`.
""")
gpt_json_io = GptJsonIO(VideoResource)
inputs = rf_req_2 + gpt_json_io.format_instructions
run_gpt_fn = lambda inputs, sys_prompt: predict_no_ui_long_connection(inputs=inputs, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=[])
analyze_res = run_gpt_fn(inputs, "")
logger.info(analyze_res)
video_resource: VideoResource = gpt_json_io.generate_output_auto_repair(analyze_res, run_gpt_fn)
# Display
chatbot.append(
(None,
f"分析:{video_resource.thought}" "<br/>"
f"选择: `{video_resource.title}`。" "<br/>"
f"作者:{video_resource.author}"
)
)
chatbot.append((None, f"下载中, 请稍等..."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if video_resource and video_resource.bvid:
logger.info(video_resource)
downloaded = yield from download_video(video_resource.bvid, chatbot.get_user(), chatbot, history)
if not downloaded:
chatbot.append((None, f"下载失败, 尝试备选 ..."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
downloaded = yield from download_video(video_resource.another_failsafe_bvid, chatbot.get_user(), chatbot, history)
@CatchException
def debug(bvid, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
yield from download_video(bvid, chatbot.get_user(), chatbot, history)

View File

@@ -1,5 +1,5 @@
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, ProxyNetworkActivate
from toolbox import report_exception, get_log_folder, update_ui_latest_msg, Singleton
from toolbox import report_exception, get_log_folder, update_ui_lastest_msg, Singleton
from crazy_functions.agent_fns.pipe import PluginMultiprocessManager, PipeCom
from crazy_functions.agent_fns.general import AutoGenGeneral

View File

@@ -8,7 +8,7 @@ class EchoDemo(PluginMultiprocessManager):
while True:
msg = self.child_conn.recv() # PipeCom
if msg.cmd == "user_input":
# wait father user input
# wait futher user input
self.child_conn.send(PipeCom("show", msg.content))
wait_success = self.subprocess_worker_wait_user_feedback(wait_msg="我准备好处理下一个问题了.")
if not wait_success:

View File

@@ -27,7 +27,7 @@ def gpt_academic_generate_oai_reply(
llm_kwargs=llm_config,
history=history,
sys_prompt=self._oai_system_message[0]['content'],
console_silence=True
console_slience=True
)
assumed_done = reply.endswith('\nTERMINATE')
return True, reply

View File

@@ -10,7 +10,7 @@ from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_
# TODO: 解决缩进问题
find_function_end_prompt = '''
Below is a page of code that you need to read. This page may not yet complete, you job is to split this page to separate functions, class functions etc.
Below is a page of code that you need to read. This page may not yet complete, you job is to split this page to sperate functions, class functions etc.
- Provide the line number where the first visible function ends.
- Provide the line number where the next visible function begins.
- If there are no other functions in this page, you should simply return the line number of the last line.
@@ -59,7 +59,7 @@ OUTPUT:
revise_function_prompt = '''
revise_funtion_prompt = '''
You need to read the following code, and revise the source code ({FILE_BASENAME}) according to following instructions:
1. You should analyze the purpose of the functions (if there are any).
2. You need to add docstring for the provided functions (if there are any).
@@ -68,7 +68,6 @@ Be aware:
1. You must NOT modify the indent of code.
2. You are NOT authorized to change or translate non-comment code, and you are NOT authorized to add empty lines either, toggle qu.
3. Use {LANG} to add comments and docstrings. Do NOT translate Chinese that is already in the code.
4. Besides adding a docstring, use the ⭐ symbol to annotate the most core and important line of code within the function, explaining its role.
------------------ Example ------------------
INPUT:
@@ -117,66 +116,10 @@ def zip_result(folder):
'''
revise_function_prompt_chinese = '''
您需要阅读以下代码,并根据以下说明修订源代码({FILE_BASENAME}):
1. 如果源代码中包含函数的话, 你应该分析给定函数实现了什么功能
2. 如果源代码中包含函数的话, 你需要为函数添加docstring, docstring必须使用中文
请注意:
1. 你不得修改代码的缩进
2. 你无权更改或翻译代码中的非注释部分,也不允许添加空行
3. 使用 {LANG} 添加注释和文档字符串。不要翻译代码中已有的中文
4. 除了添加docstring之外, 使用⭐符号给该函数中最核心、最重要的一行代码添加注释,并说明其作用
------------------ 示例 ------------------
INPUT:
```
L0000 |
L0001 |def zip_result(folder):
L0002 | t = gen_time_str()
L0003 | zip_folder(folder, get_log_folder(), f"result.zip")
L0004 | return os.path.join(get_log_folder(), f"result.zip")
L0005 |
L0006 |
```
OUTPUT:
<instruction_1_purpose>
该函数用于压缩指定文件夹,并返回生成的`zip`文件的路径。
</instruction_1_purpose>
<instruction_2_revised_code>
```
def zip_result(folder):
"""
该函数将指定的文件夹压缩成ZIP文件, 并将其存储在日志文件夹中。
输入参数:
folder (str): 需要压缩的文件夹的路径。
返回值:
str: 日志文件夹中创建的ZIP文件的路径。
"""
t = gen_time_str()
zip_folder(folder, get_log_folder(), f"result.zip") # ⭐ 执行文件夹的压缩
return os.path.join(get_log_folder(), f"result.zip")
```
</instruction_2_revised_code>
------------------ End of Example ------------------
------------------ the real INPUT you need to process NOW ({FILE_BASENAME}) ------------------
```
{THE_CODE}
```
{INDENT_REMINDER}
{BRIEF_REMINDER}
{HINT_REMINDER}
'''
class PythonCodeComment():
def __init__(self, llm_kwargs, plugin_kwargs, language, observe_window_update) -> None:
def __init__(self, llm_kwargs, language) -> None:
self.original_content = ""
self.full_context = []
self.full_context_with_line_no = []
@@ -184,13 +127,7 @@ class PythonCodeComment():
self.page_limit = 100 # 100 lines of code each page
self.ignore_limit = 20
self.llm_kwargs = llm_kwargs
self.plugin_kwargs = plugin_kwargs
self.language = language
self.observe_window_update = observe_window_update
if self.language == "chinese":
self.core_prompt = revise_function_prompt_chinese
else:
self.core_prompt = revise_function_prompt
self.path = None
self.file_basename = None
self.file_brief = ""
@@ -222,7 +159,7 @@ class PythonCodeComment():
history=[],
sys_prompt="",
observe_window=[],
console_silence=True
console_slience=True
)
def extract_number(text):
@@ -316,12 +253,12 @@ class PythonCodeComment():
def tag_code(self, fn, hint):
code = fn
_, n_indent = self.dedent(code)
indent_reminder = "" if n_indent == 0 else "(Reminder: as you can see, this piece of code has indent made up with {n_indent} whitespace, please preserve them in the OUTPUT.)"
indent_reminder = "" if n_indent == 0 else "(Reminder: as you can see, this piece of code has indent made up with {n_indent} whitespace, please preseve them in the OUTPUT.)"
brief_reminder = "" if self.file_brief == "" else f"({self.file_basename} abstract: {self.file_brief})"
hint_reminder = "" if hint is None else f"(Reminder: do not ignore or modify code such as `{hint}`, provide complete code in the OUTPUT.)"
self.llm_kwargs['temperature'] = 0
result = predict_no_ui_long_connection(
inputs=self.core_prompt.format(
inputs=revise_funtion_prompt.format(
LANG=self.language,
FILE_BASENAME=self.file_basename,
THE_CODE=code,
@@ -333,7 +270,7 @@ class PythonCodeComment():
history=[],
sys_prompt="",
observe_window=[],
console_silence=True
console_slience=True
)
def get_code_block(reply):
@@ -400,7 +337,7 @@ class PythonCodeComment():
return revised
def begin_comment_source_code(self, chatbot=None, history=None):
# from toolbox import update_ui_latest_msg
# from toolbox import update_ui_lastest_msg
assert self.path is not None
assert '.py' in self.path # must be python source code
# write_target = self.path + '.revised.py'
@@ -409,10 +346,9 @@ class PythonCodeComment():
# with open(self.path + '.revised.py', 'w+', encoding='utf8') as f:
while True:
try:
# yield from update_ui_latest_msg(f"({self.file_basename}) 正在读取下一段代码片段:\n", chatbot=chatbot, history=history, delay=0)
# yield from update_ui_lastest_msg(f"({self.file_basename}) 正在读取下一段代码片段:\n", chatbot=chatbot, history=history, delay=0)
next_batch, line_no_start, line_no_end = self.get_next_batch()
self.observe_window_update(f"正在处理{self.file_basename} - {line_no_start}/{len(self.full_context)}\n")
# yield from update_ui_latest_msg(f"({self.file_basename}) 处理代码片段:\n\n{next_batch}", chatbot=chatbot, history=history, delay=0)
# yield from update_ui_lastest_msg(f"({self.file_basename}) 处理代码片段:\n\n{next_batch}", chatbot=chatbot, history=history, delay=0)
hint = None
MAX_ATTEMPT = 2

View File

@@ -1,47 +1,39 @@
import token
import tokenize
import copy
import io
import ast
class CommentRemover(ast.NodeTransformer):
def visit_FunctionDef(self, node):
# 移除函数的文档字符串
if (node.body and isinstance(node.body[0], ast.Expr) and
isinstance(node.body[0].value, ast.Str)):
node.body = node.body[1:]
self.generic_visit(node)
return node
def visit_ClassDef(self, node):
# 移除类的文档字符串
if (node.body and isinstance(node.body[0], ast.Expr) and
isinstance(node.body[0].value, ast.Str)):
node.body = node.body[1:]
self.generic_visit(node)
return node
def visit_Module(self, node):
# 移除模块的文档字符串
if (node.body and isinstance(node.body[0], ast.Expr) and
isinstance(node.body[0].value, ast.Str)):
node.body = node.body[1:]
self.generic_visit(node)
return node
def remove_python_comments(input_source: str) -> str:
source_flag = copy.copy(input_source)
source = io.StringIO(input_source)
ls = input_source.split('\n')
prev_toktype = token.INDENT
readline = source.readline
def get_char_index(lineno, col):
# find the index of the char in the source code
if lineno == 1:
return len('\n'.join(ls[:(lineno-1)])) + col
else:
return len('\n'.join(ls[:(lineno-1)])) + col + 1
def replace_char_between(start_lineno, start_col, end_lineno, end_col, source, replace_char, ls):
# replace char between start_lineno, start_col and end_lineno, end_col with replace_char, but keep '\n' and ' '
b = get_char_index(start_lineno, start_col)
e = get_char_index(end_lineno, end_col)
for i in range(b, e):
if source[i] == '\n':
source = source[:i] + '\n' + source[i+1:]
elif source[i] == ' ':
source = source[:i] + ' ' + source[i+1:]
else:
source = source[:i] + replace_char + source[i+1:]
return source
tokgen = tokenize.generate_tokens(readline)
for toktype, ttext, (slineno, scol), (elineno, ecol), ltext in tokgen:
if toktype == token.STRING and (prev_toktype == token.INDENT):
source_flag = replace_char_between(slineno, scol, elineno, ecol, source_flag, ' ', ls)
elif toktype == token.STRING and (prev_toktype == token.NEWLINE):
source_flag = replace_char_between(slineno, scol, elineno, ecol, source_flag, ' ', ls)
elif toktype == tokenize.COMMENT:
source_flag = replace_char_between(slineno, scol, elineno, ecol, source_flag, ' ', ls)
prev_toktype = toktype
return source_flag
def remove_python_comments(source_code):
# 解析源代码为 AST
tree = ast.parse(source_code)
# 移除注释
transformer = CommentRemover()
tree = transformer.visit(tree)
# 将处理后的 AST 转换回源代码
return ast.unparse(tree)
# 示例使用
if __name__ == "__main__":

View File

@@ -0,0 +1,141 @@
from toolbox import CatchException, update_ui, promote_file_to_downloadzone
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
import datetime, json
def fetch_items(list_of_items, batch_size):
for i in range(0, len(list_of_items), batch_size):
yield list_of_items[i:i + batch_size]
def string_to_options(arguments):
import argparse
import shlex
# Create an argparse.ArgumentParser instance
parser = argparse.ArgumentParser()
# Add command-line arguments
parser.add_argument("--llm_to_learn", type=str, help="LLM model to learn", default="gpt-3.5-turbo")
parser.add_argument("--prompt_prefix", type=str, help="Prompt prefix", default='')
parser.add_argument("--system_prompt", type=str, help="System prompt", default='')
parser.add_argument("--batch", type=int, help="System prompt", default=50)
parser.add_argument("--pre_seq_len", type=int, help="pre_seq_len", default=50)
parser.add_argument("--learning_rate", type=float, help="learning_rate", default=2e-2)
parser.add_argument("--num_gpus", type=int, help="num_gpus", default=1)
parser.add_argument("--json_dataset", type=str, help="json_dataset", default="")
parser.add_argument("--ptuning_directory", type=str, help="ptuning_directory", default="")
# Parse the arguments
args = parser.parse_args(shlex.split(arguments))
return args
@CatchException
def 微调数据集生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数如温度和top_p等一般原样传递下去就行
plugin_kwargs 插件模型的参数
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
user_request 当前用户的请求信息IP地址等
"""
history = [] # 清空历史,以免输入溢出
chatbot.append(("这是什么功能?", "[Local Message] 微调数据集生成"))
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
args = plugin_kwargs.get("advanced_arg", None)
if args is None:
chatbot.append(("没给定指令", "退出"))
yield from update_ui(chatbot=chatbot, history=history); return
else:
arguments = string_to_options(arguments=args)
dat = []
with open(txt, 'r', encoding='utf8') as f:
for line in f.readlines():
json_dat = json.loads(line)
dat.append(json_dat["content"])
llm_kwargs['llm_model'] = arguments.llm_to_learn
for batch in fetch_items(dat, arguments.batch):
res = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=[f"{arguments.prompt_prefix}\n\n{b}" for b in (batch)],
inputs_show_user_array=[f"Show Nothing" for _ in (batch)],
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history_array=[[] for _ in (batch)],
sys_prompt_array=[arguments.system_prompt for _ in (batch)],
max_workers=10 # OpenAI所允许的最大并行过载
)
with open(txt+'.generated.json', 'a+', encoding='utf8') as f:
for b, r in zip(batch, res[1::2]):
f.write(json.dumps({"content":b, "summary":r}, ensure_ascii=False)+'\n')
promote_file_to_downloadzone(txt+'.generated.json', rename_file='generated.json', chatbot=chatbot)
return
@CatchException
def 启动微调(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数如温度和top_p等一般原样传递下去就行
plugin_kwargs 插件模型的参数
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
user_request 当前用户的请求信息IP地址等
"""
import subprocess
history = [] # 清空历史,以免输入溢出
chatbot.append(("这是什么功能?", "[Local Message] 微调数据集生成"))
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
args = plugin_kwargs.get("advanced_arg", None)
if args is None:
chatbot.append(("没给定指令", "退出"))
yield from update_ui(chatbot=chatbot, history=history); return
else:
arguments = string_to_options(arguments=args)
pre_seq_len = arguments.pre_seq_len # 128
learning_rate = arguments.learning_rate # 2e-2
num_gpus = arguments.num_gpus # 1
json_dataset = arguments.json_dataset # 't_code.json'
ptuning_directory = arguments.ptuning_directory # '/home/hmp/ChatGLM2-6B/ptuning'
command = f"torchrun --standalone --nnodes=1 --nproc-per-node={num_gpus} main.py \
--do_train \
--train_file AdvertiseGen/{json_dataset} \
--validation_file AdvertiseGen/{json_dataset} \
--preprocessing_num_workers 20 \
--prompt_column content \
--response_column summary \
--overwrite_cache \
--model_name_or_path THUDM/chatglm2-6b \
--output_dir output/clothgen-chatglm2-6b-pt-{pre_seq_len}-{learning_rate} \
--overwrite_output_dir \
--max_source_length 256 \
--max_target_length 256 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 16 \
--predict_with_generate \
--max_steps 100 \
--logging_steps 10 \
--save_steps 20 \
--learning_rate {learning_rate} \
--pre_seq_len {pre_seq_len} \
--quantization_bit 4"
process = subprocess.Popen(command, shell=True, cwd=ptuning_directory)
try:
process.communicate(timeout=3600*24)
except subprocess.TimeoutExpired:
process.kill()
return

View File

@@ -1,7 +1,7 @@
import os
import threading
from loguru import logger
from shared_utils.char_visual_effect import scrolling_visual_effect
from shared_utils.char_visual_effect import scolling_visual_effect
from toolbox import update_ui, get_conf, trimmed_format_exc, get_max_token, Singleton
def input_clipping(inputs, history, max_token_limit, return_clip_flags=False):
@@ -169,7 +169,6 @@ def can_multi_process(llm) -> bool:
def default_condition(llm) -> bool:
# legacy condition
if llm.startswith('gpt-'): return True
if llm.startswith('chatgpt-'): return True
if llm.startswith('api2d-'): return True
if llm.startswith('azure-'): return True
if llm.startswith('spark'): return True
@@ -256,7 +255,7 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
# 【第一种情况】:顺利完成
gpt_say = predict_no_ui_long_connection(
inputs=inputs, llm_kwargs=llm_kwargs, history=history,
sys_prompt=sys_prompt, observe_window=mutable[index], console_silence=True
sys_prompt=sys_prompt, observe_window=mutable[index], console_slience=True
)
mutable[index][2] = "已成功"
return gpt_say
@@ -326,7 +325,7 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
mutable[thread_index][1] = time.time()
# 在前端打印些好玩的东西
for thread_index, _ in enumerate(worker_done):
print_something_really_funny = f"[ ...`{scrolling_visual_effect(mutable[thread_index][0], scroller_max_len)}`... ]"
print_something_really_funny = f"[ ...`{scolling_visual_effect(mutable[thread_index][0], scroller_max_len)}`... ]"
observe_win.append(print_something_really_funny)
# 在前端打印些好玩的东西
stat_str = ''.join([f'`{mutable[thread_index][2]}`: {obs}\n\n'
@@ -389,11 +388,11 @@ def read_and_clean_pdf_text(fp):
"""
提取文本块主字体
"""
fsize_statistics = {}
fsize_statiscs = {}
for wtf in l['spans']:
if wtf['size'] not in fsize_statistics: fsize_statistics[wtf['size']] = 0
fsize_statistics[wtf['size']] += len(wtf['text'])
return max(fsize_statistics, key=fsize_statistics.get)
if wtf['size'] not in fsize_statiscs: fsize_statiscs[wtf['size']] = 0
fsize_statiscs[wtf['size']] += len(wtf['text'])
return max(fsize_statiscs, key=fsize_statiscs.get)
def ffsize_same(a,b):
"""
@@ -433,11 +432,11 @@ def read_and_clean_pdf_text(fp):
############################## <第 2 步,获取正文主字体> ##################################
try:
fsize_statistics = {}
fsize_statiscs = {}
for span in meta_span:
if span[1] not in fsize_statistics: fsize_statistics[span[1]] = 0
fsize_statistics[span[1]] += span[2]
main_fsize = max(fsize_statistics, key=fsize_statistics.get)
if span[1] not in fsize_statiscs: fsize_statiscs[span[1]] = 0
fsize_statiscs[span[1]] += span[2]
main_fsize = max(fsize_statiscs, key=fsize_statiscs.get)
if REMOVE_FOOT_NOTE:
give_up_fize_threshold = main_fsize * REMOVE_FOOT_FFSIZE_PERCENT
except:
@@ -610,9 +609,9 @@ class nougat_interface():
def NOUGAT_parse_pdf(self, fp, chatbot, history):
from toolbox import update_ui_latest_msg
from toolbox import update_ui_lastest_msg
yield from update_ui_latest_msg("正在解析论文, 请稍候。进度:正在排队, 等待线程锁...",
yield from update_ui_lastest_msg("正在解析论文, 请稍候。进度:正在排队, 等待线程锁...",
chatbot=chatbot, history=history, delay=0)
self.threadLock.acquire()
import glob, threading, os
@@ -620,7 +619,7 @@ class nougat_interface():
dst = os.path.join(get_log_folder(plugin_name='nougat'), gen_time_str())
os.makedirs(dst)
yield from update_ui_latest_msg("正在解析论文, 请稍候。进度正在加载NOUGAT... 提示首次运行需要花费较长时间下载NOUGAT参数",
yield from update_ui_lastest_msg("正在解析论文, 请稍候。进度正在加载NOUGAT... 提示首次运行需要花费较长时间下载NOUGAT参数",
chatbot=chatbot, history=history, delay=0)
command = ['nougat', '--out', os.path.abspath(dst), os.path.abspath(fp)]
self.nougat_with_timeout(command, cwd=os.getcwd(), timeout=3600)

View File

@@ -1,812 +0,0 @@
import os
import time
from abc import ABC, abstractmethod
from datetime import datetime
from docx import Document
from docx.enum.style import WD_STYLE_TYPE
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT, WD_LINE_SPACING
from docx.oxml.ns import qn
from docx.shared import Inches, Cm
from docx.shared import Pt, RGBColor, Inches
from typing import Dict, List, Tuple
import markdown
from crazy_functions.doc_fns.conversation_doc.word_doc import convert_markdown_to_word
class DocumentFormatter(ABC):
"""文档格式化基类,定义文档格式化的基本接口"""
def __init__(self, final_summary: str, file_summaries_map: Dict, failed_files: List[Tuple]):
self.final_summary = final_summary
self.file_summaries_map = file_summaries_map
self.failed_files = failed_files
@abstractmethod
def format_failed_files(self) -> str:
"""格式化失败文件列表"""
pass
@abstractmethod
def format_file_summaries(self) -> str:
"""格式化文件总结内容"""
pass
@abstractmethod
def create_document(self) -> str:
"""创建完整文档"""
pass
class WordFormatter(DocumentFormatter):
"""Word格式文档生成器 - 符合中国政府公文格式规范(GB/T 9704-2012),并进行了优化"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.doc = Document()
self._setup_document()
self._create_styles()
# 初始化三级标题编号系统
self.numbers = {
1: 0, # 一级标题编号
2: 0, # 二级标题编号
3: 0 # 三级标题编号
}
def _setup_document(self):
"""设置文档基本格式,包括页面设置和页眉"""
sections = self.doc.sections
for section in sections:
# 设置页面大小为A4
section.page_width = Cm(21)
section.page_height = Cm(29.7)
# 设置页边距
section.top_margin = Cm(3.7) # 上边距37mm
section.bottom_margin = Cm(3.5) # 下边距35mm
section.left_margin = Cm(2.8) # 左边距28mm
section.right_margin = Cm(2.6) # 右边距26mm
# 设置页眉页脚距离
section.header_distance = Cm(2.0)
section.footer_distance = Cm(2.0)
# 添加页眉
header = section.header
header_para = header.paragraphs[0]
header_para.alignment = WD_PARAGRAPH_ALIGNMENT.RIGHT
header_run = header_para.add_run("该文档由GPT-academic生成")
header_run.font.name = '仿宋'
header_run._element.rPr.rFonts.set(qn('w:eastAsia'), '仿宋')
header_run.font.size = Pt(9)
def _create_styles(self):
"""创建文档样式"""
# 创建正文样式
style = self.doc.styles.add_style('Normal_Custom', WD_STYLE_TYPE.PARAGRAPH)
style.font.name = '仿宋'
style._element.rPr.rFonts.set(qn('w:eastAsia'), '仿宋')
style.font.size = Pt(14)
style.paragraph_format.line_spacing_rule = WD_LINE_SPACING.ONE_POINT_FIVE
style.paragraph_format.space_after = Pt(0)
style.paragraph_format.first_line_indent = Pt(28)
# 创建各级标题样式
self._create_heading_style('Title_Custom', '方正小标宋简体', 32, WD_PARAGRAPH_ALIGNMENT.CENTER)
self._create_heading_style('Heading1_Custom', '黑体', 22, WD_PARAGRAPH_ALIGNMENT.LEFT)
self._create_heading_style('Heading2_Custom', '黑体', 18, WD_PARAGRAPH_ALIGNMENT.LEFT)
self._create_heading_style('Heading3_Custom', '黑体', 16, WD_PARAGRAPH_ALIGNMENT.LEFT)
def _create_heading_style(self, style_name: str, font_name: str, font_size: int, alignment):
"""创建标题样式"""
style = self.doc.styles.add_style(style_name, WD_STYLE_TYPE.PARAGRAPH)
style.font.name = font_name
style._element.rPr.rFonts.set(qn('w:eastAsia'), font_name)
style.font.size = Pt(font_size)
style.font.bold = True
style.paragraph_format.alignment = alignment
style.paragraph_format.space_before = Pt(12)
style.paragraph_format.space_after = Pt(12)
style.paragraph_format.line_spacing_rule = WD_LINE_SPACING.ONE_POINT_FIVE
return style
def _get_heading_number(self, level: int) -> str:
"""
生成标题编号
Args:
level: 标题级别 (0-3)
Returns:
str: 格式化的标题编号
"""
if level == 0: # 主标题不需要编号
return ""
self.numbers[level] += 1 # 增加当前级别的编号
# 重置下级标题编号
for i in range(level + 1, 4):
self.numbers[i] = 0
# 根据级别返回不同格式的编号
if level == 1:
return f"{self.numbers[1]}. "
elif level == 2:
return f"{self.numbers[1]}.{self.numbers[2]} "
elif level == 3:
return f"{self.numbers[1]}.{self.numbers[2]}.{self.numbers[3]} "
return ""
def _add_heading(self, text: str, level: int):
"""
添加带编号的标题
Args:
text: 标题文本
level: 标题级别 (0-3)
"""
style_map = {
0: 'Title_Custom',
1: 'Heading1_Custom',
2: 'Heading2_Custom',
3: 'Heading3_Custom'
}
number = self._get_heading_number(level)
paragraph = self.doc.add_paragraph(style=style_map[level])
if number:
number_run = paragraph.add_run(number)
font_size = 22 if level == 1 else (18 if level == 2 else 16)
self._get_run_style(number_run, '黑体', font_size, True)
text_run = paragraph.add_run(text)
font_size = 32 if level == 0 else (22 if level == 1 else (18 if level == 2 else 16))
self._get_run_style(text_run, '黑体', font_size, True)
# 主标题添加日期
if level == 0:
date_paragraph = self.doc.add_paragraph()
date_paragraph.alignment = WD_PARAGRAPH_ALIGNMENT.CENTER
date_run = date_paragraph.add_run(datetime.now().strftime('%Y年%m月%d'))
self._get_run_style(date_run, '仿宋', 16, False)
return paragraph
def _get_run_style(self, run, font_name: str, font_size: int, bold: bool = False):
"""设置文本运行对象的样式"""
run.font.name = font_name
run._element.rPr.rFonts.set(qn('w:eastAsia'), font_name)
run.font.size = Pt(font_size)
run.font.bold = bold
def format_failed_files(self) -> str:
"""格式化失败文件列表"""
result = []
if not self.failed_files:
return "\n".join(result)
result.append("处理失败文件:")
for fp, reason in self.failed_files:
result.append(f"{os.path.basename(fp)}: {reason}")
self._add_heading("处理失败文件", 1)
for fp, reason in self.failed_files:
self._add_content(f"{os.path.basename(fp)}: {reason}", indent=False)
self.doc.add_paragraph()
return "\n".join(result)
def _add_content(self, text: str, indent: bool = True):
"""添加正文内容使用convert_markdown_to_word处理文本"""
# 使用convert_markdown_to_word处理markdown文本
processed_text = convert_markdown_to_word(text)
paragraph = self.doc.add_paragraph(processed_text, style='Normal_Custom')
if not indent:
paragraph.paragraph_format.first_line_indent = Pt(0)
return paragraph
def format_file_summaries(self) -> str:
"""
格式化文件总结内容确保正确的标题层级并处理markdown文本
"""
result = []
# 首先对文件路径进行分组整理
file_groups = {}
for path in sorted(self.file_summaries_map.keys()):
dir_path = os.path.dirname(path)
if dir_path not in file_groups:
file_groups[dir_path] = []
file_groups[dir_path].append(path)
# 处理没有目录的文件
root_files = file_groups.get("", [])
if root_files:
for path in sorted(root_files):
file_name = os.path.basename(path)
result.append(f"\n📄 {file_name}")
result.append(self.file_summaries_map[path])
# 无目录的文件作为二级标题
self._add_heading(f"📄 {file_name}", 2)
# 使用convert_markdown_to_word处理文件内容
self._add_content(convert_markdown_to_word(self.file_summaries_map[path]))
self.doc.add_paragraph()
# 处理有目录的文件
for dir_path in sorted(file_groups.keys()):
if dir_path == "": # 跳过已处理的根目录文件
continue
# 添加目录作为二级标题
result.append(f"\n📁 {dir_path}")
self._add_heading(f"📁 {dir_path}", 2)
# 该目录下的所有文件作为三级标题
for path in sorted(file_groups[dir_path]):
file_name = os.path.basename(path)
result.append(f"\n📄 {file_name}")
result.append(self.file_summaries_map[path])
# 添加文件名作为三级标题
self._add_heading(f"📄 {file_name}", 3)
# 使用convert_markdown_to_word处理文件内容
self._add_content(convert_markdown_to_word(self.file_summaries_map[path]))
self.doc.add_paragraph()
return "\n".join(result)
def create_document(self):
"""创建完整Word文档并返回文档对象"""
# 重置所有编号
for level in self.numbers:
self.numbers[level] = 0
# 添加主标题
self._add_heading("文档总结报告", 0)
self.doc.add_paragraph()
# 添加总体摘要使用convert_markdown_to_word处理
self._add_heading("总体摘要", 1)
self._add_content(convert_markdown_to_word(self.final_summary))
self.doc.add_paragraph()
# 添加失败文件列表(如果有)
if self.failed_files:
self.format_failed_files()
# 添加文件详细总结
self._add_heading("各文件详细总结", 1)
self.format_file_summaries()
return self.doc
def save_as_pdf(self, word_path, pdf_path=None):
"""将生成的Word文档转换为PDF
参数:
word_path: Word文档的路径
pdf_path: 可选PDF文件的输出路径。如果未指定将使用与Word文档相同的名称和位置
返回:
生成的PDF文件路径如果转换失败则返回None
"""
from crazy_functions.doc_fns.conversation_doc.word2pdf import WordToPdfConverter
try:
pdf_path = WordToPdfConverter.convert_to_pdf(word_path, pdf_path)
return pdf_path
except Exception as e:
print(f"PDF转换失败: {str(e)}")
return None
class MarkdownFormatter(DocumentFormatter):
"""Markdown格式文档生成器"""
def format_failed_files(self) -> str:
if not self.failed_files:
return ""
formatted_text = ["\n## ⚠️ 处理失败的文件"]
for fp, reason in self.failed_files:
formatted_text.append(f"- {os.path.basename(fp)}: {reason}")
formatted_text.append("\n---")
return "\n".join(formatted_text)
def format_file_summaries(self) -> str:
formatted_text = []
sorted_paths = sorted(self.file_summaries_map.keys())
current_dir = ""
for path in sorted_paths:
dir_path = os.path.dirname(path)
if dir_path != current_dir:
if dir_path:
formatted_text.append(f"\n## 📁 {dir_path}")
current_dir = dir_path
file_name = os.path.basename(path)
formatted_text.append(f"\n### 📄 {file_name}")
formatted_text.append(self.file_summaries_map[path])
formatted_text.append("\n---")
return "\n".join(formatted_text)
def create_document(self) -> str:
document = [
"# 📑 文档总结报告",
"\n## 总体摘要",
self.final_summary
]
if self.failed_files:
document.append(self.format_failed_files())
document.extend([
"\n# 📚 各文件详细总结",
self.format_file_summaries()
])
return "\n".join(document)
class HtmlFormatter(DocumentFormatter):
"""HTML格式文档生成器 - 优化版"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.md = markdown.Markdown(extensions=['extra','codehilite', 'tables','nl2br'])
self.css_styles = """
@keyframes fadeIn {
from { opacity: 0; transform: translateY(20px); }
to { opacity: 1; transform: translateY(0); }
}
@keyframes slideIn {
from { transform: translateX(-20px); opacity: 0; }
to { transform: translateX(0); opacity: 1; }
}
@keyframes pulse {
0% { transform: scale(1); }
50% { transform: scale(1.05); }
100% { transform: scale(1); }
}
:root {
/* Enhanced color palette */
--primary-color: #2563eb;
--primary-light: #eff6ff;
--secondary-color: #1e293b;
--background-color: #f8fafc;
--text-color: #334155;
--text-light: #64748b;
--border-color: #e2e8f0;
--error-color: #ef4444;
--error-light: #fef2f2;
--success-color: #22c55e;
--warning-color: #f59e0b;
--card-shadow: 0 4px 6px -1px rgb(0 0 0 / 0.1), 0 2px 4px -2px rgb(0 0 0 / 0.1);
--hover-shadow: 0 20px 25px -5px rgb(0 0 0 / 0.1), 0 8px 10px -6px rgb(0 0 0 / 0.1);
/* Typography */
--heading-font: "Plus Jakarta Sans", system-ui, sans-serif;
--body-font: "Inter", system-ui, sans-serif;
}
body {
font-family: var(--body-font);
line-height: 1.8;
max-width: 1200px;
margin: 0 auto;
padding: 2rem;
color: var(--text-color);
background-color: var(--background-color);
font-size: 16px;
-webkit-font-smoothing: antialiased;
}
.container {
background: white;
padding: 3rem;
border-radius: 24px;
box-shadow: var(--card-shadow);
transition: all 0.4s cubic-bezier(0.4, 0, 0.2, 1);
animation: fadeIn 0.6s ease-out;
border: 1px solid var(--border-color);
}
.container:hover {
box-shadow: var(--hover-shadow);
transform: translateY(-2px);
}
h1, h2, h3 {
font-family: var(--heading-font);
font-weight: 600;
}
h1 {
color: var(--primary-color);
font-size: 2.8em;
text-align: center;
margin: 2rem 0 3rem;
padding-bottom: 1.5rem;
border-bottom: 3px solid var(--primary-color);
letter-spacing: -0.03em;
position: relative;
display: flex;
align-items: center;
justify-content: center;
gap: 1rem;
}
h1::after {
content: '';
position: absolute;
bottom: -3px;
left: 50%;
transform: translateX(-50%);
width: 120px;
height: 3px;
background: linear-gradient(90deg, var(--primary-color), var(--primary-light));
border-radius: 3px;
transition: width 0.3s ease;
}
h1:hover::after {
width: 180px;
}
h2 {
color: var(--secondary-color);
font-size: 1.9em;
margin: 2.5rem 0 1.5rem;
padding-left: 1.2rem;
border-left: 4px solid var(--primary-color);
letter-spacing: -0.02em;
display: flex;
align-items: center;
gap: 1rem;
transition: all 0.3s ease;
}
h2:hover {
color: var(--primary-color);
transform: translateX(5px);
}
h3 {
color: var(--text-color);
font-size: 1.5em;
margin: 2rem 0 1rem;
padding-bottom: 0.8rem;
border-bottom: 2px solid var(--border-color);
transition: all 0.3s ease;
display: flex;
align-items: center;
gap: 0.8rem;
}
h3:hover {
color: var(--primary-color);
border-bottom-color: var(--primary-color);
}
.summary {
background: var(--primary-light);
padding: 2.5rem;
border-radius: 16px;
margin: 2.5rem 0;
box-shadow: 0 4px 6px -1px rgba(37, 99, 235, 0.1);
position: relative;
overflow: hidden;
transition: transform 0.3s ease, box-shadow 0.3s ease;
animation: slideIn 0.5s ease-out;
}
.summary:hover {
transform: translateY(-3px);
box-shadow: 0 8px 12px -2px rgba(37, 99, 235, 0.15);
}
.summary::before {
content: '';
position: absolute;
top: 0;
left: 0;
width: 4px;
height: 100%;
background: linear-gradient(to bottom, var(--primary-color), rgba(37, 99, 235, 0.6));
}
.summary p {
margin: 1.2rem 0;
line-height: 1.9;
color: var(--text-color);
transition: color 0.3s ease;
}
.summary:hover p {
color: var(--secondary-color);
}
.details {
margin-top: 3.5rem;
padding-top: 2.5rem;
border-top: 2px dashed var(--border-color);
animation: fadeIn 0.8s ease-out;
}
.failed-files {
background: var(--error-light);
padding: 2rem;
border-radius: 16px;
margin: 3rem 0;
border-left: 4px solid var(--error-color);
position: relative;
transition: all 0.3s ease;
animation: slideIn 0.5s ease-out;
}
.failed-files:hover {
transform: translateX(5px);
box-shadow: 0 8px 15px -3px rgba(239, 68, 68, 0.1);
}
.failed-files h2 {
color: var(--error-color);
border-left: none;
padding-left: 0;
}
.failed-files ul {
margin: 1.8rem 0;
padding-left: 1.2rem;
list-style-type: none;
}
.failed-files li {
margin: 1.2rem 0;
padding: 1.2rem 1.8rem;
background: rgba(239, 68, 68, 0.08);
border-radius: 12px;
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1);
}
.failed-files li:hover {
transform: translateX(8px);
background: rgba(239, 68, 68, 0.12);
}
.directory-section {
margin: 3.5rem 0;
padding: 2rem;
background: var(--background-color);
border-radius: 16px;
position: relative;
transition: all 0.3s ease;
animation: fadeIn 0.6s ease-out;
}
.directory-section:hover {
background: white;
box-shadow: var(--card-shadow);
}
.file-summary {
background: white;
padding: 2rem;
margin: 1.8rem 0;
border-radius: 16px;
box-shadow: var(--card-shadow);
border-left: 4px solid var(--border-color);
transition: all 0.4s cubic-bezier(0.4, 0, 0.2, 1);
position: relative;
overflow: hidden;
}
.file-summary:hover {
border-left-color: var(--primary-color);
transform: translateX(8px) translateY(-2px);
box-shadow: var(--hover-shadow);
}
.file-summary {
background: white;
padding: 2rem;
margin: 1.8rem 0;
border-radius: 16px;
box-shadow: var(--card-shadow);
border-left: 4px solid var(--border-color);
transition: all 0.4s cubic-bezier(0.4, 0, 0.2, 1);
position: relative;
}
.file-summary:hover {
border-left-color: var(--primary-color);
transform: translateX(8px) translateY(-2px);
box-shadow: var(--hover-shadow);
}
.icon {
display: inline-flex;
align-items: center;
justify-content: center;
width: 32px;
height: 32px;
border-radius: 8px;
background: var(--primary-light);
color: var(--primary-color);
font-size: 1.2em;
transition: all 0.3s ease;
}
.file-summary:hover .icon,
.directory-section:hover .icon {
transform: scale(1.1);
background: var(--primary-color);
color: white;
}
/* Smooth scrolling */
html {
scroll-behavior: smooth;
}
/* Selection style */
::selection {
background: var(--primary-light);
color: var(--primary-color);
}
/* Print styles */
@media print {
body {
background: white;
}
.container {
box-shadow: none;
padding: 0;
}
.file-summary, .failed-files {
break-inside: avoid;
box-shadow: none;
}
.icon {
display: none;
}
}
/* Responsive design */
@media (max-width: 768px) {
body {
padding: 1rem;
font-size: 15px;
}
.container {
padding: 1.5rem;
}
h1 {
font-size: 2.2em;
margin: 1.5rem 0 2rem;
}
h2 {
font-size: 1.7em;
}
h3 {
font-size: 1.4em;
}
.summary, .failed-files, .directory-section {
padding: 1.5rem;
}
.file-summary {
padding: 1.2rem;
}
.icon {
width: 28px;
height: 28px;
}
}
/* Dark mode support */
@media (prefers-color-scheme: dark) {
:root {
--primary-light: rgba(37, 99, 235, 0.15);
--background-color: #0f172a;
--text-color: #e2e8f0;
--text-light: #94a3b8;
--border-color: #1e293b;
--error-light: rgba(239, 68, 68, 0.15);
}
.container, .file-summary {
background: #1e293b;
}
.directory-section {
background: #0f172a;
}
.directory-section:hover {
background: #1e293b;
}
}
"""
def format_failed_files(self) -> str:
if not self.failed_files:
return ""
failed_files_html = ['<div class="failed-files">']
failed_files_html.append('<h2><span class="icon">⚠️</span> 处理失败的文件</h2>')
failed_files_html.append("<ul>")
for fp, reason in self.failed_files:
failed_files_html.append(
f'<li><strong>📄 {os.path.basename(fp)}</strong><br><span style="color: var(--text-light)">{reason}</span></li>'
)
failed_files_html.append("</ul></div>")
return "\n".join(failed_files_html)
def format_file_summaries(self) -> str:
formatted_html = []
sorted_paths = sorted(self.file_summaries_map.keys())
current_dir = ""
for path in sorted_paths:
dir_path = os.path.dirname(path)
if dir_path != current_dir:
if dir_path:
formatted_html.append('<div class="directory-section">')
formatted_html.append(f'<h2><span class="icon">📁</span> {dir_path}</h2>')
formatted_html.append('</div>')
current_dir = dir_path
file_name = os.path.basename(path)
formatted_html.append('<div class="file-summary">')
formatted_html.append(f'<h3><span class="icon">📄</span> {file_name}</h3>')
formatted_html.append(self.md.convert(self.file_summaries_map[path]))
formatted_html.append('</div>')
return "\n".join(formatted_html)
def create_document(self) -> str:
"""生成HTML文档
Returns:
str: 完整的HTML文档字符串
"""
return f"""
<!DOCTYPE html>
<html lang="zh-CN">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>文档总结报告</title>
<link href="https://cdnjs.cloudflare.com/ajax/libs/inter/3.19.3/inter.css" rel="stylesheet">
<link href="https://fonts.googleapis.com/css2?family=Plus+Jakarta+Sans:wght@400;600&display=swap" rel="stylesheet">
<style>{self.css_styles}</style>
</head>
<body>
<div class="container">
<h1><span class="icon">📑</span> 文档总结报告</h1>
<div class="summary">
<h2><span class="icon">📋</span> 总体摘要</h2>
<p>{self.md.convert(self.final_summary)}</p>
</div>
{self.format_failed_files()}
<div class="details">
<h2><span class="icon">📚</span> 各文件详细总结</h2>
{self.format_file_summaries()}
</div>
</div>
</body>
</html>
"""

View File

@@ -1,812 +0,0 @@
import os
import time
from abc import ABC, abstractmethod
from datetime import datetime
from docx import Document
from docx.enum.style import WD_STYLE_TYPE
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT, WD_LINE_SPACING
from docx.oxml.ns import qn
from docx.shared import Inches, Cm
from docx.shared import Pt, RGBColor, Inches
from typing import Dict, List, Tuple
import markdown
from crazy_functions.doc_fns.conversation_doc.word_doc import convert_markdown_to_word
class DocumentFormatter(ABC):
"""文档格式化基类,定义文档格式化的基本接口"""
def __init__(self, final_summary: str, file_summaries_map: Dict, failed_files: List[Tuple]):
self.final_summary = final_summary
self.file_summaries_map = file_summaries_map
self.failed_files = failed_files
@abstractmethod
def format_failed_files(self) -> str:
"""格式化失败文件列表"""
pass
@abstractmethod
def format_file_summaries(self) -> str:
"""格式化文件总结内容"""
pass
@abstractmethod
def create_document(self) -> str:
"""创建完整文档"""
pass
class WordFormatter(DocumentFormatter):
"""Word格式文档生成器 - 符合中国政府公文格式规范(GB/T 9704-2012),并进行了优化"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.doc = Document()
self._setup_document()
self._create_styles()
# 初始化三级标题编号系统
self.numbers = {
1: 0, # 一级标题编号
2: 0, # 二级标题编号
3: 0 # 三级标题编号
}
def _setup_document(self):
"""设置文档基本格式,包括页面设置和页眉"""
sections = self.doc.sections
for section in sections:
# 设置页面大小为A4
section.page_width = Cm(21)
section.page_height = Cm(29.7)
# 设置页边距
section.top_margin = Cm(3.7) # 上边距37mm
section.bottom_margin = Cm(3.5) # 下边距35mm
section.left_margin = Cm(2.8) # 左边距28mm
section.right_margin = Cm(2.6) # 右边距26mm
# 设置页眉页脚距离
section.header_distance = Cm(2.0)
section.footer_distance = Cm(2.0)
# 添加页眉
header = section.header
header_para = header.paragraphs[0]
header_para.alignment = WD_PARAGRAPH_ALIGNMENT.RIGHT
header_run = header_para.add_run("该文档由GPT-academic生成")
header_run.font.name = '仿宋'
header_run._element.rPr.rFonts.set(qn('w:eastAsia'), '仿宋')
header_run.font.size = Pt(9)
def _create_styles(self):
"""创建文档样式"""
# 创建正文样式
style = self.doc.styles.add_style('Normal_Custom', WD_STYLE_TYPE.PARAGRAPH)
style.font.name = '仿宋'
style._element.rPr.rFonts.set(qn('w:eastAsia'), '仿宋')
style.font.size = Pt(14)
style.paragraph_format.line_spacing_rule = WD_LINE_SPACING.ONE_POINT_FIVE
style.paragraph_format.space_after = Pt(0)
style.paragraph_format.first_line_indent = Pt(28)
# 创建各级标题样式
self._create_heading_style('Title_Custom', '方正小标宋简体', 32, WD_PARAGRAPH_ALIGNMENT.CENTER)
self._create_heading_style('Heading1_Custom', '黑体', 22, WD_PARAGRAPH_ALIGNMENT.LEFT)
self._create_heading_style('Heading2_Custom', '黑体', 18, WD_PARAGRAPH_ALIGNMENT.LEFT)
self._create_heading_style('Heading3_Custom', '黑体', 16, WD_PARAGRAPH_ALIGNMENT.LEFT)
def _create_heading_style(self, style_name: str, font_name: str, font_size: int, alignment):
"""创建标题样式"""
style = self.doc.styles.add_style(style_name, WD_STYLE_TYPE.PARAGRAPH)
style.font.name = font_name
style._element.rPr.rFonts.set(qn('w:eastAsia'), font_name)
style.font.size = Pt(font_size)
style.font.bold = True
style.paragraph_format.alignment = alignment
style.paragraph_format.space_before = Pt(12)
style.paragraph_format.space_after = Pt(12)
style.paragraph_format.line_spacing_rule = WD_LINE_SPACING.ONE_POINT_FIVE
return style
def _get_heading_number(self, level: int) -> str:
"""
生成标题编号
Args:
level: 标题级别 (0-3)
Returns:
str: 格式化的标题编号
"""
if level == 0: # 主标题不需要编号
return ""
self.numbers[level] += 1 # 增加当前级别的编号
# 重置下级标题编号
for i in range(level + 1, 4):
self.numbers[i] = 0
# 根据级别返回不同格式的编号
if level == 1:
return f"{self.numbers[1]}. "
elif level == 2:
return f"{self.numbers[1]}.{self.numbers[2]} "
elif level == 3:
return f"{self.numbers[1]}.{self.numbers[2]}.{self.numbers[3]} "
return ""
def _add_heading(self, text: str, level: int):
"""
添加带编号的标题
Args:
text: 标题文本
level: 标题级别 (0-3)
"""
style_map = {
0: 'Title_Custom',
1: 'Heading1_Custom',
2: 'Heading2_Custom',
3: 'Heading3_Custom'
}
number = self._get_heading_number(level)
paragraph = self.doc.add_paragraph(style=style_map[level])
if number:
number_run = paragraph.add_run(number)
font_size = 22 if level == 1 else (18 if level == 2 else 16)
self._get_run_style(number_run, '黑体', font_size, True)
text_run = paragraph.add_run(text)
font_size = 32 if level == 0 else (22 if level == 1 else (18 if level == 2 else 16))
self._get_run_style(text_run, '黑体', font_size, True)
# 主标题添加日期
if level == 0:
date_paragraph = self.doc.add_paragraph()
date_paragraph.alignment = WD_PARAGRAPH_ALIGNMENT.CENTER
date_run = date_paragraph.add_run(datetime.now().strftime('%Y年%m月%d'))
self._get_run_style(date_run, '仿宋', 16, False)
return paragraph
def _get_run_style(self, run, font_name: str, font_size: int, bold: bool = False):
"""设置文本运行对象的样式"""
run.font.name = font_name
run._element.rPr.rFonts.set(qn('w:eastAsia'), font_name)
run.font.size = Pt(font_size)
run.font.bold = bold
def format_failed_files(self) -> str:
"""格式化失败文件列表"""
result = []
if not self.failed_files:
return "\n".join(result)
result.append("处理失败文件:")
for fp, reason in self.failed_files:
result.append(f"{os.path.basename(fp)}: {reason}")
self._add_heading("处理失败文件", 1)
for fp, reason in self.failed_files:
self._add_content(f"{os.path.basename(fp)}: {reason}", indent=False)
self.doc.add_paragraph()
return "\n".join(result)
def _add_content(self, text: str, indent: bool = True):
"""添加正文内容使用convert_markdown_to_word处理文本"""
# 使用convert_markdown_to_word处理markdown文本
processed_text = convert_markdown_to_word(text)
paragraph = self.doc.add_paragraph(processed_text, style='Normal_Custom')
if not indent:
paragraph.paragraph_format.first_line_indent = Pt(0)
return paragraph
def format_file_summaries(self) -> str:
"""
格式化文件总结内容确保正确的标题层级并处理markdown文本
"""
result = []
# 首先对文件路径进行分组整理
file_groups = {}
for path in sorted(self.file_summaries_map.keys()):
dir_path = os.path.dirname(path)
if dir_path not in file_groups:
file_groups[dir_path] = []
file_groups[dir_path].append(path)
# 处理没有目录的文件
root_files = file_groups.get("", [])
if root_files:
for path in sorted(root_files):
file_name = os.path.basename(path)
result.append(f"\n📄 {file_name}")
result.append(self.file_summaries_map[path])
# 无目录的文件作为二级标题
self._add_heading(f"📄 {file_name}", 2)
# 使用convert_markdown_to_word处理文件内容
self._add_content(convert_markdown_to_word(self.file_summaries_map[path]))
self.doc.add_paragraph()
# 处理有目录的文件
for dir_path in sorted(file_groups.keys()):
if dir_path == "": # 跳过已处理的根目录文件
continue
# 添加目录作为二级标题
result.append(f"\n📁 {dir_path}")
self._add_heading(f"📁 {dir_path}", 2)
# 该目录下的所有文件作为三级标题
for path in sorted(file_groups[dir_path]):
file_name = os.path.basename(path)
result.append(f"\n📄 {file_name}")
result.append(self.file_summaries_map[path])
# 添加文件名作为三级标题
self._add_heading(f"📄 {file_name}", 3)
# 使用convert_markdown_to_word处理文件内容
self._add_content(convert_markdown_to_word(self.file_summaries_map[path]))
self.doc.add_paragraph()
return "\n".join(result)
def create_document(self):
"""创建完整Word文档并返回文档对象"""
# 重置所有编号
for level in self.numbers:
self.numbers[level] = 0
# 添加主标题
self._add_heading("文档总结报告", 0)
self.doc.add_paragraph()
# 添加总体摘要使用convert_markdown_to_word处理
self._add_heading("总体摘要", 1)
self._add_content(convert_markdown_to_word(self.final_summary))
self.doc.add_paragraph()
# 添加失败文件列表(如果有)
if self.failed_files:
self.format_failed_files()
# 添加文件详细总结
self._add_heading("各文件详细总结", 1)
self.format_file_summaries()
return self.doc
def save_as_pdf(self, word_path, pdf_path=None):
"""将生成的Word文档转换为PDF
参数:
word_path: Word文档的路径
pdf_path: 可选PDF文件的输出路径。如果未指定将使用与Word文档相同的名称和位置
返回:
生成的PDF文件路径如果转换失败则返回None
"""
from crazy_functions.doc_fns.conversation_doc.word2pdf import WordToPdfConverter
try:
pdf_path = WordToPdfConverter.convert_to_pdf(word_path, pdf_path)
return pdf_path
except Exception as e:
print(f"PDF转换失败: {str(e)}")
return None
class MarkdownFormatter(DocumentFormatter):
"""Markdown格式文档生成器"""
def format_failed_files(self) -> str:
if not self.failed_files:
return ""
formatted_text = ["\n## ⚠️ 处理失败的文件"]
for fp, reason in self.failed_files:
formatted_text.append(f"- {os.path.basename(fp)}: {reason}")
formatted_text.append("\n---")
return "\n".join(formatted_text)
def format_file_summaries(self) -> str:
formatted_text = []
sorted_paths = sorted(self.file_summaries_map.keys())
current_dir = ""
for path in sorted_paths:
dir_path = os.path.dirname(path)
if dir_path != current_dir:
if dir_path:
formatted_text.append(f"\n## 📁 {dir_path}")
current_dir = dir_path
file_name = os.path.basename(path)
formatted_text.append(f"\n### 📄 {file_name}")
formatted_text.append(self.file_summaries_map[path])
formatted_text.append("\n---")
return "\n".join(formatted_text)
def create_document(self) -> str:
document = [
"# 📑 文档总结报告",
"\n## 总体摘要",
self.final_summary
]
if self.failed_files:
document.append(self.format_failed_files())
document.extend([
"\n# 📚 各文件详细总结",
self.format_file_summaries()
])
return "\n".join(document)
class HtmlFormatter(DocumentFormatter):
"""HTML格式文档生成器 - 优化版"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.md = markdown.Markdown(extensions=['extra','codehilite', 'tables','nl2br'])
self.css_styles = """
@keyframes fadeIn {
from { opacity: 0; transform: translateY(20px); }
to { opacity: 1; transform: translateY(0); }
}
@keyframes slideIn {
from { transform: translateX(-20px); opacity: 0; }
to { transform: translateX(0); opacity: 1; }
}
@keyframes pulse {
0% { transform: scale(1); }
50% { transform: scale(1.05); }
100% { transform: scale(1); }
}
:root {
/* Enhanced color palette */
--primary-color: #2563eb;
--primary-light: #eff6ff;
--secondary-color: #1e293b;
--background-color: #f8fafc;
--text-color: #334155;
--text-light: #64748b;
--border-color: #e2e8f0;
--error-color: #ef4444;
--error-light: #fef2f2;
--success-color: #22c55e;
--warning-color: #f59e0b;
--card-shadow: 0 4px 6px -1px rgb(0 0 0 / 0.1), 0 2px 4px -2px rgb(0 0 0 / 0.1);
--hover-shadow: 0 20px 25px -5px rgb(0 0 0 / 0.1), 0 8px 10px -6px rgb(0 0 0 / 0.1);
/* Typography */
--heading-font: "Plus Jakarta Sans", system-ui, sans-serif;
--body-font: "Inter", system-ui, sans-serif;
}
body {
font-family: var(--body-font);
line-height: 1.8;
max-width: 1200px;
margin: 0 auto;
padding: 2rem;
color: var(--text-color);
background-color: var(--background-color);
font-size: 16px;
-webkit-font-smoothing: antialiased;
}
.container {
background: white;
padding: 3rem;
border-radius: 24px;
box-shadow: var(--card-shadow);
transition: all 0.4s cubic-bezier(0.4, 0, 0.2, 1);
animation: fadeIn 0.6s ease-out;
border: 1px solid var(--border-color);
}
.container:hover {
box-shadow: var(--hover-shadow);
transform: translateY(-2px);
}
h1, h2, h3 {
font-family: var(--heading-font);
font-weight: 600;
}
h1 {
color: var(--primary-color);
font-size: 2.8em;
text-align: center;
margin: 2rem 0 3rem;
padding-bottom: 1.5rem;
border-bottom: 3px solid var(--primary-color);
letter-spacing: -0.03em;
position: relative;
display: flex;
align-items: center;
justify-content: center;
gap: 1rem;
}
h1::after {
content: '';
position: absolute;
bottom: -3px;
left: 50%;
transform: translateX(-50%);
width: 120px;
height: 3px;
background: linear-gradient(90deg, var(--primary-color), var(--primary-light));
border-radius: 3px;
transition: width 0.3s ease;
}
h1:hover::after {
width: 180px;
}
h2 {
color: var(--secondary-color);
font-size: 1.9em;
margin: 2.5rem 0 1.5rem;
padding-left: 1.2rem;
border-left: 4px solid var(--primary-color);
letter-spacing: -0.02em;
display: flex;
align-items: center;
gap: 1rem;
transition: all 0.3s ease;
}
h2:hover {
color: var(--primary-color);
transform: translateX(5px);
}
h3 {
color: var(--text-color);
font-size: 1.5em;
margin: 2rem 0 1rem;
padding-bottom: 0.8rem;
border-bottom: 2px solid var(--border-color);
transition: all 0.3s ease;
display: flex;
align-items: center;
gap: 0.8rem;
}
h3:hover {
color: var(--primary-color);
border-bottom-color: var(--primary-color);
}
.summary {
background: var(--primary-light);
padding: 2.5rem;
border-radius: 16px;
margin: 2.5rem 0;
box-shadow: 0 4px 6px -1px rgba(37, 99, 235, 0.1);
position: relative;
overflow: hidden;
transition: transform 0.3s ease, box-shadow 0.3s ease;
animation: slideIn 0.5s ease-out;
}
.summary:hover {
transform: translateY(-3px);
box-shadow: 0 8px 12px -2px rgba(37, 99, 235, 0.15);
}
.summary::before {
content: '';
position: absolute;
top: 0;
left: 0;
width: 4px;
height: 100%;
background: linear-gradient(to bottom, var(--primary-color), rgba(37, 99, 235, 0.6));
}
.summary p {
margin: 1.2rem 0;
line-height: 1.9;
color: var(--text-color);
transition: color 0.3s ease;
}
.summary:hover p {
color: var(--secondary-color);
}
.details {
margin-top: 3.5rem;
padding-top: 2.5rem;
border-top: 2px dashed var(--border-color);
animation: fadeIn 0.8s ease-out;
}
.failed-files {
background: var(--error-light);
padding: 2rem;
border-radius: 16px;
margin: 3rem 0;
border-left: 4px solid var(--error-color);
position: relative;
transition: all 0.3s ease;
animation: slideIn 0.5s ease-out;
}
.failed-files:hover {
transform: translateX(5px);
box-shadow: 0 8px 15px -3px rgba(239, 68, 68, 0.1);
}
.failed-files h2 {
color: var(--error-color);
border-left: none;
padding-left: 0;
}
.failed-files ul {
margin: 1.8rem 0;
padding-left: 1.2rem;
list-style-type: none;
}
.failed-files li {
margin: 1.2rem 0;
padding: 1.2rem 1.8rem;
background: rgba(239, 68, 68, 0.08);
border-radius: 12px;
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1);
}
.failed-files li:hover {
transform: translateX(8px);
background: rgba(239, 68, 68, 0.12);
}
.directory-section {
margin: 3.5rem 0;
padding: 2rem;
background: var(--background-color);
border-radius: 16px;
position: relative;
transition: all 0.3s ease;
animation: fadeIn 0.6s ease-out;
}
.directory-section:hover {
background: white;
box-shadow: var(--card-shadow);
}
.file-summary {
background: white;
padding: 2rem;
margin: 1.8rem 0;
border-radius: 16px;
box-shadow: var(--card-shadow);
border-left: 4px solid var(--border-color);
transition: all 0.4s cubic-bezier(0.4, 0, 0.2, 1);
position: relative;
overflow: hidden;
}
.file-summary:hover {
border-left-color: var(--primary-color);
transform: translateX(8px) translateY(-2px);
box-shadow: var(--hover-shadow);
}
.file-summary {
background: white;
padding: 2rem;
margin: 1.8rem 0;
border-radius: 16px;
box-shadow: var(--card-shadow);
border-left: 4px solid var(--border-color);
transition: all 0.4s cubic-bezier(0.4, 0, 0.2, 1);
position: relative;
}
.file-summary:hover {
border-left-color: var(--primary-color);
transform: translateX(8px) translateY(-2px);
box-shadow: var(--hover-shadow);
}
.icon {
display: inline-flex;
align-items: center;
justify-content: center;
width: 32px;
height: 32px;
border-radius: 8px;
background: var(--primary-light);
color: var(--primary-color);
font-size: 1.2em;
transition: all 0.3s ease;
}
.file-summary:hover .icon,
.directory-section:hover .icon {
transform: scale(1.1);
background: var(--primary-color);
color: white;
}
/* Smooth scrolling */
html {
scroll-behavior: smooth;
}
/* Selection style */
::selection {
background: var(--primary-light);
color: var(--primary-color);
}
/* Print styles */
@media print {
body {
background: white;
}
.container {
box-shadow: none;
padding: 0;
}
.file-summary, .failed-files {
break-inside: avoid;
box-shadow: none;
}
.icon {
display: none;
}
}
/* Responsive design */
@media (max-width: 768px) {
body {
padding: 1rem;
font-size: 15px;
}
.container {
padding: 1.5rem;
}
h1 {
font-size: 2.2em;
margin: 1.5rem 0 2rem;
}
h2 {
font-size: 1.7em;
}
h3 {
font-size: 1.4em;
}
.summary, .failed-files, .directory-section {
padding: 1.5rem;
}
.file-summary {
padding: 1.2rem;
}
.icon {
width: 28px;
height: 28px;
}
}
/* Dark mode support */
@media (prefers-color-scheme: dark) {
:root {
--primary-light: rgba(37, 99, 235, 0.15);
--background-color: #0f172a;
--text-color: #e2e8f0;
--text-light: #94a3b8;
--border-color: #1e293b;
--error-light: rgba(239, 68, 68, 0.15);
}
.container, .file-summary {
background: #1e293b;
}
.directory-section {
background: #0f172a;
}
.directory-section:hover {
background: #1e293b;
}
}
"""
def format_failed_files(self) -> str:
if not self.failed_files:
return ""
failed_files_html = ['<div class="failed-files">']
failed_files_html.append('<h2><span class="icon">⚠️</span> 处理失败的文件</h2>')
failed_files_html.append("<ul>")
for fp, reason in self.failed_files:
failed_files_html.append(
f'<li><strong>📄 {os.path.basename(fp)}</strong><br><span style="color: var(--text-light)">{reason}</span></li>'
)
failed_files_html.append("</ul></div>")
return "\n".join(failed_files_html)
def format_file_summaries(self) -> str:
formatted_html = []
sorted_paths = sorted(self.file_summaries_map.keys())
current_dir = ""
for path in sorted_paths:
dir_path = os.path.dirname(path)
if dir_path != current_dir:
if dir_path:
formatted_html.append('<div class="directory-section">')
formatted_html.append(f'<h2><span class="icon">📁</span> {dir_path}</h2>')
formatted_html.append('</div>')
current_dir = dir_path
file_name = os.path.basename(path)
formatted_html.append('<div class="file-summary">')
formatted_html.append(f'<h3><span class="icon">📄</span> {file_name}</h3>')
formatted_html.append(self.md.convert(self.file_summaries_map[path]))
formatted_html.append('</div>')
return "\n".join(formatted_html)
def create_document(self) -> str:
"""生成HTML文档
Returns:
str: 完整的HTML文档字符串
"""
return f"""
<!DOCTYPE html>
<html lang="zh-CN">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>文档总结报告</title>
<link href="https://cdnjs.cloudflare.com/ajax/libs/inter/3.19.3/inter.css" rel="stylesheet">
<link href="https://fonts.googleapis.com/css2?family=Plus+Jakarta+Sans:wght@400;600&display=swap" rel="stylesheet">
<style>{self.css_styles}</style>
</head>
<body>
<div class="container">
<h1><span class="icon">📑</span> 文档总结报告</h1>
<div class="summary">
<h2><span class="icon">📋</span> 总体摘要</h2>
<p>{self.md.convert(self.final_summary)}</p>
</div>
{self.format_failed_files()}
<div class="details">
<h2><span class="icon">📚</span> 各文件详细总结</h2>
{self.format_file_summaries()}
</div>
</div>
</body>
</html>
"""

View File

@@ -1,237 +0,0 @@
from abc import ABC, abstractmethod
from typing import Any, Dict, Optional, Type, TypeVar, Generic, Union
from dataclasses import dataclass
from enum import Enum, auto
import logging
from datetime import datetime
# 设置日志
logger = logging.getLogger(__name__)
# 自定义异常类定义
class FoldingError(Exception):
"""折叠相关的自定义异常基类"""
pass
class FormattingError(FoldingError):
"""格式化过程中的错误"""
pass
class MetadataError(FoldingError):
"""元数据相关的错误"""
pass
class ValidationError(FoldingError):
"""验证错误"""
pass
class FoldingStyle(Enum):
"""折叠样式枚举"""
SIMPLE = auto() # 简单折叠
DETAILED = auto() # 详细折叠(带有额外信息)
NESTED = auto() # 嵌套折叠
@dataclass
class FoldingOptions:
"""折叠选项配置"""
style: FoldingStyle = FoldingStyle.DETAILED
code_language: Optional[str] = None # 代码块的语言
show_timestamp: bool = False # 是否显示时间戳
indent_level: int = 0 # 缩进级别
custom_css: Optional[str] = None # 自定义CSS类
T = TypeVar('T') # 用于泛型类型
class BaseMetadata(ABC):
"""元数据基类"""
@abstractmethod
def validate(self) -> bool:
"""验证元数据的有效性"""
pass
def _validate_non_empty_str(self, value: Optional[str]) -> bool:
"""验证字符串非空"""
return bool(value and value.strip())
@dataclass
class FileMetadata(BaseMetadata):
"""文件元数据"""
rel_path: str
size: float
last_modified: Optional[datetime] = None
mime_type: Optional[str] = None
encoding: str = 'utf-8'
def validate(self) -> bool:
"""验证文件元数据的有效性"""
try:
if not self._validate_non_empty_str(self.rel_path):
return False
if self.size < 0:
return False
return True
except Exception as e:
logger.error(f"File metadata validation error: {str(e)}")
return False
class ContentFormatter(ABC, Generic[T]):
"""内容格式化抽象基类
支持泛型类型参数,可以指定具体的元数据类型。
"""
@abstractmethod
def format(self,
content: str,
metadata: T,
options: Optional[FoldingOptions] = None) -> str:
"""格式化内容
Args:
content: 需要格式化的内容
metadata: 类型化的元数据
options: 折叠选项
Returns:
str: 格式化后的内容
Raises:
FormattingError: 格式化过程中的错误
"""
pass
def _create_summary(self, metadata: T) -> str:
"""创建折叠摘要,可被子类重写"""
return str(metadata)
def _format_content_block(self,
content: str,
options: Optional[FoldingOptions]) -> str:
"""格式化内容块,处理代码块等特殊格式"""
if not options:
return content
if options.code_language:
return f"```{options.code_language}\n{content}\n```"
return content
def _add_indent(self, text: str, level: int) -> str:
"""添加缩进"""
if level <= 0:
return text
indent = " " * level
return "\n".join(indent + line for line in text.splitlines())
class FileContentFormatter(ContentFormatter[FileMetadata]):
"""文件内容格式化器"""
def format(self,
content: str,
metadata: FileMetadata,
options: Optional[FoldingOptions] = None) -> str:
"""格式化文件内容"""
if not metadata.validate():
raise MetadataError("Invalid file metadata")
try:
options = options or FoldingOptions()
# 构建摘要信息
summary_parts = [
f"{metadata.rel_path} ({metadata.size:.2f}MB)",
f"Type: {metadata.mime_type}" if metadata.mime_type else None,
(f"Modified: {metadata.last_modified.strftime('%Y-%m-%d %H:%M:%S')}"
if metadata.last_modified and options.show_timestamp else None)
]
summary = " | ".join(filter(None, summary_parts))
# 构建HTML类
css_class = f' class="{options.custom_css}"' if options.custom_css else ''
# 格式化内容
formatted_content = self._format_content_block(content, options)
# 组装最终结果
result = (
f'<details{css_class}><summary>{summary}</summary>\n\n'
f'{formatted_content}\n\n'
f'</details>\n\n'
)
return self._add_indent(result, options.indent_level)
except Exception as e:
logger.error(f"Error formatting file content: {str(e)}")
raise FormattingError(f"Failed to format file content: {str(e)}")
class ContentFoldingManager:
"""内容折叠管理器"""
def __init__(self):
"""初始化折叠管理器"""
self._formatters: Dict[str, ContentFormatter] = {}
self._register_default_formatters()
def _register_default_formatters(self) -> None:
"""注册默认的格式化器"""
self.register_formatter('file', FileContentFormatter())
def register_formatter(self, name: str, formatter: ContentFormatter) -> None:
"""注册新的格式化器"""
if not isinstance(formatter, ContentFormatter):
raise TypeError("Formatter must implement ContentFormatter interface")
self._formatters[name] = formatter
def _guess_language(self, extension: str) -> Optional[str]:
"""根据文件扩展名猜测编程语言"""
extension = extension.lower().lstrip('.')
language_map = {
'py': 'python',
'js': 'javascript',
'java': 'java',
'cpp': 'cpp',
'cs': 'csharp',
'html': 'html',
'css': 'css',
'md': 'markdown',
'json': 'json',
'xml': 'xml',
'sql': 'sql',
'sh': 'bash',
'yaml': 'yaml',
'yml': 'yaml',
'txt': None # 纯文本不需要语言标识
}
return language_map.get(extension)
def format_content(self,
content: str,
formatter_type: str,
metadata: Union[FileMetadata],
options: Optional[FoldingOptions] = None) -> str:
"""格式化内容"""
formatter = self._formatters.get(formatter_type)
if not formatter:
raise KeyError(f"No formatter registered for type: {formatter_type}")
if not isinstance(metadata, FileMetadata):
raise TypeError("Invalid metadata type")
return formatter.format(content, metadata, options)

View File

@@ -1,211 +0,0 @@
import re
import os
import pandas as pd
from datetime import datetime
from openpyxl import Workbook
class ExcelTableFormatter:
"""聊天记录中Markdown表格转Excel生成器"""
def __init__(self):
"""初始化Excel文档对象"""
self.workbook = Workbook()
self._table_count = 0
self._current_sheet = None
def _normalize_table_row(self, row):
"""标准化表格行,处理不同的分隔符情况"""
row = row.strip()
if row.startswith('|'):
row = row[1:]
if row.endswith('|'):
row = row[:-1]
return [cell.strip() for cell in row.split('|')]
def _is_separator_row(self, row):
"""检查是否是分隔行(由 - 或 : 组成)"""
clean_row = re.sub(r'[\s|]', '', row)
return bool(re.match(r'^[-:]+$', clean_row))
def _extract_tables_from_text(self, text):
"""从文本中提取所有表格内容"""
if not isinstance(text, str):
return []
tables = []
current_table = []
is_in_table = False
for line in text.split('\n'):
line = line.strip()
if not line:
if is_in_table and current_table:
if len(current_table) >= 2:
tables.append(current_table)
current_table = []
is_in_table = False
continue
if '|' in line:
if not is_in_table:
is_in_table = True
current_table.append(line)
else:
if is_in_table and current_table:
if len(current_table) >= 2:
tables.append(current_table)
current_table = []
is_in_table = False
if is_in_table and current_table and len(current_table) >= 2:
tables.append(current_table)
return tables
def _parse_table(self, table_lines):
"""解析表格内容为结构化数据"""
try:
headers = self._normalize_table_row(table_lines[0])
separator_index = next(
(i for i, line in enumerate(table_lines) if self._is_separator_row(line)),
1
)
data_rows = []
for line in table_lines[separator_index + 1:]:
cells = self._normalize_table_row(line)
# 确保单元格数量与表头一致
while len(cells) < len(headers):
cells.append('')
cells = cells[:len(headers)]
data_rows.append(cells)
if headers and data_rows:
return {
'headers': headers,
'data': data_rows
}
except Exception as e:
print(f"解析表格时发生错误: {str(e)}")
return None
def _create_sheet(self, question_num, table_num):
"""创建新的工作表"""
sheet_name = f'Q{question_num}_T{table_num}'
if len(sheet_name) > 31:
sheet_name = f'Table{self._table_count}'
if sheet_name in self.workbook.sheetnames:
sheet_name = f'{sheet_name}_{datetime.now().strftime("%H%M%S")}'
return self.workbook.create_sheet(title=sheet_name)
def create_document(self, history):
"""
处理聊天历史中的所有表格并创建Excel文档
Args:
history: 聊天历史列表
Returns:
Workbook: 处理完成的Excel工作簿对象如果没有表格则返回None
"""
has_tables = False
# 删除默认创建的工作表
default_sheet = self.workbook['Sheet']
self.workbook.remove(default_sheet)
# 遍历所有回答
for i in range(1, len(history), 2):
answer = history[i]
tables = self._extract_tables_from_text(answer)
for table_lines in tables:
parsed_table = self._parse_table(table_lines)
if parsed_table:
self._table_count += 1
sheet = self._create_sheet(i // 2 + 1, self._table_count)
# 写入表头
for col, header in enumerate(parsed_table['headers'], 1):
sheet.cell(row=1, column=col, value=header)
# 写入数据
for row_idx, row_data in enumerate(parsed_table['data'], 2):
for col_idx, value in enumerate(row_data, 1):
sheet.cell(row=row_idx, column=col_idx, value=value)
has_tables = True
return self.workbook if has_tables else None
def save_chat_tables(history, save_dir, base_name):
"""
保存聊天历史中的表格到Excel文件
Args:
history: 聊天历史列表
save_dir: 保存目录
base_name: 基础文件名
Returns:
list: 保存的文件路径列表
"""
result_files = []
try:
# 创建Excel格式
excel_formatter = ExcelTableFormatter()
workbook = excel_formatter.create_document(history)
if workbook is not None:
# 确保保存目录存在
os.makedirs(save_dir, exist_ok=True)
# 生成Excel文件路径
excel_file = os.path.join(save_dir, base_name + '.xlsx')
# 保存Excel文件
workbook.save(excel_file)
result_files.append(excel_file)
print(f"已保存表格到Excel文件: {excel_file}")
except Exception as e:
print(f"保存Excel格式失败: {str(e)}")
return result_files
# 使用示例
if __name__ == "__main__":
# 示例聊天历史
history = [
"问题1",
"""这是第一个表格:
| A | B | C |
|---|---|---|
| 1 | 2 | 3 |""",
"问题2",
"这是没有表格的回答",
"问题3",
"""回答包含多个表格:
| Name | Age |
|------|-----|
| Tom | 20 |
第二个表格:
| X | Y |
|---|---|
| 1 | 2 |"""
]
# 保存表格
save_dir = "output"
base_name = "chat_tables"
saved_files = save_chat_tables(history, save_dir, base_name)

View File

@@ -1,190 +0,0 @@
class HtmlFormatter:
"""聊天记录HTML格式生成器"""
def __init__(self, chatbot, history):
self.chatbot = chatbot
self.history = history
self.css_styles = """
:root {
--primary-color: #2563eb;
--primary-light: #eff6ff;
--secondary-color: #1e293b;
--background-color: #f8fafc;
--text-color: #334155;
--border-color: #e2e8f0;
--card-shadow: 0 4px 6px -1px rgb(0 0 0 / 0.1), 0 2px 4px -2px rgb(0 0 0 / 0.1);
}
body {
font-family: system-ui, -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
line-height: 1.8;
margin: 0;
padding: 2rem;
color: var(--text-color);
background-color: var(--background-color);
}
.container {
max-width: 1200px;
margin: 0 auto;
background: white;
padding: 2rem;
border-radius: 16px;
box-shadow: var(--card-shadow);
}
::selection {
background: var(--primary-light);
color: var(--primary-color);
}
@keyframes fadeIn {
from { opacity: 0; transform: translateY(20px); }
to { opacity: 1; transform: translateY(0); }
}
@keyframes slideIn {
from { transform: translateX(-20px); opacity: 0; }
to { transform: translateX(0); opacity: 1; }
}
.container {
animation: fadeIn 0.6s ease-out;
}
.QaBox {
animation: slideIn 0.5s ease-out;
transition: all 0.3s ease;
}
.QaBox:hover {
transform: translateX(5px);
}
.Question, .Answer, .historyBox {
transition: all 0.3s ease;
}
.chat-title {
color: var(--primary-color);
font-size: 2em;
text-align: center;
margin: 1rem 0 2rem;
padding-bottom: 1rem;
border-bottom: 2px solid var(--primary-color);
}
.chat-body {
display: flex;
flex-direction: column;
gap: 1.5rem;
margin: 2rem 0;
}
.QaBox {
background: white;
padding: 1.5rem;
border-radius: 8px;
border-left: 4px solid var(--primary-color);
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
margin-bottom: 1.5rem;
}
.Question {
color: var(--secondary-color);
font-weight: 500;
margin-bottom: 1rem;
}
.Answer {
color: var(--text-color);
background: var(--primary-light);
padding: 1rem;
border-radius: 6px;
}
.history-section {
margin-top: 3rem;
padding-top: 2rem;
border-top: 2px solid var(--border-color);
}
.history-title {
color: var(--secondary-color);
font-size: 1.5em;
margin-bottom: 1.5rem;
text-align: center;
}
.historyBox {
background: white;
padding: 1rem;
margin: 0.5rem 0;
border-radius: 6px;
border: 1px solid var(--border-color);
}
@media (prefers-color-scheme: dark) {
:root {
--background-color: #0f172a;
--text-color: #e2e8f0;
--border-color: #1e293b;
}
.container, .QaBox {
background: #1e293b;
}
}
"""
def format_chat_content(self) -> str:
"""格式化聊天内容"""
chat_content = []
for q, a in self.chatbot:
question = str(q) if q is not None else ""
answer = str(a) if a is not None else ""
chat_content.append(f'''
<div class="QaBox">
<div class="Question">{question}</div>
<div class="Answer">{answer}</div>
</div>
''')
return "\n".join(chat_content)
def format_history_content(self) -> str:
"""格式化历史记录内容"""
if not self.history:
return ""
history_content = []
for entry in self.history:
history_content.append(f'''
<div class="historyBox">
<div class="entry">{entry}</div>
</div>
''')
return "\n".join(history_content)
def create_document(self) -> str:
"""生成完整的HTML文档
Returns:
str: 完整的HTML文档字符串
"""
return f"""
<!DOCTYPE html>
<html lang="zh-CN">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>对话存档</title>
<style>{self.css_styles}</style>
</head>
<body>
<div class="container">
<h1 class="chat-title">对话存档</h1>
<div class="chat-body">
{self.format_chat_content()}
</div>
</div>
</body>
</html>
"""

View File

@@ -1,39 +0,0 @@
class MarkdownFormatter:
"""Markdown格式文档生成器 - 用于生成对话记录的markdown文档"""
def __init__(self):
self.content = []
def _add_content(self, text: str):
"""添加正文内容"""
if text:
self.content.append(f"\n{text}\n")
def create_document(self, history: list) -> str:
"""
创建完整的Markdown文档
Args:
history: 历史记录列表,偶数位置为问题,奇数位置为答案
Returns:
str: 生成的Markdown文本
"""
self.content = []
# 处理问答对
for i in range(0, len(history), 2):
question = history[i]
answer = history[i + 1]
# 添加问题
self.content.append(f"\n### 问题 {i//2 + 1}")
self._add_content(question)
# 添加回答
self.content.append(f"\n### 回答 {i//2 + 1}")
self._add_content(answer)
# 添加分隔线
self.content.append("\n---\n")
return "\n".join(self.content)

View File

@@ -1,172 +0,0 @@
from datetime import datetime
import os
import re
from reportlab.pdfbase import pdfmetrics
from reportlab.pdfbase.ttfonts import TTFont
def convert_markdown_to_pdf(markdown_text):
"""将Markdown文本转换为PDF格式的纯文本"""
if not markdown_text:
return ""
# 标准化换行符
markdown_text = markdown_text.replace('\r\n', '\n').replace('\r', '\n')
# 处理标题、粗体、斜体
markdown_text = re.sub(r'^#\s+(.+)$', r'\1', markdown_text, flags=re.MULTILINE)
markdown_text = re.sub(r'\*\*(.+?)\*\*', r'\1', markdown_text)
markdown_text = re.sub(r'\*(.+?)\*', r'\1', markdown_text)
# 处理列表
markdown_text = re.sub(r'^\s*[-*+]\s+(.+?)(?=\n|$)', r'\1', markdown_text, flags=re.MULTILINE)
markdown_text = re.sub(r'^\s*\d+\.\s+(.+?)(?=\n|$)', r'\1', markdown_text, flags=re.MULTILINE)
# 处理链接
markdown_text = re.sub(r'\[([^\]]+)\]\(([^)]+)\)', r'\1', markdown_text)
# 处理段落
markdown_text = re.sub(r'\n{2,}', '\n', markdown_text)
markdown_text = re.sub(r'(?<!\n)(?<!^)(?<!•\s)(?<!\d\.\s)\n(?![\s•\d])', '\n\n', markdown_text, flags=re.MULTILINE)
# 清理空白
markdown_text = re.sub(r' +', ' ', markdown_text)
markdown_text = re.sub(r'(?m)^\s+|\s+$', '', markdown_text)
return markdown_text.strip()
class PDFFormatter:
"""聊天记录PDF文档生成器 - 使用 Noto Sans CJK 字体"""
def __init__(self):
self._init_reportlab()
self._register_fonts()
self.styles = self._get_reportlab_lib()['getSampleStyleSheet']()
self._create_styles()
def _init_reportlab(self):
"""初始化 ReportLab 相关组件"""
from reportlab.lib.pagesizes import A4
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import cm
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
self._lib = {
'A4': A4,
'getSampleStyleSheet': getSampleStyleSheet,
'ParagraphStyle': ParagraphStyle,
'cm': cm
}
self._platypus = {
'SimpleDocTemplate': SimpleDocTemplate,
'Paragraph': Paragraph,
'Spacer': Spacer
}
def _get_reportlab_lib(self):
return self._lib
def _get_reportlab_platypus(self):
return self._platypus
def _register_fonts(self):
"""注册 Noto Sans CJK 字体"""
possible_font_paths = [
'/usr/share/fonts/opentype/noto/NotoSansCJK-Regular.ttc',
'/usr/share/fonts/noto-cjk/NotoSansCJK-Regular.ttc',
'/usr/share/fonts/noto/NotoSansCJK-Regular.ttc'
]
font_registered = False
for path in possible_font_paths:
if os.path.exists(path):
try:
pdfmetrics.registerFont(TTFont('NotoSansCJK', path))
font_registered = True
break
except:
continue
if not font_registered:
print("Warning: Could not find Noto Sans CJK font. Using fallback font.")
self.font_name = 'Helvetica'
else:
self.font_name = 'NotoSansCJK'
def _create_styles(self):
"""创建文档样式"""
ParagraphStyle = self._lib['ParagraphStyle']
# 标题样式
self.styles.add(ParagraphStyle(
name='Title_Custom',
fontName=self.font_name,
fontSize=24,
leading=38,
alignment=1,
spaceAfter=32
))
# 日期样式
self.styles.add(ParagraphStyle(
name='Date_Style',
fontName=self.font_name,
fontSize=16,
leading=20,
alignment=1,
spaceAfter=20
))
# 问题样式
self.styles.add(ParagraphStyle(
name='Question_Style',
fontName=self.font_name,
fontSize=12,
leading=18,
leftIndent=28,
spaceAfter=6
))
# 回答样式
self.styles.add(ParagraphStyle(
name='Answer_Style',
fontName=self.font_name,
fontSize=12,
leading=18,
leftIndent=28,
spaceAfter=12
))
def create_document(self, history, output_path):
"""生成PDF文档"""
# 创建PDF文档
doc = self._platypus['SimpleDocTemplate'](
output_path,
pagesize=self._lib['A4'],
rightMargin=2.6 * self._lib['cm'],
leftMargin=2.8 * self._lib['cm'],
topMargin=3.7 * self._lib['cm'],
bottomMargin=3.5 * self._lib['cm']
)
# 构建内容
story = []
Paragraph = self._platypus['Paragraph']
# 添加对话内容
for i in range(0, len(history), 2):
question = history[i]
answer = convert_markdown_to_pdf(history[i + 1]) if i + 1 < len(history) else ""
if question:
q_text = f'问题 {i // 2 + 1}{str(question)}'
story.append(Paragraph(q_text, self.styles['Question_Style']))
if answer:
a_text = f'回答 {i // 2 + 1}{str(answer)}'
story.append(Paragraph(a_text, self.styles['Answer_Style']))
# 构建PDF
doc.build(story)
return doc

View File

@@ -1,79 +0,0 @@
import re
def convert_markdown_to_txt(markdown_text):
"""Convert markdown text to plain text while preserving formatting"""
# Standardize line endings
markdown_text = markdown_text.replace('\r\n', '\n').replace('\r', '\n')
# 1. Handle headers but keep their formatting instead of removing them
markdown_text = re.sub(r'^#\s+(.+)$', r'# \1', markdown_text, flags=re.MULTILINE)
markdown_text = re.sub(r'^##\s+(.+)$', r'## \1', markdown_text, flags=re.MULTILINE)
markdown_text = re.sub(r'^###\s+(.+)$', r'### \1', markdown_text, flags=re.MULTILINE)
# 2. Handle bold and italic - simply remove markers
markdown_text = re.sub(r'\*\*(.+?)\*\*', r'\1', markdown_text)
markdown_text = re.sub(r'\*(.+?)\*', r'\1', markdown_text)
# 3. Handle lists but preserve formatting
markdown_text = re.sub(r'^\s*[-*+]\s+(.+?)(?=\n|$)', r'\1', markdown_text, flags=re.MULTILINE)
# 4. Handle links - keep only the text
markdown_text = re.sub(r'\[([^\]]+)\]\(([^)]+)\)', r'\1 (\2)', markdown_text)
# 5. Handle HTML links - convert to user-friendly format
markdown_text = re.sub(r'<a href=[\'"]([^\'"]+)[\'"](?:\s+target=[\'"][^\'"]+[\'"])?>([^<]+)</a>', r'\2 (\1)',
markdown_text)
# 6. Preserve paragraph breaks
markdown_text = re.sub(r'\n{3,}', '\n\n', markdown_text) # normalize multiple newlines to double newlines
# 7. Clean up extra spaces but maintain indentation
markdown_text = re.sub(r' +', ' ', markdown_text)
return markdown_text.strip()
class TxtFormatter:
"""Chat history TXT document generator"""
def __init__(self):
self.content = []
self._setup_document()
def _setup_document(self):
"""Initialize document with header"""
self.content.append("=" * 50)
self.content.append("GPT-Academic对话记录".center(48))
self.content.append("=" * 50)
def _format_header(self):
"""Create document header with current date"""
from datetime import datetime
date_str = datetime.now().strftime('%Y年%m月%d')
return [
date_str.center(48),
"\n" # Add blank line after date
]
def create_document(self, history):
"""Generate document from chat history"""
# Add header with date
self.content.extend(self._format_header())
# Add conversation content
for i in range(0, len(history), 2):
question = history[i]
answer = convert_markdown_to_txt(history[i + 1]) if i + 1 < len(history) else ""
if question:
self.content.append(f"问题 {i // 2 + 1}{str(question)}")
self.content.append("") # Add blank line
if answer:
self.content.append(f"回答 {i // 2 + 1}{str(answer)}")
self.content.append("") # Add blank line
# Join all content with newlines
return "\n".join(self.content)

View File

@@ -1,155 +0,0 @@
from docx2pdf import convert
import os
import platform
import subprocess
from typing import Union
from pathlib import Path
from datetime import datetime
class WordToPdfConverter:
"""Word文档转PDF转换器"""
@staticmethod
def convert_to_pdf(word_path: Union[str, Path], pdf_path: Union[str, Path] = None) -> str:
"""
将Word文档转换为PDF
参数:
word_path: Word文档的路径
pdf_path: 可选PDF文件的输出路径。如果未指定将使用与Word文档相同的名称和位置
返回:
生成的PDF文件路径
异常:
如果转换失败,将抛出相应异常
"""
try:
# 确保输入路径是Path对象
word_path = Path(word_path)
# 如果未指定pdf_path则使用与word文档相同的名称
if pdf_path is None:
pdf_path = word_path.with_suffix('.pdf')
else:
pdf_path = Path(pdf_path)
# 检查操作系统
if platform.system() == 'Linux':
# Linux系统需要安装libreoffice
which_result = subprocess.run(['which', 'libreoffice'], capture_output=True, text=True)
if which_result.returncode != 0:
raise RuntimeError("请先安装LibreOffice: sudo apt-get install libreoffice")
print(f"开始转换Word文档: {word_path} 到 PDF")
# 使用subprocess代替os.system
result = subprocess.run(
['libreoffice', '--headless', '--convert-to', 'pdf:writer_pdf_Export',
str(word_path), '--outdir', str(pdf_path.parent)],
capture_output=True, text=True
)
if result.returncode != 0:
error_msg = result.stderr or "未知错误"
print(f"LibreOffice转换失败错误信息: {error_msg}")
raise RuntimeError(f"LibreOffice转换失败: {error_msg}")
print(f"LibreOffice转换输出: {result.stdout}")
# 如果输出路径与默认生成的不同,则重命名
default_pdf = word_path.with_suffix('.pdf')
if default_pdf != pdf_path and default_pdf.exists():
os.rename(default_pdf, pdf_path)
print(f"已将PDF从 {default_pdf} 重命名为 {pdf_path}")
# 验证PDF是否成功生成
if not pdf_path.exists() or pdf_path.stat().st_size == 0:
raise RuntimeError("PDF生成失败或文件为空")
print(f"PDF转换成功文件大小: {pdf_path.stat().st_size} 字节")
else:
# Windows和MacOS使用docx2pdf
print(f"使用docx2pdf转换 {word_path}{pdf_path}")
convert(word_path, pdf_path)
# 验证PDF是否成功生成
if not pdf_path.exists() or pdf_path.stat().st_size == 0:
raise RuntimeError("PDF生成失败或文件为空")
print(f"PDF转换成功文件大小: {pdf_path.stat().st_size} 字节")
return str(pdf_path)
except Exception as e:
print(f"PDF转换异常: {str(e)}")
raise Exception(f"转换PDF失败: {str(e)}")
@staticmethod
def batch_convert(word_dir: Union[str, Path], pdf_dir: Union[str, Path] = None) -> list:
"""
批量转换目录下的所有Word文档
参数:
word_dir: 包含Word文档的目录路径
pdf_dir: 可选PDF文件的输出目录。如果未指定将使用与Word文档相同的目录
返回:
生成的PDF文件路径列表
"""
word_dir = Path(word_dir)
if pdf_dir:
pdf_dir = Path(pdf_dir)
pdf_dir.mkdir(parents=True, exist_ok=True)
converted_files = []
for word_file in word_dir.glob("*.docx"):
try:
if pdf_dir:
pdf_path = pdf_dir / word_file.with_suffix('.pdf').name
else:
pdf_path = word_file.with_suffix('.pdf')
pdf_file = WordToPdfConverter.convert_to_pdf(word_file, pdf_path)
converted_files.append(pdf_file)
except Exception as e:
print(f"转换 {word_file} 失败: {str(e)}")
return converted_files
@staticmethod
def convert_doc_to_pdf(doc, output_dir: Union[str, Path] = None) -> str:
"""
将docx对象直接转换为PDF
参数:
doc: python-docx的Document对象
output_dir: 可选,输出目录。如果未指定,将使用当前目录
返回:
生成的PDF文件路径
"""
try:
# 设置临时文件路径和输出路径
output_dir = Path(output_dir) if output_dir else Path.cwd()
output_dir.mkdir(parents=True, exist_ok=True)
# 生成临时word文件
temp_docx = output_dir / f"temp_{datetime.now().strftime('%Y%m%d_%H%M%S')}.docx"
doc.save(temp_docx)
# 转换为PDF
pdf_path = temp_docx.with_suffix('.pdf')
WordToPdfConverter.convert_to_pdf(temp_docx, pdf_path)
# 删除临时word文件
temp_docx.unlink()
return str(pdf_path)
except Exception as e:
if temp_docx.exists():
temp_docx.unlink()
raise Exception(f"转换PDF失败: {str(e)}")

View File

@@ -1,177 +0,0 @@
import re
from docx import Document
from docx.shared import Cm, Pt
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT, WD_LINE_SPACING
from docx.enum.style import WD_STYLE_TYPE
from docx.oxml.ns import qn
from datetime import datetime
def convert_markdown_to_word(markdown_text):
# 0. 首先标准化所有换行符为\n
markdown_text = markdown_text.replace('\r\n', '\n').replace('\r', '\n')
# 1. 处理标题 - 支持更多级别的标题,使用更精确的正则
# 保留标题标记,以便后续处理时还能识别出标题级别
markdown_text = re.sub(r'^(#{1,6})\s+(.+?)(?:\s+#+)?$', r'\1 \2', markdown_text, flags=re.MULTILINE)
# 2. 处理粗体、斜体和加粗斜体
markdown_text = re.sub(r'\*\*\*(.+?)\*\*\*', r'\1', markdown_text) # 加粗斜体
markdown_text = re.sub(r'\*\*(.+?)\*\*', r'\1', markdown_text) # 加粗
markdown_text = re.sub(r'\*(.+?)\*', r'\1', markdown_text) # 斜体
markdown_text = re.sub(r'_(.+?)_', r'\1', markdown_text) # 下划线斜体
markdown_text = re.sub(r'__(.+?)__', r'\1', markdown_text) # 下划线加粗
# 3. 处理代码块 - 不移除,而是简化格式
# 多行代码块
markdown_text = re.sub(r'```(?:\w+)?\n([\s\S]*?)```', r'[代码块]\n\1[/代码块]', markdown_text)
# 单行代码
markdown_text = re.sub(r'`([^`]+)`', r'[代码]\1[/代码]', markdown_text)
# 4. 处理列表 - 保留列表结构
# 匹配无序列表
markdown_text = re.sub(r'^(\s*)[-*+]\s+(.+?)$', r'\1• \2', markdown_text, flags=re.MULTILINE)
# 5. 处理Markdown链接
markdown_text = re.sub(r'\[([^\]]+)\]\(([^)]+?)\s*(?:"[^"]*")?\)', r'\1 (\2)', markdown_text)
# 6. 处理HTML链接
markdown_text = re.sub(r'<a href=[\'"]([^\'"]+)[\'"](?:\s+target=[\'"][^\'"]+[\'"])?>([^<]+)</a>', r'\2 (\1)',
markdown_text)
# 7. 处理图片
markdown_text = re.sub(r'!\[([^\]]*)\]\([^)]+\)', r'[图片:\1]', markdown_text)
return markdown_text
class WordFormatter:
"""聊天记录Word文档生成器 - 符合中国政府公文格式规范(GB/T 9704-2012)"""
def __init__(self):
self.doc = Document()
self._setup_document()
self._create_styles()
def _setup_document(self):
"""设置文档基本格式,包括页面设置和页眉"""
sections = self.doc.sections
for section in sections:
# 设置页面大小为A4
section.page_width = Cm(21)
section.page_height = Cm(29.7)
# 设置页边距
section.top_margin = Cm(3.7) # 上边距37mm
section.bottom_margin = Cm(3.5) # 下边距35mm
section.left_margin = Cm(2.8) # 左边距28mm
section.right_margin = Cm(2.6) # 右边距26mm
# 设置页眉页脚距离
section.header_distance = Cm(2.0)
section.footer_distance = Cm(2.0)
# 添加页眉
header = section.header
header_para = header.paragraphs[0]
header_para.alignment = WD_PARAGRAPH_ALIGNMENT.RIGHT
header_run = header_para.add_run("GPT-Academic对话记录")
header_run.font.name = '仿宋'
header_run._element.rPr.rFonts.set(qn('w:eastAsia'), '仿宋')
header_run.font.size = Pt(9)
def _create_styles(self):
"""创建文档样式"""
# 创建正文样式
style = self.doc.styles.add_style('Normal_Custom', WD_STYLE_TYPE.PARAGRAPH)
style.font.name = '仿宋'
style._element.rPr.rFonts.set(qn('w:eastAsia'), '仿宋')
style.font.size = Pt(12) # 调整为12磅
style.paragraph_format.line_spacing_rule = WD_LINE_SPACING.ONE_POINT_FIVE
style.paragraph_format.space_after = Pt(0)
# 创建问题样式
question_style = self.doc.styles.add_style('Question_Style', WD_STYLE_TYPE.PARAGRAPH)
question_style.font.name = '黑体'
question_style._element.rPr.rFonts.set(qn('w:eastAsia'), '黑体')
question_style.font.size = Pt(14) # 调整为14磅
question_style.font.bold = True
question_style.paragraph_format.space_before = Pt(12) # 减小段前距
question_style.paragraph_format.space_after = Pt(6)
question_style.paragraph_format.line_spacing_rule = WD_LINE_SPACING.ONE_POINT_FIVE
question_style.paragraph_format.left_indent = Pt(0) # 移除左缩进
# 创建回答样式
answer_style = self.doc.styles.add_style('Answer_Style', WD_STYLE_TYPE.PARAGRAPH)
answer_style.font.name = '仿宋'
answer_style._element.rPr.rFonts.set(qn('w:eastAsia'), '仿宋')
answer_style.font.size = Pt(12) # 调整为12磅
answer_style.paragraph_format.space_before = Pt(6)
answer_style.paragraph_format.space_after = Pt(12)
answer_style.paragraph_format.line_spacing_rule = WD_LINE_SPACING.ONE_POINT_FIVE
answer_style.paragraph_format.left_indent = Pt(0) # 移除左缩进
# 创建标题样式
title_style = self.doc.styles.add_style('Title_Custom', WD_STYLE_TYPE.PARAGRAPH)
title_style.font.name = '黑体' # 改用黑体
title_style._element.rPr.rFonts.set(qn('w:eastAsia'), '黑体')
title_style.font.size = Pt(22) # 调整为22磅
title_style.font.bold = True
title_style.paragraph_format.alignment = WD_PARAGRAPH_ALIGNMENT.CENTER
title_style.paragraph_format.space_before = Pt(0)
title_style.paragraph_format.space_after = Pt(24)
title_style.paragraph_format.line_spacing_rule = WD_LINE_SPACING.ONE_POINT_FIVE
# 添加参考文献样式
ref_style = self.doc.styles.add_style('Reference_Style', WD_STYLE_TYPE.PARAGRAPH)
ref_style.font.name = '宋体'
ref_style._element.rPr.rFonts.set(qn('w:eastAsia'), '宋体')
ref_style.font.size = Pt(10.5) # 参考文献使用小号字体
ref_style.paragraph_format.space_before = Pt(3)
ref_style.paragraph_format.space_after = Pt(3)
ref_style.paragraph_format.line_spacing_rule = WD_LINE_SPACING.SINGLE
ref_style.paragraph_format.left_indent = Pt(21)
ref_style.paragraph_format.first_line_indent = Pt(-21)
# 添加参考文献标题样式
ref_title_style = self.doc.styles.add_style('Reference_Title_Style', WD_STYLE_TYPE.PARAGRAPH)
ref_title_style.font.name = '黑体'
ref_title_style._element.rPr.rFonts.set(qn('w:eastAsia'), '黑体')
ref_title_style.font.size = Pt(16)
ref_title_style.font.bold = True
ref_title_style.paragraph_format.space_before = Pt(24)
ref_title_style.paragraph_format.space_after = Pt(12)
ref_title_style.paragraph_format.line_spacing_rule = WD_LINE_SPACING.ONE_POINT_FIVE
def create_document(self, history):
"""写入聊天历史"""
# 添加标题
title_para = self.doc.add_paragraph(style='Title_Custom')
title_run = title_para.add_run('GPT-Academic 对话记录')
# 添加日期
date_para = self.doc.add_paragraph()
date_para.alignment = WD_PARAGRAPH_ALIGNMENT.CENTER
date_run = date_para.add_run(datetime.now().strftime('%Y年%m月%d'))
date_run.font.name = '仿宋'
date_run._element.rPr.rFonts.set(qn('w:eastAsia'), '仿宋')
date_run.font.size = Pt(16)
self.doc.add_paragraph() # 添加空行
# 添加对话内容
for i in range(0, len(history), 2):
question = history[i]
answer = convert_markdown_to_word(history[i + 1])
if question:
q_para = self.doc.add_paragraph(style='Question_Style')
q_para.add_run(f'问题 {i//2 + 1}').bold = True
q_para.add_run(str(question))
if answer:
a_para = self.doc.add_paragraph(style='Answer_Style')
a_para.add_run(f'回答 {i//2 + 1}').bold = True
a_para.add_run(str(answer))
return self.doc

View File

@@ -1,4 +0,0 @@
import nltk
nltk.data.path.append('~/nltk_data')
nltk.download('averaged_perceptron_tagger', download_dir='~/nltk_data')
nltk.download('punkt', download_dir='~/nltk_data')

View File

@@ -1,286 +0,0 @@
from __future__ import annotations
import pandas as pd
import numpy as np
from pathlib import Path
from typing import Optional, List, Set, Dict, Union, Iterator, Tuple
from dataclasses import dataclass, field
import logging
from concurrent.futures import ThreadPoolExecutor, as_completed
import chardet
from functools import lru_cache
import os
@dataclass
class ExtractorConfig:
"""提取器配置类"""
encoding: str = 'auto'
na_filter: bool = True
skip_blank_lines: bool = True
chunk_size: int = 10000
max_workers: int = 4
preserve_format: bool = True
read_all_sheets: bool = True # 新增:是否读取所有工作表
text_cleanup: Dict[str, bool] = field(default_factory=lambda: {
'remove_extra_spaces': True,
'normalize_whitespace': False,
'remove_special_chars': False,
'lowercase': False
})
class ExcelTextExtractor:
"""增强的Excel格式文件文本内容提取器"""
SUPPORTED_EXTENSIONS: Set[str] = {
'.xlsx', '.xls', '.csv', '.tsv', '.xlsm', '.xltx', '.xltm', '.ods'
}
def __init__(self, config: Optional[ExtractorConfig] = None):
self.config = config or ExtractorConfig()
self._setup_logging()
self._detect_encoding = lru_cache(maxsize=128)(self._detect_encoding)
def _setup_logging(self) -> None:
"""配置日志记录器"""
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
self.logger = logging.getLogger(__name__)
fh = logging.FileHandler('excel_extractor.log')
fh.setLevel(logging.ERROR)
self.logger.addHandler(fh)
def _detect_encoding(self, file_path: Path) -> str:
if self.config.encoding != 'auto':
return self.config.encoding
try:
with open(file_path, 'rb') as f:
raw_data = f.read(10000)
result = chardet.detect(raw_data)
return result['encoding'] or 'utf-8'
except Exception as e:
self.logger.warning(f"Encoding detection failed: {e}. Using utf-8")
return 'utf-8'
def _validate_file(self, file_path: Union[str, Path]) -> Path:
path = Path(file_path).resolve()
if not path.exists():
raise ValueError(f"File not found: {path}")
if not path.is_file():
raise ValueError(f"Not a file: {path}")
if not os.access(path, os.R_OK):
raise PermissionError(f"No read permission: {path}")
if path.suffix.lower() not in self.SUPPORTED_EXTENSIONS:
raise ValueError(
f"Unsupported format: {path.suffix}. "
f"Supported: {', '.join(sorted(self.SUPPORTED_EXTENSIONS))}"
)
return path
def _format_value(self, value: Any) -> str:
if pd.isna(value) or value is None:
return ''
if isinstance(value, (int, float)):
return str(value)
return str(value).strip()
def _process_chunk(self, chunk: pd.DataFrame, columns: Optional[List[str]] = None, sheet_name: str = '') -> str:
"""处理数据块新增sheet_name参数"""
try:
if columns:
chunk = chunk[columns]
if self.config.preserve_format:
formatted_chunk = chunk.applymap(self._format_value)
rows = []
# 添加工作表名称作为标题
if sheet_name:
rows.append(f"[Sheet: {sheet_name}]")
# 添加表头
headers = [str(col) for col in formatted_chunk.columns]
rows.append('\t'.join(headers))
# 添加数据行
for _, row in formatted_chunk.iterrows():
rows.append('\t'.join(row.values))
return '\n'.join(rows)
else:
flat_values = (
chunk.astype(str)
.replace({'nan': '', 'None': '', 'NaN': ''})
.values.flatten()
)
return ' '.join(v for v in flat_values if v)
except Exception as e:
self.logger.error(f"Error processing chunk: {e}")
raise
def _read_file(self, file_path: Path) -> Union[pd.DataFrame, Iterator[pd.DataFrame], Dict[str, pd.DataFrame]]:
"""读取文件,支持多工作表"""
try:
encoding = self._detect_encoding(file_path)
if file_path.suffix.lower() in {'.csv', '.tsv'}:
sep = '\t' if file_path.suffix.lower() == '.tsv' else ','
# 对大文件使用分块读取
if file_path.stat().st_size > self.config.chunk_size * 1024:
return pd.read_csv(
file_path,
encoding=encoding,
na_filter=self.config.na_filter,
skip_blank_lines=self.config.skip_blank_lines,
sep=sep,
chunksize=self.config.chunk_size,
on_bad_lines='warn'
)
else:
return pd.read_csv(
file_path,
encoding=encoding,
na_filter=self.config.na_filter,
skip_blank_lines=self.config.skip_blank_lines,
sep=sep
)
else:
# Excel文件处理支持多工作表
if self.config.read_all_sheets:
# 读取所有工作表
return pd.read_excel(
file_path,
na_filter=self.config.na_filter,
keep_default_na=self.config.na_filter,
engine='openpyxl',
sheet_name=None # None表示读取所有工作表
)
else:
# 只读取第一个工作表
return pd.read_excel(
file_path,
na_filter=self.config.na_filter,
keep_default_na=self.config.na_filter,
engine='openpyxl',
sheet_name=0 # 读取第一个工作表
)
except Exception as e:
self.logger.error(f"Error reading file {file_path}: {e}")
raise
def extract_text(
self,
file_path: Union[str, Path],
columns: Optional[List[str]] = None,
separator: str = '\n'
) -> str:
"""提取文本,支持多工作表"""
try:
path = self._validate_file(file_path)
self.logger.info(f"Processing: {path}")
reader = self._read_file(path)
texts = []
# 处理Excel多工作表
if isinstance(reader, dict):
for sheet_name, df in reader.items():
sheet_text = self._process_chunk(df, columns, sheet_name)
if sheet_text:
texts.append(sheet_text)
return separator.join(texts)
# 处理单个DataFrame
elif isinstance(reader, pd.DataFrame):
return self._process_chunk(reader, columns)
# 处理DataFrame迭代器
else:
with ThreadPoolExecutor(max_workers=self.config.max_workers) as executor:
futures = {
executor.submit(self._process_chunk, chunk, columns): i
for i, chunk in enumerate(reader)
}
chunk_texts = []
for future in as_completed(futures):
try:
text = future.result()
if text:
chunk_texts.append((futures[future], text))
except Exception as e:
self.logger.error(f"Error in chunk {futures[future]}: {e}")
# 按块的顺序排序
chunk_texts.sort(key=lambda x: x[0])
texts = [text for _, text in chunk_texts]
# 合并文本,保留格式
if texts and self.config.preserve_format:
result = texts[0] # 第一块包含表头
if len(texts) > 1:
# 跳过后续块的表头行
for text in texts[1:]:
result += '\n' + '\n'.join(text.split('\n')[1:])
return result
else:
return separator.join(texts)
except Exception as e:
self.logger.error(f"Extraction failed: {e}")
raise
@staticmethod
def get_supported_formats() -> List[str]:
"""获取支持的文件格式列表"""
return sorted(ExcelTextExtractor.SUPPORTED_EXTENSIONS)
def main():
"""主函数:演示用法"""
config = ExtractorConfig(
encoding='auto',
preserve_format=True,
read_all_sheets=True, # 启用多工作表读取
text_cleanup={
'remove_extra_spaces': True,
'normalize_whitespace': False,
'remove_special_chars': False,
'lowercase': False
}
)
extractor = ExcelTextExtractor(config)
try:
sample_file = 'example.xlsx'
if Path(sample_file).exists():
text = extractor.extract_text(
sample_file,
columns=['title', 'content']
)
print("提取的文本:")
print(text)
else:
print(f"示例文件 {sample_file} 不存在")
print("\n支持的格式:", extractor.get_supported_formats())
except Exception as e:
print(f"错误: {e}")
if __name__ == "__main__":
main()

View File

@@ -1,359 +0,0 @@
from __future__ import annotations
from pathlib import Path
from typing import Optional, Set, Dict, Union, List
from dataclasses import dataclass, field
import logging
import os
import re
import subprocess
import tempfile
import shutil
@dataclass
class MarkdownConverterConfig:
"""PDF 到 Markdown 转换器配置类
Attributes:
extract_images: 是否提取图片
extract_tables: 是否尝试保留表格结构
extract_code_blocks: 是否识别代码块
extract_math: 是否转换数学公式
output_dir: 输出目录路径
image_dir: 图片保存目录路径
paragraph_separator: 段落之间的分隔符
text_cleanup: 文本清理选项字典
docintel_endpoint: Document Intelligence端点URL (可选)
enable_plugins: 是否启用插件
llm_client: LLM客户端对象 (例如OpenAI client)
llm_model: 要使用的LLM模型名称
"""
extract_images: bool = True
extract_tables: bool = True
extract_code_blocks: bool = True
extract_math: bool = True
output_dir: str = ""
image_dir: str = "images"
paragraph_separator: str = '\n\n'
text_cleanup: Dict[str, bool] = field(default_factory=lambda: {
'remove_extra_spaces': True,
'normalize_whitespace': True,
'remove_special_chars': False,
'lowercase': False
})
docintel_endpoint: str = ""
enable_plugins: bool = False
llm_client: Optional[object] = None
llm_model: str = ""
class MarkdownConverter:
"""PDF 到 Markdown 转换器
使用 markitdown 库实现 PDF 到 Markdown 的转换,支持多种配置选项。
"""
SUPPORTED_EXTENSIONS: Set[str] = {
'.pdf',
}
def __init__(self, config: Optional[MarkdownConverterConfig] = None):
"""初始化转换器
Args:
config: 转换器配置对象如果为None则使用默认配置
"""
self.config = config or MarkdownConverterConfig()
self._setup_logging()
# 检查是否安装了 markitdown
self._check_markitdown_installation()
def _setup_logging(self) -> None:
"""配置日志记录器"""
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
self.logger = logging.getLogger(__name__)
# 添加文件处理器
fh = logging.FileHandler('markdown_converter.log')
fh.setLevel(logging.ERROR)
self.logger.addHandler(fh)
def _check_markitdown_installation(self) -> None:
"""检查是否安装了 markitdown"""
try:
# 尝试导入 markitdown 库
from markitdown import MarkItDown
self.logger.info("markitdown 库已安装")
except ImportError:
self.logger.warning("markitdown 库未安装,尝试安装...")
try:
subprocess.check_call(["pip", "install", "markitdown"])
self.logger.info("markitdown 库安装成功")
from markitdown import MarkItDown
except (subprocess.SubprocessError, ImportError):
self.logger.error("无法安装 markitdown 库,请手动安装")
self.markitdown_available = False
return
self.markitdown_available = True
def _validate_file(self, file_path: Union[str, Path], max_size_mb: int = 100) -> Path:
"""验证文件
Args:
file_path: 文件路径
max_size_mb: 允许的最大文件大小(MB)
Returns:
Path: 验证后的Path对象
Raises:
ValueError: 文件不存在、格式不支持或大小超限
PermissionError: 没有读取权限
"""
path = Path(file_path).resolve()
if not path.exists():
raise ValueError(f"文件不存在: {path}")
if not path.is_file():
raise ValueError(f"不是一个文件: {path}")
if not os.access(path, os.R_OK):
raise PermissionError(f"没有读取权限: {path}")
file_size_mb = path.stat().st_size / (1024 * 1024)
if file_size_mb > max_size_mb:
raise ValueError(
f"文件大小 ({file_size_mb:.1f}MB) 超过限制 {max_size_mb}MB"
)
if path.suffix.lower() not in self.SUPPORTED_EXTENSIONS:
raise ValueError(
f"不支持的格式: {path.suffix}. "
f"支持的格式: {', '.join(sorted(self.SUPPORTED_EXTENSIONS))}"
)
return path
def _cleanup_text(self, text: str) -> str:
"""清理文本
Args:
text: 原始文本
Returns:
str: 清理后的文本
"""
if self.config.text_cleanup['remove_extra_spaces']:
text = ' '.join(text.split())
if self.config.text_cleanup['normalize_whitespace']:
text = text.replace('\t', ' ').replace('\r', '\n')
if self.config.text_cleanup['lowercase']:
text = text.lower()
return text.strip()
@staticmethod
def get_supported_formats() -> List[str]:
"""获取支持的文件格式列表"""
return sorted(MarkdownConverter.SUPPORTED_EXTENSIONS)
def convert_to_markdown(
self,
file_path: Union[str, Path],
output_path: Optional[Union[str, Path]] = None
) -> str:
"""将 PDF 转换为 Markdown
Args:
file_path: PDF 文件路径
output_path: 输出 Markdown 文件路径,如果为 None 则返回内容而不保存
Returns:
str: 转换后的 Markdown 内容
Raises:
Exception: 转换过程中的错误
"""
try:
path = self._validate_file(file_path)
self.logger.info(f"处理: {path}")
if not self.markitdown_available:
raise ImportError("markitdown 库未安装,无法进行转换")
# 导入 markitdown 库
from markitdown import MarkItDown
# 准备输出目录
if output_path:
output_path = Path(output_path)
output_dir = output_path.parent
output_dir.mkdir(parents=True, exist_ok=True)
else:
# 创建临时目录作为输出目录
temp_dir = tempfile.mkdtemp()
output_dir = Path(temp_dir)
output_path = output_dir / f"{path.stem}.md"
# 图片目录
image_dir = output_dir / self.config.image_dir
image_dir.mkdir(parents=True, exist_ok=True)
# 创建 MarkItDown 实例并进行转换
if self.config.docintel_endpoint:
md = MarkItDown(docintel_endpoint=self.config.docintel_endpoint)
elif self.config.llm_client and self.config.llm_model:
md = MarkItDown(
enable_plugins=self.config.enable_plugins,
llm_client=self.config.llm_client,
llm_model=self.config.llm_model
)
else:
md = MarkItDown(enable_plugins=self.config.enable_plugins)
# 执行转换
result = md.convert(str(path))
markdown_content = result.text_content
# 清理文本
markdown_content = self._cleanup_text(markdown_content)
# 如果需要保存到文件
if output_path:
with open(output_path, 'w', encoding='utf-8') as f:
f.write(markdown_content)
self.logger.info(f"转换成功,输出到: {output_path}")
return markdown_content
except Exception as e:
self.logger.error(f"转换失败: {e}")
raise
finally:
# 如果使用了临时目录且没有指定输出路径,则清理临时目录
if 'temp_dir' in locals() and not output_path:
shutil.rmtree(temp_dir, ignore_errors=True)
def convert_to_markdown_and_save(
self,
file_path: Union[str, Path],
output_path: Union[str, Path]
) -> Path:
"""将 PDF 转换为 Markdown 并保存到指定路径
Args:
file_path: PDF 文件路径
output_path: 输出 Markdown 文件路径
Returns:
Path: 输出文件的 Path 对象
Raises:
Exception: 转换过程中的错误
"""
self.convert_to_markdown(file_path, output_path)
return Path(output_path)
def batch_convert(
self,
file_paths: List[Union[str, Path]],
output_dir: Union[str, Path]
) -> List[Path]:
"""批量转换多个 PDF 文件为 Markdown
Args:
file_paths: PDF 文件路径列表
output_dir: 输出目录路径
Returns:
List[Path]: 输出文件路径列表
Raises:
Exception: 转换过程中的错误
"""
output_dir = Path(output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
output_paths = []
for file_path in file_paths:
path = Path(file_path)
output_path = output_dir / f"{path.stem}.md"
try:
self.convert_to_markdown(file_path, output_path)
output_paths.append(output_path)
self.logger.info(f"成功转换: {path} -> {output_path}")
except Exception as e:
self.logger.error(f"转换失败 {path}: {e}")
return output_paths
def main():
"""主函数:演示用法"""
# 配置
config = MarkdownConverterConfig(
extract_images=True,
extract_tables=True,
extract_code_blocks=True,
extract_math=True,
enable_plugins=False,
text_cleanup={
'remove_extra_spaces': True,
'normalize_whitespace': True,
'remove_special_chars': False,
'lowercase': False
}
)
# 创建转换器
converter = MarkdownConverter(config)
# 使用示例
try:
# 替换为实际的文件路径
sample_file = './crazy_functions/doc_fns/read_fns/paper/2501.12599v1.pdf'
if Path(sample_file).exists():
# 转换为 Markdown 并打印内容
markdown_content = converter.convert_to_markdown(sample_file)
print("转换后的 Markdown 内容:")
print(markdown_content[:500] + "...") # 只打印前500个字符
# 转换并保存到文件
output_file = f"./output_{Path(sample_file).stem}.md"
output_path = converter.convert_to_markdown_and_save(sample_file, output_file)
print(f"\n已保存到: {output_path}")
# 使用LLM增强的示例 (需要添加相应的导入和配置)
# try:
# from openai import OpenAI
# client = OpenAI()
# llm_config = MarkdownConverterConfig(
# llm_client=client,
# llm_model="gpt-4o"
# )
# llm_converter = MarkdownConverter(llm_config)
# llm_result = llm_converter.convert_to_markdown("example.jpg")
# print("LLM增强的结果:")
# print(llm_result[:500] + "...")
# except ImportError:
# print("未安装OpenAI库跳过LLM示例")
else:
print(f"示例文件 {sample_file} 不存在")
print("\n支持的格式:", converter.get_supported_formats())
except Exception as e:
print(f"错误: {e}")
if __name__ == "__main__":
main()

View File

@@ -1,493 +0,0 @@
from __future__ import annotations
from pathlib import Path
from typing import Optional, Set, Dict, Union, List
from dataclasses import dataclass, field
import logging
import os
import re
from unstructured.partition.auto import partition
from unstructured.documents.elements import (
Text, Title, NarrativeText, ListItem, Table,
Footer, Header, PageBreak, Image, Address
)
@dataclass
class PaperMetadata:
"""论文元数据类"""
title: str = ""
authors: List[str] = field(default_factory=list)
affiliations: List[str] = field(default_factory=list)
journal: str = ""
volume: str = ""
issue: str = ""
year: str = ""
doi: str = ""
date: str = ""
publisher: str = ""
conference: str = ""
abstract: str = ""
keywords: List[str] = field(default_factory=list)
@dataclass
class ExtractorConfig:
"""元数据提取器配置类"""
paragraph_separator: str = '\n\n'
text_cleanup: Dict[str, bool] = field(default_factory=lambda: {
'remove_extra_spaces': True,
'normalize_whitespace': True,
'remove_special_chars': False,
'lowercase': False
})
class PaperMetadataExtractor:
"""论文元数据提取器
使用unstructured库从多种文档格式中提取论文的标题、作者、摘要等元数据信息。
"""
SUPPORTED_EXTENSIONS: Set[str] = {
'.pdf', '.docx', '.doc', '.txt', '.ppt', '.pptx',
'.xlsx', '.xls', '.md', '.org', '.odt', '.rst',
'.rtf', '.epub', '.html', '.xml', '.json'
}
# 定义论文各部分的关键词模式
SECTION_PATTERNS = {
'abstract': r'\b(摘要|abstract|summary|概要|résumé|zusammenfassung|аннотация)\b',
'keywords': r'\b(关键词|keywords|key\s+words|关键字|mots[- ]clés|schlüsselwörter|ключевые слова)\b',
}
def __init__(self, config: Optional[ExtractorConfig] = None):
"""初始化提取器
Args:
config: 提取器配置对象如果为None则使用默认配置
"""
self.config = config or ExtractorConfig()
self._setup_logging()
def _setup_logging(self) -> None:
"""配置日志记录器"""
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
self.logger = logging.getLogger(__name__)
# 添加文件处理器
fh = logging.FileHandler('paper_metadata_extractor.log')
fh.setLevel(logging.ERROR)
self.logger.addHandler(fh)
def _validate_file(self, file_path: Union[str, Path], max_size_mb: int = 100) -> Path:
"""验证文件
Args:
file_path: 文件路径
max_size_mb: 允许的最大文件大小(MB)
Returns:
Path: 验证后的Path对象
Raises:
ValueError: 文件不存在、格式不支持或大小超限
PermissionError: 没有读取权限
"""
path = Path(file_path).resolve()
if not path.exists():
raise ValueError(f"文件不存在: {path}")
if not path.is_file():
raise ValueError(f"不是文件: {path}")
if not os.access(path, os.R_OK):
raise PermissionError(f"没有读取权限: {path}")
file_size_mb = path.stat().st_size / (1024 * 1024)
if file_size_mb > max_size_mb:
raise ValueError(
f"文件大小 ({file_size_mb:.1f}MB) 超过限制 {max_size_mb}MB"
)
if path.suffix.lower() not in self.SUPPORTED_EXTENSIONS:
raise ValueError(
f"不支持的文件格式: {path.suffix}. "
f"支持的格式: {', '.join(sorted(self.SUPPORTED_EXTENSIONS))}"
)
return path
def _cleanup_text(self, text: str) -> str:
"""清理文本
Args:
text: 原始文本
Returns:
str: 清理后的文本
"""
if self.config.text_cleanup['remove_extra_spaces']:
text = ' '.join(text.split())
if self.config.text_cleanup['normalize_whitespace']:
text = text.replace('\t', ' ').replace('\r', '\n')
if self.config.text_cleanup['lowercase']:
text = text.lower()
return text.strip()
@staticmethod
def get_supported_formats() -> List[str]:
"""获取支持的文件格式列表"""
return sorted(PaperMetadataExtractor.SUPPORTED_EXTENSIONS)
def extract_metadata(self, file_path: Union[str, Path], strategy: str = "fast") -> PaperMetadata:
"""提取论文元数据
Args:
file_path: 文件路径
strategy: 提取策略 ("fast""accurate")
Returns:
PaperMetadata: 提取的论文元数据
Raises:
Exception: 提取过程中的错误
"""
try:
path = self._validate_file(file_path)
self.logger.info(f"正在处理: {path}")
# 使用unstructured库分解文档
elements = partition(
str(path),
strategy=strategy,
include_metadata=True,
nlp=False,
)
# 提取元数据
metadata = PaperMetadata()
# 提取标题和作者
self._extract_title_and_authors(elements, metadata)
# 提取摘要和关键词
self._extract_abstract_and_keywords(elements, metadata)
# 提取其他元数据
self._extract_additional_metadata(elements, metadata)
return metadata
except Exception as e:
self.logger.error(f"元数据提取失败: {e}")
raise
def _extract_title_and_authors(self, elements, metadata: PaperMetadata) -> None:
"""从文档中提取标题和作者信息 - 改进版"""
# 收集所有潜在的标题候选
title_candidates = []
all_text = []
raw_text = []
# 首先收集文档前30个元素的文本用于辅助判断
for i, element in enumerate(elements[:30]):
if isinstance(element, (Text, Title, NarrativeText)):
text = str(element).strip()
if text:
all_text.append(text)
raw_text.append(text)
# 打印出原始文本,用于调试
print("原始文本前10行:")
for i, text in enumerate(raw_text[:10]):
print(f"{i}: {text}")
# 1. 尝试查找连续的标题片段并合并它们
i = 0
while i < len(all_text) - 1:
current = all_text[i]
next_text = all_text[i + 1]
# 检查是否存在标题分割情况:一行以冒号结尾,下一行像是标题的延续
if current.endswith(':') and len(current) < 50 and len(next_text) > 5 and next_text[0].isupper():
# 合并这两行文本
combined_title = f"{current} {next_text}"
# 查找合并前的文本并替换
all_text[i] = combined_title
all_text.pop(i + 1)
# 给合并后的标题很高的分数
title_candidates.append((combined_title, 15, i))
else:
i += 1
# 2. 首先尝试从标题元素中查找
for i, element in enumerate(elements[:15]): # 只检查前15个元素
if isinstance(element, Title):
title_text = str(element).strip()
# 排除常见的非标题内容
if title_text.lower() not in ['abstract', '摘要', 'introduction', '引言']:
# 计算标题分数(越高越可能是真正的标题)
score = self._evaluate_title_candidate(title_text, i, element)
title_candidates.append((title_text, score, i))
# 3. 特别处理常见的论文标题格式
for i, text in enumerate(all_text[:15]):
# 特别检查"KIMI K1.5:"类型的前缀标题
if re.match(r'^[A-Z][A-Z0-9\s\.]+(\s+K\d+(\.\d+)?)?:', text):
score = 12 # 给予很高的分数
title_candidates.append((text, score, i))
# 如果下一行也是全大写,很可能是标题的延续
if i+1 < len(all_text) and all_text[i+1].isupper() and len(all_text[i+1]) > 10:
combined_title = f"{text} {all_text[i+1]}"
title_candidates.append((combined_title, 15, i)) # 给合并标题更高分数
# 匹配全大写的标题行
elif text.isupper() and len(text) > 10 and len(text) < 100:
score = 10 - i * 0.5 # 越靠前越可能是标题
title_candidates.append((text, score, i))
# 对标题候选按分数排序并选取最佳候选
if title_candidates:
title_candidates.sort(key=lambda x: x[1], reverse=True)
metadata.title = title_candidates[0][0]
title_position = title_candidates[0][2]
print(f"所有标题候选: {title_candidates[:3]}")
else:
# 如果没有找到合适的标题,使用一个备选策略
for text in all_text[:10]:
if text.isupper() and len(text) > 10 and len(text) < 200: # 大写且适当长度的文本
metadata.title = text
break
title_position = 0
# 提取作者信息 - 改进后的作者提取逻辑
author_candidates = []
# 1. 特别处理"TECHNICAL REPORT OF"之后的行,通常是作者或团队
for i, text in enumerate(all_text):
if "TECHNICAL REPORT" in text.upper() and i+1 < len(all_text):
team_text = all_text[i+1].strip()
if re.search(r'\b(team|group|lab)\b', team_text, re.IGNORECASE):
author_candidates.append((team_text, 15))
# 2. 查找包含Team的文本
for text in all_text[:20]:
if "Team" in text and len(text) < 30:
# 这很可能是团队名
author_candidates.append((text, 12))
# 添加作者到元数据
if author_candidates:
# 按分数排序
author_candidates.sort(key=lambda x: x[1], reverse=True)
# 去重
seen_authors = set()
for author, _ in author_candidates:
if author.lower() not in seen_authors and not author.isdigit():
seen_authors.add(author.lower())
metadata.authors.append(author)
# 如果没有找到作者,尝试查找隶属机构信息中的团队名称
if not metadata.authors:
for text in all_text[:20]:
if re.search(r'\b(team|group|lab|laboratory|研究组|团队)\b', text, re.IGNORECASE):
if len(text) < 50: # 避免太长的文本
metadata.authors.append(text.strip())
break
# 提取隶属机构信息
for i, element in enumerate(elements[:30]):
element_text = str(element).strip()
if re.search(r'(university|institute|department|school|laboratory|college|center|centre|\d{5,}|^[a-zA-Z]+@|学院|大学|研究所|研究院)', element_text, re.IGNORECASE):
# 可能是隶属机构
if element_text not in metadata.affiliations and len(element_text) > 10:
metadata.affiliations.append(element_text)
def _evaluate_title_candidate(self, text, position, element):
"""评估标题候选项的可能性分数"""
score = 0
# 位置因素:越靠前越可能是标题
score += max(0, 10 - position) * 0.5
# 长度因素:标题通常不会太短也不会太长
if 10 <= len(text) <= 150:
score += 3
elif len(text) < 10:
score -= 2
elif len(text) > 150:
score -= 3
# 格式因素
if text.isupper(): # 全大写可能是标题
score += 2
if re.match(r'^[A-Z]', text): # 首字母大写
score += 1
if ':' in text: # 标题常包含冒号
score += 1.5
# 内容因素
if re.search(r'\b(scaling|learning|model|approach|method|system|framework|analysis)\b', text.lower()):
score += 2 # 包含常见的学术论文关键词
# 避免误判
if re.match(r'^\d+$', text): # 纯数字
score -= 10
if re.search(r'^(http|www|doi)', text.lower()): # URL或DOI
score -= 5
if len(text.split()) <= 2 and len(text) < 15: # 太短的短语
score -= 3
# 元数据因素(如果有)
if hasattr(element, 'metadata') and element.metadata:
# 修复正确处理ElementMetadata对象
try:
# 尝试通过getattr安全地获取属性
font_size = getattr(element.metadata, 'font_size', None)
if font_size is not None and font_size > 14: # 假设标准字体大小是12
score += 3
font_weight = getattr(element.metadata, 'font_weight', None)
if font_weight == 'bold':
score += 2 # 粗体加分
except (AttributeError, TypeError):
# 如果metadata的访问方式不正确尝试其他可能的访问方式
try:
metadata_dict = element.metadata.__dict__ if hasattr(element.metadata, '__dict__') else {}
if 'font_size' in metadata_dict and metadata_dict['font_size'] > 14:
score += 3
if 'font_weight' in metadata_dict and metadata_dict['font_weight'] == 'bold':
score += 2
except Exception:
# 如果所有尝试都失败,忽略元数据处理
pass
return score
def _extract_abstract_and_keywords(self, elements, metadata: PaperMetadata) -> None:
"""从文档中提取摘要和关键词"""
abstract_found = False
keywords_found = False
abstract_text = []
for i, element in enumerate(elements):
element_text = str(element).strip().lower()
# 寻找摘要部分
if not abstract_found and (
isinstance(element, Title) and
re.search(self.SECTION_PATTERNS['abstract'], element_text, re.IGNORECASE)
):
abstract_found = True
continue
# 如果找到摘要部分,收集内容直到遇到关键词部分或新章节
if abstract_found and not keywords_found:
# 检查是否遇到关键词部分或新章节
if (
isinstance(element, Title) or
re.search(self.SECTION_PATTERNS['keywords'], element_text, re.IGNORECASE) or
re.match(r'\b(introduction|引言|method|方法)\b', element_text, re.IGNORECASE)
):
keywords_found = re.search(self.SECTION_PATTERNS['keywords'], element_text, re.IGNORECASE)
abstract_found = False # 停止收集摘要
else:
# 收集摘要文本
if isinstance(element, (Text, NarrativeText)) and element_text:
abstract_text.append(element_text)
# 如果找到关键词部分,提取关键词
if keywords_found and not abstract_found and not metadata.keywords:
if isinstance(element, (Text, NarrativeText)):
# 清除可能的"关键词:"/"Keywords:"前缀
cleaned_text = re.sub(r'^\s*(关键词|keywords|key\s+words)\s*[:]\s*', '', element_text, flags=re.IGNORECASE)
# 尝试按不同分隔符分割
for separator in [';', '', ',', '']:
if separator in cleaned_text:
metadata.keywords = [k.strip() for k in cleaned_text.split(separator) if k.strip()]
break
# 如果未能分割,将整个文本作为一个关键词
if not metadata.keywords and cleaned_text:
metadata.keywords = [cleaned_text]
keywords_found = False # 已提取关键词,停止处理
# 设置摘要文本
if abstract_text:
metadata.abstract = self.config.paragraph_separator.join(abstract_text)
def _extract_additional_metadata(self, elements, metadata: PaperMetadata) -> None:
"""提取其他元数据信息"""
for element in elements[:30]: # 只检查文档前部分
element_text = str(element).strip()
# 尝试匹配DOI
doi_match = re.search(r'(doi|DOI):\s*(10\.\d{4,}\/[a-zA-Z0-9.-]+)', element_text)
if doi_match and not metadata.doi:
metadata.doi = doi_match.group(2)
# 尝试匹配日期
date_match = re.search(r'(published|received|accepted|submitted):\s*(\d{1,2}\s+[a-zA-Z]+\s+\d{4}|\d{4}[-/]\d{1,2}[-/]\d{1,2})', element_text, re.IGNORECASE)
if date_match and not metadata.date:
metadata.date = date_match.group(2)
# 尝试匹配年份
year_match = re.search(r'\b(19|20)\d{2}\b', element_text)
if year_match and not metadata.year:
metadata.year = year_match.group(0)
# 尝试匹配期刊/会议名称
journal_match = re.search(r'(journal|conference):\s*([^,;.]+)', element_text, re.IGNORECASE)
if journal_match:
if "journal" in journal_match.group(1).lower() and not metadata.journal:
metadata.journal = journal_match.group(2).strip()
elif not metadata.conference:
metadata.conference = journal_match.group(2).strip()
def main():
"""主函数:演示用法"""
# 创建提取器
extractor = PaperMetadataExtractor()
# 使用示例
try:
# 替换为实际的文件路径
sample_file = '/Users/boyin.liu/Documents/示例文档/论文/3.pdf'
if Path(sample_file).exists():
metadata = extractor.extract_metadata(sample_file)
print("提取的元数据:")
print(f"标题: {metadata.title}")
print(f"作者: {', '.join(metadata.authors)}")
print(f"机构: {', '.join(metadata.affiliations)}")
print(f"摘要: {metadata.abstract[:200]}...")
print(f"关键词: {', '.join(metadata.keywords)}")
print(f"DOI: {metadata.doi}")
print(f"日期: {metadata.date}")
print(f"年份: {metadata.year}")
print(f"期刊: {metadata.journal}")
print(f"会议: {metadata.conference}")
else:
print(f"示例文件 {sample_file} 不存在")
print("\n支持的格式:", extractor.get_supported_formats())
except Exception as e:
print(f"错误: {e}")
if __name__ == "__main__":
main()

View File

@@ -1,86 +0,0 @@
from pathlib import Path
from crazy_functions.doc_fns.read_fns.unstructured_all.paper_structure_extractor import PaperStructureExtractor
def extract_and_save_as_markdown(paper_path, output_path=None):
"""
提取论文结构并保存为Markdown格式
参数:
paper_path: 论文文件路径
output_path: 输出的Markdown文件路径如果不指定将使用与输入相同的文件名但扩展名为.md
返回:
保存的Markdown文件路径
"""
# 创建提取器
extractor = PaperStructureExtractor()
# 解析文件路径
paper_path = Path(paper_path)
# 如果未指定输出路径,使用相同文件名但扩展名为.md
if output_path is None:
output_path = paper_path.with_suffix('.md')
else:
output_path = Path(output_path)
# 确保输出目录存在
output_path.parent.mkdir(parents=True, exist_ok=True)
print(f"正在处理论文: {paper_path}")
try:
# 提取论文结构
paper = extractor.extract_paper_structure(paper_path)
# 生成Markdown内容
markdown_content = extractor.generate_markdown(paper)
# 保存到文件
with open(output_path, 'w', encoding='utf-8') as f:
f.write(markdown_content)
print(f"已成功保存Markdown文件: {output_path}")
# 打印摘要信息
print("\n论文摘要信息:")
print(f"标题: {paper.metadata.title}")
print(f"作者: {', '.join(paper.metadata.authors)}")
print(f"关键词: {', '.join(paper.keywords)}")
print(f"章节数: {len(paper.sections)}")
print(f"图表数: {len(paper.figures)}")
print(f"表格数: {len(paper.tables)}")
print(f"公式数: {len(paper.formulas)}")
print(f"参考文献数: {len(paper.references)}")
return output_path
except Exception as e:
print(f"处理论文时出错: {e}")
import traceback
traceback.print_exc()
return None
# 使用示例
if __name__ == "__main__":
# 替换为实际的论文文件路径
sample_paper = "crazy_functions/doc_fns/read_fns/paper/2501.12599v1.pdf"
# 可以指定输出路径,也可以使用默认路径
# output_file = "/path/to/output/paper_structure.md"
# extract_and_save_as_markdown(sample_paper, output_file)
# 使用默认输出路径(与输入文件同名但扩展名为.md
extract_and_save_as_markdown(sample_paper)
# # 批量处理多个论文的示例
# paper_dir = Path("/path/to/papers/folder")
# output_dir = Path("/path/to/output/folder")
#
# # 确保输出目录存在
# output_dir.mkdir(parents=True, exist_ok=True)
#
# # 处理目录中的所有PDF文件
# for paper_file in paper_dir.glob("*.pdf"):
# output_file = output_dir / f"{paper_file.stem}.md"
# extract_and_save_as_markdown(paper_file, output_file)

View File

@@ -1,275 +0,0 @@
from __future__ import annotations
from pathlib import Path
from typing import Optional, Set, Dict, Union, List
from dataclasses import dataclass, field
import logging
import os
from unstructured.partition.auto import partition
from unstructured.documents.elements import (
Text, Title, NarrativeText, ListItem, Table,
Footer, Header, PageBreak, Image, Address
)
@dataclass
class TextExtractorConfig:
"""通用文档提取器配置类
Attributes:
extract_headers_footers: 是否提取页眉页脚
extract_tables: 是否提取表格内容
extract_lists: 是否提取列表内容
extract_titles: 是否提取标题
paragraph_separator: 段落之间的分隔符
text_cleanup: 文本清理选项字典
"""
extract_headers_footers: bool = False
extract_tables: bool = True
extract_lists: bool = True
extract_titles: bool = True
paragraph_separator: str = '\n\n'
text_cleanup: Dict[str, bool] = field(default_factory=lambda: {
'remove_extra_spaces': True,
'normalize_whitespace': True,
'remove_special_chars': False,
'lowercase': False
})
class UnstructuredTextExtractor:
"""通用文档文本内容提取器
使用 unstructured 库支持多种文档格式的文本提取,提供统一的接口和配置选项。
"""
SUPPORTED_EXTENSIONS: Set[str] = {
# 文档格式
'.pdf', '.docx', '.doc', '.txt',
# 演示文稿
'.ppt', '.pptx',
# 电子表格
'.xlsx', '.xls', '.csv',
# 图片
'.png', '.jpg', '.jpeg', '.tiff',
# 邮件
'.eml', '.msg', '.p7s',
# Markdown
".md",
# Org Mode
".org",
# Open Office
".odt",
# reStructured Text
".rst",
# Rich Text
".rtf",
# TSV
".tsv",
# EPUB
'.epub',
# 其他格式
'.html', '.xml', '.json',
}
def __init__(self, config: Optional[TextExtractorConfig] = None):
"""初始化提取器
Args:
config: 提取器配置对象如果为None则使用默认配置
"""
self.config = config or TextExtractorConfig()
self._setup_logging()
def _setup_logging(self) -> None:
"""配置日志记录器"""
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
self.logger = logging.getLogger(__name__)
# 添加文件处理器
fh = logging.FileHandler('text_extractor.log')
fh.setLevel(logging.ERROR)
self.logger.addHandler(fh)
def _validate_file(self, file_path: Union[str, Path], max_size_mb: int = 100) -> Path:
"""验证文件
Args:
file_path: 文件路径
max_size_mb: 允许的最大文件大小(MB)
Returns:
Path: 验证后的Path对象
Raises:
ValueError: 文件不存在、格式不支持或大小超限
PermissionError: 没有读取权限
"""
path = Path(file_path).resolve()
if not path.exists():
raise ValueError(f"File not found: {path}")
if not path.is_file():
raise ValueError(f"Not a file: {path}")
if not os.access(path, os.R_OK):
raise PermissionError(f"No read permission: {path}")
file_size_mb = path.stat().st_size / (1024 * 1024)
if file_size_mb > max_size_mb:
raise ValueError(
f"File size ({file_size_mb:.1f}MB) exceeds limit of {max_size_mb}MB"
)
if path.suffix.lower() not in self.SUPPORTED_EXTENSIONS:
raise ValueError(
f"Unsupported format: {path.suffix}. "
f"Supported: {', '.join(sorted(self.SUPPORTED_EXTENSIONS))}"
)
return path
def _cleanup_text(self, text: str) -> str:
"""清理文本
Args:
text: 原始文本
Returns:
str: 清理后的文本
"""
if self.config.text_cleanup['remove_extra_spaces']:
text = ' '.join(text.split())
if self.config.text_cleanup['normalize_whitespace']:
text = text.replace('\t', ' ').replace('\r', '\n')
if self.config.text_cleanup['lowercase']:
text = text.lower()
return text.strip()
def _should_extract_element(self, element) -> bool:
"""判断是否应该提取某个元素
Args:
element: 文档元素
Returns:
bool: 是否应该提取
"""
if isinstance(element, (Text, NarrativeText)):
return True
if isinstance(element, Title) and self.config.extract_titles:
return True
if isinstance(element, ListItem) and self.config.extract_lists:
return True
if isinstance(element, Table) and self.config.extract_tables:
return True
if isinstance(element, (Header, Footer)) and self.config.extract_headers_footers:
return True
return False
@staticmethod
def get_supported_formats() -> List[str]:
"""获取支持的文件格式列表"""
return sorted(UnstructuredTextExtractor.SUPPORTED_EXTENSIONS)
def extract_text(
self,
file_path: Union[str, Path],
strategy: str = "fast"
) -> str:
"""提取文本
Args:
file_path: 文件路径
strategy: 提取策略 ("fast""accurate")
Returns:
str: 提取的文本内容
Raises:
Exception: 提取过程中的错误
"""
try:
path = self._validate_file(file_path)
self.logger.info(f"Processing: {path}")
# 修改这里:添加 nlp=False 参数来禁用 NLTK
elements = partition(
str(path),
strategy=strategy,
include_metadata=True,
nlp=True,
)
# 其余代码保持不变
text_parts = []
for element in elements:
if self._should_extract_element(element):
text = str(element)
cleaned_text = self._cleanup_text(text)
if cleaned_text:
if isinstance(element, (Header, Footer)):
prefix = "[Header] " if isinstance(element, Header) else "[Footer] "
text_parts.append(f"{prefix}{cleaned_text}")
else:
text_parts.append(cleaned_text)
return self.config.paragraph_separator.join(text_parts)
except Exception as e:
self.logger.error(f"Extraction failed: {e}")
raise
def main():
"""主函数:演示用法"""
# 配置
config = TextExtractorConfig(
extract_headers_footers=True,
extract_tables=True,
extract_lists=True,
extract_titles=True,
text_cleanup={
'remove_extra_spaces': True,
'normalize_whitespace': True,
'remove_special_chars': False,
'lowercase': False
}
)
# 创建提取器
extractor = UnstructuredTextExtractor(config)
# 使用示例
try:
# 替换为实际的文件路径
sample_file = './crazy_functions/doc_fns/read_fns/paper/2501.12599v1.pdf'
if Path(sample_file).exists() or True:
text = extractor.extract_text(sample_file)
print("提取的文本:")
print(text)
else:
print(f"示例文件 {sample_file} 不存在")
print("\n支持的格式:", extractor.get_supported_formats())
except Exception as e:
print(f"错误: {e}")
if __name__ == "__main__":
main()

View File

@@ -1,219 +0,0 @@
from __future__ import annotations
from dataclasses import dataclass, field
from typing import Dict, Optional, Union
from urllib.parse import urlparse
import logging
import trafilatura
import requests
from pathlib import Path
@dataclass
class WebExtractorConfig:
"""网页内容提取器配置类
Attributes:
extract_comments: 是否提取评论
extract_tables: 是否提取表格
extract_links: 是否保留链接信息
paragraph_separator: 段落分隔符
timeout: 网络请求超时时间(秒)
max_retries: 最大重试次数
user_agent: 自定义User-Agent
text_cleanup: 文本清理选项
"""
extract_comments: bool = False
extract_tables: bool = True
extract_links: bool = False
paragraph_separator: str = '\n\n'
timeout: int = 10
max_retries: int = 3
user_agent: str = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
text_cleanup: Dict[str, bool] = field(default_factory=lambda: {
'remove_extra_spaces': True,
'normalize_whitespace': True,
'remove_special_chars': False,
'lowercase': False
})
class WebTextExtractor:
"""网页文本内容提取器
使用trafilatura库提取网页中的主要文本内容去除广告、导航等无关内容。
"""
def __init__(self, config: Optional[WebExtractorConfig] = None):
"""初始化提取器
Args:
config: 提取器配置对象如果为None则使用默认配置
"""
self.config = config or WebExtractorConfig()
self._setup_logging()
def _setup_logging(self) -> None:
"""配置日志记录器"""
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
self.logger = logging.getLogger(__name__)
# 添加文件处理器
fh = logging.FileHandler('web_extractor.log')
fh.setLevel(logging.ERROR)
self.logger.addHandler(fh)
def _validate_url(self, url: str) -> bool:
"""验证URL格式是否有效
Args:
url: 网页URL
Returns:
bool: URL是否有效
"""
try:
result = urlparse(url)
return all([result.scheme, result.netloc])
except Exception:
return False
def _download_webpage(self, url: str) -> Optional[str]:
"""下载网页内容
Args:
url: 网页URL
Returns:
Optional[str]: 网页HTML内容失败返回None
Raises:
Exception: 下载失败时抛出异常
"""
headers = {'User-Agent': self.config.user_agent}
for attempt in range(self.config.max_retries):
try:
response = requests.get(
url,
headers=headers,
timeout=self.config.timeout
)
response.raise_for_status()
return response.text
except requests.RequestException as e:
self.logger.warning(f"Attempt {attempt + 1} failed: {e}")
if attempt == self.config.max_retries - 1:
raise Exception(f"Failed to download webpage after {self.config.max_retries} attempts: {e}")
return None
def _cleanup_text(self, text: str) -> str:
"""清理文本
Args:
text: 原始文本
Returns:
str: 清理后的文本
"""
if not text:
return ""
if self.config.text_cleanup['remove_extra_spaces']:
text = ' '.join(text.split())
if self.config.text_cleanup['normalize_whitespace']:
text = text.replace('\t', ' ').replace('\r', '\n')
if self.config.text_cleanup['lowercase']:
text = text.lower()
return text.strip()
def extract_text(self, url: str) -> str:
"""提取网页文本内容
Args:
url: 网页URL
Returns:
str: 提取的文本内容
Raises:
ValueError: URL无效时抛出
Exception: 提取失败时抛出
"""
try:
if not self._validate_url(url):
raise ValueError(f"Invalid URL: {url}")
self.logger.info(f"Processing URL: {url}")
# 下载网页
html_content = self._download_webpage(url)
if not html_content:
raise Exception("Failed to download webpage")
# 配置trafilatura提取选项
extract_config = {
'include_comments': self.config.extract_comments,
'include_tables': self.config.extract_tables,
'include_links': self.config.extract_links,
'no_fallback': False, # 允许使用后备提取器
}
# 提取文本
extracted_text = trafilatura.extract(
html_content,
**extract_config
)
if not extracted_text:
raise Exception("No content could be extracted")
# 清理文本
cleaned_text = self._cleanup_text(extracted_text)
return cleaned_text
except Exception as e:
self.logger.error(f"Extraction failed: {e}")
raise
def main():
"""主函数:演示用法"""
# 配置
config = WebExtractorConfig(
extract_comments=False,
extract_tables=True,
extract_links=False,
timeout=10,
text_cleanup={
'remove_extra_spaces': True,
'normalize_whitespace': True,
'remove_special_chars': False,
'lowercase': False
}
)
# 创建提取器
extractor = WebTextExtractor(config)
# 使用示例
try:
# 替换为实际的URL
sample_url = 'https://arxiv.org/abs/2412.00036'
text = extractor.extract_text(sample_url)
print("提取的文本:")
print(text)
except Exception as e:
print(f"错误: {e}")
if __name__ == "__main__":
main()

View File

@@ -1,451 +0,0 @@
import os
import re
import glob
import time
import queue
import threading
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import List, Generator, Tuple, Set, Optional, Dict
from dataclasses import dataclass
from loguru import logger
from toolbox import update_ui
from crazy_functions.rag_fns.rag_file_support import extract_text
from crazy_functions.doc_fns.content_folder import ContentFoldingManager, FileMetadata, FoldingOptions, FoldingStyle, FoldingError
from shared_utils.fastapi_server import validate_path_safety
from datetime import datetime
import mimetypes
@dataclass
class FileInfo:
"""文件信息数据类"""
path: str # 完整路径
rel_path: str # 相对路径
size: float # 文件大小(MB)
extension: str # 文件扩展名
last_modified: str # 最后修改时间
class TextContentLoader:
"""优化版本的文本内容加载器 - 保持原有接口"""
# 压缩文件扩展名
COMPRESSED_EXTENSIONS: Set[str] = {'.zip', '.rar', '.7z', '.tar', '.gz', '.bz2', '.xz'}
# 系统配置
MAX_FILE_SIZE: int = 100 * 1024 * 1024 # 最大文件大小100MB
MAX_TOTAL_SIZE: int = 100 * 1024 * 1024 # 最大总大小100MB
MAX_FILES: int = 100 # 最大文件数量
CHUNK_SIZE: int = 1024 * 1024 # 文件读取块大小1MB
MAX_WORKERS: int = min(32, (os.cpu_count() or 1) * 4) # 最大工作线程数
BATCH_SIZE: int = 5 # 批处理大小
def __init__(self, chatbot: List, history: List):
"""初始化加载器"""
self.chatbot = chatbot
self.history = history
self.failed_files: List[Tuple[str, str]] = []
self.processed_size: int = 0
self.start_time: float = 0
self.file_cache: Dict[str, str] = {}
self._lock = threading.Lock()
self.executor = ThreadPoolExecutor(max_workers=self.MAX_WORKERS)
self.results_queue = queue.Queue()
self.folding_manager = ContentFoldingManager()
def _create_file_info(self, entry: os.DirEntry, root_path: str) -> FileInfo:
"""优化的文件信息创建
Args:
entry: 目录入口对象
root_path: 根路径
Returns:
FileInfo: 文件信息对象
"""
try:
stats = entry.stat() # 使用缓存的文件状态
return FileInfo(
path=entry.path,
rel_path=os.path.relpath(entry.path, root_path),
size=stats.st_size / (1024 * 1024),
extension=os.path.splitext(entry.path)[1].lower(),
last_modified=time.strftime('%Y-%m-%d %H:%M:%S',
time.localtime(stats.st_mtime))
)
except (OSError, ValueError) as e:
return None
def _process_file_batch(self, file_batch: List[FileInfo]) -> List[Tuple[FileInfo, Optional[str]]]:
"""批量处理文件
Args:
file_batch: 要处理的文件信息列表
Returns:
List[Tuple[FileInfo, Optional[str]]]: 处理结果列表
"""
results = []
futures = {}
for file_info in file_batch:
if file_info.path in self.file_cache:
results.append((file_info, self.file_cache[file_info.path]))
continue
if file_info.size * 1024 * 1024 > self.MAX_FILE_SIZE:
with self._lock:
self.failed_files.append(
(file_info.rel_path,
f"文件过大({file_info.size:.2f}MB > {self.MAX_FILE_SIZE / (1024 * 1024)}MB")
)
continue
future = self.executor.submit(self._read_file_content, file_info)
futures[future] = file_info
for future in as_completed(futures):
file_info = futures[future]
try:
content = future.result()
if content:
with self._lock:
self.file_cache[file_info.path] = content
self.processed_size += file_info.size * 1024 * 1024
results.append((file_info, content))
except Exception as e:
with self._lock:
self.failed_files.append((file_info.rel_path, f"读取失败: {str(e)}"))
return results
def _read_file_content(self, file_info: FileInfo) -> Optional[str]:
"""读取单个文件内容
Args:
file_info: 文件信息对象
Returns:
Optional[str]: 文件内容
"""
try:
content = extract_text(file_info.path)
if not content or not content.strip():
return None
return content
except Exception as e:
logger.exception(f"读取文件失败: {str(e)}")
raise Exception(f"读取文件失败: {str(e)}")
def _is_valid_file(self, file_path: str) -> bool:
"""检查文件是否有效
Args:
file_path: 文件路径
Returns:
bool: 是否为有效文件
"""
if not os.path.isfile(file_path):
return False
extension = os.path.splitext(file_path)[1].lower()
if (extension in self.COMPRESSED_EXTENSIONS or
os.path.basename(file_path).startswith('.') or
not os.access(file_path, os.R_OK)):
return False
# 只要文件可以访问且不在排除列表中就认为是有效的
return True
def _collect_files(self, path: str) -> List[FileInfo]:
"""收集文件信息
Args:
path: 目标路径
Returns:
List[FileInfo]: 有效文件信息列表
"""
files = []
total_size = 0
# 处理单个文件的情况
if os.path.isfile(path):
if self._is_valid_file(path):
file_info = self._create_file_info(os.DirEntry(os.path.dirname(path)), os.path.dirname(path))
if file_info:
return [file_info]
return []
# 处理目录的情况
try:
# 使用os.walk来递归遍历目录
for root, _, filenames in os.walk(path):
for filename in filenames:
if len(files) >= self.MAX_FILES:
self.failed_files.append((filename, f"超出最大文件数限制({self.MAX_FILES})"))
continue
file_path = os.path.join(root, filename)
if not self._is_valid_file(file_path):
continue
try:
stats = os.stat(file_path)
file_size = stats.st_size / (1024 * 1024) # 转换为MB
if file_size * 1024 * 1024 > self.MAX_FILE_SIZE:
self.failed_files.append((file_path,
f"文件过大({file_size:.2f}MB > {self.MAX_FILE_SIZE / (1024 * 1024)}MB"))
continue
if total_size + file_size * 1024 * 1024 > self.MAX_TOTAL_SIZE:
self.failed_files.append((file_path, "超出总大小限制"))
continue
file_info = FileInfo(
path=file_path,
rel_path=os.path.relpath(file_path, path),
size=file_size,
extension=os.path.splitext(file_path)[1].lower(),
last_modified=time.strftime('%Y-%m-%d %H:%M:%S',
time.localtime(stats.st_mtime))
)
total_size += file_size * 1024 * 1024
files.append(file_info)
except Exception as e:
self.failed_files.append((file_path, f"处理文件失败: {str(e)}"))
continue
except Exception as e:
self.failed_files.append(("目录扫描", f"扫描失败: {str(e)}"))
return []
return sorted(files, key=lambda x: x.rel_path)
def _format_content_with_fold(self, file_info, content: str) -> str:
"""使用折叠管理器格式化文件内容"""
try:
metadata = FileMetadata(
rel_path=file_info.rel_path,
size=file_info.size,
last_modified=datetime.fromtimestamp(
os.path.getmtime(file_info.path)
),
mime_type=mimetypes.guess_type(file_info.path)[0]
)
options = FoldingOptions(
style=FoldingStyle.DETAILED,
code_language=self.folding_manager._guess_language(
os.path.splitext(file_info.path)[1]
),
show_timestamp=True
)
return self.folding_manager.format_content(
content=content,
formatter_type='file',
metadata=metadata,
options=options
)
except Exception as e:
return f"Error formatting content: {str(e)}"
def _format_content_for_llm(self, file_infos: List[FileInfo], contents: List[str]) -> str:
"""格式化用于LLM的内容
Args:
file_infos: 文件信息列表
contents: 内容列表
Returns:
str: 格式化后的内容
"""
if len(file_infos) != len(contents):
raise ValueError("文件信息和内容数量不匹配")
result = [
"以下是多个文件的内容集合。每个文件的内容都以 '===== 文件 {序号}: {文件名} =====' 开始,",
"'===== 文件 {序号} 结束 =====' 结束。你可以根据这些分隔符来识别不同文件的内容。\n\n"
]
for idx, (file_info, content) in enumerate(zip(file_infos, contents), 1):
result.extend([
f"===== 文件 {idx}: {file_info.rel_path} =====",
"文件内容:",
content.strip(),
f"===== 文件 {idx} 结束 =====\n"
])
return "\n".join(result)
def execute(self, txt: str) -> Generator:
"""执行文本加载和显示 - 保持原有接口
Args:
txt: 目标路径
Yields:
Generator: UI更新生成器
"""
try:
# 首先显示正在处理的提示信息
self.chatbot.append(["提示", "正在提取文本内容,请稍作等待..."])
yield from update_ui(chatbot=self.chatbot, history=self.history)
user_name = self.chatbot.get_user()
validate_path_safety(txt, user_name)
self.start_time = time.time()
self.processed_size = 0
self.failed_files.clear()
successful_files = []
successful_contents = []
# 收集文件
files = self._collect_files(txt)
if not files:
# 移除之前的提示信息
self.chatbot.pop()
self.chatbot.append(["提示", "未找到任何有效文件"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return
# 批量处理文件
content_blocks = []
for i in range(0, len(files), self.BATCH_SIZE):
batch = files[i:i + self.BATCH_SIZE]
results = self._process_file_batch(batch)
for file_info, content in results:
if content:
content_blocks.append(self._format_content_with_fold(file_info, content))
successful_files.append(file_info)
successful_contents.append(content)
# 显示文件内容,替换之前的提示信息
if content_blocks:
# 移除之前的提示信息
self.chatbot.pop()
self.chatbot.append(["文件内容", "\n".join(content_blocks)])
self.history.extend([
self._format_content_for_llm(successful_files, successful_contents),
"我已经接收到你上传的文件的内容,请提问"
])
yield from update_ui(chatbot=self.chatbot, history=self.history)
yield from update_ui(chatbot=self.chatbot, history=self.history)
except Exception as e:
# 发生错误时,移除之前的提示信息
if len(self.chatbot) > 0 and self.chatbot[-1][0] == "提示":
self.chatbot.pop()
self.chatbot.append(["错误", f"处理过程中出现错误: {str(e)}"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
finally:
self.executor.shutdown(wait=False)
self.file_cache.clear()
def execute_single_file(self, file_path: str) -> Generator:
"""执行单个文件的加载和显示
Args:
file_path: 文件路径
Yields:
Generator: UI更新生成器
"""
try:
# 首先显示正在处理的提示信息
self.chatbot.append(["提示", "正在提取文本内容,请稍作等待..."])
yield from update_ui(chatbot=self.chatbot, history=self.history)
user_name = self.chatbot.get_user()
validate_path_safety(file_path, user_name)
self.start_time = time.time()
self.processed_size = 0
self.failed_files.clear()
# 验证文件是否存在且可读
if not os.path.isfile(file_path):
self.chatbot.pop()
self.chatbot.append(["错误", f"指定路径不是文件: {file_path}"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return
if not self._is_valid_file(file_path):
self.chatbot.pop()
self.chatbot.append(["错误", f"无效的文件类型或无法读取: {file_path}"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return
# 创建文件信息
try:
stats = os.stat(file_path)
file_size = stats.st_size / (1024 * 1024) # 转换为MB
if file_size * 1024 * 1024 > self.MAX_FILE_SIZE:
self.chatbot.pop()
self.chatbot.append(["错误", f"文件过大({file_size:.2f}MB > {self.MAX_FILE_SIZE / (1024 * 1024)}MB"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return
file_info = FileInfo(
path=file_path,
rel_path=os.path.basename(file_path),
size=file_size,
extension=os.path.splitext(file_path)[1].lower(),
last_modified=time.strftime('%Y-%m-%d %H:%M:%S',
time.localtime(stats.st_mtime))
)
except Exception as e:
self.chatbot.pop()
self.chatbot.append(["错误", f"处理文件失败: {str(e)}"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return
# 读取文件内容
try:
content = self._read_file_content(file_info)
if not content:
self.chatbot.pop()
self.chatbot.append(["提示", f"文件内容为空或无法提取: {file_path}"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return
except Exception as e:
self.chatbot.pop()
self.chatbot.append(["错误", f"读取文件失败: {str(e)}"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return
# 格式化内容并更新UI
formatted_content = self._format_content_with_fold(file_info, content)
# 移除之前的提示信息
self.chatbot.pop()
self.chatbot.append(["文件内容", formatted_content])
# 更新历史记录便于LLM处理
llm_content = self._format_content_for_llm([file_info], [content])
self.history.extend([llm_content, "我已经接收到你上传的文件的内容,请提问"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
except Exception as e:
# 发生错误时,移除之前的提示信息
if len(self.chatbot) > 0 and self.chatbot[-1][0] == "提示":
self.chatbot.pop()
self.chatbot.append(["错误", f"处理过程中出现错误: {str(e)}"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
def __del__(self):
"""析构函数 - 确保资源被正确释放"""
if hasattr(self, 'executor'):
self.executor.shutdown(wait=False)
if hasattr(self, 'file_cache'):
self.file_cache.clear()

View File

@@ -1,4 +1,4 @@
from toolbox import CatchException, update_ui, update_ui_latest_msg
from toolbox import CatchException, update_ui, update_ui_lastest_msg
from crazy_functions.multi_stage.multi_stage_utils import GptAcademicGameBaseState
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from request_llms.bridge_all import predict_no_ui_long_connection
@@ -13,7 +13,7 @@ class MiniGame_ASCII_Art(GptAcademicGameBaseState):
else:
if prompt.strip() == 'exit':
self.delete_game = True
yield from update_ui_latest_msg(lastmsg=f"谜底是{self.obj},游戏结束。", chatbot=chatbot, history=history, delay=0.)
yield from update_ui_lastest_msg(lastmsg=f"谜底是{self.obj},游戏结束。", chatbot=chatbot, history=history, delay=0.)
return
chatbot.append([prompt, ""])
yield from update_ui(chatbot=chatbot, history=history)
@@ -31,12 +31,12 @@ class MiniGame_ASCII_Art(GptAcademicGameBaseState):
self.cur_task = 'identify user guess'
res = get_code_block(raw_res)
history += ['', f'the answer is {self.obj}', inputs, res]
yield from update_ui_latest_msg(lastmsg=res, chatbot=chatbot, history=history, delay=0.)
yield from update_ui_lastest_msg(lastmsg=res, chatbot=chatbot, history=history, delay=0.)
elif self.cur_task == 'identify user guess':
if is_same_thing(self.obj, prompt, self.llm_kwargs):
self.delete_game = True
yield from update_ui_latest_msg(lastmsg="你猜对了!", chatbot=chatbot, history=history, delay=0.)
yield from update_ui_lastest_msg(lastmsg="你猜对了!", chatbot=chatbot, history=history, delay=0.)
else:
self.cur_task = 'identify user guess'
yield from update_ui_latest_msg(lastmsg="猜错了再试试输入“exit”获取答案。", chatbot=chatbot, history=history, delay=0.)
yield from update_ui_lastest_msg(lastmsg="猜错了再试试输入“exit”获取答案。", chatbot=chatbot, history=history, delay=0.)

View File

@@ -63,7 +63,7 @@ prompts_terminate = """小说的前文回顾:
"""
from toolbox import CatchException, update_ui, update_ui_latest_msg
from toolbox import CatchException, update_ui, update_ui_lastest_msg
from crazy_functions.multi_stage.multi_stage_utils import GptAcademicGameBaseState
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from request_llms.bridge_all import predict_no_ui_long_connection
@@ -112,7 +112,7 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
if prompt.strip() == 'exit' or prompt.strip() == '结束剧情':
# should we terminate game here?
self.delete_game = True
yield from update_ui_latest_msg(lastmsg=f"游戏结束。", chatbot=chatbot, history=history, delay=0.)
yield from update_ui_lastest_msg(lastmsg=f"游戏结束。", chatbot=chatbot, history=history, delay=0.)
return
if '剧情收尾' in prompt:
self.cur_task = 'story_terminate'
@@ -137,8 +137,8 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
)
self.story.append(story_paragraph)
# # 配图
yield from update_ui_latest_msg(lastmsg=story_paragraph + '<br/>正在生成插图中 ...', chatbot=chatbot, history=history, delay=0.)
yield from update_ui_latest_msg(lastmsg=story_paragraph + '<br/>'+ self.generate_story_image(story_paragraph), chatbot=chatbot, history=history, delay=0.)
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>正在生成插图中 ...', chatbot=chatbot, history=history, delay=0.)
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>'+ self.generate_story_image(story_paragraph), chatbot=chatbot, history=history, delay=0.)
# # 构建后续剧情引导
previously_on_story = ""
@@ -171,8 +171,8 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
)
self.story.append(story_paragraph)
# # 配图
yield from update_ui_latest_msg(lastmsg=story_paragraph + '<br/>正在生成插图中 ...', chatbot=chatbot, history=history, delay=0.)
yield from update_ui_latest_msg(lastmsg=story_paragraph + '<br/>'+ self.generate_story_image(story_paragraph), chatbot=chatbot, history=history, delay=0.)
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>正在生成插图中 ...', chatbot=chatbot, history=history, delay=0.)
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>'+ self.generate_story_image(story_paragraph), chatbot=chatbot, history=history, delay=0.)
# # 构建后续剧情引导
previously_on_story = ""
@@ -204,8 +204,8 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
chatbot, history_, self.sys_prompt_
)
# # 配图
yield from update_ui_latest_msg(lastmsg=story_paragraph + '<br/>正在生成插图中 ...', chatbot=chatbot, history=history, delay=0.)
yield from update_ui_latest_msg(lastmsg=story_paragraph + '<br/>'+ self.generate_story_image(story_paragraph), chatbot=chatbot, history=history, delay=0.)
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>正在生成插图中 ...', chatbot=chatbot, history=history, delay=0.)
yield from update_ui_lastest_msg(lastmsg=story_paragraph + '<br/>'+ self.generate_story_image(story_paragraph), chatbot=chatbot, history=history, delay=0.)
# terminate game
self.delete_game = True

View File

@@ -2,7 +2,7 @@ import time
import importlib
from toolbox import trimmed_format_exc, gen_time_str, get_log_folder
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, is_the_upload_folder
from toolbox import promote_file_to_downloadzone, get_log_folder, update_ui_latest_msg
from toolbox import promote_file_to_downloadzone, get_log_folder, update_ui_lastest_msg
import multiprocessing
def get_class_name(class_string):

View File

@@ -102,10 +102,10 @@ class GptJsonIO():
logging.info(f'Repairing json{response}')
repair_prompt = self.generate_repair_prompt(broken_json = response, error=repr(e))
result = self.generate_output(gpt_gen_fn(repair_prompt, self.format_instructions))
logging.info('Repair json success.')
logging.info('Repaire json success.')
except Exception as e:
# 没辙了,放弃治疗
logging.info('Repair json fail.')
logging.info('Repaire json fail.')
raise JsonStringError('Cannot repair json.', str(e))
return result

View File

@@ -3,7 +3,7 @@ import re
import shutil
import numpy as np
from loguru import logger
from toolbox import update_ui, update_ui_latest_msg, get_log_folder, gen_time_str
from toolbox import update_ui, update_ui_lastest_msg, get_log_folder
from toolbox import get_conf, promote_file_to_downloadzone
from crazy_functions.latex_fns.latex_toolbox import PRESERVE, TRANSFORM
from crazy_functions.latex_fns.latex_toolbox import set_forbidden_text, set_forbidden_text_begin_end, set_forbidden_text_careful_brace
@@ -20,7 +20,7 @@ def split_subprocess(txt, project_folder, return_dict, opts):
"""
break down latex file to a linked list,
each node use a preserve flag to indicate whether it should
be processed by GPT.
be proccessed by GPT.
"""
text = txt
mask = np.zeros(len(txt), dtype=np.uint8) + TRANSFORM
@@ -85,14 +85,14 @@ class LatexPaperSplit():
"""
break down latex file to a linked list,
each node use a preserve flag to indicate whether it should
be processed by GPT.
be proccessed by GPT.
"""
def __init__(self) -> None:
self.nodes = None
self.msg = "*{\\scriptsize\\textbf{警告该PDF由GPT-Academic开源项目调用大语言模型+Latex翻译插件一键生成" + \
"版权归原文作者所有。翻译内容可靠性无保障,请仔细鉴别并以原文为准。" + \
"项目Github地址 \\url{https://github.com/binary-husky/gpt_academic/}。"
# 请您不要删除或修改这行警告除非您是论文的原作者如果您是论文原作者欢迎加README中的QQ联系开发者
# 请您不要删除或修改这行警告除非您是论文的原作者如果您是论文原作者欢迎加REAME中的QQ联系开发者
self.msg_declare = "为了防止大语言模型的意外谬误产生扩散影响,禁止移除或修改此警告。}}\\\\"
self.title = "unknown"
self.abstract = "unknown"
@@ -151,7 +151,7 @@ class LatexPaperSplit():
"""
break down latex file to a linked list,
each node use a preserve flag to indicate whether it should
be processed by GPT.
be proccessed by GPT.
P.S. use multiprocessing to avoid timeout error
"""
import multiprocessing
@@ -300,8 +300,7 @@ def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin
write_html(pfg.sp_file_contents, pfg.sp_file_result, chatbot=chatbot, project_folder=project_folder)
# <-------- 写出文件 ---------->
model_name = llm_kwargs['llm_model'].replace('_', '\\_') # 替换LLM模型名称中的下划线为转义字符
msg = f"当前大语言模型: {model_name},当前语言模型温度设定: {llm_kwargs['temperature']}"
msg = f"当前大语言模型: {llm_kwargs['llm_model']},当前语言模型温度设定: {llm_kwargs['temperature']}"
final_tex = lps.merge_result(pfg.file_result, mode, msg)
objdump((lps, pfg.file_result, mode, msg), file=pj(project_folder,'merge_result.pkl'))
@@ -351,42 +350,7 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
max_try = 32
chatbot.append([f"正在编译PDF文档", f'编译已经开始。当前工作路径为{work_folder}如果程序停顿5分钟以上请直接去该路径下取回翻译结果或者重启之后再度尝试 ...']); yield from update_ui(chatbot=chatbot, history=history)
chatbot.append([f"正在编译PDF文档", '...']); yield from update_ui(chatbot=chatbot, history=history); time.sleep(1); chatbot[-1] = list(chatbot[-1]) # 刷新界面
yield from update_ui_latest_msg('编译已经开始...', chatbot, history) # 刷新Gradio前端界面
# 检查是否需要使用xelatex
def check_if_need_xelatex(tex_path):
try:
with open(tex_path, 'r', encoding='utf-8', errors='replace') as f:
content = f.read(5000)
# 检查是否有使用xelatex的宏包
need_xelatex = any(
pkg in content
for pkg in ['fontspec', 'xeCJK', 'xetex', 'unicode-math', 'xltxtra', 'xunicode']
)
if need_xelatex:
logger.info(f"检测到宏包需要xelatex编译, 切换至xelatex编译")
else:
logger.info(f"未检测到宏包需要xelatex编译, 使用pdflatex编译")
return need_xelatex
except Exception:
return False
# 根据编译器类型返回编译命令
def get_compile_command(compiler, filename):
compile_command = f'{compiler} -interaction=batchmode -file-line-error {filename}.tex'
logger.info('Latex 编译指令: ' + compile_command)
return compile_command
# 确定使用的编译器
compiler = 'pdflatex'
if check_if_need_xelatex(pj(work_folder_modified, f'{main_file_modified}.tex')):
logger.info("检测到宏包需要xelatex编译切换至xelatex编译")
# Check if xelatex is installed
try:
import subprocess
subprocess.run(['xelatex', '--version'], capture_output=True, check=True)
compiler = 'xelatex'
except (subprocess.CalledProcessError, FileNotFoundError):
raise RuntimeError("检测到需要使用xelatex编译但系统中未安装xelatex。请先安装texlive或其他提供xelatex的LaTeX发行版。")
yield from update_ui_lastest_msg('编译已经开始...', chatbot, history) # 刷新Gradio前端界面
while True:
import os
@@ -396,36 +360,36 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
shutil.copyfile(may_exist_bbl, target_bbl)
# https://stackoverflow.com/questions/738755/dont-make-me-manually-abort-a-latex-compile-when-theres-an-error
yield from update_ui_latest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译原始PDF ...', chatbot, history) # 刷新Gradio前端界面
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_original), work_folder_original)
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译原始PDF ...', chatbot, history) # 刷新Gradio前端界面
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex', work_folder_original)
yield from update_ui_latest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译转化后的PDF ...', chatbot, history) # 刷新Gradio前端界面
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_modified), work_folder_modified)
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译转化后的PDF ...', chatbot, history) # 刷新Gradio前端界面
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex', work_folder_modified)
if ok and os.path.exists(pj(work_folder_modified, f'{main_file_modified}.pdf')):
# 只有第二步成功,才能继续下面的步骤
yield from update_ui_latest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译BibTex ...', chatbot, history) # 刷新Gradio前端界面
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译BibTex ...', chatbot, history) # 刷新Gradio前端界面
if not os.path.exists(pj(work_folder_original, f'{main_file_original}.bbl')):
ok = compile_latex_with_timeout(f'bibtex {main_file_original}.aux', work_folder_original)
if not os.path.exists(pj(work_folder_modified, f'{main_file_modified}.bbl')):
ok = compile_latex_with_timeout(f'bibtex {main_file_modified}.aux', work_folder_modified)
yield from update_ui_latest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译文献交叉引用 ...', chatbot, history) # 刷新Gradio前端界面
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_original), work_folder_original)
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_modified), work_folder_modified)
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_original), work_folder_original)
ok = compile_latex_with_timeout(get_compile_command(compiler, main_file_modified), work_folder_modified)
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译文献交叉引用 ...', chatbot, history) # 刷新Gradio前端界面
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex', work_folder_original)
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex', work_folder_modified)
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex', work_folder_original)
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex', work_folder_modified)
if mode!='translate_zh':
yield from update_ui_latest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 使用latexdiff生成论文转化前后对比 ...', chatbot, history) # 刷新Gradio前端界面
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 使用latexdiff生成论文转化前后对比 ...', chatbot, history) # 刷新Gradio前端界面
logger.info( f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex')
ok = compile_latex_with_timeout(f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex', os.getcwd())
yield from update_ui_latest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 正在编译对比PDF ...', chatbot, history) # 刷新Gradio前端界面
ok = compile_latex_with_timeout(get_compile_command(compiler, 'merge_diff'), work_folder)
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 正在编译对比PDF ...', chatbot, history) # 刷新Gradio前端界面
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
ok = compile_latex_with_timeout(f'bibtex merge_diff.aux', work_folder)
ok = compile_latex_with_timeout(get_compile_command(compiler, 'merge_diff'), work_folder)
ok = compile_latex_with_timeout(get_compile_command(compiler, 'merge_diff'), work_folder)
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
# <---------- 检查结果 ----------->
results_ = ""
@@ -435,13 +399,13 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
results_ += f"原始PDF编译是否成功: {original_pdf_success};"
results_ += f"转化PDF编译是否成功: {modified_pdf_success};"
results_ += f"对比PDF编译是否成功: {diff_pdf_success};"
yield from update_ui_latest_msg(f'{n_fix}编译结束:<br/>{results_}...', chatbot, history) # 刷新Gradio前端界面
yield from update_ui_lastest_msg(f'{n_fix}编译结束:<br/>{results_}...', chatbot, history) # 刷新Gradio前端界面
if diff_pdf_success:
result_pdf = pj(work_folder_modified, f'merge_diff.pdf') # get pdf path
promote_file_to_downloadzone(result_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
if modified_pdf_success:
yield from update_ui_latest_msg(f'转化PDF编译已经成功, 正在尝试生成对比PDF, 请稍候 ...', chatbot, history) # 刷新Gradio前端界面
yield from update_ui_lastest_msg(f'转化PDF编译已经成功, 正在尝试生成对比PDF, 请稍候 ...', chatbot, history) # 刷新Gradio前端界面
result_pdf = pj(work_folder_modified, f'{main_file_modified}.pdf') # get pdf path
origin_pdf = pj(work_folder_original, f'{main_file_original}.pdf') # get pdf path
if os.path.exists(pj(work_folder, '..', 'translation')):
@@ -472,7 +436,7 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
work_folder_modified=work_folder_modified,
fixed_line=fixed_line
)
yield from update_ui_latest_msg(f'由于最为关键的转化PDF编译失败, 将根据报错信息修正tex源文件并重试, 当前报错的latex代码处于第{buggy_lines}行 ...', chatbot, history) # 刷新Gradio前端界面
yield from update_ui_lastest_msg(f'由于最为关键的转化PDF编译失败, 将根据报错信息修正tex源文件并重试, 当前报错的latex代码处于第{buggy_lines}行 ...', chatbot, history) # 刷新Gradio前端界面
if not can_retry: break
return False # 失败啦
@@ -504,70 +468,3 @@ def write_html(sp_file_contents, sp_file_result, chatbot, project_folder):
except:
from toolbox import trimmed_format_exc
logger.error('writing html result failed:', trimmed_format_exc())
def upload_to_gptac_cloud_if_user_allow(chatbot, arxiv_id):
try:
# 如果用户允许我们将arxiv论文PDF上传到GPTAC学术云
from toolbox import map_file_to_sha256
# 检查是否顺利,如果没有生成预期的文件,则跳过
is_result_good = False
for file_path in chatbot._cookies.get("files_to_promote", []):
if file_path.endswith('translate_zh.pdf'):
is_result_good = True
if not is_result_good:
return
# 上传文件
for file_path in chatbot._cookies.get("files_to_promote", []):
align_name = None
# normalized name
for name in ['translate_zh.pdf', 'comparison.pdf']:
if file_path.endswith(name): align_name = name
# if match any align name
if align_name:
logger.info(f'Uploading to GPTAC cloud as the user has set `allow_cloud_io`: {file_path}')
with open(file_path, 'rb') as f:
import requests
url = 'https://cloud-2.agent-matrix.com/arxiv_tf_paper_normal_upload'
files = {'file': (align_name, f, 'application/octet-stream')}
data = {
'arxiv_id': arxiv_id,
'file_hash': map_file_to_sha256(file_path),
'language': 'zh',
'trans_prompt': 'to_be_implemented',
'llm_model': 'to_be_implemented',
'llm_model_param': 'to_be_implemented',
}
resp = requests.post(url=url, files=files, data=data, timeout=30)
logger.info(f'Uploading terminate ({resp.status_code})`: {file_path}')
except:
# 如果上传失败,不会中断程序,因为这是次要功能
pass
def check_gptac_cloud(arxiv_id, chatbot):
import requests
success = False
downloaded = []
try:
for pdf_target in ['translate_zh.pdf', 'comparison.pdf']:
url = 'https://cloud-2.agent-matrix.com/arxiv_tf_paper_normal_exist'
data = {
'arxiv_id': arxiv_id,
'name': pdf_target,
}
resp = requests.post(url=url, data=data)
cache_hit_result = resp.text.strip('"')
if cache_hit_result.startswith("http"):
url = cache_hit_result
logger.info(f'Downloading from GPTAC cloud: {url}')
resp = requests.get(url=url, timeout=30)
target = os.path.join(get_log_folder(plugin_name='gptac_cloud'), gen_time_str(), pdf_target)
os.makedirs(os.path.dirname(target), exist_ok=True)
with open(target, 'wb') as f:
f.write(resp.content)
new_path = promote_file_to_downloadzone(target, chatbot=chatbot)
success = True
downloaded.append(new_path)
except:
pass
return success, downloaded

View File

@@ -6,16 +6,12 @@ class SafeUnpickler(pickle.Unpickler):
def get_safe_classes(self):
from crazy_functions.latex_fns.latex_actions import LatexPaperFileGroup, LatexPaperSplit
from crazy_functions.latex_fns.latex_toolbox import LinkedListNode
from numpy.core.multiarray import scalar
from numpy import dtype
# 定义允许的安全类
safe_classes = {
# 在这里添加其他安全的类
'LatexPaperFileGroup': LatexPaperFileGroup,
'LatexPaperSplit': LatexPaperSplit,
'LinkedListNode': LinkedListNode,
'scalar': scalar,
'dtype': dtype,
}
return safe_classes
@@ -26,6 +22,8 @@ class SafeUnpickler(pickle.Unpickler):
for class_name in self.safe_classes.keys():
if (class_name in f'{module}.{name}'):
match_class_name = class_name
if module == 'numpy' or module.startswith('numpy.'):
return super().find_class(module, name)
if match_class_name is not None:
return self.safe_classes[match_class_name]
# 如果尝试加载未授权的类,则抛出异常

View File

@@ -168,7 +168,7 @@ def set_forbidden_text(text, mask, pattern, flags=0):
def reverse_forbidden_text(text, mask, pattern, flags=0, forbid_wrapper=True):
"""
Move area out of preserve area (make text editable for GPT)
count the number of the braces so as to catch complete text area.
count the number of the braces so as to catch compelete text area.
e.g.
\begin{abstract} blablablablablabla. \end{abstract}
"""
@@ -188,7 +188,7 @@ def reverse_forbidden_text(text, mask, pattern, flags=0, forbid_wrapper=True):
def set_forbidden_text_careful_brace(text, mask, pattern, flags=0):
"""
Add a preserve text area in this paper (text become untouchable for GPT).
count the number of the braces so as to catch complete text area.
count the number of the braces so as to catch compelete text area.
e.g.
\caption{blablablablabla\texbf{blablabla}blablabla.}
"""
@@ -214,7 +214,7 @@ def reverse_forbidden_text_careful_brace(
):
"""
Move area out of preserve area (make text editable for GPT)
count the number of the braces so as to catch complete text area.
count the number of the braces so as to catch compelete text area.
e.g.
\caption{blablablablabla\texbf{blablabla}blablabla.}
"""
@@ -287,23 +287,23 @@ def find_main_tex_file(file_manifest, mode):
在多Tex文档中寻找主文件必须包含documentclass返回找到的第一个。
P.S. 但愿没人把latex模板放在里面传进来 (6.25 加入判定latex模板的代码)
"""
candidates = []
canidates = []
for texf in file_manifest:
if os.path.basename(texf).startswith("merge"):
continue
with open(texf, "r", encoding="utf8", errors="ignore") as f:
file_content = f.read()
if r"\documentclass" in file_content:
candidates.append(texf)
canidates.append(texf)
else:
continue
if len(candidates) == 0:
if len(canidates) == 0:
raise RuntimeError("无法找到一个主Tex文件包含documentclass关键字")
elif len(candidates) == 1:
return candidates[0]
else: # if len(candidates) >= 2 通过一些Latex模板中常见但通常不会出现在正文的单词对不同latex源文件扣分取评分最高者返回
candidates_score = []
elif len(canidates) == 1:
return canidates[0]
else: # if len(canidates) >= 2 通过一些Latex模板中常见但通常不会出现在正文的单词对不同latex源文件扣分取评分最高者返回
canidates_score = []
# 给出一些判定模板文档的词作为扣分项
unexpected_words = [
"\\LaTeX",
@@ -316,19 +316,19 @@ def find_main_tex_file(file_manifest, mode):
"reviewers",
]
expected_words = ["\\input", "\\ref", "\\cite"]
for texf in candidates:
candidates_score.append(0)
for texf in canidates:
canidates_score.append(0)
with open(texf, "r", encoding="utf8", errors="ignore") as f:
file_content = f.read()
file_content = rm_comments(file_content)
for uw in unexpected_words:
if uw in file_content:
candidates_score[-1] -= 1
canidates_score[-1] -= 1
for uw in expected_words:
if uw in file_content:
candidates_score[-1] += 1
select = np.argmax(candidates_score) # 取评分最高者返回
return candidates[select]
canidates_score[-1] += 1
select = np.argmax(canidates_score) # 取评分最高者返回
return canidates[select]
def rm_comments(main_file):
@@ -374,7 +374,7 @@ def find_tex_file_ignore_case(fp):
def merge_tex_files_(project_foler, main_file, mode):
"""
Merge Tex project recursively
Merge Tex project recrusively
"""
main_file = rm_comments(main_file)
for s in reversed([q for q in re.finditer(r"\\input\{(.*?)\}", main_file, re.M)]):
@@ -429,7 +429,7 @@ def find_title_and_abs(main_file):
def merge_tex_files(project_foler, main_file, mode):
"""
Merge Tex project recursively
Merge Tex project recrusively
P.S. 顺便把CTEX塞进去以支持中文
P.S. 顺便把Latex的注释去除
"""
@@ -644,15 +644,6 @@ def run_in_subprocess(func):
def _merge_pdfs(pdf1_path, pdf2_path, output_path):
try:
logger.info("Merging PDFs using _merge_pdfs_ng")
_merge_pdfs_ng(pdf1_path, pdf2_path, output_path)
except:
logger.info("Merging PDFs using _merge_pdfs_legacy")
_merge_pdfs_legacy(pdf1_path, pdf2_path, output_path)
def _merge_pdfs_ng(pdf1_path, pdf2_path, output_path):
import PyPDF2 # PyPDF2这个库有严重的内存泄露问题把它放到子进程中运行从而方便内存的释放
from PyPDF2.generic import NameObject, TextStringObject,ArrayObject,FloatObject,NumberObject
@@ -697,206 +688,65 @@ def _merge_pdfs_ng(pdf1_path, pdf2_path, output_path):
),
0,
)
if "/Annots" in new_page:
annotations = new_page["/Annots"]
if '/Annots' in page1:
page1_annot_id = [annot.idnum for annot in page1['/Annots']]
else:
page1_annot_id = []
if '/Annots' in page2:
page2_annot_id = [annot.idnum for annot in page2['/Annots']]
else:
page2_annot_id = []
if '/Annots' in new_page:
annotations = new_page['/Annots']
for i, annot in enumerate(annotations):
annot_obj = annot.get_object()
# 检查注释类型是否是链接(/Link
if annot_obj.get("/Subtype") == "/Link":
if annot_obj.get('/Subtype') == '/Link':
# 检查是否为内部链接跳转(/GoTo或外部URI链接/URI
action = annot_obj.get("/A")
action = annot_obj.get('/A')
if action:
if "/S" in action and action["/S"] == "/GoTo":
if '/S' in action and action['/S'] == '/GoTo':
# 内部链接:跳转到文档中的某个页面
dest = action.get("/D") # 目标页或目标位置
# if dest and annot.idnum in page2_annot_id:
# if dest in pdf2_reader.named_destinations:
if dest and page2.annotations:
if annot in page2.annotations:
dest = action.get('/D') # 目标页或目标位置
if dest and annot.idnum in page2_annot_id:
# 获取原始文件中跳转信息,包括跳转页面
destination = pdf2_reader.named_destinations[
dest
]
page_number = (
pdf2_reader.get_destination_page_number(
destination
)
)
destination = pdf2_reader.named_destinations[dest]
page_number = pdf2_reader.get_destination_page_number(destination)
#更新跳转信息,跳转到对应的页面和,指定坐标 (100, 150),缩放比例为 100%
#“/D”:[10,'/XYZ',100,100,0]
if destination.dest_array[1] == "/XYZ":
annot_obj["/A"].update(
{
NameObject("/D"): ArrayObject(
[
NumberObject(page_number),
destination.dest_array[1],
FloatObject(
destination.dest_array[
2
]
+ int(
page1.mediaBox.getWidth()
)
),
destination.dest_array[3],
destination.dest_array[4],
]
) # 确保键和值是 PdfObject
}
)
else:
annot_obj["/A"].update(
{
NameObject("/D"): ArrayObject(
[
NumberObject(page_number),
destination.dest_array[1],
]
) # 确保键和值是 PdfObject
}
)
rect = annot_obj.get("/Rect")
annot_obj['/A'].update({
NameObject("/D"): ArrayObject([NumberObject(page_number),destination.dest_array[1], FloatObject(destination.dest_array[2] + int(page1.mediaBox.getWidth())) ,destination.dest_array[3],destination.dest_array[4]]) # 确保键和值是 PdfObject
})
rect = annot_obj.get('/Rect')
# 更新点击坐标
rect = ArrayObject(
[
FloatObject(
rect[0]
+ int(page1.mediaBox.getWidth())
),
rect[1],
FloatObject(
rect[2]
+ int(page1.mediaBox.getWidth())
),
rect[3],
]
)
annot_obj.update(
{
NameObject(
"/Rect"
): rect # 确保键和值是 PdfObject
}
)
# if dest and annot.idnum in page1_annot_id:
# if dest in pdf1_reader.named_destinations:
if dest and page1.annotations:
if annot in page1.annotations:
rect = ArrayObject([FloatObject(rect[0]+ int(page1.mediaBox.getWidth())),rect[1],
FloatObject(rect[2]+int(page1.mediaBox.getWidth())),rect[3] ])
annot_obj.update({
NameObject("/Rect"): rect # 确保键和值是 PdfObject
})
if dest and annot.idnum in page1_annot_id:
# 获取原始文件中跳转信息,包括跳转页面
destination = pdf1_reader.named_destinations[
dest
]
page_number = (
pdf1_reader.get_destination_page_number(
destination
)
)
destination = pdf1_reader.named_destinations[dest]
page_number = pdf1_reader.get_destination_page_number(destination)
#更新跳转信息,跳转到对应的页面和,指定坐标 (100, 150),缩放比例为 100%
#“/D”:[10,'/XYZ',100,100,0]
if destination.dest_array[1] == "/XYZ":
annot_obj["/A"].update(
{
NameObject("/D"): ArrayObject(
[
NumberObject(page_number),
destination.dest_array[1],
FloatObject(
destination.dest_array[
2
]
),
destination.dest_array[3],
destination.dest_array[4],
]
) # 确保键和值是 PdfObject
}
)
else:
annot_obj["/A"].update(
{
NameObject("/D"): ArrayObject(
[
NumberObject(page_number),
destination.dest_array[1],
]
) # 确保键和值是 PdfObject
}
)
annot_obj['/A'].update({
NameObject("/D"): ArrayObject([NumberObject(page_number),destination.dest_array[1], FloatObject(destination.dest_array[2]) ,destination.dest_array[3],destination.dest_array[4]]) # 确保键和值是 PdfObject
})
rect = annot_obj.get('/Rect')
rect = ArrayObject([FloatObject(rect[0]),rect[1],
FloatObject(rect[2]),rect[3] ])
annot_obj.update({
NameObject("/Rect"): rect # 确保键和值是 PdfObject
})
rect = annot_obj.get("/Rect")
rect = ArrayObject(
[
FloatObject(rect[0]),
rect[1],
FloatObject(rect[2]),
rect[3],
]
)
annot_obj.update(
{
NameObject(
"/Rect"
): rect # 确保键和值是 PdfObject
}
)
elif "/S" in action and action["/S"] == "/URI":
elif '/S' in action and action['/S'] == '/URI':
# 外部链接跳转到某个URI
uri = action.get("/URI")
uri = action.get('/URI')
output_writer.addPage(new_page)
# Save the merged PDF file
with open(output_path, "wb") as output_file:
output_writer.write(output_file)
def _merge_pdfs_legacy(pdf1_path, pdf2_path, output_path):
import PyPDF2 # PyPDF2这个库有严重的内存泄露问题把它放到子进程中运行从而方便内存的释放
Percent = 0.95
# raise RuntimeError('PyPDF2 has a serious memory leak problem, please use other tools to merge PDF files.')
# Open the first PDF file
with open(pdf1_path, "rb") as pdf1_file:
pdf1_reader = PyPDF2.PdfFileReader(pdf1_file)
# Open the second PDF file
with open(pdf2_path, "rb") as pdf2_file:
pdf2_reader = PyPDF2.PdfFileReader(pdf2_file)
# Create a new PDF file to store the merged pages
output_writer = PyPDF2.PdfFileWriter()
# Determine the number of pages in each PDF file
num_pages = max(pdf1_reader.numPages, pdf2_reader.numPages)
# Merge the pages from the two PDF files
for page_num in range(num_pages):
# Add the page from the first PDF file
if page_num < pdf1_reader.numPages:
page1 = pdf1_reader.getPage(page_num)
else:
page1 = PyPDF2.PageObject.createBlankPage(pdf1_reader)
# Add the page from the second PDF file
if page_num < pdf2_reader.numPages:
page2 = pdf2_reader.getPage(page_num)
else:
page2 = PyPDF2.PageObject.createBlankPage(pdf1_reader)
# Create a new empty page with double width
new_page = PyPDF2.PageObject.createBlankPage(
width=int(
int(page1.mediaBox.getWidth())
+ int(page2.mediaBox.getWidth()) * Percent
),
height=max(page1.mediaBox.getHeight(), page2.mediaBox.getHeight()),
)
new_page.mergeTranslatedPage(page1, 0, 0)
new_page.mergeTranslatedPage(
page2,
int(
int(page1.mediaBox.getWidth())
- int(page2.mediaBox.getWidth()) * (1 - Percent)
),
0,
)
output_writer.addPage(new_page)
# Save the merged PDF file
with open(output_path, "wb") as output_file:

View File

@@ -1,43 +0,0 @@
from toolbox import update_ui, get_conf, promote_file_to_downloadzone, update_ui_latest_msg, generate_file_link
from shared_utils.docker_as_service_api import stream_daas
from shared_utils.docker_as_service_api import DockerServiceApiComModel
import random
def download_video(video_id, only_audio, user_name, chatbot, history):
from toolbox import get_log_folder
chatbot.append([None, "Processing..."])
yield from update_ui(chatbot, history)
client_command = f'{video_id} --audio-only' if only_audio else video_id
server_urls = get_conf('DAAS_SERVER_URLS')
server_url = random.choice(server_urls)
docker_service_api_com_model = DockerServiceApiComModel(client_command=client_command)
save_file_dir = get_log_folder(user_name, plugin_name='media_downloader')
for output_manifest in stream_daas(docker_service_api_com_model, server_url, save_file_dir):
status_buf = ""
status_buf += "DaaS message: \n\n"
status_buf += output_manifest['server_message'].replace('\n', '<br/>')
status_buf += "\n\n"
status_buf += "DaaS standard error: \n\n"
status_buf += output_manifest['server_std_err'].replace('\n', '<br/>')
status_buf += "\n\n"
status_buf += "DaaS standard output: \n\n"
status_buf += output_manifest['server_std_out'].replace('\n', '<br/>')
status_buf += "\n\n"
status_buf += "DaaS file attach: \n\n"
status_buf += str(output_manifest['server_file_attach'])
yield from update_ui_latest_msg(status_buf, chatbot, history)
return output_manifest['server_file_attach']
def search_videos(keywords):
from toolbox import get_log_folder
client_command = keywords
server_urls = get_conf('DAAS_SERVER_URLS')
server_url = random.choice(server_urls)
server_url = server_url.replace('stream', 'search')
docker_service_api_com_model = DockerServiceApiComModel(client_command=client_command)
save_file_dir = get_log_folder("default_user", plugin_name='media_downloader')
for output_manifest in stream_daas(docker_service_api_com_model, server_url, save_file_dir):
return output_manifest['server_message']

View File

@@ -1,6 +1,6 @@
from pydantic import BaseModel, Field
from typing import List
from toolbox import update_ui_latest_msg, disable_auto_promotion
from toolbox import update_ui_lastest_msg, disable_auto_promotion
from toolbox import CatchException, update_ui, get_conf, select_api_key, get_log_folder
from request_llms.bridge_all import predict_no_ui_long_connection
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError

View File

@@ -1,386 +0,0 @@
from abc import ABC, abstractmethod
from typing import List, Dict, Any
from ..query_analyzer import SearchCriteria
from ..sources.github_source import GitHubSource
import asyncio
import re
from datetime import datetime
class BaseHandler(ABC):
"""处理器基类"""
def __init__(self, github: GitHubSource, llm_kwargs: Dict = None):
self.github = github
self.llm_kwargs = llm_kwargs or {}
self.ranked_repos = [] # 存储排序后的仓库列表
def _get_search_params(self, plugin_kwargs: Dict) -> Dict:
"""获取搜索参数"""
return {
'max_repos': plugin_kwargs.get('max_repos', 150), # 最大仓库数量从30改为150
'max_details': plugin_kwargs.get('max_details', 80), # 最多展示详情的仓库数量,新增参数
'search_multiplier': plugin_kwargs.get('search_multiplier', 3), # 检索倍数
'min_stars': plugin_kwargs.get('min_stars', 0), # 最少星标数
}
@abstractmethod
async def handle(
self,
criteria: SearchCriteria,
chatbot: List[List[str]],
history: List[List[str]],
system_prompt: str,
llm_kwargs: Dict[str, Any],
plugin_kwargs: Dict[str, Any],
) -> str:
"""处理查询"""
pass
async def _search_repositories(self, query: str, language: str = None, min_stars: int = 0,
sort: str = "stars", per_page: int = 30) -> List[Dict]:
"""搜索仓库"""
try:
# 构建查询字符串
if min_stars > 0 and "stars:>" not in query:
query += f" stars:>{min_stars}"
if language and "language:" not in query:
query += f" language:{language}"
# 执行搜索
result = await self.github.search_repositories(
query=query,
sort=sort,
per_page=per_page
)
if result and "items" in result:
return result["items"]
return []
except Exception as e:
print(f"仓库搜索出错: {str(e)}")
return []
async def _search_bilingual_repositories(self, english_query: str, chinese_query: str, language: str = None, min_stars: int = 0,
sort: str = "stars", per_page: int = 30) -> List[Dict]:
"""同时搜索中英文仓库并合并结果"""
try:
# 搜索英文仓库
english_results = await self._search_repositories(
query=english_query,
language=language,
min_stars=min_stars,
sort=sort,
per_page=per_page
)
# 搜索中文仓库
chinese_results = await self._search_repositories(
query=chinese_query,
language=language,
min_stars=min_stars,
sort=sort,
per_page=per_page
)
# 合并结果,去除重复项
merged_results = []
seen_repos = set()
# 优先添加英文结果
for repo in english_results:
repo_id = repo.get('id')
if repo_id and repo_id not in seen_repos:
seen_repos.add(repo_id)
merged_results.append(repo)
# 添加中文结果(排除重复)
for repo in chinese_results:
repo_id = repo.get('id')
if repo_id and repo_id not in seen_repos:
seen_repos.add(repo_id)
merged_results.append(repo)
# 按星标数重新排序
merged_results.sort(key=lambda x: x.get('stargazers_count', 0), reverse=True)
return merged_results[:per_page] # 返回合并后的前per_page个结果
except Exception as e:
print(f"双语仓库搜索出错: {str(e)}")
return []
async def _search_code(self, query: str, language: str = None, per_page: int = 30) -> List[Dict]:
"""搜索代码"""
try:
# 构建查询字符串
if language and "language:" not in query:
query += f" language:{language}"
# 执行搜索
result = await self.github.search_code(
query=query,
per_page=per_page
)
if result and "items" in result:
return result["items"]
return []
except Exception as e:
print(f"代码搜索出错: {str(e)}")
return []
async def _search_bilingual_code(self, english_query: str, chinese_query: str, language: str = None, per_page: int = 30) -> List[Dict]:
"""同时搜索中英文代码并合并结果"""
try:
# 搜索英文代码
english_results = await self._search_code(
query=english_query,
language=language,
per_page=per_page
)
# 搜索中文代码
chinese_results = await self._search_code(
query=chinese_query,
language=language,
per_page=per_page
)
# 合并结果,去除重复项
merged_results = []
seen_files = set()
# 优先添加英文结果
for item in english_results:
# 使用文件URL作为唯一标识
file_url = item.get('html_url', '')
if file_url and file_url not in seen_files:
seen_files.add(file_url)
merged_results.append(item)
# 添加中文结果(排除重复)
for item in chinese_results:
file_url = item.get('html_url', '')
if file_url and file_url not in seen_files:
seen_files.add(file_url)
merged_results.append(item)
# 对结果进行排序,优先显示匹配度高的结果
# 由于无法直接获取匹配度,这里使用仓库的星标数作为替代指标
merged_results.sort(key=lambda x: x.get('repository', {}).get('stargazers_count', 0), reverse=True)
return merged_results[:per_page] # 返回合并后的前per_page个结果
except Exception as e:
print(f"双语代码搜索出错: {str(e)}")
return []
async def _search_users(self, query: str, per_page: int = 30) -> List[Dict]:
"""搜索用户"""
try:
result = await self.github.search_users(
query=query,
per_page=per_page
)
if result and "items" in result:
return result["items"]
return []
except Exception as e:
print(f"用户搜索出错: {str(e)}")
return []
async def _search_bilingual_users(self, english_query: str, chinese_query: str, per_page: int = 30) -> List[Dict]:
"""同时搜索中英文用户并合并结果"""
try:
# 搜索英文用户
english_results = await self._search_users(
query=english_query,
per_page=per_page
)
# 搜索中文用户
chinese_results = await self._search_users(
query=chinese_query,
per_page=per_page
)
# 合并结果,去除重复项
merged_results = []
seen_users = set()
# 优先添加英文结果
for user in english_results:
user_id = user.get('id')
if user_id and user_id not in seen_users:
seen_users.add(user_id)
merged_results.append(user)
# 添加中文结果(排除重复)
for user in chinese_results:
user_id = user.get('id')
if user_id and user_id not in seen_users:
seen_users.add(user_id)
merged_results.append(user)
# 按关注者数量进行排序
merged_results.sort(key=lambda x: x.get('followers', 0), reverse=True)
return merged_results[:per_page] # 返回合并后的前per_page个结果
except Exception as e:
print(f"双语用户搜索出错: {str(e)}")
return []
async def _search_topics(self, query: str, per_page: int = 30) -> List[Dict]:
"""搜索主题"""
try:
result = await self.github.search_topics(
query=query,
per_page=per_page
)
if result and "items" in result:
return result["items"]
return []
except Exception as e:
print(f"主题搜索出错: {str(e)}")
return []
async def _search_bilingual_topics(self, english_query: str, chinese_query: str, per_page: int = 30) -> List[Dict]:
"""同时搜索中英文主题并合并结果"""
try:
# 搜索英文主题
english_results = await self._search_topics(
query=english_query,
per_page=per_page
)
# 搜索中文主题
chinese_results = await self._search_topics(
query=chinese_query,
per_page=per_page
)
# 合并结果,去除重复项
merged_results = []
seen_topics = set()
# 优先添加英文结果
for topic in english_results:
topic_name = topic.get('name')
if topic_name and topic_name not in seen_topics:
seen_topics.add(topic_name)
merged_results.append(topic)
# 添加中文结果(排除重复)
for topic in chinese_results:
topic_name = topic.get('name')
if topic_name and topic_name not in seen_topics:
seen_topics.add(topic_name)
merged_results.append(topic)
# 可以按流行度进行排序(如果有)
if merged_results and 'featured' in merged_results[0]:
merged_results.sort(key=lambda x: x.get('featured', False), reverse=True)
return merged_results[:per_page] # 返回合并后的前per_page个结果
except Exception as e:
print(f"双语主题搜索出错: {str(e)}")
return []
async def _get_repo_details(self, repos: List[Dict]) -> List[Dict]:
"""获取仓库详细信息"""
enhanced_repos = []
for repo in repos:
try:
# 获取README信息
owner = repo.get('owner', {}).get('login') if repo.get('owner') is not None else None
repo_name = repo.get('name')
if owner and repo_name:
readme = await self.github.get_repo_readme(owner, repo_name)
if readme and "decoded_content" in readme:
# 提取README的前1000个字符作为摘要
repo['readme_excerpt'] = readme["decoded_content"][:1000] + "..."
# 获取语言使用情况
languages = await self.github.get_repository_languages(owner, repo_name)
if languages:
repo['languages_detail'] = languages
# 获取最新发布版本
releases = await self.github.get_repo_releases(owner, repo_name, per_page=1)
if releases and len(releases) > 0:
repo['latest_release'] = releases[0]
# 获取主题标签
topics = await self.github.get_repo_topics(owner, repo_name)
if topics and "names" in topics:
repo['topics'] = topics["names"]
enhanced_repos.append(repo)
except Exception as e:
print(f"获取仓库 {repo.get('full_name')} 详情时出错: {str(e)}")
enhanced_repos.append(repo) # 添加原始仓库信息
return enhanced_repos
def _format_repos(self, repos: List[Dict]) -> str:
"""格式化仓库列表"""
formatted = []
for i, repo in enumerate(repos, 1):
# 构建仓库URL
repo_url = repo.get('html_url', '')
# 构建完整的引用
reference = (
f"{i}. **{repo.get('full_name', '')}**\n"
f" - 描述: {repo.get('description', 'N/A')}\n"
f" - 语言: {repo.get('language', 'N/A')}\n"
f" - 星标: {repo.get('stargazers_count', 0)}\n"
f" - Fork数: {repo.get('forks_count', 0)}\n"
f" - 更新时间: {repo.get('updated_at', 'N/A')[:10]}\n"
f" - 创建时间: {repo.get('created_at', 'N/A')[:10]}\n"
f" - URL: <a href='{repo_url}' target='_blank'>{repo_url}</a>\n"
)
# 添加主题标签(如果有)
if repo.get('topics'):
topics_str = ", ".join(repo.get('topics'))
reference += f" - 主题标签: {topics_str}\n"
# 添加最新发布版本(如果有)
if repo.get('latest_release'):
release = repo.get('latest_release')
reference += f" - 最新版本: {release.get('tag_name', 'N/A')} ({release.get('published_at', 'N/A')[:10]})\n"
# 添加README摘要(如果有)
if repo.get('readme_excerpt'):
# 截断README只取前300个字符
readme_short = repo.get('readme_excerpt')[:300].replace('\n', ' ')
reference += f" - README摘要: {readme_short}...\n"
formatted.append(reference)
return "\n".join(formatted)
def _generate_apology_prompt(self, criteria: SearchCriteria) -> str:
"""生成道歉提示"""
return f"""很抱歉,我们未能找到与"{criteria.main_topic}"相关的GitHub项目。
可能的原因:
1. 搜索词过于具体或冷门
2. 星标数要求过高
3. 编程语言限制过于严格
建议解决方案:
1. 尝试使用更通用的关键词
2. 降低最低星标数要求
3. 移除或更改编程语言限制
请根据以上建议调整后重试。"""
def _get_current_time(self) -> str:
"""获取当前时间信息"""
now = datetime.now()
return now.strftime("%Y年%m月%d")

View File

@@ -1,156 +0,0 @@
from typing import List, Dict, Any
from .base_handler import BaseHandler
from ..query_analyzer import SearchCriteria
import asyncio
class CodeSearchHandler(BaseHandler):
"""代码搜索处理器"""
def __init__(self, github, llm_kwargs=None):
super().__init__(github, llm_kwargs)
async def handle(
self,
criteria: SearchCriteria,
chatbot: List[List[str]],
history: List[List[str]],
system_prompt: str,
llm_kwargs: Dict[str, Any],
plugin_kwargs: Dict[str, Any],
) -> str:
"""处理代码搜索请求返回最终的prompt"""
search_params = self._get_search_params(plugin_kwargs)
# 搜索代码
code_results = await self._search_bilingual_code(
english_query=criteria.github_params["query"],
chinese_query=criteria.github_params["chinese_query"],
language=criteria.language,
per_page=search_params['max_repos']
)
if not code_results:
return self._generate_apology_prompt(criteria)
# 获取代码文件内容
enhanced_code_results = await self._get_code_details(code_results[:search_params['max_details']])
self.ranked_repos = [item["repository"] for item in enhanced_code_results if "repository" in item]
if not enhanced_code_results:
return self._generate_apology_prompt(criteria)
# 构建最终的prompt
current_time = self._get_current_time()
final_prompt = f"""当前时间: {current_time}
基于用户对{criteria.main_topic}的查询,我找到了以下代码示例。
代码搜索结果:
{self._format_code_results(enhanced_code_results)}
请提供:
1. 对于搜索的"{criteria.main_topic}"主题的综合解释:
- 概念和原理介绍
- 常见实现方法和技术
- 最佳实践和注意事项
2. 对每个代码示例:
- 解释代码的主要功能和实现方式
- 分析代码质量、可读性和效率
- 指出代码中的亮点和潜在改进空间
- 说明代码的适用场景
3. 代码实现比较:
- 不同实现方法的优缺点
- 性能和可维护性分析
- 适用不同场景的实现建议
4. 学习建议:
- 理解和使用这些代码需要的背景知识
- 如何扩展或改进所展示的代码
- 进一步学习相关技术的资源
重要提示:
- 深入解释代码的核心逻辑和实现思路
- 提供专业、技术性的分析
- 优先关注代码的实现质量和技术价值
- 当代码实现有问题时,指出并提供改进建议
- 对于复杂代码,分解解释其组成部分
- 根据用户查询的具体问题提供针对性答案
- 所有链接请使用<a href='链接地址' target='_blank'>链接文本</a>格式,确保链接在新窗口打开
使用markdown格式提供清晰的分节回复。
"""
return final_prompt
async def _get_code_details(self, code_results: List[Dict]) -> List[Dict]:
"""获取代码详情"""
enhanced_results = []
for item in code_results:
try:
repo = item.get('repository', {})
file_path = item.get('path', '')
repo_name = repo.get('full_name', '')
if repo_name and file_path:
owner, repo_name = repo_name.split('/')
# 获取文件内容
file_content = await self.github.get_file_content(owner, repo_name, file_path)
if file_content and "decoded_content" in file_content:
item['code_content'] = file_content["decoded_content"]
# 获取仓库基本信息
repo_details = await self.github.get_repo(owner, repo_name)
if repo_details:
item['repository'] = repo_details
enhanced_results.append(item)
except Exception as e:
print(f"获取代码详情时出错: {str(e)}")
enhanced_results.append(item) # 添加原始信息
return enhanced_results
def _format_code_results(self, code_results: List[Dict]) -> str:
"""格式化代码搜索结果"""
formatted = []
for i, item in enumerate(code_results, 1):
# 构建仓库信息
repo = item.get('repository', {})
repo_name = repo.get('full_name', 'N/A')
repo_url = repo.get('html_url', '')
stars = repo.get('stargazers_count', 0)
language = repo.get('language', 'N/A')
# 构建文件信息
file_path = item.get('path', 'N/A')
file_url = item.get('html_url', '')
# 构建代码内容
code_content = item.get('code_content', '')
if code_content:
# 只显示前30行代码
code_lines = code_content.split("\n")
if len(code_lines) > 30:
displayed_code = "\n".join(code_lines[:30]) + "\n... (代码太长已截断) ..."
else:
displayed_code = code_content
else:
displayed_code = "(代码内容获取失败)"
reference = (
f"### {i}. {file_path} (在 {repo_name} 中)\n\n"
f"- **仓库**: <a href='{repo_url}' target='_blank'>{repo_name}</a> (⭐ {stars}, 语言: {language})\n"
f"- **文件路径**: <a href='{file_url}' target='_blank'>{file_path}</a>\n\n"
f"```{language.lower()}\n{displayed_code}\n```\n\n"
)
formatted.append(reference)
return "\n".join(formatted)

View File

@@ -1,192 +0,0 @@
from typing import List, Dict, Any
from .base_handler import BaseHandler
from ..query_analyzer import SearchCriteria
import asyncio
class RepositoryHandler(BaseHandler):
"""仓库搜索处理器"""
def __init__(self, github, llm_kwargs=None):
super().__init__(github, llm_kwargs)
async def handle(
self,
criteria: SearchCriteria,
chatbot: List[List[str]],
history: List[List[str]],
system_prompt: str,
llm_kwargs: Dict[str, Any],
plugin_kwargs: Dict[str, Any],
) -> str:
"""处理仓库搜索请求返回最终的prompt"""
search_params = self._get_search_params(plugin_kwargs)
# 如果是特定仓库查询
if criteria.repo_id:
try:
owner, repo = criteria.repo_id.split('/')
repo_details = await self.github.get_repo(owner, repo)
if repo_details:
# 获取推荐的相似仓库
similar_repos = await self.github.get_repo_recommendations(criteria.repo_id, limit=5)
# 添加详细信息
all_repos = [repo_details] + similar_repos
enhanced_repos = await self._get_repo_details(all_repos)
self.ranked_repos = enhanced_repos
# 构建最终的prompt
current_time = self._get_current_time()
final_prompt = self._build_repo_detail_prompt(enhanced_repos[0], enhanced_repos[1:], current_time)
return final_prompt
else:
return self._generate_apology_prompt(criteria)
except Exception as e:
print(f"处理特定仓库时出错: {str(e)}")
return self._generate_apology_prompt(criteria)
# 一般仓库搜索
repos = await self._search_bilingual_repositories(
english_query=criteria.github_params["query"],
chinese_query=criteria.github_params["chinese_query"],
language=criteria.language,
min_stars=criteria.min_stars,
per_page=search_params['max_repos']
)
if not repos:
return self._generate_apology_prompt(criteria)
# 获取仓库详情
enhanced_repos = await self._get_repo_details(repos[:search_params['max_details']]) # 使用max_details参数
self.ranked_repos = enhanced_repos
if not enhanced_repos:
return self._generate_apology_prompt(criteria)
# 构建最终的prompt
current_time = self._get_current_time()
final_prompt = f"""当前时间: {current_time}
基于用户对{criteria.main_topic}的兴趣以下是相关的GitHub仓库。
可供推荐的GitHub仓库:
{self._format_repos(enhanced_repos)}
请提供:
1. 按功能、用途或成熟度对仓库进行分组
2. 对每个仓库:
- 简要描述其主要功能和用途
- 分析其技术特点和优势
- 说明其适用场景和使用难度
- 指出其与同类产品相比的独特优势
- 解释其星标数量和活跃度代表的意义
3. 使用建议:
- 新手最适合入门的仓库
- 生产环境中最稳定可靠的选择
- 最新技术栈或创新方案的代表
- 学习特定技术的最佳资源
4. 相关资源:
- 学习这些项目需要的前置知识
- 项目间的关联和技术栈兼容性
- 可能的使用组合方案
重要提示:
- 重点解释为什么每个仓库值得关注
- 突出项目间的关联性和差异性
- 考虑用户不同水平的需求(初学者vs专业人士)
- 在介绍项目时,使用<a href='链接' target='_blank'>文本</a>格式,确保链接在新窗口打开
- 根据仓库的活跃度、更新频率、维护状态提供使用建议
- 仅基于提供的信息,不要做无根据的猜测
- 在信息缺失或不明确时,坦诚说明
使用markdown格式提供清晰的分节回复。
"""
return final_prompt
def _build_repo_detail_prompt(self, main_repo: Dict, similar_repos: List[Dict], current_time: str) -> str:
"""构建仓库详情prompt"""
# 提取README摘要
readme_content = "未提供"
if main_repo.get('readme_excerpt'):
readme_content = main_repo.get('readme_excerpt')
# 构建语言分布
languages = main_repo.get('languages_detail', {})
lang_distribution = []
if languages:
total = sum(languages.values())
for lang, bytes_val in languages.items():
percentage = (bytes_val / total) * 100
lang_distribution.append(f"{lang}: {percentage:.1f}%")
lang_str = "未知"
if lang_distribution:
lang_str = ", ".join(lang_distribution)
# 构建最终prompt
prompt = f"""当前时间: {current_time}
## 主要仓库信息
### {main_repo.get('full_name')}
- **描述**: {main_repo.get('description', '未提供')}
- **星标数**: {main_repo.get('stargazers_count', 0)}
- **Fork数**: {main_repo.get('forks_count', 0)}
- **Watch数**: {main_repo.get('watchers_count', 0)}
- **Issues数**: {main_repo.get('open_issues_count', 0)}
- **语言分布**: {lang_str}
- **许可证**: {main_repo.get('license', {}).get('name', '未指定') if main_repo.get('license') is not None else '未指定'}
- **创建时间**: {main_repo.get('created_at', '')[:10]}
- **最近更新**: {main_repo.get('updated_at', '')[:10]}
- **主题标签**: {', '.join(main_repo.get('topics', ['']))}
- **GitHub链接**: <a href='{main_repo.get('html_url')}' target='_blank'>链接</a>
### README摘要:
{readme_content}
## 类似仓库:
{self._format_repos(similar_repos)}
请提供以下内容:
1. **项目概述**
- 详细解释{main_repo.get('name', '')}项目的主要功能和用途
- 分析其技术特点、架构和实现原理
- 讨论其在所属领域的地位和影响力
- 评估项目成熟度和稳定性
2. **优势与特点**
- 与同类项目相比的独特优势
- 显著的技术创新或设计模式
- 值得学习或借鉴的代码实践
3. **使用场景**
- 最适合的应用场景
- 潜在的使用限制和注意事项
- 入门门槛和学习曲线评估
- 产品级应用的可行性分析
4. **资源与生态**
- 相关学习资源推荐
- 配套工具和库的建议
- 社区支持和活跃度评估
5. **类似项目对比**
- 与列出的类似项目的详细对比
- 不同场景下的最佳选择建议
- 潜在的互补使用方案
提示:所有链接请使用<a href='链接地址' target='_blank'>链接文本</a>格式,确保链接在新窗口打开。
请以专业、客观的技术分析角度回答使用markdown格式提供结构化信息。
"""
return prompt

View File

@@ -1,217 +0,0 @@
from typing import List, Dict, Any
from .base_handler import BaseHandler
from ..query_analyzer import SearchCriteria
import asyncio
class TopicHandler(BaseHandler):
"""主题搜索处理器"""
def __init__(self, github, llm_kwargs=None):
super().__init__(github, llm_kwargs)
async def handle(
self,
criteria: SearchCriteria,
chatbot: List[List[str]],
history: List[List[str]],
system_prompt: str,
llm_kwargs: Dict[str, Any],
plugin_kwargs: Dict[str, Any],
) -> str:
"""处理主题搜索请求返回最终的prompt"""
search_params = self._get_search_params(plugin_kwargs)
# 搜索主题
topics = await self._search_bilingual_topics(
english_query=criteria.github_params["query"],
chinese_query=criteria.github_params["chinese_query"],
per_page=search_params['max_repos']
)
if not topics:
# 尝试用主题搜索仓库
search_query = criteria.github_params["query"]
chinese_search_query = criteria.github_params["chinese_query"]
if "topic:" not in search_query:
search_query += " topic:" + criteria.main_topic.replace(" ", "-")
if "topic:" not in chinese_search_query:
chinese_search_query += " topic:" + criteria.main_topic.replace(" ", "-")
repos = await self._search_bilingual_repositories(
english_query=search_query,
chinese_query=chinese_search_query,
language=criteria.language,
min_stars=criteria.min_stars,
per_page=search_params['max_repos']
)
if not repos:
return self._generate_apology_prompt(criteria)
# 获取仓库详情
enhanced_repos = await self._get_repo_details(repos[:10])
self.ranked_repos = enhanced_repos
if not enhanced_repos:
return self._generate_apology_prompt(criteria)
# 构建基于主题的仓库列表prompt
current_time = self._get_current_time()
final_prompt = f"""当前时间: {current_time}
基于用户对主题"{criteria.main_topic}"的查询我找到了以下相关GitHub仓库。
主题相关仓库:
{self._format_repos(enhanced_repos)}
请提供:
1. 主题综述:
- "{criteria.main_topic}"主题的概述和重要性
- 该主题在技术领域中的应用和发展趋势
- 主题相关的主要技术栈和知识体系
2. 仓库分析:
- 按功能、技术栈或应用场景对仓库进行分类
- 每个仓库在该主题领域的定位和贡献
- 不同仓库间的技术路线对比
3. 学习路径建议:
- 初学者入门该主题的推荐仓库和学习顺序
- 进阶学习的关键仓库和技术要点
- 实际应用中的最佳实践选择
4. 技术生态分析:
- 该主题下的主流工具和库
- 社区活跃度和维护状况
- 与其他相关技术的集成方案
重要提示:
- 主题"{criteria.main_topic}"是用户查询的核心,请围绕此主题展开分析
- 注重仓库质量评估和使用建议
- 提供基于事实的客观技术分析
- 在介绍仓库时使用<a href='链接地址' target='_blank'>链接文本</a>格式,确保链接在新窗口打开
- 考虑不同技术水平用户的需求
使用markdown格式提供清晰的分节回复。
"""
return final_prompt
# 如果找到了主题,则获取主题下的热门仓库
topic_repos = []
for topic in topics[:5]: # 增加到5个主题
topic_name = topic.get('name', '')
if topic_name:
# 搜索该主题下的仓库
repos = await self._search_repositories(
query=f"topic:{topic_name}",
language=criteria.language,
min_stars=criteria.min_stars,
per_page=20 # 每个主题最多20个仓库
)
if repos:
for repo in repos:
repo['topic_source'] = topic_name
topic_repos.append(repo)
if not topic_repos:
return self._generate_apology_prompt(criteria)
# 获取前N个仓库的详情
enhanced_repos = await self._get_repo_details(topic_repos[:search_params['max_details']])
self.ranked_repos = enhanced_repos
if not enhanced_repos:
return self._generate_apology_prompt(criteria)
# 构建最终的prompt
current_time = self._get_current_time()
final_prompt = f"""当前时间: {current_time}
基于用户对"{criteria.main_topic}"主题的查询我找到了以下相关GitHub主题和仓库。
主题相关仓库:
{self._format_topic_repos(enhanced_repos)}
请提供:
1. 主题概述:
- 对"{criteria.main_topic}"相关主题的介绍和技术背景
- 这些主题在软件开发中的重要性和应用范围
- 主题间的关联性和技术演进路径
2. 精选仓库分析:
- 每个主题下最具代表性的仓库详解
- 仓库的技术亮点和创新点
- 使用场景和技术成熟度评估
3. 技术趋势分析:
- 基于主题和仓库活跃度的技术发展趋势
- 新兴解决方案和传统方案的对比
- 未来可能的技术方向预测
4. 实践建议:
- 不同应用场景下的最佳仓库选择
- 学习路径和资源推荐
- 实际项目中的应用策略
重要提示:
- 将分析重点放在主题的技术内涵和价值上
- 突出主题间的关联性和技术演进脉络
- 提供基于数据(星标数、更新频率等)的客观分析
- 考虑不同技术背景用户的需求
- 所有链接请使用<a href='链接地址' target='_blank'>链接文本</a>格式,确保链接在新窗口打开
使用markdown格式提供清晰的分节回复。
"""
return final_prompt
def _format_topic_repos(self, repos: List[Dict]) -> str:
"""按主题格式化仓库列表"""
# 按主题分组
topics_dict = {}
for repo in repos:
topic = repo.get('topic_source', '其他')
if topic not in topics_dict:
topics_dict[topic] = []
topics_dict[topic].append(repo)
# 格式化输出
formatted = []
for topic, topic_repos in topics_dict.items():
formatted.append(f"## 主题: {topic}\n")
for i, repo in enumerate(topic_repos, 1):
# 构建仓库URL
repo_url = repo.get('html_url', '')
# 构建引用
reference = (
f"{i}. **{repo.get('full_name', '')}**\n"
f" - 描述: {repo.get('description', 'N/A')}\n"
f" - 语言: {repo.get('language', 'N/A')}\n"
f" - 星标: {repo.get('stargazers_count', 0)}\n"
f" - Fork数: {repo.get('forks_count', 0)}\n"
f" - 更新时间: {repo.get('updated_at', 'N/A')[:10]}\n"
f" - URL: <a href='{repo_url}' target='_blank'>{repo_url}</a>\n"
)
# 添加主题标签(如果有)
if repo.get('topics'):
topics_str = ", ".join(repo.get('topics'))
reference += f" - 主题标签: {topics_str}\n"
# 添加README摘要(如果有)
if repo.get('readme_excerpt'):
# 截断README只取前200个字符
readme_short = repo.get('readme_excerpt')[:200].replace('\n', ' ')
reference += f" - README摘要: {readme_short}...\n"
formatted.append(reference)
formatted.append("\n") # 主题之间添加空行
return "\n".join(formatted)

View File

@@ -1,164 +0,0 @@
from typing import List, Dict, Any
from .base_handler import BaseHandler
from ..query_analyzer import SearchCriteria
import asyncio
class UserSearchHandler(BaseHandler):
"""用户搜索处理器"""
def __init__(self, github, llm_kwargs=None):
super().__init__(github, llm_kwargs)
async def handle(
self,
criteria: SearchCriteria,
chatbot: List[List[str]],
history: List[List[str]],
system_prompt: str,
llm_kwargs: Dict[str, Any],
plugin_kwargs: Dict[str, Any],
) -> str:
"""处理用户搜索请求返回最终的prompt"""
search_params = self._get_search_params(plugin_kwargs)
# 搜索用户
users = await self._search_bilingual_users(
english_query=criteria.github_params["query"],
chinese_query=criteria.github_params["chinese_query"],
per_page=search_params['max_repos']
)
if not users:
return self._generate_apology_prompt(criteria)
# 获取用户详情和仓库
enhanced_users = await self._get_user_details(users[:search_params['max_details']])
self.ranked_repos = [] # 添加用户top仓库进行展示
for user in enhanced_users:
if user.get('top_repos'):
self.ranked_repos.extend(user.get('top_repos'))
if not enhanced_users:
return self._generate_apology_prompt(criteria)
# 构建最终的prompt
current_time = self._get_current_time()
final_prompt = f"""当前时间: {current_time}
基于用户对{criteria.main_topic}的查询我找到了以下GitHub用户。
GitHub用户搜索结果:
{self._format_users(enhanced_users)}
请提供:
1. 用户综合分析:
- 各开发者的专业领域和技术专长
- 他们在GitHub开源社区的影响力
- 技术实力和项目质量评估
2. 对每位开发者:
- 其主要贡献领域和技术栈
- 代表性项目及其价值
- 编程风格和技术特点
- 在相关领域的影响力
3. 项目推荐:
- 针对用户查询的最有价值项目
- 值得学习和借鉴的代码实践
- 不同用户项目的相互补充关系
4. 如何学习和使用:
- 如何从这些开发者项目中学习
- 最适合入门学习的项目
- 进阶学习的路径建议
重要提示:
- 关注开发者的技术专长和核心贡献
- 分析其开源项目的技术价值
- 根据用户的原始查询提供相关建议
- 避免过度赞美或主观评价
- 基于事实数据(项目数、星标数等)进行客观分析
- 所有链接请使用<a href='链接地址' target='_blank'>链接文本</a>格式,确保链接在新窗口打开
使用markdown格式提供清晰的分节回复。
"""
return final_prompt
async def _get_user_details(self, users: List[Dict]) -> List[Dict]:
"""获取用户详情和仓库"""
enhanced_users = []
for user in users:
try:
username = user.get('login')
if username:
# 获取用户详情
user_details = await self.github.get_user(username)
if user_details:
user.update(user_details)
# 获取用户仓库
repos = await self.github.get_user_repos(
username,
sort="stars",
per_page=10 # 增加到10个仓库
)
if repos:
user['top_repos'] = repos
enhanced_users.append(user)
except Exception as e:
print(f"获取用户 {user.get('login')} 详情时出错: {str(e)}")
enhanced_users.append(user) # 添加原始信息
return enhanced_users
def _format_users(self, users: List[Dict]) -> str:
"""格式化用户列表"""
formatted = []
for i, user in enumerate(users, 1):
# 构建用户信息
username = user.get('login', 'N/A')
name = user.get('name', username)
profile_url = user.get('html_url', '')
bio = user.get('bio', '无简介')
followers = user.get('followers', 0)
public_repos = user.get('public_repos', 0)
company = user.get('company', '未指定')
location = user.get('location', '未指定')
blog = user.get('blog', '')
user_info = (
f"### {i}. {name} (@{username})\n\n"
f"- **简介**: {bio}\n"
f"- **关注者**: {followers} | **公开仓库**: {public_repos}\n"
f"- **公司**: {company} | **地点**: {location}\n"
f"- **个人网站**: {blog}\n"
f"- **GitHub**: <a href='{profile_url}' target='_blank'>{username}</a>\n\n"
)
# 添加用户的热门仓库
top_repos = user.get('top_repos', [])
if top_repos:
user_info += "**热门仓库**:\n\n"
for repo in top_repos:
repo_name = repo.get('name', '')
repo_url = repo.get('html_url', '')
repo_desc = repo.get('description', '无描述')
repo_stars = repo.get('stargazers_count', 0)
repo_language = repo.get('language', '未指定')
user_info += (
f"- <a href='{repo_url}' target='_blank'>{repo_name}</a> - ⭐ {repo_stars}, {repo_language}\n"
f" {repo_desc}\n\n"
)
formatted.append(user_info)
return "\n".join(formatted)

View File

@@ -1,356 +0,0 @@
from typing import Dict, List
from dataclasses import dataclass
import re
@dataclass
class SearchCriteria:
"""搜索条件"""
query_type: str # 查询类型: repo/code/user/topic
main_topic: str # 主题
sub_topics: List[str] # 子主题列表
language: str # 编程语言
min_stars: int # 最少星标数
github_params: Dict # GitHub搜索参数
original_query: str = "" # 原始查询字符串
repo_id: str = "" # 特定仓库ID或名称
class QueryAnalyzer:
"""查询分析器"""
# 响应索引常量
BASIC_QUERY_INDEX = 0
GITHUB_QUERY_INDEX = 1
def __init__(self):
self.valid_types = {
"repo": ["repository", "project", "library", "framework", "tool"],
"code": ["code", "snippet", "implementation", "function", "class", "algorithm"],
"user": ["user", "developer", "organization", "contributor", "maintainer"],
"topic": ["topic", "category", "tag", "field", "area", "domain"]
}
def analyze_query(self, query: str, chatbot: List, llm_kwargs: Dict):
"""分析查询意图"""
from crazy_functions.crazy_utils import \
request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency as request_gpt
# 1. 基本查询分析
type_prompt = f"""请分析这个与GitHub相关的查询并严格按照以下XML格式回答
查询: {query}
说明:
1. 你的回答必须使用下面显示的XML标签不要有任何标签外的文本
2. 从以下选项中选择查询类型: repo/code/user/topic
- repo: 用于查找仓库、项目、框架或库
- code: 用于查找代码片段、函数实现或算法
- user: 用于查找用户、开发者或组织
- topic: 用于查找主题、类别或领域相关项目
3. 识别主题和子主题
4. 识别首选编程语言(如果有)
5. 确定最低星标数(如果适用)
必需格式:
<query_type>此处回答</query_type>
<main_topic>此处回答</main_topic>
<sub_topics>子主题1, 子主题2, ...</sub_topics>
<language>此处回答</language>
<min_stars>此处回答</min_stars>
示例回答:
1. 仓库查询:
查询: "查找有至少1000颗星的Python web框架"
<query_type>repo</query_type>
<main_topic>web框架</main_topic>
<sub_topics>后端开发, HTTP服务器, ORM</sub_topics>
<language>Python</language>
<min_stars>1000</min_stars>
2. 代码查询:
查询: "如何用JavaScript实现防抖函数"
<query_type>code</query_type>
<main_topic>防抖函数</main_topic>
<sub_topics>事件处理, 性能优化, 函数节流</sub_topics>
<language>JavaScript</language>
<min_stars>0</min_stars>"""
# 2. 生成英文搜索条件
github_prompt = f"""Optimize the following GitHub search query:
Query: {query}
Task: Convert the natural language query into an optimized GitHub search query.
Please use English, regardless of the language of the input query.
Available search fields and filters:
1. Basic fields:
- in:name - Search in repository names
- in:description - Search in repository descriptions
- in:readme - Search in README files
- in:topic - Search in topics
- language:X - Filter by programming language
- user:X - Repositories from a specific user
- org:X - Repositories from a specific organization
2. Code search fields:
- extension:X - Filter by file extension
- path:X - Filter by path
- filename:X - Filter by filename
3. Metric filters:
- stars:>X - Has more than X stars
- forks:>X - Has more than X forks
- size:>X - Size greater than X KB
- created:>YYYY-MM-DD - Created after a specific date
- pushed:>YYYY-MM-DD - Updated after a specific date
4. Other filters:
- is:public/private - Public or private repositories
- archived:true/false - Archived or not archived
- license:X - Specific license
- topic:X - Contains specific topic tag
Examples:
1. Query: "Find Python machine learning libraries with at least 1000 stars"
<query>machine learning in:description language:python stars:>1000</query>
2. Query: "Recently updated React UI component libraries"
<query>UI components library in:readme in:description language:javascript topic:react pushed:>2023-01-01</query>
3. Query: "Open source projects developed by Facebook"
<query>org:facebook is:public</query>
4. Query: "Depth-first search implementation in JavaScript"
<query>depth first search in:file language:javascript</query>
Please analyze the query and answer using only the XML tag:
<query>Provide the optimized GitHub search query, using appropriate fields and operators</query>"""
# 3. 生成中文搜索条件
chinese_github_prompt = f"""优化以下GitHub搜索查询:
查询: {query}
任务: 将自然语言查询转换为优化的GitHub搜索查询语句。
为了搜索中文内容请提取原始查询的关键词并使用中文形式同时保留GitHub特定的搜索语法为英文。
可用的搜索字段和过滤器:
1. 基本字段:
- in:name - 在仓库名称中搜索
- in:description - 在仓库描述中搜索
- in:readme - 在README文件中搜索
- in:topic - 在主题中搜索
- language:X - 按编程语言筛选
- user:X - 特定用户的仓库
- org:X - 特定组织的仓库
2. 代码搜索字段:
- extension:X - 按文件扩展名筛选
- path:X - 按路径筛选
- filename:X - 按文件名筛选
3. 指标过滤器:
- stars:>X - 有超过X颗星
- forks:>X - 有超过X个分支
- size:>X - 大小超过X KB
- created:>YYYY-MM-DD - 在特定日期后创建
- pushed:>YYYY-MM-DD - 在特定日期后更新
4. 其他过滤器:
- is:public/private - 公开或私有仓库
- archived:true/false - 已归档或未归档
- license:X - 特定许可证
- topic:X - 含特定主题标签
示例:
1. 查询: "找有关机器学习的Python库至少1000颗星"
<query>机器学习 in:description language:python stars:>1000</query>
2. 查询: "最近更新的React UI组件库"
<query>UI 组件库 in:readme in:description language:javascript topic:react pushed:>2023-01-01</query>
3. 查询: "微信小程序开发框架"
<query>微信小程序 开发框架 in:name in:description in:readme</query>
请分析查询并仅使用XML标签回答:
<query>提供优化的GitHub搜索查询使用适当的字段和运算符保留中文关键词</query>"""
try:
# 构建提示数组
prompts = [
type_prompt,
github_prompt,
chinese_github_prompt,
]
show_messages = [
"分析查询类型...",
"优化英文GitHub搜索参数...",
"优化中文GitHub搜索参数...",
]
sys_prompts = [
"你是一个精通GitHub生态系统的专家擅长分析与GitHub相关的查询。",
"You are a GitHub search expert, specialized in converting natural language queries into optimized GitHub search queries in English.",
"你是一个GitHub搜索专家擅长处理查询并保留中文关键词进行搜索。",
]
# 使用同步方式调用LLM
responses = yield from request_gpt(
inputs_array=prompts,
inputs_show_user_array=show_messages,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history_array=[[] for _ in prompts],
sys_prompt_array=sys_prompts,
max_workers=3
)
# 从收集的响应中提取我们需要的内容
extracted_responses = []
for i in range(len(prompts)):
if (i * 2 + 1) < len(responses):
response = responses[i * 2 + 1]
if response is None:
raise Exception(f"Response {i} is None")
if not isinstance(response, str):
try:
response = str(response)
except:
raise Exception(f"Cannot convert response {i} to string")
extracted_responses.append(response)
else:
raise Exception(f"未收到第 {i + 1} 个响应")
# 解析基本信息
query_type = self._extract_tag(extracted_responses[self.BASIC_QUERY_INDEX], "query_type")
if not query_type:
print(
f"Debug - Failed to extract query_type. Response was: {extracted_responses[self.BASIC_QUERY_INDEX]}")
raise Exception("无法提取query_type标签内容")
query_type = query_type.lower()
main_topic = self._extract_tag(extracted_responses[self.BASIC_QUERY_INDEX], "main_topic")
if not main_topic:
print(f"Debug - Failed to extract main_topic. Using query as fallback.")
main_topic = query
query_type = self._normalize_query_type(query_type, query)
# 提取子主题
sub_topics = []
sub_topics_text = self._extract_tag(extracted_responses[self.BASIC_QUERY_INDEX], "sub_topics")
if sub_topics_text:
sub_topics = [topic.strip() for topic in sub_topics_text.split(",")]
# 提取语言
language = self._extract_tag(extracted_responses[self.BASIC_QUERY_INDEX], "language")
# 提取最低星标数
min_stars = 0
min_stars_text = self._extract_tag(extracted_responses[self.BASIC_QUERY_INDEX], "min_stars")
if min_stars_text and min_stars_text.isdigit():
min_stars = int(min_stars_text)
# 解析GitHub搜索参数 - 英文
english_github_query = self._extract_tag(extracted_responses[self.GITHUB_QUERY_INDEX], "query")
# 解析GitHub搜索参数 - 中文
chinese_github_query = self._extract_tag(extracted_responses[2], "query")
# 构建GitHub参数
github_params = {
"query": english_github_query,
"chinese_query": chinese_github_query,
"sort": "stars", # 默认按星标排序
"order": "desc", # 默认降序
"per_page": 30, # 默认每页30条
"page": 1 # 默认第1页
}
# 检查是否为特定仓库查询
repo_id = ""
if "repo:" in english_github_query or "repository:" in english_github_query:
repo_match = re.search(r'(repo|repository):([a-zA-Z0-9_.-]+/[a-zA-Z0-9_.-]+)', english_github_query)
if repo_match:
repo_id = repo_match.group(2)
print(f"Debug - 提取的信息:")
print(f"查询类型: {query_type}")
print(f"主题: {main_topic}")
print(f"子主题: {sub_topics}")
print(f"语言: {language}")
print(f"最低星标数: {min_stars}")
print(f"英文GitHub参数: {english_github_query}")
print(f"中文GitHub参数: {chinese_github_query}")
print(f"特定仓库: {repo_id}")
# 更新返回的 SearchCriteria包含中英文查询
return SearchCriteria(
query_type=query_type,
main_topic=main_topic,
sub_topics=sub_topics,
language=language,
min_stars=min_stars,
github_params=github_params,
original_query=query,
repo_id=repo_id
)
except Exception as e:
raise Exception(f"分析查询失败: {str(e)}")
def _normalize_query_type(self, query_type: str, query: str) -> str:
"""规范化查询类型"""
if query_type in ["repo", "code", "user", "topic"]:
return query_type
query_lower = query.lower()
for type_name, keywords in self.valid_types.items():
for keyword in keywords:
if keyword in query_lower:
return type_name
query_type_lower = query_type.lower()
for type_name, keywords in self.valid_types.items():
for keyword in keywords:
if keyword in query_type_lower:
return type_name
return "repo" # 默认返回repo类型
def _extract_tag(self, text: str, tag: str) -> str:
"""提取标记内容"""
if not text:
return ""
# 标准XML格式处理多行和特殊字符
pattern = f"<{tag}>(.*?)</{tag}>"
match = re.search(pattern, text, re.DOTALL | re.IGNORECASE)
if match:
content = match.group(1).strip()
if content:
return content
# 备用模式
patterns = [
rf"<{tag}>\s*([\s\S]*?)\s*</{tag}>", # 标准XML格式
rf"<{tag}>([\s\S]*?)(?:</{tag}>|$)", # 未闭合的标签
rf"[{tag}]([\s\S]*?)[/{tag}]", # 方括号格式
rf"{tag}:\s*(.*?)(?=\n\w|$)", # 冒号格式
rf"<{tag}>\s*(.*?)(?=<|$)" # 部分闭合
]
# 尝试所有模式
for pattern in patterns:
match = re.search(pattern, text, re.IGNORECASE | re.DOTALL)
if match:
content = match.group(1).strip()
if content: # 确保提取的内容不为空
return content
# 如果所有模式都失败,返回空字符串
return ""

View File

@@ -1,701 +0,0 @@
import aiohttp
import asyncio
import base64
import json
import random
from datetime import datetime
from typing import List, Dict, Optional, Union, Any
class GitHubSource:
"""GitHub API实现"""
# 默认API密钥列表 - 可以放置多个GitHub令牌
API_KEYS = [
"github_pat_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
"github_pat_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
# "your_github_token_1",
# "your_github_token_2",
# "your_github_token_3"
]
def __init__(self, api_key: Optional[Union[str, List[str]]] = None):
"""初始化GitHub API客户端
Args:
api_key: GitHub个人访问令牌或令牌列表
"""
if api_key is None:
self.api_keys = self.API_KEYS
elif isinstance(api_key, str):
self.api_keys = [api_key]
else:
self.api_keys = api_key
self._initialize()
def _initialize(self) -> None:
"""初始化客户端,设置默认参数"""
self.base_url = "https://api.github.com"
self.headers = {
"Accept": "application/vnd.github+json",
"X-GitHub-Api-Version": "2022-11-28",
"User-Agent": "GitHub-API-Python-Client"
}
# 如果有可用的API密钥随机选择一个
if self.api_keys:
selected_key = random.choice(self.api_keys)
self.headers["Authorization"] = f"Bearer {selected_key}"
print(f"已随机选择API密钥进行认证")
else:
print("警告: 未提供API密钥将受到GitHub API请求限制")
async def _request(self, method: str, endpoint: str, params: Dict = None, data: Dict = None) -> Any:
"""发送API请求
Args:
method: HTTP方法 (GET, POST, PUT, DELETE等)
endpoint: API端点
params: URL参数
data: 请求体数据
Returns:
解析后的响应JSON
"""
async with aiohttp.ClientSession(headers=self.headers) as session:
url = f"{self.base_url}{endpoint}"
# 为调试目的打印请求信息
print(f"请求: {method} {url}")
if params:
print(f"参数: {params}")
# 发送请求
request_kwargs = {}
if params:
request_kwargs["params"] = params
if data:
request_kwargs["json"] = data
async with session.request(method, url, **request_kwargs) as response:
response_text = await response.text()
# 检查HTTP状态码
if response.status >= 400:
print(f"API请求失败: HTTP {response.status}")
print(f"响应内容: {response_text}")
return None
# 解析JSON响应
try:
return json.loads(response_text)
except json.JSONDecodeError:
print(f"JSON解析错误: {response_text}")
return None
# ===== 用户相关方法 =====
async def get_user(self, username: Optional[str] = None) -> Dict:
"""获取用户信息
Args:
username: 指定用户名,不指定则获取当前授权用户
Returns:
用户信息字典
"""
endpoint = "/user" if username is None else f"/users/{username}"
return await self._request("GET", endpoint)
async def get_user_repos(self, username: Optional[str] = None, sort: str = "updated",
direction: str = "desc", per_page: int = 30, page: int = 1) -> List[Dict]:
"""获取用户的仓库列表
Args:
username: 指定用户名,不指定则获取当前授权用户
sort: 排序方式 (created, updated, pushed, full_name)
direction: 排序方向 (asc, desc)
per_page: 每页结果数量
page: 页码
Returns:
仓库列表
"""
endpoint = "/user/repos" if username is None else f"/users/{username}/repos"
params = {
"sort": sort,
"direction": direction,
"per_page": per_page,
"page": page
}
return await self._request("GET", endpoint, params=params)
async def get_user_starred(self, username: Optional[str] = None,
per_page: int = 30, page: int = 1) -> List[Dict]:
"""获取用户星标的仓库
Args:
username: 指定用户名,不指定则获取当前授权用户
per_page: 每页结果数量
page: 页码
Returns:
星标仓库列表
"""
endpoint = "/user/starred" if username is None else f"/users/{username}/starred"
params = {
"per_page": per_page,
"page": page
}
return await self._request("GET", endpoint, params=params)
# ===== 仓库相关方法 =====
async def get_repo(self, owner: str, repo: str) -> Dict:
"""获取仓库信息
Args:
owner: 仓库所有者
repo: 仓库名
Returns:
仓库信息
"""
endpoint = f"/repos/{owner}/{repo}"
return await self._request("GET", endpoint)
async def get_repo_branches(self, owner: str, repo: str, per_page: int = 30, page: int = 1) -> List[Dict]:
"""获取仓库的分支列表
Args:
owner: 仓库所有者
repo: 仓库名
per_page: 每页结果数量
page: 页码
Returns:
分支列表
"""
endpoint = f"/repos/{owner}/{repo}/branches"
params = {
"per_page": per_page,
"page": page
}
return await self._request("GET", endpoint, params=params)
async def get_repo_commits(self, owner: str, repo: str, sha: Optional[str] = None,
path: Optional[str] = None, per_page: int = 30, page: int = 1) -> List[Dict]:
"""获取仓库的提交历史
Args:
owner: 仓库所有者
repo: 仓库名
sha: 特定提交SHA或分支名
path: 文件路径筛选
per_page: 每页结果数量
page: 页码
Returns:
提交列表
"""
endpoint = f"/repos/{owner}/{repo}/commits"
params = {
"per_page": per_page,
"page": page
}
if sha:
params["sha"] = sha
if path:
params["path"] = path
return await self._request("GET", endpoint, params=params)
async def get_commit_details(self, owner: str, repo: str, commit_sha: str) -> Dict:
"""获取特定提交的详情
Args:
owner: 仓库所有者
repo: 仓库名
commit_sha: 提交SHA
Returns:
提交详情
"""
endpoint = f"/repos/{owner}/{repo}/commits/{commit_sha}"
return await self._request("GET", endpoint)
# ===== 内容相关方法 =====
async def get_file_content(self, owner: str, repo: str, path: str, ref: Optional[str] = None) -> Dict:
"""获取文件内容
Args:
owner: 仓库所有者
repo: 仓库名
path: 文件路径
ref: 分支名、标签名或提交SHA
Returns:
文件内容信息
"""
endpoint = f"/repos/{owner}/{repo}/contents/{path}"
params = {}
if ref:
params["ref"] = ref
response = await self._request("GET", endpoint, params=params)
if response and isinstance(response, dict) and "content" in response:
try:
# 解码Base64编码的文件内容
content = base64.b64decode(response["content"].encode()).decode()
response["decoded_content"] = content
except Exception as e:
print(f"解码文件内容时出错: {str(e)}")
return response
async def get_directory_content(self, owner: str, repo: str, path: str, ref: Optional[str] = None) -> List[Dict]:
"""获取目录内容
Args:
owner: 仓库所有者
repo: 仓库名
path: 目录路径
ref: 分支名、标签名或提交SHA
Returns:
目录内容列表
"""
# 注意此方法与get_file_content使用相同的端点但对于目录会返回列表
endpoint = f"/repos/{owner}/{repo}/contents/{path}"
params = {}
if ref:
params["ref"] = ref
return await self._request("GET", endpoint, params=params)
# ===== Issues相关方法 =====
async def get_issues(self, owner: str, repo: str, state: str = "open",
sort: str = "created", direction: str = "desc",
per_page: int = 30, page: int = 1) -> List[Dict]:
"""获取仓库的Issues列表
Args:
owner: 仓库所有者
repo: 仓库名
state: Issue状态 (open, closed, all)
sort: 排序方式 (created, updated, comments)
direction: 排序方向 (asc, desc)
per_page: 每页结果数量
page: 页码
Returns:
Issues列表
"""
endpoint = f"/repos/{owner}/{repo}/issues"
params = {
"state": state,
"sort": sort,
"direction": direction,
"per_page": per_page,
"page": page
}
return await self._request("GET", endpoint, params=params)
async def get_issue(self, owner: str, repo: str, issue_number: int) -> Dict:
"""获取特定Issue的详情
Args:
owner: 仓库所有者
repo: 仓库名
issue_number: Issue编号
Returns:
Issue详情
"""
endpoint = f"/repos/{owner}/{repo}/issues/{issue_number}"
return await self._request("GET", endpoint)
async def get_issue_comments(self, owner: str, repo: str, issue_number: int) -> List[Dict]:
"""获取Issue的评论
Args:
owner: 仓库所有者
repo: 仓库名
issue_number: Issue编号
Returns:
评论列表
"""
endpoint = f"/repos/{owner}/{repo}/issues/{issue_number}/comments"
return await self._request("GET", endpoint)
# ===== Pull Requests相关方法 =====
async def get_pull_requests(self, owner: str, repo: str, state: str = "open",
sort: str = "created", direction: str = "desc",
per_page: int = 30, page: int = 1) -> List[Dict]:
"""获取仓库的Pull Request列表
Args:
owner: 仓库所有者
repo: 仓库名
state: PR状态 (open, closed, all)
sort: 排序方式 (created, updated, popularity, long-running)
direction: 排序方向 (asc, desc)
per_page: 每页结果数量
page: 页码
Returns:
Pull Request列表
"""
endpoint = f"/repos/{owner}/{repo}/pulls"
params = {
"state": state,
"sort": sort,
"direction": direction,
"per_page": per_page,
"page": page
}
return await self._request("GET", endpoint, params=params)
async def get_pull_request(self, owner: str, repo: str, pr_number: int) -> Dict:
"""获取特定Pull Request的详情
Args:
owner: 仓库所有者
repo: 仓库名
pr_number: Pull Request编号
Returns:
Pull Request详情
"""
endpoint = f"/repos/{owner}/{repo}/pulls/{pr_number}"
return await self._request("GET", endpoint)
async def get_pull_request_files(self, owner: str, repo: str, pr_number: int) -> List[Dict]:
"""获取Pull Request中修改的文件
Args:
owner: 仓库所有者
repo: 仓库名
pr_number: Pull Request编号
Returns:
修改文件列表
"""
endpoint = f"/repos/{owner}/{repo}/pulls/{pr_number}/files"
return await self._request("GET", endpoint)
# ===== 搜索相关方法 =====
async def search_repositories(self, query: str, sort: str = "stars",
order: str = "desc", per_page: int = 30, page: int = 1) -> Dict:
"""搜索仓库
Args:
query: 搜索关键词
sort: 排序方式 (stars, forks, updated)
order: 排序顺序 (asc, desc)
per_page: 每页结果数量
page: 页码
Returns:
搜索结果
"""
endpoint = "/search/repositories"
params = {
"q": query,
"sort": sort,
"order": order,
"per_page": per_page,
"page": page
}
return await self._request("GET", endpoint, params=params)
async def search_code(self, query: str, sort: str = "indexed",
order: str = "desc", per_page: int = 30, page: int = 1) -> Dict:
"""搜索代码
Args:
query: 搜索关键词
sort: 排序方式 (indexed)
order: 排序顺序 (asc, desc)
per_page: 每页结果数量
page: 页码
Returns:
搜索结果
"""
endpoint = "/search/code"
params = {
"q": query,
"sort": sort,
"order": order,
"per_page": per_page,
"page": page
}
return await self._request("GET", endpoint, params=params)
async def search_issues(self, query: str, sort: str = "created",
order: str = "desc", per_page: int = 30, page: int = 1) -> Dict:
"""搜索Issues和Pull Requests
Args:
query: 搜索关键词
sort: 排序方式 (created, updated, comments)
order: 排序顺序 (asc, desc)
per_page: 每页结果数量
page: 页码
Returns:
搜索结果
"""
endpoint = "/search/issues"
params = {
"q": query,
"sort": sort,
"order": order,
"per_page": per_page,
"page": page
}
return await self._request("GET", endpoint, params=params)
async def search_users(self, query: str, sort: str = "followers",
order: str = "desc", per_page: int = 30, page: int = 1) -> Dict:
"""搜索用户
Args:
query: 搜索关键词
sort: 排序方式 (followers, repositories, joined)
order: 排序顺序 (asc, desc)
per_page: 每页结果数量
page: 页码
Returns:
搜索结果
"""
endpoint = "/search/users"
params = {
"q": query,
"sort": sort,
"order": order,
"per_page": per_page,
"page": page
}
return await self._request("GET", endpoint, params=params)
# ===== 组织相关方法 =====
async def get_organization(self, org: str) -> Dict:
"""获取组织信息
Args:
org: 组织名称
Returns:
组织信息
"""
endpoint = f"/orgs/{org}"
return await self._request("GET", endpoint)
async def get_organization_repos(self, org: str, type: str = "all",
sort: str = "created", direction: str = "desc",
per_page: int = 30, page: int = 1) -> List[Dict]:
"""获取组织的仓库列表
Args:
org: 组织名称
type: 仓库类型 (all, public, private, forks, sources, member, internal)
sort: 排序方式 (created, updated, pushed, full_name)
direction: 排序方向 (asc, desc)
per_page: 每页结果数量
page: 页码
Returns:
仓库列表
"""
endpoint = f"/orgs/{org}/repos"
params = {
"type": type,
"sort": sort,
"direction": direction,
"per_page": per_page,
"page": page
}
return await self._request("GET", endpoint, params=params)
async def get_organization_members(self, org: str, per_page: int = 30, page: int = 1) -> List[Dict]:
"""获取组织成员列表
Args:
org: 组织名称
per_page: 每页结果数量
page: 页码
Returns:
成员列表
"""
endpoint = f"/orgs/{org}/members"
params = {
"per_page": per_page,
"page": page
}
return await self._request("GET", endpoint, params=params)
# ===== 更复杂的操作 =====
async def get_repository_languages(self, owner: str, repo: str) -> Dict:
"""获取仓库使用的编程语言及其比例
Args:
owner: 仓库所有者
repo: 仓库名
Returns:
语言使用情况
"""
endpoint = f"/repos/{owner}/{repo}/languages"
return await self._request("GET", endpoint)
async def get_repository_stats_contributors(self, owner: str, repo: str) -> List[Dict]:
"""获取仓库的贡献者统计
Args:
owner: 仓库所有者
repo: 仓库名
Returns:
贡献者统计信息
"""
endpoint = f"/repos/{owner}/{repo}/stats/contributors"
return await self._request("GET", endpoint)
async def get_repository_stats_commit_activity(self, owner: str, repo: str) -> List[Dict]:
"""获取仓库的提交活动
Args:
owner: 仓库所有者
repo: 仓库名
Returns:
提交活动统计
"""
endpoint = f"/repos/{owner}/{repo}/stats/commit_activity"
return await self._request("GET", endpoint)
async def example_usage():
"""GitHubSource使用示例"""
# 创建客户端实例可选传入API令牌
# github = GitHubSource(api_key="your_github_token")
github = GitHubSource()
try:
# 示例1搜索热门Python仓库
print("\n=== 示例1搜索热门Python仓库 ===")
repos = await github.search_repositories(
query="language:python stars:>1000",
sort="stars",
order="desc",
per_page=5
)
if repos and "items" in repos:
for i, repo in enumerate(repos["items"], 1):
print(f"\n--- 仓库 {i} ---")
print(f"名称: {repo['full_name']}")
print(f"描述: {repo['description']}")
print(f"星标数: {repo['stargazers_count']}")
print(f"Fork数: {repo['forks_count']}")
print(f"最近更新: {repo['updated_at']}")
print(f"URL: {repo['html_url']}")
# 示例2获取特定仓库的详情
print("\n=== 示例2获取特定仓库的详情 ===")
repo_details = await github.get_repo("microsoft", "vscode")
if repo_details:
print(f"名称: {repo_details['full_name']}")
print(f"描述: {repo_details['description']}")
print(f"星标数: {repo_details['stargazers_count']}")
print(f"Fork数: {repo_details['forks_count']}")
print(f"默认分支: {repo_details['default_branch']}")
print(f"开源许可: {repo_details.get('license', {}).get('name', '')}")
print(f"语言: {repo_details['language']}")
print(f"Open Issues数: {repo_details['open_issues_count']}")
# 示例3获取仓库的提交历史
print("\n=== 示例3获取仓库的最近提交 ===")
commits = await github.get_repo_commits("tensorflow", "tensorflow", per_page=5)
if commits:
for i, commit in enumerate(commits, 1):
print(f"\n--- 提交 {i} ---")
print(f"SHA: {commit['sha'][:7]}")
print(f"作者: {commit['commit']['author']['name']}")
print(f"日期: {commit['commit']['author']['date']}")
print(f"消息: {commit['commit']['message'].splitlines()[0]}")
# 示例4搜索代码
print("\n=== 示例4搜索代码 ===")
code_results = await github.search_code(
query="filename:README.md language:markdown pytorch in:file",
per_page=3
)
if code_results and "items" in code_results:
print(f"共找到: {code_results['total_count']} 个结果")
for i, item in enumerate(code_results["items"], 1):
print(f"\n--- 代码 {i} ---")
print(f"仓库: {item['repository']['full_name']}")
print(f"文件: {item['path']}")
print(f"URL: {item['html_url']}")
# 示例5获取文件内容
print("\n=== 示例5获取文件内容 ===")
file_content = await github.get_file_content("python", "cpython", "README.rst")
if file_content and "decoded_content" in file_content:
content = file_content["decoded_content"]
print(f"文件名: {file_content['name']}")
print(f"大小: {file_content['size']} 字节")
print(f"内容预览: {content[:200]}...")
# 示例6获取仓库使用的编程语言
print("\n=== 示例6获取仓库使用的编程语言 ===")
languages = await github.get_repository_languages("facebook", "react")
if languages:
print(f"React仓库使用的编程语言:")
for lang, bytes_of_code in languages.items():
print(f"- {lang}: {bytes_of_code} 字节")
# 示例7获取组织信息
print("\n=== 示例7获取组织信息 ===")
org_info = await github.get_organization("google")
if org_info:
print(f"名称: {org_info['name']}")
print(f"描述: {org_info.get('description', '')}")
print(f"位置: {org_info.get('location', '未指定')}")
print(f"公共仓库数: {org_info['public_repos']}")
print(f"成员数: {org_info.get('public_members', 0)}")
print(f"URL: {org_info['html_url']}")
# 示例8获取用户信息
print("\n=== 示例8获取用户信息 ===")
user_info = await github.get_user("torvalds")
if user_info:
print(f"名称: {user_info['name']}")
print(f"公司: {user_info.get('company', '')}")
print(f"博客: {user_info.get('blog', '')}")
print(f"位置: {user_info.get('location', '未指定')}")
print(f"公共仓库数: {user_info['public_repos']}")
print(f"关注者数: {user_info['followers']}")
print(f"URL: {user_info['html_url']}")
except Exception as e:
print(f"发生错误: {str(e)}")
import traceback
print(traceback.format_exc())
if __name__ == "__main__":
import asyncio
# 运行示例
asyncio.run(example_usage())

View File

@@ -1,593 +0,0 @@
from typing import List, Dict, Optional, Tuple, Union, Any
from dataclasses import dataclass, field
import os
import re
import logging
from crazy_functions.doc_fns.read_fns.unstructured_all.paper_structure_extractor import (
PaperStructureExtractor, PaperSection, StructuredPaper
)
from unstructured.partition.auto import partition
from unstructured.documents.elements import (
Text, Title, NarrativeText, ListItem, Table,
Footer, Header, PageBreak, Image, Address
)
@dataclass
class DocumentSection:
"""通用文档章节数据类"""
title: str # 章节标题,如果没有标题则为空字符串
content: str # 章节内容
level: int = 0 # 标题级别0为主标题1为一级标题以此类推
section_type: str = "content" # 章节类型
is_heading_only: bool = False # 是否仅包含标题
subsections: List['DocumentSection'] = field(default_factory=list) # 子章节列表
@dataclass
class StructuredDocument:
"""结构化文档数据类"""
title: str = "" # 文档标题
metadata: Dict[str, Any] = field(default_factory=dict) # 元数据
sections: List[DocumentSection] = field(default_factory=list) # 章节列表
full_text: str = "" # 完整文本
is_paper: bool = False # 是否为学术论文
class GenericDocumentStructureExtractor:
"""通用文档结构提取器
可以从各种文档格式中提取结构信息,包括标题和内容。
支持论文、报告、文章和一般文本文档。
"""
# 支持的文件扩展名
SUPPORTED_EXTENSIONS = [
'.pdf', '.docx', '.doc', '.pptx', '.ppt',
'.txt', '.md', '.html', '.htm', '.xml',
'.rtf', '.odt', '.epub', '.msg', '.eml'
]
# 常见的标题前缀模式
HEADING_PATTERNS = [
# 数字标题 (1., 1.1., etc.)
r'^\s*(\d+\.)+\s+',
# 中文数字标题 (一、, 二、, etc.)
r'^\s*[一二三四五六七八九十]+[、::]\s+',
# 带括号的数字标题 ((1), (2), etc.)
r'^\s*\(\s*\d+\s*\)\s+',
# 特定标记的标题 (Chapter 1, Section 1, etc.)
r'^\s*(chapter|section|part|附录|章|节)\s+\d+[\.:]\s+',
]
# 常见的文档分段标记词
SECTION_MARKERS = {
'introduction': ['简介', '导言', '引言', 'introduction', '概述', 'overview'],
'background': ['背景', '现状', 'background', '理论基础', '相关工作'],
'main_content': ['主要内容', '正文', 'main content', '分析', '讨论'],
'conclusion': ['结论', '总结', 'conclusion', '结语', '小结', 'summary'],
'reference': ['参考', '参考文献', 'references', '文献', 'bibliography'],
'appendix': ['附录', 'appendix', '补充资料', 'supplementary']
}
def __init__(self):
"""初始化提取器"""
self.paper_extractor = PaperStructureExtractor() # 论文专用提取器
self._setup_logging()
def _setup_logging(self):
"""配置日志"""
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
self.logger = logging.getLogger(__name__)
def extract_document_structure(self, file_path: str, strategy: str = "fast") -> StructuredDocument:
"""提取文档结构
Args:
file_path: 文件路径
strategy: 提取策略 ("fast""accurate")
Returns:
StructuredDocument: 结构化文档对象
"""
try:
self.logger.info(f"正在处理文档结构: {file_path}")
# 1. 首先尝试使用论文提取器
try:
paper_result = self.paper_extractor.extract_paper_structure(file_path)
if paper_result and len(paper_result.sections) > 2: # 如果成功识别为论文结构
self.logger.info(f"成功识别为学术论文: {file_path}")
# 将论文结构转换为通用文档结构
return self._convert_paper_to_document(paper_result)
except Exception as e:
self.logger.debug(f"论文结构提取失败,将尝试通用提取: {str(e)}")
# 2. 使用通用方法提取文档结构
elements = partition(
str(file_path),
strategy=strategy,
include_metadata=True,
nlp=False
)
# 3. 使用通用提取器处理
doc = self._extract_generic_structure(elements)
return doc
except Exception as e:
self.logger.error(f"文档结构提取失败: {str(e)}")
# 返回一个空的结构化文档
return StructuredDocument(
title="未能提取文档标题",
sections=[DocumentSection(
title="",
content="",
level=0,
section_type="content"
)]
)
def _convert_paper_to_document(self, paper: StructuredPaper) -> StructuredDocument:
"""将论文结构转换为通用文档结构
Args:
paper: 结构化论文对象
Returns:
StructuredDocument: 转换后的通用文档结构
"""
doc = StructuredDocument(
title=paper.metadata.title,
is_paper=True,
full_text=paper.full_text
)
# 转换元数据
doc.metadata = {
'title': paper.metadata.title,
'authors': paper.metadata.authors,
'keywords': paper.keywords,
'abstract': paper.metadata.abstract if hasattr(paper.metadata, 'abstract') else "",
'is_paper': True
}
# 转换章节结构
doc.sections = self._convert_paper_sections(paper.sections)
return doc
def _convert_paper_sections(self, paper_sections: List[PaperSection], level: int = 0) -> List[DocumentSection]:
"""递归转换论文章节为通用文档章节
Args:
paper_sections: 论文章节列表
level: 当前章节级别
Returns:
List[DocumentSection]: 通用文档章节列表
"""
doc_sections = []
for section in paper_sections:
doc_section = DocumentSection(
title=section.title,
content=section.content,
level=section.level,
section_type=section.section_type,
is_heading_only=False if section.content else True
)
# 递归处理子章节
if section.subsections:
doc_section.subsections = self._convert_paper_sections(
section.subsections, level + 1
)
doc_sections.append(doc_section)
return doc_sections
def _extract_generic_structure(self, elements) -> StructuredDocument:
"""从元素列表中提取通用文档结构
Args:
elements: 文档元素列表
Returns:
StructuredDocument: 结构化文档对象
"""
# 创建结构化文档对象
doc = StructuredDocument(full_text="")
# 1. 提取文档标题
title_candidates = []
for i, element in enumerate(elements[:5]): # 只检查前5个元素
if isinstance(element, Title):
title_text = str(element).strip()
title_candidates.append((i, title_text))
if title_candidates:
# 使用第一个标题作为文档标题
doc.title = title_candidates[0][1]
# 2. 识别所有标题元素和内容
title_elements = []
# 2.1 首先识别所有标题
for i, element in enumerate(elements):
is_heading = False
title_text = ""
level = 0
# 检查元素类型
if isinstance(element, Title):
is_heading = True
title_text = str(element).strip()
# 进一步检查是否为真正的标题
if self._is_likely_heading(title_text, element, i, elements):
level = self._estimate_heading_level(title_text, element)
else:
is_heading = False
# 也检查格式像标题的普通文本
elif isinstance(element, (Text, NarrativeText)) and i > 0:
text = str(element).strip()
# 检查是否匹配标题模式
if any(re.match(pattern, text) for pattern in self.HEADING_PATTERNS):
# 检查长度和后续内容以确认是否为标题
if len(text) < 100 and self._has_sufficient_following_content(i, elements):
is_heading = True
title_text = text
level = self._estimate_heading_level(title_text, element)
if is_heading:
section_type = self._identify_section_type(title_text)
title_elements.append((i, title_text, level, section_type))
# 2.2 为每个标题提取内容
sections = []
for i, (index, title_text, level, section_type) in enumerate(title_elements):
# 确定内容范围
content_start = index + 1
content_end = elements[-1] # 默认到文档结束
# 如果有下一个标题,内容到下一个标题开始
if i < len(title_elements) - 1:
content_end = title_elements[i+1][0]
else:
content_end = len(elements)
# 提取内容
content = self._extract_content_between(elements, content_start, content_end)
# 创建章节
section = DocumentSection(
title=title_text,
content=content,
level=level,
section_type=section_type,
is_heading_only=False if content.strip() else True
)
sections.append(section)
# 3. 如果没有识别到任何章节,创建一个默认章节
if not sections:
all_content = self._extract_content_between(elements, 0, len(elements))
# 尝试从内容中提取标题
first_line = all_content.split('\n')[0] if all_content else ""
if first_line and len(first_line) < 100:
doc.title = first_line
all_content = '\n'.join(all_content.split('\n')[1:])
default_section = DocumentSection(
title="",
content=all_content,
level=0,
section_type="content"
)
sections.append(default_section)
# 4. 构建层次结构
doc.sections = self._build_section_hierarchy(sections)
# 5. 提取完整文本
doc.full_text = "\n\n".join([str(element) for element in elements if isinstance(element, (Text, NarrativeText, Title, ListItem))])
return doc
def _build_section_hierarchy(self, sections: List[DocumentSection]) -> List[DocumentSection]:
"""构建章节层次结构
Args:
sections: 章节列表
Returns:
List[DocumentSection]: 具有层次结构的章节列表
"""
if not sections:
return []
# 按层级排序
top_level_sections = []
current_parents = {0: None} # 每个层级的当前父节点
for section in sections:
# 找到当前节点的父节点
parent_level = None
for level in sorted([k for k in current_parents.keys() if k < section.level], reverse=True):
parent_level = level
break
if parent_level is None:
# 顶级章节
top_level_sections.append(section)
else:
# 子章节
parent = current_parents[parent_level]
if parent:
parent.subsections.append(section)
else:
top_level_sections.append(section)
# 更新当前层级的父节点
current_parents[section.level] = section
# 清除所有更深层级的父节点缓存
deeper_levels = [k for k in current_parents.keys() if k > section.level]
for level in deeper_levels:
current_parents.pop(level, None)
return top_level_sections
def _is_likely_heading(self, text: str, element, index: int, elements) -> bool:
"""判断文本是否可能是标题
Args:
text: 文本内容
element: 元素对象
index: 元素索引
elements: 所有元素列表
Returns:
bool: 是否可能是标题
"""
# 1. 检查文本长度 - 标题通常不会太长
if len(text) > 150: # 标题通常不超过150个字符
return False
# 2. 检查是否匹配标题的数字编号模式
if any(re.match(pattern, text) for pattern in self.HEADING_PATTERNS):
return True
# 3. 检查是否包含常见章节标记词
lower_text = text.lower()
for markers in self.SECTION_MARKERS.values():
if any(marker.lower() in lower_text for marker in markers):
return True
# 4. 检查后续内容数量 - 标题后通常有足够多的内容
if not self._has_sufficient_following_content(index, elements, min_chars=100):
# 但如果文本很短且以特定格式开头,仍可能是标题
if len(text) < 50 and (text.endswith(':') or text.endswith('')):
return True
return False
# 5. 检查格式特征
# 标题通常是元素的开头,不在段落中间
if len(text.split('\n')) > 1:
# 多行文本不太可能是标题
return False
# 如果有元数据,检查字体特征(字体大小等)
if hasattr(element, 'metadata') and element.metadata:
try:
font_size = getattr(element.metadata, 'font_size', None)
is_bold = getattr(element.metadata, 'is_bold', False)
# 字体较大或加粗的文本更可能是标题
if font_size and font_size > 12:
return True
if is_bold:
return True
except (AttributeError, TypeError):
pass
# 默认返回True因为元素已被识别为Title类型
return True
def _estimate_heading_level(self, text: str, element) -> int:
"""估计标题的层级
Args:
text: 标题文本
element: 元素对象
Returns:
int: 标题层级 (0为主标题1为一级标题, 等等)
"""
# 1. 通过编号模式判断层级
for pattern, level in [
(r'^\s*\d+\.\s+', 1), # 1. 开头 (一级标题)
(r'^\s*\d+\.\d+\.\s+', 2), # 1.1. 开头 (二级标题)
(r'^\s*\d+\.\d+\.\d+\.\s+', 3), # 1.1.1. 开头 (三级标题)
(r'^\s*\d+\.\d+\.\d+\.\d+\.\s+', 4), # 1.1.1.1. 开头 (四级标题)
]:
if re.match(pattern, text):
return level
# 2. 检查是否是常见的主要章节标题
lower_text = text.lower()
main_sections = [
'abstract', 'introduction', 'background', 'methodology',
'results', 'discussion', 'conclusion', 'references'
]
for section in main_sections:
if section in lower_text:
return 1 # 主要章节为一级标题
# 3. 根据文本特征判断
if text.isupper(): # 全大写文本可能是章标题
return 1
# 4. 通过元数据判断层级
if hasattr(element, 'metadata') and element.metadata:
try:
# 根据字体大小判断层级
font_size = getattr(element.metadata, 'font_size', None)
if font_size is not None:
if font_size > 18: # 假设主标题字体最大
return 0
elif font_size > 16:
return 1
elif font_size > 14:
return 2
else:
return 3
except (AttributeError, TypeError):
pass
# 默认为二级标题
return 2
def _identify_section_type(self, title_text: str) -> str:
"""识别章节类型,包括参考文献部分"""
lower_text = title_text.lower()
# 特别检查是否为参考文献部分
references_patterns = [
r'references', r'参考文献', r'bibliography', r'引用文献',
r'literature cited', r'^cited\s+literature', r'^文献$', r'^引用$'
]
for pattern in references_patterns:
if re.search(pattern, lower_text, re.IGNORECASE):
return "references"
# 检查是否匹配其他常见章节类型
for section_type, markers in self.SECTION_MARKERS.items():
if any(marker.lower() in lower_text for marker in markers):
return section_type
# 检查带编号的章节
if re.match(r'^\d+\.', lower_text):
return "content"
# 默认为内容章节
return "content"
def _has_sufficient_following_content(self, index: int, elements, min_chars: int = 150) -> bool:
"""检查元素后是否有足够的内容
Args:
index: 当前元素索引
elements: 所有元素列表
min_chars: 最小字符数要求
Returns:
bool: 是否有足够的内容
"""
total_chars = 0
for i in range(index + 1, min(index + 5, len(elements))):
if isinstance(elements[i], Title):
# 如果紧接着是标题,就停止检查
break
if isinstance(elements[i], (Text, NarrativeText, ListItem, Table)):
total_chars += len(str(elements[i]))
if total_chars >= min_chars:
return True
return total_chars >= min_chars
def _extract_content_between(self, elements, start_index: int, end_index: int) -> str:
"""提取指定范围内的内容文本
Args:
elements: 元素列表
start_index: 开始索引
end_index: 结束索引
Returns:
str: 提取的内容文本
"""
content_parts = []
for i in range(start_index, end_index):
if isinstance(elements[i], (Text, NarrativeText, ListItem, Table)):
content_parts.append(str(elements[i]).strip())
return "\n\n".join([part for part in content_parts if part])
def generate_markdown(self, doc: StructuredDocument) -> str:
"""将结构化文档转换为Markdown格式
Args:
doc: 结构化文档对象
Returns:
str: Markdown格式文本
"""
md_parts = []
# 添加标题
if doc.title:
md_parts.append(f"# {doc.title}\n")
# 添加元数据
if doc.is_paper:
# 作者信息
if 'authors' in doc.metadata and doc.metadata['authors']:
authors_str = ", ".join(doc.metadata['authors'])
md_parts.append(f"**作者:** {authors_str}\n")
# 关键词
if 'keywords' in doc.metadata and doc.metadata['keywords']:
keywords_str = ", ".join(doc.metadata['keywords'])
md_parts.append(f"**关键词:** {keywords_str}\n")
# 摘要
if 'abstract' in doc.metadata and doc.metadata['abstract']:
md_parts.append(f"## 摘要\n\n{doc.metadata['abstract']}\n")
# 添加章节内容
md_parts.append(self._format_sections_markdown(doc.sections))
return "\n".join(md_parts)
def _format_sections_markdown(self, sections: List[DocumentSection], base_level: int = 0) -> str:
"""递归格式化章节为Markdown
Args:
sections: 章节列表
base_level: 基础层级
Returns:
str: Markdown格式文本
"""
md_parts = []
for section in sections:
# 计算标题级别 (确保不超过6级)
header_level = min(section.level + base_level + 1, 6)
# 添加标题和内容
if section.title:
md_parts.append(f"{'#' * header_level} {section.title}\n")
if section.content:
md_parts.append(f"{section.content}\n")
# 递归处理子章节
if section.subsections:
md_parts.append(self._format_sections_markdown(
section.subsections, base_level
))
return "\n".join(md_parts)

View File

@@ -1,4 +0,0 @@
from .txt_doc import TxtFormatter
from .markdown_doc import MarkdownFormatter
from .html_doc import HtmlFormatter
from .word_doc import WordFormatter

View File

@@ -1,300 +0,0 @@
class HtmlFormatter:
"""HTML格式文档生成器 - 保留原始文档结构"""
def __init__(self, processing_type="文本处理"):
self.processing_type = processing_type
self.css_styles = """
:root {
--primary-color: #2563eb;
--primary-light: #eff6ff;
--secondary-color: #1e293b;
--background-color: #f8fafc;
--text-color: #334155;
--border-color: #e2e8f0;
--card-shadow: 0 4px 6px -1px rgb(0 0 0 / 0.1), 0 2px 4px -2px rgb(0 0 0 / 0.1);
}
body {
font-family: system-ui, -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
line-height: 1.8;
margin: 0;
padding: 2rem;
color: var(--text-color);
background-color: var(--background-color);
}
.container {
max-width: 1200px;
margin: 0 auto;
background: white;
padding: 2rem;
border-radius: 16px;
box-shadow: var(--card-shadow);
}
::selection {
background: var(--primary-light);
color: var(--primary-color);
}
@keyframes fadeIn {
from { opacity: 0; transform: translateY(20px); }
to { opacity: 1; transform: translateY(0); }
}
.container {
animation: fadeIn 0.6s ease-out;
}
.document-title {
color: var(--primary-color);
font-size: 2em;
text-align: center;
margin: 1rem 0 2rem;
padding-bottom: 1rem;
border-bottom: 2px solid var(--primary-color);
}
.document-body {
display: flex;
flex-direction: column;
gap: 1.5rem;
margin: 2rem 0;
}
.document-header {
display: flex;
flex-direction: column;
align-items: center;
margin-bottom: 2rem;
}
.processing-type {
color: var(--secondary-color);
font-size: 1.2em;
margin: 0.5rem 0;
}
.processing-date {
color: var(--text-color);
font-size: 0.9em;
opacity: 0.8;
}
.document-content {
background: white;
padding: 1.5rem;
border-radius: 8px;
border-left: 4px solid var(--primary-color);
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
}
/* 保留文档结构的样式 */
h1, h2, h3, h4, h5, h6 {
color: var(--secondary-color);
margin-top: 1.5em;
margin-bottom: 0.5em;
}
h1 { font-size: 1.8em; }
h2 { font-size: 1.5em; }
h3 { font-size: 1.3em; }
h4 { font-size: 1.1em; }
p {
margin: 0.8em 0;
}
ul, ol {
margin: 1em 0;
padding-left: 2em;
}
li {
margin: 0.5em 0;
}
blockquote {
margin: 1em 0;
padding: 0.5em 1em;
border-left: 4px solid var(--primary-light);
background: rgba(0,0,0,0.02);
}
code {
font-family: monospace;
background: rgba(0,0,0,0.05);
padding: 0.2em 0.4em;
border-radius: 3px;
}
pre {
background: rgba(0,0,0,0.05);
padding: 1em;
border-radius: 5px;
overflow-x: auto;
}
pre code {
background: transparent;
padding: 0;
}
@media (prefers-color-scheme: dark) {
:root {
--background-color: #0f172a;
--text-color: #e2e8f0;
--border-color: #1e293b;
}
.container, .document-content {
background: #1e293b;
}
blockquote {
background: rgba(255,255,255,0.05);
}
code, pre {
background: rgba(255,255,255,0.05);
}
}
"""
def _escape_html(self, text):
"""转义HTML特殊字符"""
import html
return html.escape(text)
def _markdown_to_html(self, text):
"""将Markdown格式转换为HTML格式保留文档结构"""
try:
import markdown
# 使用Python-Markdown库将markdown转换为HTML启用更多扩展以支持嵌套列表
return markdown.markdown(text, extensions=['tables', 'fenced_code', 'codehilite', 'nl2br', 'sane_lists', 'smarty', 'extra'])
except ImportError:
# 如果没有markdown库使用更复杂的替换来处理嵌套列表
import re
# 替换标题
text = re.sub(r'^# (.+)$', r'<h1>\1</h1>', text, flags=re.MULTILINE)
text = re.sub(r'^## (.+)$', r'<h2>\1</h2>', text, flags=re.MULTILINE)
text = re.sub(r'^### (.+)$', r'<h3>\1</h3>', text, flags=re.MULTILINE)
# 预处理列表 - 在列表项之间添加空行以正确分隔
# 处理编号列表
text = re.sub(r'(\n\d+\.\s.+)(\n\d+\.\s)', r'\1\n\2', text)
# 处理项目符号列表
text = re.sub(r'(\n•\s.+)(\n•\s)', r'\1\n\2', text)
text = re.sub(r'(\n\*\s.+)(\n\*\s)', r'\1\n\2', text)
text = re.sub(r'(\n-\s.+)(\n-\s)', r'\1\n\2', text)
# 处理嵌套列表 - 确保正确的缩进和结构
lines = text.split('\n')
in_list = False
list_type = None # 'ol' 或 'ul'
list_html = []
normal_lines = []
i = 0
while i < len(lines):
line = lines[i]
# 匹配编号列表项
numbered_match = re.match(r'^(\d+)\.\s+(.+)$', line)
# 匹配项目符号列表项
bullet_match = re.match(r'^[•\*-]\s+(.+)$', line)
if numbered_match:
if not in_list or list_type != 'ol':
# 开始新的编号列表
if in_list:
# 关闭前一个列表
list_html.append(f'</{list_type}>')
list_html.append('<ol>')
in_list = True
list_type = 'ol'
num, content = numbered_match.groups()
list_html.append(f'<li>{content}</li>')
elif bullet_match:
if not in_list or list_type != 'ul':
# 开始新的项目符号列表
if in_list:
# 关闭前一个列表
list_html.append(f'</{list_type}>')
list_html.append('<ul>')
in_list = True
list_type = 'ul'
content = bullet_match.group(1)
list_html.append(f'<li>{content}</li>')
else:
if in_list:
# 结束当前列表
list_html.append(f'</{list_type}>')
in_list = False
# 将完成的列表添加到正常行中
normal_lines.append(''.join(list_html))
list_html = []
normal_lines.append(line)
i += 1
# 如果最后还在列表中,确保关闭列表
if in_list:
list_html.append(f'</{list_type}>')
normal_lines.append(''.join(list_html))
# 重建文本
text = '\n'.join(normal_lines)
# 替换段落但避免处理已经是HTML标签的部分
paragraphs = text.split('\n\n')
for i, p in enumerate(paragraphs):
# 如果不是以HTML标签开始且不为空
if not (p.strip().startswith('<') and p.strip().endswith('>')) and p.strip() != '':
paragraphs[i] = f'<p>{p}</p>'
return '\n'.join(paragraphs)
def create_document(self, content: str) -> str:
"""生成完整的HTML文档保留原始文档结构
Args:
content: 处理后的文档内容
Returns:
str: 完整的HTML文档字符串
"""
from datetime import datetime
# 将markdown内容转换为HTML
html_content = self._markdown_to_html(content)
return f"""
<!DOCTYPE html>
<html lang="zh-CN">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>文档处理结果</title>
<style>{self.css_styles}</style>
</head>
<body>
<div class="container">
<h1 class="document-title">文档处理结果</h1>
<div class="document-header">
<div class="processing-type">处理方式: {self._escape_html(self.processing_type)}</div>
<div class="processing-date">处理时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}</div>
</div>
<div class="document-content">
{html_content}
</div>
</div>
</body>
</html>
"""

View File

@@ -1,40 +0,0 @@
class MarkdownFormatter:
"""Markdown格式文档生成器 - 保留原始文档结构"""
def __init__(self):
self.content = []
def _add_content(self, text: str):
"""添加正文内容"""
if text:
self.content.append(f"\n{text}\n")
def create_document(self, content: str, processing_type: str = "文本处理") -> str:
"""
创建完整的Markdown文档保留原始文档结构
Args:
content: 处理后的文档内容
processing_type: 处理类型(润色、翻译等)
Returns:
str: 生成的Markdown文本
"""
self.content = []
# 添加标题和说明
self.content.append(f"# 文档处理结果\n")
self.content.append(f"## 处理方式: {processing_type}\n")
# 添加处理时间
from datetime import datetime
self.content.append(f"*处理时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}*\n")
# 添加分隔线
self.content.append("---\n")
# 添加原始内容,保留结构
self.content.append(content)
# 添加结尾分隔线
self.content.append("\n---\n")
return "\n".join(self.content)

View File

@@ -1,69 +0,0 @@
import re
def convert_markdown_to_txt(markdown_text):
"""Convert markdown text to plain text while preserving formatting"""
# Standardize line endings
markdown_text = markdown_text.replace('\r\n', '\n').replace('\r', '\n')
# 1. Handle headers but keep their formatting instead of removing them
markdown_text = re.sub(r'^#\s+(.+)$', r'# \1', markdown_text, flags=re.MULTILINE)
markdown_text = re.sub(r'^##\s+(.+)$', r'## \1', markdown_text, flags=re.MULTILINE)
markdown_text = re.sub(r'^###\s+(.+)$', r'### \1', markdown_text, flags=re.MULTILINE)
# 2. Handle bold and italic - simply remove markers
markdown_text = re.sub(r'\*\*(.+?)\*\*', r'\1', markdown_text)
markdown_text = re.sub(r'\*(.+?)\*', r'\1', markdown_text)
# 3. Handle lists but preserve formatting
markdown_text = re.sub(r'^\s*[-*+]\s+(.+?)(?=\n|$)', r'\1', markdown_text, flags=re.MULTILINE)
# 4. Handle links - keep only the text
markdown_text = re.sub(r'\[([^\]]+)\]\(([^)]+)\)', r'\1 (\2)', markdown_text)
# 5. Handle HTML links - convert to user-friendly format
markdown_text = re.sub(r'<a href=[\'"]([^\'"]+)[\'"](?:\s+target=[\'"][^\'"]+[\'"])?>([^<]+)</a>', r'\2 (\1)', markdown_text)
# 6. Preserve paragraph breaks
markdown_text = re.sub(r'\n{3,}', '\n\n', markdown_text) # normalize multiple newlines to double newlines
# 7. Clean up extra spaces but maintain indentation
markdown_text = re.sub(r' +', ' ', markdown_text)
return markdown_text.strip()
class TxtFormatter:
"""文本格式化器 - 保留原始文档结构"""
def __init__(self):
self.content = []
self._setup_document()
def _setup_document(self):
"""初始化文档标题"""
self.content.append("=" * 50)
self.content.append("处理后文档".center(48))
self.content.append("=" * 50)
def _format_header(self):
"""创建文档头部信息"""
from datetime import datetime
date_str = datetime.now().strftime('%Y年%m月%d')
return [
date_str.center(48),
"\n" # 添加空行
]
def create_document(self, content):
"""生成保留原始结构的文档"""
# 添加头部信息
self.content.extend(self._format_header())
# 处理内容,保留原始结构
processed_content = convert_markdown_to_txt(content)
# 添加处理后的内容
self.content.append(processed_content)
# 合并所有内容
return "\n".join(self.content)

View File

@@ -1,125 +0,0 @@
from docx2pdf import convert
import os
import platform
from typing import Union
from pathlib import Path
from datetime import datetime
class WordToPdfConverter:
"""Word文档转PDF转换器"""
@staticmethod
def convert_to_pdf(word_path: Union[str, Path], pdf_path: Union[str, Path] = None) -> str:
"""
将Word文档转换为PDF
参数:
word_path: Word文档的路径
pdf_path: 可选PDF文件的输出路径。如果未指定将使用与Word文档相同的名称和位置
返回:
生成的PDF文件路径
异常:
如果转换失败,将抛出相应异常
"""
try:
# 确保输入路径是Path对象
word_path = Path(word_path)
# 如果未指定pdf_path则使用与word文档相同的名称
if pdf_path is None:
pdf_path = word_path.with_suffix('.pdf')
else:
pdf_path = Path(pdf_path)
# 检查操作系统
if platform.system() == 'Linux':
# Linux系统需要安装libreoffice
if not os.system('which libreoffice') == 0:
raise RuntimeError("请先安装LibreOffice: sudo apt-get install libreoffice")
# 使用libreoffice进行转换
os.system(f'libreoffice --headless --convert-to pdf "{word_path}" --outdir "{pdf_path.parent}"')
# 如果输出路径与默认生成的不同,则重命名
default_pdf = word_path.with_suffix('.pdf')
if default_pdf != pdf_path:
os.rename(default_pdf, pdf_path)
else:
# Windows和MacOS使用docx2pdf
convert(word_path, pdf_path)
return str(pdf_path)
except Exception as e:
raise Exception(f"转换PDF失败: {str(e)}")
@staticmethod
def batch_convert(word_dir: Union[str, Path], pdf_dir: Union[str, Path] = None) -> list:
"""
批量转换目录下的所有Word文档
参数:
word_dir: 包含Word文档的目录路径
pdf_dir: 可选PDF文件的输出目录。如果未指定将使用与Word文档相同的目录
返回:
生成的PDF文件路径列表
"""
word_dir = Path(word_dir)
if pdf_dir:
pdf_dir = Path(pdf_dir)
pdf_dir.mkdir(parents=True, exist_ok=True)
converted_files = []
for word_file in word_dir.glob("*.docx"):
try:
if pdf_dir:
pdf_path = pdf_dir / word_file.with_suffix('.pdf').name
else:
pdf_path = word_file.with_suffix('.pdf')
pdf_file = WordToPdfConverter.convert_to_pdf(word_file, pdf_path)
converted_files.append(pdf_file)
except Exception as e:
print(f"转换 {word_file} 失败: {str(e)}")
return converted_files
@staticmethod
def convert_doc_to_pdf(doc, output_dir: Union[str, Path] = None) -> str:
"""
将docx对象直接转换为PDF
参数:
doc: python-docx的Document对象
output_dir: 可选,输出目录。如果未指定,将使用当前目录
返回:
生成的PDF文件路径
"""
try:
# 设置临时文件路径和输出路径
output_dir = Path(output_dir) if output_dir else Path.cwd()
output_dir.mkdir(parents=True, exist_ok=True)
# 生成临时word文件
temp_docx = output_dir / f"temp_{datetime.now().strftime('%Y%m%d_%H%M%S')}.docx"
doc.save(temp_docx)
# 转换为PDF
pdf_path = temp_docx.with_suffix('.pdf')
WordToPdfConverter.convert_to_pdf(temp_docx, pdf_path)
# 删除临时word文件
temp_docx.unlink()
return str(pdf_path)
except Exception as e:
if temp_docx.exists():
temp_docx.unlink()
raise Exception(f"转换PDF失败: {str(e)}")

View File

@@ -1,236 +0,0 @@
import re
from docx import Document
from docx.shared import Cm, Pt
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT, WD_LINE_SPACING
from docx.enum.style import WD_STYLE_TYPE
from docx.oxml.ns import qn
from datetime import datetime
def convert_markdown_to_word(markdown_text):
# 0. 首先标准化所有换行符为\n
markdown_text = markdown_text.replace('\r\n', '\n').replace('\r', '\n')
# 1. 处理标题 - 支持更多级别的标题,使用更精确的正则
# 保留标题标记,以便后续处理时还能识别出标题级别
markdown_text = re.sub(r'^(#{1,6})\s+(.+?)(?:\s+#+)?$', r'\1 \2', markdown_text, flags=re.MULTILINE)
# 2. 处理粗体、斜体和加粗斜体
markdown_text = re.sub(r'\*\*\*(.+?)\*\*\*', r'\1', markdown_text) # 加粗斜体
markdown_text = re.sub(r'\*\*(.+?)\*\*', r'\1', markdown_text) # 加粗
markdown_text = re.sub(r'\*(.+?)\*', r'\1', markdown_text) # 斜体
markdown_text = re.sub(r'_(.+?)_', r'\1', markdown_text) # 下划线斜体
markdown_text = re.sub(r'__(.+?)__', r'\1', markdown_text) # 下划线加粗
# 3. 处理代码块 - 不移除,而是简化格式
# 多行代码块
markdown_text = re.sub(r'```(?:\w+)?\n([\s\S]*?)```', r'[代码块]\n\1[/代码块]', markdown_text)
# 单行代码
markdown_text = re.sub(r'`([^`]+)`', r'[代码]\1[/代码]', markdown_text)
# 4. 处理列表 - 保留列表结构
# 匹配无序列表
markdown_text = re.sub(r'^(\s*)[-*+]\s+(.+?)$', r'\1• \2', markdown_text, flags=re.MULTILINE)
# 5. 处理Markdown链接
markdown_text = re.sub(r'\[([^\]]+)\]\(([^)]+?)\s*(?:"[^"]*")?\)', r'\1 (\2)', markdown_text)
# 6. 处理HTML链接
markdown_text = re.sub(r'<a href=[\'"]([^\'"]+)[\'"](?:\s+target=[\'"][^\'"]+[\'"])?>([^<]+)</a>', r'\2 (\1)', markdown_text)
# 7. 处理图片
markdown_text = re.sub(r'!\[([^\]]*)\]\([^)]+\)', r'[图片:\1]', markdown_text)
return markdown_text
class WordFormatter:
"""文档Word格式化器 - 保留原始文档结构"""
def __init__(self):
self.doc = Document()
self._setup_document()
self._create_styles()
def _setup_document(self):
"""设置文档基本格式,包括页面设置和页眉"""
sections = self.doc.sections
for section in sections:
# 设置页面大小为A4
section.page_width = Cm(21)
section.page_height = Cm(29.7)
# 设置页边距
section.top_margin = Cm(3.7) # 上边距37mm
section.bottom_margin = Cm(3.5) # 下边距35mm
section.left_margin = Cm(2.8) # 左边距28mm
section.right_margin = Cm(2.6) # 右边距26mm
# 设置页眉页脚距离
section.header_distance = Cm(2.0)
section.footer_distance = Cm(2.0)
# 添加页眉
header = section.header
header_para = header.paragraphs[0]
header_para.alignment = WD_PARAGRAPH_ALIGNMENT.RIGHT
header_run = header_para.add_run("文档处理结果")
header_run.font.name = '仿宋'
header_run._element.rPr.rFonts.set(qn('w:eastAsia'), '仿宋')
header_run.font.size = Pt(9)
def _create_styles(self):
"""创建文档样式"""
# 创建正文样式
style = self.doc.styles.add_style('Normal_Custom', WD_STYLE_TYPE.PARAGRAPH)
style.font.name = '仿宋'
style._element.rPr.rFonts.set(qn('w:eastAsia'), '仿宋')
style.font.size = Pt(12) # 调整为12磅
style.paragraph_format.line_spacing_rule = WD_LINE_SPACING.ONE_POINT_FIVE
style.paragraph_format.space_after = Pt(0)
# 创建标题样式
title_style = self.doc.styles.add_style('Title_Custom', WD_STYLE_TYPE.PARAGRAPH)
title_style.font.name = '黑体'
title_style._element.rPr.rFonts.set(qn('w:eastAsia'), '黑体')
title_style.font.size = Pt(22) # 调整为22磅
title_style.font.bold = True
title_style.paragraph_format.alignment = WD_PARAGRAPH_ALIGNMENT.CENTER
title_style.paragraph_format.space_before = Pt(0)
title_style.paragraph_format.space_after = Pt(24)
title_style.paragraph_format.line_spacing_rule = WD_LINE_SPACING.ONE_POINT_FIVE
# 创建标题1样式
h1_style = self.doc.styles.add_style('Heading1_Custom', WD_STYLE_TYPE.PARAGRAPH)
h1_style.font.name = '黑体'
h1_style._element.rPr.rFonts.set(qn('w:eastAsia'), '黑体')
h1_style.font.size = Pt(18)
h1_style.font.bold = True
h1_style.paragraph_format.space_before = Pt(12)
h1_style.paragraph_format.space_after = Pt(6)
# 创建标题2样式
h2_style = self.doc.styles.add_style('Heading2_Custom', WD_STYLE_TYPE.PARAGRAPH)
h2_style.font.name = '黑体'
h2_style._element.rPr.rFonts.set(qn('w:eastAsia'), '黑体')
h2_style.font.size = Pt(16)
h2_style.font.bold = True
h2_style.paragraph_format.space_before = Pt(10)
h2_style.paragraph_format.space_after = Pt(6)
# 创建标题3样式
h3_style = self.doc.styles.add_style('Heading3_Custom', WD_STYLE_TYPE.PARAGRAPH)
h3_style.font.name = '黑体'
h3_style._element.rPr.rFonts.set(qn('w:eastAsia'), '黑体')
h3_style.font.size = Pt(14)
h3_style.font.bold = True
h3_style.paragraph_format.space_before = Pt(8)
h3_style.paragraph_format.space_after = Pt(4)
# 创建代码块样式
code_style = self.doc.styles.add_style('Code_Custom', WD_STYLE_TYPE.PARAGRAPH)
code_style.font.name = 'Courier New'
code_style.font.size = Pt(11)
code_style.paragraph_format.line_spacing_rule = WD_LINE_SPACING.SINGLE
code_style.paragraph_format.space_before = Pt(6)
code_style.paragraph_format.space_after = Pt(6)
code_style.paragraph_format.left_indent = Pt(36)
code_style.paragraph_format.right_indent = Pt(36)
# 创建列表样式
list_style = self.doc.styles.add_style('List_Custom', WD_STYLE_TYPE.PARAGRAPH)
list_style.font.name = '仿宋'
list_style._element.rPr.rFonts.set(qn('w:eastAsia'), '仿宋')
list_style.font.size = Pt(12)
list_style.paragraph_format.line_spacing_rule = WD_LINE_SPACING.ONE_POINT_FIVE
list_style.paragraph_format.left_indent = Pt(21)
list_style.paragraph_format.first_line_indent = Pt(-21)
def create_document(self, content: str, processing_type: str = "文本处理"):
"""创建文档,保留原始结构"""
# 添加标题
title_para = self.doc.add_paragraph(style='Title_Custom')
title_run = title_para.add_run('文档处理结果')
# 添加处理类型
processing_para = self.doc.add_paragraph()
processing_para.alignment = WD_PARAGRAPH_ALIGNMENT.CENTER
processing_run = processing_para.add_run(f"处理方式: {processing_type}")
processing_run.font.name = '仿宋'
processing_run._element.rPr.rFonts.set(qn('w:eastAsia'), '仿宋')
processing_run.font.size = Pt(14)
# 添加日期
date_para = self.doc.add_paragraph()
date_para.alignment = WD_PARAGRAPH_ALIGNMENT.CENTER
date_run = date_para.add_run(f"处理时间: {datetime.now().strftime('%Y年%m月%d')}")
date_run.font.name = '仿宋'
date_run._element.rPr.rFonts.set(qn('w:eastAsia'), '仿宋')
date_run.font.size = Pt(14)
self.doc.add_paragraph() # 添加空行
# 预处理内容将Markdown格式转换为适合Word的格式
processed_content = convert_markdown_to_word(content)
# 按行处理文本,保留结构
lines = processed_content.split('\n')
in_code_block = False
current_paragraph = None
for line in lines:
# 检查是否为标题
header_match = re.match(r'^(#{1,6})\s+(.+)$', line)
if header_match:
# 根据#的数量确定标题级别
level = len(header_match.group(1))
title_text = header_match.group(2)
if level == 1:
style = 'Heading1_Custom'
elif level == 2:
style = 'Heading2_Custom'
else:
style = 'Heading3_Custom'
self.doc.add_paragraph(title_text, style=style)
current_paragraph = None
# 检查代码块标记
elif '[代码块]' in line:
in_code_block = True
current_paragraph = self.doc.add_paragraph(style='Code_Custom')
code_line = line.replace('[代码块]', '').strip()
if code_line:
current_paragraph.add_run(code_line)
elif '[/代码块]' in line:
in_code_block = False
code_line = line.replace('[/代码块]', '').strip()
if code_line and current_paragraph:
current_paragraph.add_run(code_line)
current_paragraph = None
# 检查列表项
elif line.strip().startswith(''):
p = self.doc.add_paragraph(style='List_Custom')
p.add_run(line.strip())
current_paragraph = None
# 处理普通文本行
elif line.strip():
if in_code_block:
if current_paragraph:
current_paragraph.add_run('\n' + line)
else:
current_paragraph = self.doc.add_paragraph(line, style='Code_Custom')
else:
if current_paragraph is None or not current_paragraph.text:
current_paragraph = self.doc.add_paragraph(line, style='Normal_Custom')
else:
current_paragraph.add_run('\n' + line)
# 处理空行,创建新段落
elif not in_code_block:
current_paragraph = None
return self.doc

View File

@@ -1,278 +0,0 @@
from typing import List, Dict, Tuple
import asyncio
from dataclasses import dataclass
from toolbox import CatchException, update_ui, promote_file_to_downloadzone, get_log_folder, get_user
from toolbox import update_ui, CatchException, report_exception, write_history_to_file
from crazy_functions.paper_fns.auto_git.query_analyzer import QueryAnalyzer, SearchCriteria
from crazy_functions.paper_fns.auto_git.handlers.repo_handler import RepositoryHandler
from crazy_functions.paper_fns.auto_git.handlers.code_handler import CodeSearchHandler
from crazy_functions.paper_fns.auto_git.handlers.user_handler import UserSearchHandler
from crazy_functions.paper_fns.auto_git.handlers.topic_handler import TopicHandler
from crazy_functions.paper_fns.auto_git.sources.github_source import GitHubSource
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
import re
from datetime import datetime
import os
import json
from pathlib import Path
import time
# 导入格式化器
from crazy_functions.paper_fns.file2file_doc import (
TxtFormatter,
MarkdownFormatter,
HtmlFormatter,
WordFormatter
)
from crazy_functions.paper_fns.file2file_doc.word2pdf import WordToPdfConverter
@CatchException
def GitHub项目智能检索(txt: str, llm_kwargs: Dict, plugin_kwargs: Dict, chatbot: List,
history: List, system_prompt: str, user_request: str):
"""GitHub项目智能检索主函数"""
# 初始化GitHub API调用源
github_source = GitHubSource(api_key=plugin_kwargs.get("github_api_key"))
# 初始化处理器
handlers = {
"repo": RepositoryHandler(github_source, llm_kwargs),
"code": CodeSearchHandler(github_source, llm_kwargs),
"user": UserSearchHandler(github_source, llm_kwargs),
"topic": TopicHandler(github_source, llm_kwargs),
}
# 分析查询意图
chatbot.append(["分析查询意图", "正在分析您的查询需求..."])
yield from update_ui(chatbot=chatbot, history=history)
query_analyzer = QueryAnalyzer()
search_criteria = yield from query_analyzer.analyze_query(
txt, chatbot, llm_kwargs
)
# 根据查询类型选择处理器
handler = handlers.get(search_criteria.query_type)
if not handler:
handler = handlers["repo"] # 默认使用仓库处理器
# 处理查询
chatbot.append(["开始搜索", f"使用{handler.__class__.__name__}处理您的请求正在搜索GitHub..."])
yield from update_ui(chatbot=chatbot, history=history)
final_prompt = asyncio.run(handler.handle(
criteria=search_criteria,
chatbot=chatbot,
history=history,
system_prompt=system_prompt,
llm_kwargs=llm_kwargs,
plugin_kwargs=plugin_kwargs
))
if final_prompt:
# 检查是否是道歉提示
if "很抱歉,我们未能找到" in final_prompt:
chatbot.append([txt, final_prompt])
yield from update_ui(chatbot=chatbot, history=history)
return
# 在 final_prompt 末尾添加用户原始查询要求
final_prompt += f"""
原始用户查询: "{txt}"
重要提示:
- 你的回答必须直接满足用户的原始查询要求
- 在遵循之前指南的同时,优先回答用户明确提出的问题
- 确保回答格式和内容与用户期望一致
- 对于GitHub仓库需要提供链接地址, 回复中请采用以下格式的HTML链接:
* 对于GitHub仓库: <a href='Github_URL' target='_blank'>仓库名</a>
- 不要生成参考列表,引用信息将另行处理
"""
# 使用最终的prompt生成回答
response = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=final_prompt,
inputs_show_user=txt,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history=[],
sys_prompt=f"你是一个熟悉GitHub生态系统的专业助手能帮助用户找到合适的项目、代码和开发者。除非用户指定否则请使用中文回复。"
)
# 1. 获取项目列表
repos_list = handler.ranked_repos # 直接使用原始仓库数据
# 在新的对话中添加格式化的仓库参考列表
if repos_list:
references = ""
for idx, repo in enumerate(repos_list, 1):
# 构建仓库引用
stars_str = f"{repo.get('stargazers_count', 'N/A')}" if repo.get('stargazers_count') else ""
forks_str = f"🍴 {repo.get('forks_count', 'N/A')}" if repo.get('forks_count') else ""
stats = f"{stars_str} {forks_str}".strip()
stats = f" ({stats})" if stats else ""
language = f" [{repo.get('language', '')}]" if repo.get('language') else ""
reference = f"[{idx}] **{repo.get('name', '')}**{language}{stats} \n"
reference += f"👤 {repo.get('owner', {}).get('login', 'N/A') if repo.get('owner') is not None else 'N/A'} | "
reference += f"📅 {repo.get('updated_at', 'N/A')[:10]} | "
reference += f"<a href='{repo.get('html_url', '')}' target='_blank'>GitHub</a> \n"
if repo.get('description'):
reference += f"{repo.get('description')} \n"
reference += " \n"
references += reference
# 添加新的对话显示参考仓库
chatbot.append(["推荐项目如下:", references])
yield from update_ui(chatbot=chatbot, history=history)
# 2. 保存结果到文件
# 创建保存目录
save_dir = get_log_folder(get_user(chatbot), plugin_name='github_search')
if not os.path.exists(save_dir):
os.makedirs(save_dir)
# 生成文件名
def get_safe_filename(txt, max_length=10):
# 获取文本前max_length个字符作为文件名
filename = txt[:max_length].strip()
# 移除不安全的文件名字符
filename = re.sub(r'[\\/:*?"<>|]', '', filename)
# 如果文件名为空,使用时间戳
if not filename:
filename = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
return filename
base_filename = get_safe_filename(txt)
# 准备保存的内容 - 优化文档结构
md_content = f"# GitHub搜索结果: {txt}\n\n"
md_content += f"搜索时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n"
# 添加模型回复
md_content += "## 搜索分析与总结\n\n"
md_content += response + "\n\n"
# 添加所有搜索到的仓库详细信息
md_content += "## 推荐项目详情\n\n"
if not repos_list:
md_content += "未找到匹配的项目\n\n"
else:
md_content += f"共找到 {len(repos_list)} 个相关项目\n\n"
# 添加项目简表
md_content += "### 项目一览表\n\n"
md_content += "| 序号 | 项目名称 | 作者 | 语言 | 星标数 | 更新时间 |\n"
md_content += "| ---- | -------- | ---- | ---- | ------ | -------- |\n"
for idx, repo in enumerate(repos_list, 1):
md_content += f"| {idx} | [{repo.get('name', '')}]({repo.get('html_url', '')}) | {repo.get('owner', {}).get('login', 'N/A') if repo.get('owner') is not None else 'N/A'} | {repo.get('language', 'N/A')} | {repo.get('stargazers_count', 'N/A')} | {repo.get('updated_at', 'N/A')[:10]} |\n"
md_content += "\n"
# 添加详细项目信息
md_content += "### 项目详细信息\n\n"
for idx, repo in enumerate(repos_list, 1):
md_content += f"#### {idx}. {repo.get('name', '')}\n\n"
md_content += f"- **仓库**: [{repo.get('full_name', '')}]({repo.get('html_url', '')})\n"
md_content += f"- **作者**: [{repo.get('owner', {}).get('login', '') if repo.get('owner') is not None else 'N/A'}]({repo.get('owner', {}).get('html_url', '') if repo.get('owner') is not None else '#'})\n"
md_content += f"- **描述**: {repo.get('description', 'N/A')}\n"
md_content += f"- **语言**: {repo.get('language', 'N/A')}\n"
md_content += f"- **星标**: {repo.get('stargazers_count', 'N/A')}\n"
md_content += f"- **Fork数**: {repo.get('forks_count', 'N/A')}\n"
md_content += f"- **最近更新**: {repo.get('updated_at', 'N/A')[:10]}\n"
md_content += f"- **创建时间**: {repo.get('created_at', 'N/A')[:10]}\n"
md_content += f"- **开源许可**: {repo.get('license', {}).get('name', 'N/A') if repo.get('license') is not None else 'N/A'}\n"
if repo.get('topics'):
md_content += f"- **主题标签**: {', '.join(repo.get('topics', []))}\n"
if repo.get('homepage'):
md_content += f"- **项目主页**: [{repo.get('homepage')}]({repo.get('homepage')})\n"
md_content += "\n"
# 添加查询信息和元数据
md_content += "## 查询元数据\n\n"
md_content += f"- **原始查询**: {txt}\n"
md_content += f"- **查询类型**: {search_criteria.query_type}\n"
md_content += f"- **关键词**: {', '.join(search_criteria.keywords) if hasattr(search_criteria, 'keywords') and search_criteria.keywords else 'N/A'}\n"
md_content += f"- **搜索日期**: {datetime.now().strftime('%Y-%m-%d')}\n\n"
# 保存为多种格式
saved_files = []
failed_files = []
# 1. 保存为TXT
try:
txt_formatter = TxtFormatter()
txt_content = txt_formatter.create_document(md_content)
txt_file = os.path.join(save_dir, f"github_results_{base_filename}.txt")
with open(txt_file, 'w', encoding='utf-8') as f:
f.write(txt_content)
promote_file_to_downloadzone(txt_file, chatbot=chatbot)
saved_files.append("TXT")
except Exception as e:
failed_files.append(f"TXT (错误: {str(e)})")
# 2. 保存为Markdown
try:
md_formatter = MarkdownFormatter()
formatted_md_content = md_formatter.create_document(md_content, "GitHub项目搜索")
md_file = os.path.join(save_dir, f"github_results_{base_filename}.md")
with open(md_file, 'w', encoding='utf-8') as f:
f.write(formatted_md_content)
promote_file_to_downloadzone(md_file, chatbot=chatbot)
saved_files.append("Markdown")
except Exception as e:
failed_files.append(f"Markdown (错误: {str(e)})")
# 3. 保存为HTML
try:
html_formatter = HtmlFormatter(processing_type="GitHub项目搜索")
html_content = html_formatter.create_document(md_content)
html_file = os.path.join(save_dir, f"github_results_{base_filename}.html")
with open(html_file, 'w', encoding='utf-8') as f:
f.write(html_content)
promote_file_to_downloadzone(html_file, chatbot=chatbot)
saved_files.append("HTML")
except Exception as e:
failed_files.append(f"HTML (错误: {str(e)})")
# 4. 保存为Word
word_file = None
try:
word_formatter = WordFormatter()
doc = word_formatter.create_document(md_content, "GitHub项目搜索")
word_file = os.path.join(save_dir, f"github_results_{base_filename}.docx")
doc.save(word_file)
promote_file_to_downloadzone(word_file, chatbot=chatbot)
saved_files.append("Word")
except Exception as e:
failed_files.append(f"Word (错误: {str(e)})")
word_file = None
# 5. 保存为PDF (仅当Word保存成功时)
if word_file and os.path.exists(word_file):
try:
pdf_file = WordToPdfConverter.convert_to_pdf(word_file)
promote_file_to_downloadzone(pdf_file, chatbot=chatbot)
saved_files.append("PDF")
except Exception as e:
failed_files.append(f"PDF (错误: {str(e)})")
# 报告保存结果
if saved_files:
success_message = f"成功保存以下格式: {', '.join(saved_files)}"
if failed_files:
failure_message = f"以下格式保存失败: {', '.join(failed_files)}"
chatbot.append(["部分格式保存成功", f"{success_message}{failure_message}"])
else:
chatbot.append(["所有格式保存成功", success_message])
else:
chatbot.append(["保存失败", f"所有格式均保存失败: {', '.join(failed_files)}"])
else:
report_exception(chatbot, history, a=f"处理失败", b=f"请尝试其他查询")
yield from update_ui(chatbot=chatbot, history=history)

View File

@@ -1,635 +0,0 @@
import os
import time
import glob
from typing import Dict, List, Generator, Tuple
from dataclasses import dataclass
from crazy_functions.pdf_fns.text_content_loader import TextContentLoader
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from toolbox import update_ui, promote_file_to_downloadzone, write_history_to_file, CatchException, report_exception
from shared_utils.fastapi_server import validate_path_safety
# 导入论文下载相关函数
from crazy_functions.论文下载 import extract_paper_id, extract_paper_ids, get_arxiv_paper, format_arxiv_id, SciHub
from pathlib import Path
from datetime import datetime, timedelta
import calendar
@dataclass
class RecommendationQuestion:
"""期刊会议推荐分析问题类"""
id: str # 问题ID
question: str # 问题内容
importance: int # 重要性 (1-55最高)
description: str # 问题描述
class JournalConferenceRecommender:
"""论文期刊会议推荐器"""
def __init__(self, llm_kwargs: Dict, plugin_kwargs: Dict, chatbot: List, history: List, system_prompt: str):
"""初始化推荐器"""
self.llm_kwargs = llm_kwargs
self.plugin_kwargs = plugin_kwargs
self.chatbot = chatbot
self.history = history
self.system_prompt = system_prompt
self.paper_content = ""
self.analysis_results = {}
# 定义论文分析问题库(针对期刊会议推荐)
self.questions = [
RecommendationQuestion(
id="research_field_and_topic",
question="请分析这篇论文的研究领域、主题和关键词。具体包括1)论文属于哪个主要学科领域如自然科学、工程技术、医学、社会科学、人文学科等2)具体的研究子领域或方向3)论文的核心主题和关键概念4)重要的学术关键词和专业术语5)研究的跨学科特征如果有6)研究的地域性特征(国际性研究还是特定地区研究)。",
importance=5,
description="研究领域与主题分析"
),
RecommendationQuestion(
id="methodology_and_approach",
question="请分析论文的研究方法和技术路线。包括1)采用的主要研究方法定量研究、定性研究、理论分析、实验研究、田野调查、文献综述、案例研究等2)使用的技术手段、工具或分析方法3)研究设计的严谨性和创新性4)数据收集和分析方法的适当性5)研究方法在该学科中的先进性或传统性6)方法学上的贡献或局限性。",
importance=4,
description="研究方法与技术路线"
),
RecommendationQuestion(
id="novelty_and_contribution",
question="请评估论文的创新性和学术贡献。包括1)研究的新颖性程度理论创新、方法创新、应用创新等2)对现有知识体系的贡献或突破3)解决问题的重要性和学术价值4)研究成果的理论意义和实践价值5)在该学科领域的地位和影响潜力6)与国际前沿研究的关系7)对后续研究的启发意义。",
importance=4,
description="创新性与学术贡献"
),
RecommendationQuestion(
id="target_audience_and_scope",
question="请分析论文的目标受众和应用范围。包括1)主要面向的学术群体研究者、从业者、政策制定者等2)研究成果的潜在应用领域和受益群体3)对学术界和实践界的价值4)研究的国际化程度和跨文化适用性5)是否适合国际期刊还是区域性期刊6)语言发表偏好英文、中文或其他语言7)开放获取的必要性和可行性。",
importance=3,
description="目标受众与应用范围"
),
]
# 按重要性排序
self.questions.sort(key=lambda q: q.importance, reverse=True)
def _load_paper(self, paper_path: str) -> Generator:
"""加载论文内容"""
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 使用TextContentLoader读取文件
loader = TextContentLoader(self.chatbot, self.history)
yield from loader.execute_single_file(paper_path)
# 获取加载的内容
if len(self.history) >= 2 and self.history[-2]:
self.paper_content = self.history[-2]
yield from update_ui(chatbot=self.chatbot, history=self.history)
return True
else:
self.chatbot.append(["错误", "无法读取论文内容,请检查文件是否有效"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return False
def _analyze_question(self, question: RecommendationQuestion) -> Generator:
"""分析单个问题"""
try:
# 创建分析提示
prompt = f"请基于以下论文内容回答问题:\n\n{self.paper_content}\n\n问题:{question.question}"
# 使用单线程版本的请求函数
response = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=prompt,
inputs_show_user=question.question, # 显示问题本身
llm_kwargs=self.llm_kwargs,
chatbot=self.chatbot,
history=[], # 空历史,确保每个问题独立分析
sys_prompt="你是一个专业的学术期刊会议推荐专家,需要仔细分析论文内容并提供准确的分析。请保持客观、专业,并基于论文内容提供深入分析。"
)
if response:
self.analysis_results[question.id] = response
return True
return False
except Exception as e:
self.chatbot.append(["错误", f"分析问题时出错: {str(e)}"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return False
def _generate_journal_recommendations(self) -> Generator:
"""生成期刊推荐"""
self.chatbot.append(["生成期刊推荐", "正在基于论文分析结果生成期刊推荐..."])
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 构建期刊推荐提示
journal_prompt = """请基于以下论文分析结果,为这篇论文推荐合适的学术期刊。
推荐要求:
1. 根据论文的创新性和工作质量,分别推荐不同级别的期刊:
- 顶级期刊(影响因子>8或该领域顶级期刊2-3个
- 高质量期刊影响因子4-8或该领域知名期刊3-4个
- 中等期刊影响因子1.5-4或该领域认可期刊3-4个
- 入门期刊(影响因子<1.5但声誉良好的期刊2-3个
注意:不同学科的影响因子标准差异很大,请根据论文所属学科的实际情况调整标准。
特别是医学领域,需要考虑:
- 临床医学期刊通常影响因子较高顶级期刊IF>20高质量期刊IF>10
- 基础医学期刊影响因子相对较低但学术价值很高
- 专科医学期刊在各自领域内具有权威性
- 医学期刊的临床实用性和循证医学价值
2. 对每个期刊提供详细信息:
- 期刊全名和缩写
- 最新影响因子(如果知道)
- 期刊级别分类Q1/Q2/Q3/Q4或该学科的分类标准
- 主要研究领域和范围
- 与论文内容的匹配度评分1-10分
- 发表难度评估(容易/中等/困难/极难)
- 平均审稿周期
- 开放获取政策
- 期刊的学科分类如SCI、SSCI、A&HCI等
- 医学期刊特殊信息(如适用):
* PubMed收录情况
* 是否为核心临床期刊
* 专科领域权威性
* 循证医学等级要求
* 临床试验注册要求
* 伦理委员会批准要求
3. 按推荐优先级排序,并说明推荐理由
4. 提供针对性的投稿建议,考虑该学科的特点
论文分析结果:"""
for q in self.questions:
if q.id in self.analysis_results:
journal_prompt += f"\n\n{q.description}:\n{self.analysis_results[q.id]}"
journal_prompt += "\n\n请提供详细的期刊推荐报告,重点关注期刊的层次性和适配性。请根据论文的具体学科领域,采用该领域通用的期刊评价标准和分类体系。"
try:
response = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=journal_prompt,
inputs_show_user="生成期刊推荐报告",
llm_kwargs=self.llm_kwargs,
chatbot=self.chatbot,
history=[],
sys_prompt="你是一个资深的跨学科学术期刊推荐专家熟悉各个学科领域不同层次的期刊。请根据论文的具体学科和创新性推荐从顶级到入门级的各层次期刊。不同学科有不同的期刊评价标准理工科重视影响因子和SCI收录社会科学重视SSCI和学科声誉人文学科重视A&HCI和同行评议医学领域重视PubMed收录、临床实用性、循证医学价值和伦理规范。请根据论文所属学科采用相应的评价标准。"
)
if response:
return response
return "期刊推荐生成失败"
except Exception as e:
self.chatbot.append(["错误", f"生成期刊推荐时出错: {str(e)}"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return "期刊推荐生成失败: " + str(e)
def _generate_conference_recommendations(self) -> Generator:
"""生成会议推荐"""
self.chatbot.append(["生成会议推荐", "正在基于论文分析结果生成会议推荐..."])
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 获取当前时间信息
current_time = datetime.now()
current_date_str = current_time.strftime("%Y年%m月%d")
current_year = current_time.year
current_month = current_time.month
# 构建会议推荐提示
conference_prompt = f"""请基于以下论文分析结果,为这篇论文推荐合适的学术会议。
**重要提示:当前时间是{current_date_str}{current_year}{current_month}月),请基于这个时间点推断会议的举办时间和投稿截止时间。**
推荐要求:
1. 根据论文的创新性和工作质量,分别推荐不同级别的会议:
- 顶级会议该领域最权威的国际会议2-3个
- 高质量会议该领域知名的国际或区域会议3-4个
- 中等会议该领域认可的专业会议3-4个
- 专业会议该领域细分方向的专门会议2-3个
注意:不同学科的会议评价标准不同:
- 计算机科学可参考CCF分类A/B/C类
- 工程学可参考EI收录和影响力
- 医学:可参考会议的临床影响和同行认可度
- 社会科学:可参考会议的学术声誉和参与度
- 人文学科:可参考会议的历史和学术传统
- 自然科学:可参考会议的国际影响力和发表质量
特别是医学会议,需要考虑:
- 临床医学会议重视实用性和临床指导价值
- 基础医学会议重视科学创新和机制研究
- 专科医学会议在各自领域内具有权威性
- 国际医学会议的CME学分认证情况
2. 对每个会议提供详细信息:
- 会议全名和缩写
- 会议级别分类(根据该学科的评价标准)
- 主要研究领域和主题
- 与论文内容的匹配度评分1-10分
- 录用难度评估(容易/中等/困难/极难)
- 会议举办周期(年会/双年会/不定期等)
- **基于当前时间{current_date_str},推断{current_year}年和{current_year+1}年的举办时间和地点**(请根据往年的举办时间规律进行推断)
- **基于推断的会议时间,估算论文提交截止时间**通常在会议前3-6个月
- 会议的国际化程度和影响范围
- 医学会议特殊信息(如适用):
* 是否提供CME学分
* 临床实践指导价值
* 专科认证机构认可情况
* 会议论文集的PubMed收录情况
* 伦理和临床试验相关要求
3. 按推荐优先级排序,并说明推荐理由
4. **基于当前时间{current_date_str},提供会议投稿的时间规划建议**
- 哪些会议可以赶上{current_year}年的投稿截止时间
- 哪些会议需要准备{current_year+1}年的投稿
- 具体的时间安排建议
论文分析结果:"""
for q in self.questions:
if q.id in self.analysis_results:
conference_prompt += f"\n\n{q.description}:\n{self.analysis_results[q.id]}"
conference_prompt += f"\n\n请提供详细的会议推荐报告,重点关注会议的层次性和时效性。请根据论文的具体学科领域,采用该领域通用的会议评价标准。\n\n**特别注意:请根据当前时间{current_date_str}和各会议的历史举办时间规律,准确推断{current_year}年和{current_year+1}年的会议时间安排,不要使用虚构的时间。**"
try:
response = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=conference_prompt,
inputs_show_user="生成会议推荐报告",
llm_kwargs=self.llm_kwargs,
chatbot=self.chatbot,
history=[],
sys_prompt="你是一个资深的跨学科学术会议推荐专家熟悉各个学科领域不同层次的学术会议。请根据论文的具体学科和创新性推荐从顶级到专业级的各层次会议。不同学科有不同的会议评价标准和文化理工科重视技术创新和国际影响力社会科学重视理论贡献和社会意义人文学科重视学术深度和文化价值医学领域重视临床实用性、CME学分认证、专科权威性和伦理规范。请根据论文所属学科采用相应的评价标准和推荐策略。"
)
if response:
return response
return "会议推荐生成失败"
except Exception as e:
self.chatbot.append(["错误", f"生成会议推荐时出错: {str(e)}"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return "会议推荐生成失败: " + str(e)
def _generate_priority_summary(self, journal_recommendations: str, conference_recommendations: str) -> Generator:
"""生成优先级总结"""
self.chatbot.append(["生成优先级总结", "正在生成投稿优先级总结..."])
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 获取当前时间信息
current_time = datetime.now()
current_date_str = current_time.strftime("%Y年%m月%d")
current_month = current_time.strftime("%Y年%m月")
# 计算未来时间点
def add_months(date, months):
"""安全地添加月份"""
month = date.month - 1 + months
year = date.year + month // 12
month = month % 12 + 1
day = min(date.day, calendar.monthrange(year, month)[1])
return date.replace(year=year, month=month, day=day)
future_6_months = add_months(current_time, 6).strftime('%Y年%m月')
future_12_months = add_months(current_time, 12).strftime('%Y年%m月')
future_year = (current_time.year + 1)
priority_prompt = f"""请基于以下期刊和会议推荐结果,生成一个综合的投稿优先级总结。
**重要提示:当前时间是{current_date_str}{current_month}),请基于这个时间点制定投稿计划。**
期刊推荐结果:
{journal_recommendations}
会议推荐结果:
{conference_recommendations}
请提供:
1. 综合投稿策略建议(考虑该学科的发表文化和惯例)
- 期刊优先还是会议优先(不同学科有不同偏好)
- 国际期刊/会议 vs 国内期刊/会议的选择策略
- 英文发表 vs 中文发表的考虑
2. 按时间线排列的投稿计划(**基于当前时间{current_date_str},考虑截止时间和审稿周期**
- 短期目标({current_month}起3-6个月内即到{future_6_months}
- 中期目标6-12个月内即到{future_12_months}
- 长期目标1年以上{future_year}年以后)
3. 风险分散策略
- 同时投稿多个不同级别的目标
- 考虑该学科的一稿多投政策
- 备选方案和应急策略
4. 针对论文可能需要的改进建议
- 根据目标期刊/会议的要求调整内容
- 语言和格式的优化建议
- 补充实验或分析的建议
5. 预期的发表时间线和成功概率评估(基于当前时间{current_date_str}
6. 该学科特有的发表注意事项
- 伦理审查要求(如医学、心理学等)
- 数据开放要求(如某些自然科学领域)
- 利益冲突声明(如医学、工程等)
- 医学领域特殊要求:
* 临床试验注册要求ClinicalTrials.gov、中国临床试验注册中心等
* 患者知情同意和隐私保护
* 医学伦理委员会批准证明
* CONSORT、STROBE、PRISMA等报告规范遵循
* 药物/器械安全性数据要求
* CME学分认证相关要求
* 临床指南和循证医学等级要求
- 其他学科特殊要求
请以表格形式总结前10个最推荐的投稿目标期刊+会议),包括优先级排序、预期时间线和成功概率。
**注意:所有时间规划都应基于当前时间{current_date_str}进行计算,不要使用虚构的时间。**"""
try:
response = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=priority_prompt,
inputs_show_user="生成投稿优先级总结",
llm_kwargs=self.llm_kwargs,
chatbot=self.chatbot,
history=[],
sys_prompt="你是一个资深的跨学科学术发表策略专家,熟悉各个学科的发表文化、惯例和要求。请综合考虑不同学科的特点:理工科通常重视期刊发表和影响因子,社会科学平衡期刊和专著,人文学科重视同行评议和学术声誉,医学重视临床意义和伦理规范。请为作者制定最适合其学科背景的投稿策略和时间规划。"
)
if response:
return response
return "优先级总结生成失败"
except Exception as e:
self.chatbot.append(["错误", f"生成优先级总结时出错: {str(e)}"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return "优先级总结生成失败: " + str(e)
def save_recommendations(self, journal_recommendations: str, conference_recommendations: str, priority_summary: str) -> Generator:
"""保存推荐报告"""
timestamp = time.strftime("%Y%m%d_%H%M%S")
# 保存为Markdown文件
try:
md_content = f"""# 论文期刊会议推荐报告
## 投稿优先级总结
{priority_summary}
## 期刊推荐
{journal_recommendations}
## 会议推荐
{conference_recommendations}
---
# 详细分析结果
"""
# 添加详细分析结果
for q in self.questions:
if q.id in self.analysis_results:
md_content += f"\n\n## {q.description}\n\n{self.analysis_results[q.id]}"
result_file = write_history_to_file(
history=[md_content],
file_basename=f"期刊会议推荐_{timestamp}.md"
)
if result_file and os.path.exists(result_file):
promote_file_to_downloadzone(result_file, chatbot=self.chatbot)
self.chatbot.append(["保存成功", f"推荐报告已保存至: {os.path.basename(result_file)}"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
else:
self.chatbot.append(["警告", "保存报告成功但找不到文件"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
except Exception as e:
self.chatbot.append(["警告", f"保存报告失败: {str(e)}"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
def recommend_venues(self, paper_path: str) -> Generator:
"""推荐期刊会议主流程"""
# 加载论文
success = yield from self._load_paper(paper_path)
if not success:
return
# 分析关键问题
for question in self.questions:
yield from self._analyze_question(question)
# 分别生成期刊和会议推荐
journal_recommendations = yield from self._generate_journal_recommendations()
conference_recommendations = yield from self._generate_conference_recommendations()
# 生成优先级总结
priority_summary = yield from self._generate_priority_summary(journal_recommendations, conference_recommendations)
# 显示结果
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 保存报告
yield from self.save_recommendations(journal_recommendations, conference_recommendations, priority_summary)
# 将完整的分析结果和推荐内容添加到历史记录中,方便用户继续提问
self._add_to_history(journal_recommendations, conference_recommendations, priority_summary)
def _add_to_history(self, journal_recommendations: str, conference_recommendations: str, priority_summary: str):
"""将分析结果和推荐内容添加到历史记录中"""
try:
# 构建完整的内容摘要
history_content = f"""# 论文期刊会议推荐分析完成
## 📊 投稿优先级总结
{priority_summary}
## 📚 期刊推荐
{journal_recommendations}
## 🏛️ 会议推荐
{conference_recommendations}
## 📋 详细分析结果
"""
# 添加详细分析结果
for q in self.questions:
if q.id in self.analysis_results:
history_content += f"\n### {q.description}\n{self.analysis_results[q.id]}\n"
history_content += "\n---\n💡 您现在可以基于以上分析结果继续提问,比如询问特定期刊的详细信息、投稿策略建议、或者对推荐结果的进一步解释。"
# 添加到历史记录中
self.history.append("论文期刊会议推荐分析")
self.history.append(history_content)
self.chatbot.append(["✅ 分析完成", "所有分析结果和推荐内容已添加到对话历史中,您可以继续基于这些内容提问。"])
except Exception as e:
self.chatbot.append(["警告", f"添加到历史记录时出错: {str(e)},但推荐报告已正常生成"])
# 即使添加历史失败,也不影响主要功能
def _find_paper_file(path: str) -> str:
"""查找路径中的论文文件(简化版)"""
if os.path.isfile(path):
return path
# 支持的文件扩展名(按优先级排序)
extensions = ["pdf", "docx", "doc", "txt", "md", "tex"]
# 简单地遍历目录
if os.path.isdir(path):
try:
for ext in extensions:
# 手动检查每个可能的文件而不使用glob
potential_file = os.path.join(path, f"paper.{ext}")
if os.path.exists(potential_file) and os.path.isfile(potential_file):
return potential_file
# 如果没找到特定命名的文件,检查目录中的所有文件
for file in os.listdir(path):
file_path = os.path.join(path, file)
if os.path.isfile(file_path):
file_ext = file.split('.')[-1].lower() if '.' in file else ""
if file_ext in extensions:
return file_path
except Exception:
pass # 忽略任何错误
return None
def download_paper_by_id(paper_info, chatbot, history) -> str:
"""下载论文并返回保存路径
Args:
paper_info: 元组包含论文ID类型arxiv或doi和ID值
chatbot: 聊天机器人对象
history: 历史记录
Returns:
str: 下载的论文路径或None
"""
id_type, paper_id = paper_info
# 创建保存目录 - 使用时间戳创建唯一文件夹
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
user_name = chatbot.get_user() if hasattr(chatbot, 'get_user') else "default"
from toolbox import get_log_folder, get_user
base_save_dir = get_log_folder(get_user(chatbot), plugin_name='paper_download')
save_dir = os.path.join(base_save_dir, f"papers_{timestamp}")
if not os.path.exists(save_dir):
os.makedirs(save_dir)
save_path = Path(save_dir)
chatbot.append([f"下载论文", f"正在下载{'arXiv' if id_type == 'arxiv' else 'DOI'} {paper_id} 的论文..."])
update_ui(chatbot=chatbot, history=history)
pdf_path = None
try:
if id_type == 'arxiv':
# 使用改进的arxiv查询方法
formatted_id = format_arxiv_id(paper_id)
paper_result = get_arxiv_paper(formatted_id)
if not paper_result:
chatbot.append([f"下载失败", f"未找到arXiv论文: {paper_id}"])
update_ui(chatbot=chatbot, history=history)
return None
# 下载PDF
filename = f"arxiv_{paper_id.replace('/', '_')}.pdf"
pdf_path = str(save_path / filename)
paper_result.download_pdf(filename=pdf_path)
else: # doi
# 下载DOI
sci_hub = SciHub(
doi=paper_id,
path=save_path
)
pdf_path = sci_hub.fetch()
# 检查下载结果
if pdf_path and os.path.exists(pdf_path):
promote_file_to_downloadzone(pdf_path, chatbot=chatbot)
chatbot.append([f"下载成功", f"已成功下载论文: {os.path.basename(pdf_path)}"])
update_ui(chatbot=chatbot, history=history)
return pdf_path
else:
chatbot.append([f"下载失败", f"论文下载失败: {paper_id}"])
update_ui(chatbot=chatbot, history=history)
return None
except Exception as e:
chatbot.append([f"下载错误", f"下载论文时出错: {str(e)}"])
update_ui(chatbot=chatbot, history=history)
return None
@CatchException
def 论文期刊会议推荐(txt: str, llm_kwargs: Dict, plugin_kwargs: Dict, chatbot: List,
history: List, system_prompt: str, user_request: str):
"""主函数 - 论文期刊会议推荐"""
# 初始化推荐器
chatbot.append(["函数插件功能及使用方式", "论文期刊会议推荐:基于论文内容分析,为您推荐合适的学术期刊和会议投稿目标。适用于各个学科专业(自然科学、工程技术、医学、社会科学、人文学科等),根据不同学科的评价标准和发表文化,提供分层次的期刊会议推荐、影响因子分析、发表难度评估、投稿策略建议等。<br><br>📋 使用方式:<br>1、直接上传PDF文件<br>2、输入DOI号或arXiv ID<br>3、点击插件开始分析"])
yield from update_ui(chatbot=chatbot, history=history)
paper_file = None
# 检查输入是否为论文IDarxiv或DOI
paper_info = extract_paper_id(txt)
if paper_info:
# 如果是论文ID下载论文
chatbot.append(["检测到论文ID", f"检测到{'arXiv' if paper_info[0] == 'arxiv' else 'DOI'} ID: {paper_info[1]},准备下载论文..."])
yield from update_ui(chatbot=chatbot, history=history)
# 下载论文
paper_file = download_paper_by_id(paper_info, chatbot, history)
if not paper_file:
report_exception(chatbot, history, a=f"下载论文失败", b=f"无法下载{'arXiv' if paper_info[0] == 'arxiv' else 'DOI'}论文: {paper_info[1]}")
yield from update_ui(chatbot=chatbot, history=history)
return
else:
# 检查输入路径
if not os.path.exists(txt):
report_exception(chatbot, history, a=f"解析论文: {txt}", b=f"找不到文件或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history)
return
# 验证路径安全性
user_name = chatbot.get_user()
validate_path_safety(txt, user_name)
# 查找论文文件
paper_file = _find_paper_file(txt)
if not paper_file:
report_exception(chatbot, history, a=f"解析论文", b=f"在路径 {txt} 中未找到支持的论文文件")
yield from update_ui(chatbot=chatbot, history=history)
return
yield from update_ui(chatbot=chatbot, history=history)
# 确保paper_file是字符串
if paper_file is not None and not isinstance(paper_file, str):
# 尝试转换为字符串
try:
paper_file = str(paper_file)
except:
report_exception(chatbot, history, a=f"类型错误", b=f"论文路径不是有效的字符串: {type(paper_file)}")
yield from update_ui(chatbot=chatbot, history=history)
return
# 开始推荐
chatbot.append(["开始分析", f"正在分析论文并生成期刊会议推荐: {os.path.basename(paper_file)}"])
yield from update_ui(chatbot=chatbot, history=history)
recommender = JournalConferenceRecommender(llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
yield from recommender.recommend_venues(paper_file)

View File

@@ -1,295 +0,0 @@
import re
import os
import zipfile
from toolbox import CatchException, update_ui, promote_file_to_downloadzone, get_log_folder, get_user
from pathlib import Path
from datetime import datetime
def extract_paper_id(txt):
"""从输入文本中提取论文ID"""
# 尝试匹配DOI将DOI匹配提前因为其格式更加明确
doi_patterns = [
r'doi.org/([\w\./-]+)', # doi.org/10.1234/xxx
r'doi:\s*([\w\./-]+)', # doi: 10.1234/xxx
r'(10\.\d{4,}/[\w\.-]+)', # 直接输入DOI: 10.1234/xxx
]
for pattern in doi_patterns:
match = re.search(pattern, txt, re.IGNORECASE)
if match:
return ('doi', match.group(1))
# 尝试匹配arXiv ID
arxiv_patterns = [
r'arxiv.org/abs/(\d+\.\d+)', # arxiv.org/abs/2103.14030
r'arxiv.org/pdf/(\d+\.\d+)', # arxiv.org/pdf/2103.14030
r'arxiv/(\d+\.\d+)', # arxiv/2103.14030
r'^(\d{4}\.\d{4,5})$', # 直接输入ID: 2103.14030
# 添加对早期arXiv ID的支持
r'arxiv.org/abs/([\w-]+/\d{7})', # arxiv.org/abs/math/0211159
r'arxiv.org/pdf/([\w-]+/\d{7})', # arxiv.org/pdf/hep-th/9901001
r'^([\w-]+/\d{7})$', # 直接输入: math/0211159
]
for pattern in arxiv_patterns:
match = re.search(pattern, txt, re.IGNORECASE)
if match:
paper_id = match.group(1)
# 如果是新格式YYMM.NNNNN或旧格式category/NNNNNNN都直接返回
if re.match(r'^\d{4}\.\d{4,5}$', paper_id) or re.match(r'^[\w-]+/\d{7}$', paper_id):
return ('arxiv', paper_id)
return None
def extract_paper_ids(txt):
"""从输入文本中提取多个论文ID"""
paper_ids = []
# 首先按换行符分割
for line in txt.strip().split('\n'):
line = line.strip()
if not line: # 跳过空行
continue
# 对每一行再按空格分割
for item in line.split():
item = item.strip()
if not item: # 跳过空项
continue
paper_info = extract_paper_id(item)
if paper_info:
paper_ids.append(paper_info)
# 去除重复项,保持顺序
unique_paper_ids = []
seen = set()
for paper_info in paper_ids:
if paper_info not in seen:
seen.add(paper_info)
unique_paper_ids.append(paper_info)
return unique_paper_ids
def format_arxiv_id(paper_id):
"""格式化arXiv ID处理新旧两种格式"""
# 如果是旧格式 (e.g. astro-ph/0404140)需要去掉arxiv:前缀
if '/' in paper_id:
return paper_id.replace('arxiv:', '') # 确保移除可能存在的arxiv:前缀
return paper_id
def get_arxiv_paper(paper_id):
"""获取arXiv论文处理新旧两种格式"""
import arxiv
# 尝试不同的查询方式
query_formats = [
paper_id, # 原始ID
paper_id.replace('/', ''), # 移除斜杠
f"id:{paper_id}", # 添加id:前缀
]
for query in query_formats:
try:
# 使用Search查询
search = arxiv.Search(
query=query,
max_results=1
)
result = next(arxiv.Client().results(search))
if result:
return result
except:
continue
try:
# 使用id_list查询
search = arxiv.Search(id_list=[query])
result = next(arxiv.Client().results(search))
if result:
return result
except:
continue
return None
def create_zip_archive(files, save_path):
"""将多个PDF文件打包成zip"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
zip_filename = f"papers_{timestamp}.zip"
zip_path = str(save_path / zip_filename)
with zipfile.ZipFile(zip_path, 'w') as zipf:
for file in files:
if os.path.exists(file):
# 只添加文件名,不包含路径
zipf.write(file, os.path.basename(file))
return zip_path
@CatchException
def 论文下载(txt: str, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
"""
txt: 用户输入可以是DOI、arxiv ID或相关链接支持多行输入进行批量下载
"""
from crazy_functions.doc_fns.text_content_loader import TextContentLoader
from crazy_functions.review_fns.data_sources.arxiv_source import ArxivSource
from crazy_functions.review_fns.data_sources.scihub_source import SciHub
# 解析输入
paper_infos = extract_paper_ids(txt)
if not paper_infos:
chatbot.append(["输入解析", "未能识别任何论文ID或DOI请检查输入格式。支持以下格式\n- arXiv ID (例如2103.14030)\n- arXiv链接\n- DOI (例如10.1234/xxx)\n- DOI链接\n\n多个论文ID请用换行分隔。"])
yield from update_ui(chatbot=chatbot, history=history)
return
# 创建保存目录 - 使用时间戳创建唯一文件夹
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
base_save_dir = get_log_folder(get_user(chatbot), plugin_name='paper_download')
save_dir = os.path.join(base_save_dir, f"papers_{timestamp}")
if not os.path.exists(save_dir):
os.makedirs(save_dir)
save_path = Path(save_dir)
# 记录下载结果
success_count = 0
failed_papers = []
downloaded_files = [] # 记录成功下载的文件路径
chatbot.append([f"开始下载", f"支持多行输入下载多篇论文,共检测到 {len(paper_infos)} 篇论文,开始下载..."])
yield from update_ui(chatbot=chatbot, history=history)
for id_type, paper_id in paper_infos:
try:
if id_type == 'arxiv':
chatbot.append([f"正在下载", f"从arXiv下载论文 {paper_id}..."])
yield from update_ui(chatbot=chatbot, history=history)
# 使用改进的arxiv查询方法
formatted_id = format_arxiv_id(paper_id)
paper_result = get_arxiv_paper(formatted_id)
if not paper_result:
failed_papers.append((paper_id, "未找到论文"))
continue
# 下载PDF
try:
filename = f"arxiv_{paper_id.replace('/', '_')}.pdf"
pdf_path = str(save_path / filename)
paper_result.download_pdf(filename=pdf_path)
if os.path.exists(pdf_path):
downloaded_files.append(pdf_path)
except Exception as e:
failed_papers.append((paper_id, f"PDF下载失败: {str(e)}"))
continue
else: # doi
chatbot.append([f"正在下载", f"从Sci-Hub下载论文 {paper_id}..."])
yield from update_ui(chatbot=chatbot, history=history)
sci_hub = SciHub(
doi=paper_id,
path=save_path
)
pdf_path = sci_hub.fetch()
if pdf_path and os.path.exists(pdf_path):
downloaded_files.append(pdf_path)
# 检查下载结果
if pdf_path and os.path.exists(pdf_path):
promote_file_to_downloadzone(pdf_path, chatbot=chatbot)
success_count += 1
else:
failed_papers.append((paper_id, "下载失败"))
except Exception as e:
failed_papers.append((paper_id, str(e)))
yield from update_ui(chatbot=chatbot, history=history)
# 创建ZIP压缩包
if downloaded_files:
try:
zip_path = create_zip_archive(downloaded_files, Path(base_save_dir))
promote_file_to_downloadzone(zip_path, chatbot=chatbot)
chatbot.append([
f"创建压缩包",
f"已将所有下载的论文打包为: {os.path.basename(zip_path)}"
])
yield from update_ui(chatbot=chatbot, history=history)
except Exception as e:
chatbot.append([
f"创建压缩包失败",
f"打包文件时出现错误: {str(e)}"
])
yield from update_ui(chatbot=chatbot, history=history)
# 生成最终报告
summary = f"下载完成!成功下载 {success_count} 篇论文。\n"
if failed_papers:
summary += "\n以下论文下载失败:\n"
for paper_id, reason in failed_papers:
summary += f"- {paper_id}: {reason}\n"
if downloaded_files:
summary += f"\n所有论文已存放在文件夹 '{save_dir}'并打包到压缩文件中。您可以在下载区找到单个PDF文件和压缩包。"
chatbot.append([
f"下载完成",
summary
])
yield from update_ui(chatbot=chatbot, history=history)
# 如果下载成功且用户想要直接阅读内容
if downloaded_files:
chatbot.append([
"提示",
"正在读取论文内容进行分析,请稍候..."
])
yield from update_ui(chatbot=chatbot, history=history)
# 使用TextContentLoader加载整个文件夹的PDF文件内容
loader = TextContentLoader(chatbot, history)
# 删除提示信息
chatbot.pop()
# 加载PDF内容 - 传入文件夹路径而不是单个文件路径
yield from loader.execute(save_dir)
# 添加提示信息
chatbot.append([
"提示",
"论文内容已加载完毕您可以直接向AI提问有关该论文的问题。"
])
yield from update_ui(chatbot=chatbot, history=history)
if __name__ == "__main__":
# 测试代码
import asyncio
async def test():
# 测试批量输入
batch_inputs = [
# 换行分隔的测试
"""https://arxiv.org/abs/2103.14030
math/0211159
10.1038/s41586-021-03819-2""",
# 空格分隔的测试
"https://arxiv.org/abs/2103.14030 math/0211159 10.1038/s41586-021-03819-2",
# 混合分隔的测试
"""https://arxiv.org/abs/2103.14030 math/0211159
10.1038/s41586-021-03819-2 https://doi.org/10.1038/s41586-021-03819-2
2103.14030""",
]
for i, test_input in enumerate(batch_inputs, 1):
print(f"\n测试用例 {i}:")
print(f"输入: {test_input}")
results = extract_paper_ids(test_input)
print(f"解析结果:")
for result in results:
print(f" {result}")
asyncio.run(test())

View File

@@ -1,867 +0,0 @@
import os
import time
import glob
import re
import threading
from typing import Dict, List, Generator, Tuple
from dataclasses import dataclass
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
from crazy_functions.rag_fns.rag_file_support import extract_text, convert_to_markdown
from request_llms.bridge_all import model_info
from toolbox import update_ui, CatchException, report_exception, promote_file_to_downloadzone, write_history_to_file
from shared_utils.fastapi_server import validate_path_safety
# 新增:导入结构化论文提取器
from crazy_functions.doc_fns.read_fns.unstructured_all.paper_structure_extractor import PaperStructureExtractor, ExtractorConfig, StructuredPaper
# 导入格式化器
from crazy_functions.paper_fns.file2file_doc import (
TxtFormatter,
MarkdownFormatter,
HtmlFormatter,
WordFormatter
)
@dataclass
class TextFragment:
"""文本片段数据类,用于组织处理单元"""
content: str
fragment_index: int
total_fragments: int
class DocumentProcessor:
"""文档处理器 - 处理单个文档并输出结果"""
def __init__(self, llm_kwargs: Dict, plugin_kwargs: Dict, chatbot: List, history: List, system_prompt: str):
"""初始化处理器"""
self.llm_kwargs = llm_kwargs.copy() # 创建原始llm_kwargs的副本
# 固定使用deepseek-reasoner模型
self.llm_kwargs['llm_model'] = "deepseek-reasoner"
self.plugin_kwargs = plugin_kwargs
self.chatbot = chatbot
self.history = history
self.system_prompt = system_prompt
self.processed_results = []
self.failed_fragments = []
# 新增:初始化论文结构提取器
self.paper_extractor = PaperStructureExtractor()
# 修改设置降重次数默认为1次原为3次
self.reduction_times = int(self.plugin_kwargs.get("reduction_times", 1))
def _get_token_limit(self) -> int:
"""获取模型token限制返回更小的值以确保更细粒度的分割"""
max_token = model_info[self.llm_kwargs['llm_model']]['max_token']
# 降低token限制使每个片段更小
return max_token // 4 # 从3/4降低到1/4
def _create_batch_inputs(self, fragments: List[TextFragment], current_iteration: int = 1) -> Tuple[List, List, List]:
"""创建批处理输入"""
inputs_array = []
inputs_show_user_array = []
history_array = []
# 基础指令 - 增强单次调用的效果
user_instruction = self.plugin_kwargs.get("advanced_arg", """你是一个人类科研工作者请对以下学术文本进行深度改写以彻底消除AI生成特征。具体要求如下
1. 保持学术写作的严谨性和专业性,但加入一些人类写作的不完美元素
2. 维持原文的核心论述和逻辑框架,但打破过于完美的结构
3. 彻底改变句式结构:
- 灵活运用主动句与被动句,偏好使用主动语态
- 适当使用不同长度的句子,包括一些较长的复杂句
- 引入变化多样的句式,打破规律性
- 完全避免AI常用的模板化句式和套路表达
- 增加一些学术写作中常见的转折和连接方式
4. 全面改善用词:
- 使用更多学术语境下的专业词汇和同义词替换
- 避免过于机械和规律性的连接词,使用更自然的过渡
- 重构专业术语的表达方式,但保持准确性
- 增加词汇多样性,减少重复用词
- 偶尔使用一些不太常见但恰当的词汇
5. 模拟真实学者的写作风格:
- 注重论证的严密性,但允许存在一些微小的不对称性
- 保持表达的客观性,同时适度体现个人学术见解
- 在适当位置表达观点时更加自信和坚定
- 避免过于完美和机械均衡的论述结构
- 允许段落长度有所变化,不要过于均匀
6. 引入人类学者常见的写作特点:
- 段落之间的过渡更加自然流畅
- 适当使用一些学术界常见的修辞手法,但不过度使用
- 偶尔使用一些强调和限定性表达
- 适当使用一些学术界认可的个人化表达
7. 彻底消除AI痕迹
- 避免过于规整和均衡的段落结构
- 避免机械性的句式变化和词汇替换模式
- 避免过于完美的逻辑推导,适当增加一些转折
- 减少公式化的表达方式""")
# 对于单次调用的场景,不需要迭代前缀,直接使用更强力的改写指令
for frag in fragments:
# 在单次调用时使用更强力的指令
if self.reduction_times == 1:
i_say = (f'请对以下学术文本进行彻底改写完全消除AI特征使其像真实人类学者撰写的内容。\n\n{user_instruction}\n\n'
f'请记住以下几点:\n'
f'1. 避免过于规整和均衡的结构\n'
f'2. 引入一些人类写作的微小不完美之处\n'
f'3. 使用多样化的句式和词汇\n'
f'4. 打破可能的AI规律性表达模式\n'
f'5. 适当使用一些专业领域内的表达习惯\n\n'
f'请将对文本的处理结果放在<decision>和</decision>标签之间。\n\n'
f'文本内容:\n```\n{frag.content}\n```')
else:
# 原有的迭代前缀逻辑
iteration_prefix = ""
if current_iteration > 1:
iteration_prefix = f"这是第{current_iteration}次改写,请在保持学术性的基础上,采用更加人性化、不同的表达方式。"
if current_iteration == 2:
iteration_prefix += "在保持专业性的同时进一步优化句式结构和用词显著降低AI痕迹。"
elif current_iteration >= 3:
iteration_prefix += "请在确保不损失任何学术内容的前提下,彻底重构表达方式,并适当引入少量人类学者常用的表达技巧,避免过度使用比喻和类比。"
i_say = (f'请按照以下要求处理文本内容:{iteration_prefix}{user_instruction}\n\n'
f'请将对文本的处理结果放在<decision>和</decision>标签之间。\n\n'
f'文本内容:\n```\n{frag.content}\n```')
i_say_show_user = f'正在处理文本片段 {frag.fragment_index + 1}/{frag.total_fragments}'
inputs_array.append(i_say)
inputs_show_user_array.append(i_say_show_user)
history_array.append([])
return inputs_array, inputs_show_user_array, history_array
def _extract_decision(self, text: str) -> str:
"""从LLM响应中提取<decision>标签内的内容"""
import re
pattern = r'<decision>(.*?)</decision>'
matches = re.findall(pattern, text, re.DOTALL)
if matches:
return matches[0].strip()
else:
# 如果没有找到标签,返回原始文本
return text.strip()
def process_file(self, file_path: str) -> Generator:
"""处理单个文件"""
self.chatbot.append(["开始处理文件", f"文件路径: {file_path}"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
try:
# 首先尝试转换为Markdown
file_path = convert_to_markdown(file_path)
# 1. 检查文件是否为支持的论文格式
is_paper_format = any(file_path.lower().endswith(ext) for ext in self.paper_extractor.SUPPORTED_EXTENSIONS)
if is_paper_format:
# 使用结构化提取器处理论文
return (yield from self._process_structured_paper(file_path))
else:
# 使用原有方式处理普通文档
return (yield from self._process_regular_file(file_path))
except Exception as e:
self.chatbot.append(["处理错误", f"文件处理失败: {str(e)}"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return None
def _process_structured_paper(self, file_path: str) -> Generator:
"""处理结构化论文文件"""
# 1. 提取论文结构
self.chatbot[-1] = ["正在分析论文结构", f"文件路径: {file_path}"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
try:
paper = self.paper_extractor.extract_paper_structure(file_path)
if not paper or not paper.sections:
self.chatbot.append(["无法提取论文结构", "将使用全文内容进行处理"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 使用全文内容进行段落切分
if paper and paper.full_text:
# 使用增强的分割函数进行更细致的分割
fragments = self._breakdown_section_content(paper.full_text)
# 创建文本片段对象
text_fragments = []
for i, frag in enumerate(fragments):
if frag.strip():
text_fragments.append(TextFragment(
content=frag,
fragment_index=i,
total_fragments=len(fragments)
))
# 多次降重处理
if text_fragments:
current_fragments = text_fragments
# 进行多轮降重处理
for iteration in range(1, self.reduction_times + 1):
# 处理当前片段
processed_content = yield from self._process_text_fragments(current_fragments, iteration)
# 如果这是最后一次迭代,保存结果
if iteration == self.reduction_times:
final_content = processed_content
break
# 否则,准备下一轮迭代的片段
# 从处理结果中提取处理后的内容
next_fragments = []
for idx, item in enumerate(self.processed_results):
next_fragments.append(TextFragment(
content=item['content'],
fragment_index=idx,
total_fragments=len(self.processed_results)
))
current_fragments = next_fragments
# 更新UI显示最终结果
self.chatbot[-1] = ["处理完成", f"共完成 {self.reduction_times} 轮降重"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
return final_content
else:
self.chatbot.append(["处理失败", "未能提取到有效的文本内容"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return None
else:
self.chatbot.append(["处理失败", "未能提取到论文内容"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return None
# 2. 准备处理章节内容(不处理标题)
self.chatbot[-1] = ["已提取论文结构", f"{len(paper.sections)} 个主要章节"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 3. 收集所有需要处理的章节内容并分割为合适大小
sections_to_process = []
section_map = {} # 用于映射处理前后的内容
def collect_section_contents(sections, parent_path=""):
"""递归收集章节内容,跳过参考文献部分"""
for i, section in enumerate(sections):
current_path = f"{parent_path}/{i}" if parent_path else f"{i}"
# 检查是否为参考文献部分,如果是则跳过
if section.section_type == 'references' or section.title.lower() in ['references', '参考文献', 'bibliography', '文献']:
continue # 跳过参考文献部分
# 只处理内容非空的章节
if section.content and section.content.strip():
# 使用增强的分割函数进行更细致的分割
fragments = self._breakdown_section_content(section.content)
for fragment_idx, fragment_content in enumerate(fragments):
if fragment_content.strip():
fragment_index = len(sections_to_process)
sections_to_process.append(TextFragment(
content=fragment_content,
fragment_index=fragment_index,
total_fragments=0 # 临时值,稍后更新
))
# 保存映射关系,用于稍后更新章节内容
# 为每个片段存储原始章节和片段索引信息
section_map[fragment_index] = (current_path, section, fragment_idx, len(fragments))
# 递归处理子章节
if section.subsections:
collect_section_contents(section.subsections, current_path)
# 收集所有章节内容
collect_section_contents(paper.sections)
# 更新总片段数
total_fragments = len(sections_to_process)
for frag in sections_to_process:
frag.total_fragments = total_fragments
# 4. 如果没有内容需要处理,直接返回
if not sections_to_process:
self.chatbot.append(["处理完成", "未找到需要处理的内容"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return None
# 5. 批量处理章节内容
self.chatbot[-1] = ["开始处理论文内容", f"{len(sections_to_process)} 个内容片段"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 一次性准备所有输入
inputs_array, inputs_show_user_array, history_array = self._create_batch_inputs(sections_to_process)
# 使用系统提示
instruction = self.plugin_kwargs.get("advanced_arg", """请对以下学术文本进行彻底改写以显著降低AI生成特征。具体要求如下
1. 保持学术写作的严谨性和专业性
2. 维持原文的核心论述和逻辑框架
3. 优化句式结构:
- 灵活运用主动句与被动句
- 适当拆分复杂句式,提高可读性
- 注意句式的多样性,避免重复模式
- 打破AI常用的句式模板
4. 改善用词:
- 使用更多学术语境下的同义词替换
- 避免过于机械和规律性的连接词
- 适当调整专业术语的表达方式
- 增加词汇多样性,减少重复用词
5. 增强文本的学术特征:
- 注重论证的严密性
- 保持表达的客观性
- 适度体现作者的学术见解
- 避免过于完美和均衡的论述结构
6. 确保语言风格的一致性
7. 减少AI生成文本常见的套路和模式""")
sys_prompt_array = [f"""作为一位专业的学术写作顾问,请按照以下要求改写文本:
1. 严格保持学术写作规范
2. 维持原文的核心论述和逻辑框架
3. 通过优化句式结构和用词降低AI生成特征
4. 确保语言风格的一致性和专业性
5. 保持内容的客观性和准确性
6. 避免AI常见的套路化表达和过于完美的结构"""] * len(sections_to_process)
# 调用LLM一次性处理所有片段
response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=inputs_array,
inputs_show_user_array=inputs_show_user_array,
llm_kwargs=self.llm_kwargs,
chatbot=self.chatbot,
history_array=history_array,
sys_prompt_array=sys_prompt_array,
)
# 处理响应,重组章节内容
section_contents = {} # 用于重组各章节的处理后内容
for j, frag in enumerate(sections_to_process):
try:
llm_response = response_collection[j * 2 + 1]
processed_text = self._extract_decision(llm_response)
if processed_text and processed_text.strip():
# 保存处理结果
self.processed_results.append({
'index': frag.fragment_index,
'content': processed_text
})
# 存储处理后的文本片段,用于后续重组
fragment_index = frag.fragment_index
if fragment_index in section_map:
path, section, fragment_idx, total_fragments = section_map[fragment_index]
# 初始化此章节的内容容器(如果尚未创建)
if path not in section_contents:
section_contents[path] = [""] * total_fragments
# 将处理后的片段放入正确位置
section_contents[path][fragment_idx] = processed_text
else:
self.failed_fragments.append(frag)
except Exception as e:
self.failed_fragments.append(frag)
# 重组每个章节的内容
for path, fragments in section_contents.items():
section = None
for idx in section_map:
if section_map[idx][0] == path:
section = section_map[idx][1]
break
if section:
# 合并该章节的所有处理后片段
section.content = "\n".join(fragments)
# 6. 更新UI
success_count = total_fragments - len(self.failed_fragments)
self.chatbot[-1] = ["处理完成", f"成功处理 {success_count}/{total_fragments} 个内容片段"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 收集参考文献部分(不进行处理)
references_sections = []
def collect_references(sections, parent_path=""):
"""递归收集参考文献部分"""
for i, section in enumerate(sections):
current_path = f"{parent_path}/{i}" if parent_path else f"{i}"
# 检查是否为参考文献部分
if section.section_type == 'references' or section.title.lower() in ['references', '参考文献', 'bibliography', '文献']:
references_sections.append((current_path, section))
# 递归检查子章节
if section.subsections:
collect_references(section.subsections, current_path)
# 收集参考文献
collect_references(paper.sections)
# 7. 将处理后的结构化论文转换为Markdown
markdown_content = self.paper_extractor.generate_markdown(paper)
# 8. 返回处理后的内容
self.chatbot[-1] = ["处理完成", f"成功处理 {success_count}/{total_fragments} 个内容片段,参考文献部分未处理"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
return markdown_content
except Exception as e:
self.chatbot.append(["结构化处理失败", f"错误: {str(e)},将尝试作为普通文件处理"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return (yield from self._process_regular_file(file_path))
def _process_regular_file(self, file_path: str) -> Generator:
"""使用原有方式处理普通文件"""
# 原有的文件处理逻辑
self.chatbot[-1] = ["正在读取文件", f"文件路径: {file_path}"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
content = extract_text(file_path)
if not content or not content.strip():
self.chatbot.append(["处理失败", "文件内容为空或无法提取内容"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return None
# 2. 分割文本
self.chatbot[-1] = ["正在分析文件", "将文件内容分割为适当大小的片段"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 使用增强的分割函数
fragments = self._breakdown_section_content(content)
# 3. 创建文本片段对象
text_fragments = []
for i, frag in enumerate(fragments):
if frag.strip():
text_fragments.append(TextFragment(
content=frag,
fragment_index=i,
total_fragments=len(fragments)
))
# 4. 多轮降重处理
if not text_fragments:
self.chatbot.append(["处理失败", "未能提取到有效的文本内容"])
yield from update_ui(chatbot=self.chatbot, history=self.history)
return None
# 批处理大小
batch_size = 8 # 每批处理的片段数
# 第一次迭代
current_batches = []
for i in range(0, len(text_fragments), batch_size):
current_batches.append(text_fragments[i:i + batch_size])
all_processed_fragments = []
# 进行多轮降重处理
for iteration in range(1, self.reduction_times + 1):
self.chatbot[-1] = ["开始处理文本", f"{iteration}/{self.reduction_times} 次降重"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
next_batches = []
all_processed_fragments = []
# 分批处理当前迭代的片段
for batch in current_batches:
# 处理当前批次
_ = yield from self._process_text_fragments(batch, iteration)
# 收集处理结果
processed_batch = []
for item in self.processed_results:
processed_batch.append(TextFragment(
content=item['content'],
fragment_index=len(all_processed_fragments) + len(processed_batch),
total_fragments=0 # 临时值,稍后更新
))
all_processed_fragments.extend(processed_batch)
# 如果不是最后一轮迭代,准备下一批次
if iteration < self.reduction_times:
for i in range(0, len(processed_batch), batch_size):
next_batches.append(processed_batch[i:i + batch_size])
# 更新总片段数
for frag in all_processed_fragments:
frag.total_fragments = len(all_processed_fragments)
# 为下一轮迭代准备批次
current_batches = next_batches
# 合并最终结果
final_content = "\n\n".join([frag.content for frag in all_processed_fragments])
# 5. 更新UI显示最终结果
self.chatbot[-1] = ["处理完成", f"共完成 {self.reduction_times} 轮降重"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
return final_content
def save_results(self, content: str, original_file_path: str) -> List[str]:
"""保存处理结果为TXT格式"""
if not content:
return []
timestamp = time.strftime("%Y%m%d_%H%M%S")
original_filename = os.path.basename(original_file_path)
filename_without_ext = os.path.splitext(original_filename)[0]
base_filename = f"{filename_without_ext}_processed_{timestamp}"
result_files = []
# 只保存为TXT
try:
txt_formatter = TxtFormatter()
txt_content = txt_formatter.create_document(content)
txt_file = write_history_to_file(
history=[txt_content],
file_basename=f"{base_filename}.txt"
)
result_files.append(txt_file)
except Exception as e:
self.chatbot.append(["警告", f"TXT格式保存失败: {str(e)}"])
# 添加到下载区
for file in result_files:
promote_file_to_downloadzone(file, chatbot=self.chatbot)
return result_files
def _breakdown_section_content(self, content: str) -> List[str]:
"""对文本内容进行分割与合并
主要按段落进行组织,只合并较小的段落以减少片段数量
保留原始段落结构,不对长段落进行强制分割
针对中英文设置不同的阈值,因为字符密度不同
"""
# 先按段落分割文本
paragraphs = content.split('\n\n')
# 检测语言类型
chinese_char_count = sum(1 for char in content if '\u4e00' <= char <= '\u9fff')
is_chinese_text = chinese_char_count / max(1, len(content)) > 0.3
# 根据语言类型设置不同的阈值(只用于合并小段落)
if is_chinese_text:
# 中文文本:一个汉字就是一个字符,信息密度高
min_chunk_size = 300 # 段落合并的最小阈值
target_size = 800 # 理想的段落大小
else:
# 英文文本:一个单词由多个字符组成,信息密度低
min_chunk_size = 600 # 段落合并的最小阈值
target_size = 1600 # 理想的段落大小
# 1. 只合并小段落,不对长段落进行分割
result_fragments = []
current_chunk = []
current_length = 0
for para in paragraphs:
# 如果段落太小且不会超过目标大小,则合并
if len(para) < min_chunk_size and current_length + len(para) <= target_size:
current_chunk.append(para)
current_length += len(para)
# 否则,创建新段落
else:
# 如果当前块非空且与当前段落无关,先保存它
if current_chunk and current_length > 0:
result_fragments.append('\n\n'.join(current_chunk))
# 当前段落作为新块
current_chunk = [para]
current_length = len(para)
# 如果当前块大小已接近目标大小,保存并开始新块
if current_length >= target_size:
result_fragments.append('\n\n'.join(current_chunk))
current_chunk = []
current_length = 0
# 保存最后一个块
if current_chunk:
result_fragments.append('\n\n'.join(current_chunk))
# 2. 处理可能过大的片段确保不超过token限制
final_fragments = []
max_token = self._get_token_limit()
for fragment in result_fragments:
# 检查fragment是否可能超出token限制
# 根据语言类型调整token估算
if is_chinese_text:
estimated_tokens = len(fragment) / 1.5 # 中文每个token约1-2个字符
else:
estimated_tokens = len(fragment) / 4 # 英文每个token约4个字符
if estimated_tokens > max_token:
# 即使可能超出限制,也尽量保持段落的完整性
# 使用breakdown_text但设置更大的限制来减少分割
larger_limit = max_token * 0.95 # 使用95%的限制
sub_fragments = breakdown_text_to_satisfy_token_limit(
txt=fragment,
limit=larger_limit,
llm_model=self.llm_kwargs['llm_model']
)
final_fragments.extend(sub_fragments)
else:
final_fragments.append(fragment)
return final_fragments
def _process_text_fragments(self, text_fragments: List[TextFragment], current_iteration: int = 1) -> str:
"""处理文本片段,支持多次降重
Args:
text_fragments: 要处理的文本片段列表
current_iteration: 当前是第几次降重迭代
Returns:
处理后的文本内容
"""
self.chatbot[-1] = ["开始处理文本", f"{current_iteration}/{self.reduction_times} 次降重,共 {len(text_fragments)} 个片段"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
# 重置处理结果,为当前迭代做准备
self.processed_results = []
self.failed_fragments = []
# 一次性准备所有输入
inputs_array, inputs_show_user_array, history_array = self._create_batch_inputs(text_fragments, current_iteration)
# 对于单次调用的特殊处理 - 使用更强力的系统提示词
if self.reduction_times == 1:
sys_prompt = f"""你是一个伪装成人类科研学者的AI能够将各种AI生成内容改写成人类学者常用的表达方式让人类学者无法分辨。
你的任务是对学术文本进行深度改写以彻底消除AI特征使其具有真实人类学者的写作特点
1. 打破AI常见的规整句式结构和词汇选择模式
2. 引入学术写作中的自然变化和不规则性
3. 使用多样化的句式和段落结构,避免明显的平衡性和规律性
4. 加入人类写作中常见的微小不完美之处,如段落长度变化、论述强调点不均等
5. 在维持核心论点的同时,完全重构表达方式
6. 适当使用学科领域内专家常用的表达习惯和术语
7. 确保文本读起来自然流畅,避免机械感
8. 打破AI生成内容常见的逻辑结构和表达套路
9. 根据文本内容,在保持专业性的基础上增加写作的特色和个性
对于每个文本片段尽可能彻底地重构使其无法被识别为AI生成。"""
sys_prompt_array = [sys_prompt] * len(text_fragments)
else:
# 原有的多次迭代处理逻辑
# 根据迭代次数调整系统提示词强度
base_instruction = self.plugin_kwargs.get("advanced_arg", """你是一个人类科研工作者请对以下学术文本进行彻底改写以显著降低AI生成特征。具体要求如下
1. 保持学术写作的严谨性和专业性
2. 维持原文的核心论述和逻辑框架
3. 优化句式结构:
- 灵活运用主动句与被动句
- 适当拆分复杂句式,提高可读性
- 注意句式的多样性,避免重复模式
- 打破AI常用的句式模板
4. 改善用词:
- 使用更多学术语境下的同义词替换
- 避免过于机械和规律性的连接词
- 适当调整专业术语的表达方式
- 增加词汇多样性,减少重复用词
5. 增强文本的学术特征:
- 注重论证的严密性
- 保持表达的客观性
- 适度体现作者的学术见解
- 避免过于完美和均衡的论述结构
6. 确保语言风格的一致性
7. 减少AI生成文本常见的套路和模式""")
# 根据迭代次数增强强度
if current_iteration == 1:
# 第一次迭代使用基础强度
instruction = base_instruction
sys_prompt = f"""你是一个伪装成人类科研学者的AI能够将各种AI生成内容改写成人类学者常用的表达方式让人类学者无法分辨。请进行第{current_iteration}轮深度改写:
1. 严格保持学术写作规范
2. 维持原文的核心论述和逻辑框架
3. 通过优化句式结构和用词降低AI生成特征
4. 确保语言风格的一致性和专业性
5. 保持内容的客观性和准确性
6. 避免AI常见的套路化表达和过于完美的结构"""
elif current_iteration == 2:
# 第二次迭代使用中等强度
instruction = base_instruction + """这是第二次改写,请进一步优化:
1. 更深入地调整句式结构,增加表达多样性
2. 在保持准确性的前提下,替换更多专业术语的表达方式
3. 优化段落结构,增强逻辑连贯性
4. 适当调整学术论证的表达方式
5. 打破AI生成内容的常见模式如过于均衡的结构和规律性的表达方式"""
sys_prompt = f"""你是一个伪装成人类科研学者的AI能够将各种AI生成内容改写成人类学者常用的表达方式让人类学者无法分辨。请进行第二轮改写
1. 在保持严谨性的基础上,优化表达方式
2. 改善文本结构,提升学术论述的清晰度
3. 增强专业术语使用的灵活性
4. 确保论证过程的完整性和逻辑性
5. 进一步减少AI生成内容的特征和模式
6. 使文本表现出更自然、更人性化的写作风格"""
else:
# 第三次或更多次迭代使用高强度
instruction = base_instruction + f"""这是第{current_iteration}次改写,需要在保持学术性的前提下彻底重构文本:
1. 全面重构句式,采用不同的表达策略
2. 系统性替换学术用语,保持专业准确性
3. 重组段落结构,优化论证层次
4. 深化学术观点的表达方式
5. 增强文本的逻辑严密性
6. 提升论述的专业深度
7. 确保不遗漏任何学术观点和论证要素
8. 适当使用学术表达技巧(如精准举例、恰当转折等),但不过分依赖比喻和类比
9. 彻底消除AI生成内容的特征使文本具有真实学者的写作风格"""
sys_prompt = f"""你是一个伪装成人类科研学者的AI能够将各种AI生成内容改写成人类学者常用的表达方式让人类学者无法分辨。请进行第{current_iteration}轮深度改写:
1. 在保持专业水准的前提下,彻底重构表达方式,引入长难句
2. 确保学术论证的严密性和完整性
3. 优化专业术语的运用
4. 提升文本的学术价值
5. 保持论述的逻辑性和连贯性
6. 适当使用少量学术表达技巧,提高文本说服力,但避免过度使用比喻和类比
7. 消除所有明显的AI生成痕迹使文本更接近真实学者的写作风格"""
sys_prompt_array = [sys_prompt] * len(text_fragments)
# 调用LLM一次性处理所有片段
response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=inputs_array,
inputs_show_user_array=inputs_show_user_array,
llm_kwargs=self.llm_kwargs,
chatbot=self.chatbot,
history_array=history_array,
sys_prompt_array=sys_prompt_array,
)
# 处理响应
for j, frag in enumerate(text_fragments):
try:
llm_response = response_collection[j * 2 + 1]
processed_text = self._extract_decision(llm_response)
if processed_text and processed_text.strip():
self.processed_results.append({
'index': frag.fragment_index,
'content': processed_text
})
else:
self.failed_fragments.append(frag)
self.processed_results.append({
'index': frag.fragment_index,
'content': frag.content
})
except Exception as e:
self.failed_fragments.append(frag)
self.processed_results.append({
'index': frag.fragment_index,
'content': frag.content
})
# 按原始顺序合并结果
self.processed_results.sort(key=lambda x: x['index'])
final_content = "\n".join([item['content'] for item in self.processed_results])
# 更新UI
success_count = len(text_fragments) - len(self.failed_fragments)
self.chatbot[-1] = ["当前阶段处理完成", f"{current_iteration}/{self.reduction_times} 次降重,成功处理 {success_count}/{len(text_fragments)} 个片段"]
yield from update_ui(chatbot=self.chatbot, history=self.history)
return final_content
@CatchException
def 学术降重(txt: str, llm_kwargs: Dict, plugin_kwargs: Dict, chatbot: List,
history: List, system_prompt: str, user_request: str):
"""主函数 - 文件到文件处理"""
# 初始化
# 从高级参数中提取降重次数
if "advanced_arg" in plugin_kwargs and plugin_kwargs["advanced_arg"]:
# 检查是否包含降重次数的设置
match = re.search(r'reduction_times\s*=\s*(\d+)', plugin_kwargs["advanced_arg"])
if match:
reduction_times = int(match.group(1))
# 替换掉高级参数中的reduction_times设置但保留其他内容
plugin_kwargs["advanced_arg"] = re.sub(r'reduction_times\s*=\s*\d+', '', plugin_kwargs["advanced_arg"]).strip()
# 添加到plugin_kwargs中作为单独的参数
plugin_kwargs["reduction_times"] = reduction_times
processor = DocumentProcessor(llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
chatbot.append(["函数插件功能", f"文件内容处理:将文档内容进行{processor.reduction_times}次降重处理"])
# 更新用户提示,提供关于降重策略的详细说明
if processor.reduction_times == 1:
chatbot.append(["降重策略", "将使用单次深度降重这种方式能更有效地降低AI特征减少查重率。我们采用特殊优化的提示词通过一次性强力改写来实现降重效果。"])
elif processor.reduction_times > 1:
chatbot.append(["降重策略", f"将进行{processor.reduction_times}轮迭代降重每轮降重都会基于上一轮的结果并逐渐增加降重强度。请注意多轮迭代可能会引入新的AI特征单次强力降重通常效果更好。"])
yield from update_ui(chatbot=chatbot, history=history)
# 验证输入路径
if not os.path.exists(txt):
report_exception(chatbot, history, a=f"解析路径: {txt}", b=f"找不到路径或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history)
return
# 验证路径安全性
user_name = chatbot.get_user()
validate_path_safety(txt, user_name)
# 获取文件列表
if os.path.isfile(txt):
# 单个文件处理
file_paths = [txt]
else:
# 目录处理 - 类似批量文件询问插件
project_folder = txt
extract_folder = next((d for d in glob.glob(f'{project_folder}/*')
if os.path.isdir(d) and d.endswith('.extract')), project_folder)
# 排除压缩文件
exclude_patterns = r'/[^/]+\.(zip|rar|7z|tar|gz)$'
file_paths = [f for f in glob.glob(f'{extract_folder}/**', recursive=True)
if os.path.isfile(f) and not re.search(exclude_patterns, f)]
# 过滤支持的文件格式
file_paths = [f for f in file_paths if any(f.lower().endswith(ext) for ext in
list(processor.paper_extractor.SUPPORTED_EXTENSIONS) + ['.json', '.csv', '.xlsx', '.xls'])]
if not file_paths:
report_exception(chatbot, history, a=f"解析路径: {txt}", b="未找到支持的文件类型")
yield from update_ui(chatbot=chatbot, history=history)
return
# 处理文件
if len(file_paths) > 1:
chatbot.append(["发现多个文件", f"共找到 {len(file_paths)} 个文件,将处理第一个文件"])
yield from update_ui(chatbot=chatbot, history=history)
# 只处理第一个文件
file_to_process = file_paths[0]
processed_content = yield from processor.process_file(file_to_process)
if processed_content:
# 保存结果
result_files = processor.save_results(processed_content, file_to_process)
if result_files:
chatbot.append(["处理完成", f"已生成 {len(result_files)} 个结果文件"])
else:
chatbot.append(["处理完成", "但未能保存任何结果文件"])
else:
chatbot.append(["处理失败", "未能生成有效的处理结果"])
yield from update_ui(chatbot=chatbot, history=history)

View File

@@ -1,387 +0,0 @@
import aiohttp
import asyncio
from typing import List, Dict, Optional
import re
import random
import time
class WikipediaAPI:
"""维基百科API调用实现"""
def __init__(self, language: str = "zh", user_agent: str = None,
max_concurrent: int = 5, request_delay: float = 0.5):
"""
初始化维基百科API客户端
Args:
language: 语言代码 (zh: 中文, en: 英文, ja: 日文等)
user_agent: 用户代理信息如果为None将使用默认值
max_concurrent: 最大并发请求数
request_delay: 请求间隔时间(秒)
"""
self.language = language
self.base_url = f"https://{language}.wikipedia.org/w/api.php"
self.user_agent = user_agent or "WikipediaAPIClient/1.0 (chatscholar@163.com)"
self.headers = {
"User-Agent": self.user_agent,
"Accept": "application/json"
}
# 添加并发控制
self.semaphore = asyncio.Semaphore(max_concurrent)
self.request_delay = request_delay
self.last_request_time = 0
async def _make_request(self, url, params=None):
"""
发起API请求包含并发控制和请求延迟
Args:
url: 请求URL
params: 请求参数
Returns:
API响应数据
"""
# 使用信号量控制并发
async with self.semaphore:
# 添加请求间隔
current_time = time.time()
time_since_last_request = current_time - self.last_request_time
if time_since_last_request < self.request_delay:
await asyncio.sleep(self.request_delay - time_since_last_request)
# 设置随机延迟,避免规律性请求
jitter = random.uniform(0, 0.2)
await asyncio.sleep(jitter)
# 记录本次请求时间
self.last_request_time = time.time()
# 发起请求
try:
async with aiohttp.ClientSession(headers=self.headers) as session:
async with session.get(url, params=params) as response:
if response.status == 429: # Too Many Requests
retry_after = int(response.headers.get('Retry-After', 5))
print(f"达到请求限制,等待 {retry_after} 秒后重试...")
await asyncio.sleep(retry_after)
return await self._make_request(url, params)
if response.status != 200:
print(f"API请求失败: HTTP {response.status}")
print(f"响应内容: {await response.text()}")
return None
return await response.json()
except aiohttp.ClientError as e:
print(f"请求错误: {str(e)}")
return None
async def search(self, query: str, limit: int = 10, namespace: int = 0) -> List[Dict]:
"""
搜索维基百科文章
Args:
query: 搜索关键词
limit: 返回结果数量
namespace: 命名空间 (0表示文章, 14表示分类等)
Returns:
搜索结果列表
"""
params = {
"action": "query",
"list": "search",
"srsearch": query,
"format": "json",
"srlimit": limit,
"srnamespace": namespace,
"srprop": "snippet|titlesnippet|sectiontitle|categorysnippet|size|wordcount|timestamp|redirecttitle"
}
data = await self._make_request(self.base_url, params)
if not data:
return []
search_results = data.get("query", {}).get("search", [])
return search_results
async def get_page_content(self, title: str, section: Optional[int] = None) -> Dict:
"""
获取维基百科页面内容
Args:
title: 页面标题
section: 特定章节编号(可选)
Returns:
页面内容字典
"""
async with aiohttp.ClientSession(headers=self.headers) as session:
params = {
"action": "parse",
"page": title,
"format": "json",
"prop": "text|langlinks|categories|links|templates|images|externallinks|sections|revid|displaytitle|iwlinks|properties"
}
# 如果指定了章节,只获取该章节内容
if section is not None:
params["section"] = section
async with session.get(self.base_url, params=params) as response:
if response.status != 200:
print(f"API请求失败: HTTP {response.status}")
return {}
data = await response.json()
if "error" in data:
print(f"API错误: {data['error'].get('info', '未知错误')}")
return {}
return data.get("parse", {})
async def get_summary(self, title: str, sentences: int = 3) -> str:
"""
获取页面摘要
Args:
title: 页面标题
sentences: 返回的句子数量
Returns:
页面摘要文本
"""
async with aiohttp.ClientSession(headers=self.headers) as session:
params = {
"action": "query",
"prop": "extracts",
"exintro": "1",
"exsentences": sentences,
"explaintext": "1",
"titles": title,
"format": "json"
}
async with session.get(self.base_url, params=params) as response:
if response.status != 200:
print(f"API请求失败: HTTP {response.status}")
return ""
data = await response.json()
pages = data.get("query", {}).get("pages", {})
# 获取第一个页面ID的内容
for page_id in pages:
return pages[page_id].get("extract", "")
return ""
async def get_random_articles(self, count: int = 1, namespace: int = 0) -> List[Dict]:
"""
获取随机文章
Args:
count: 需要的随机文章数量
namespace: 命名空间
Returns:
随机文章列表
"""
async with aiohttp.ClientSession(headers=self.headers) as session:
params = {
"action": "query",
"list": "random",
"rnlimit": count,
"rnnamespace": namespace,
"format": "json"
}
async with session.get(self.base_url, params=params) as response:
if response.status != 200:
print(f"API请求失败: HTTP {response.status}")
return []
data = await response.json()
return data.get("query", {}).get("random", [])
async def login(self, username: str, password: str) -> bool:
"""
使用维基百科账户登录
Args:
username: 维基百科用户名
password: 维基百科密码
Returns:
登录是否成功
"""
async with aiohttp.ClientSession(headers=self.headers) as session:
# 获取登录令牌
params = {
"action": "query",
"meta": "tokens",
"type": "login",
"format": "json"
}
async with session.get(self.base_url, params=params) as response:
if response.status != 200:
print(f"获取登录令牌失败: HTTP {response.status}")
return False
data = await response.json()
login_token = data.get("query", {}).get("tokens", {}).get("logintoken")
if not login_token:
print("获取登录令牌失败")
return False
# 使用令牌登录
login_params = {
"action": "login",
"lgname": username,
"lgpassword": password,
"lgtoken": login_token,
"format": "json"
}
async with session.post(self.base_url, data=login_params) as login_response:
login_data = await login_response.json()
if login_data.get("login", {}).get("result") == "Success":
print(f"登录成功: {username}")
return True
else:
print(f"登录失败: {login_data.get('login', {}).get('reason', '未知原因')}")
return False
async def setup_oauth(self, consumer_token: str, consumer_secret: str,
access_token: str = None, access_secret: str = None) -> bool:
"""
设置OAuth认证
Args:
consumer_token: 消费者令牌
consumer_secret: 消费者密钥
access_token: 访问令牌(可选)
access_secret: 访问密钥(可选)
Returns:
设置是否成功
"""
try:
# 需要安装 mwoauth 库: pip install mwoauth
import mwoauth
import requests_oauthlib
# 设置OAuth
self.consumer_token = consumer_token
self.consumer_secret = consumer_secret
if access_token and access_secret:
# 如果已有访问令牌
self.auth = requests_oauthlib.OAuth1(
consumer_token,
consumer_secret,
access_token,
access_secret
)
print("OAuth设置成功")
return True
else:
# 需要获取访问令牌(这通常需要用户在网页上授权)
print("请在开发环境中完成以下OAuth授权流程:")
# 创建消费者
consumer = mwoauth.Consumer(
consumer_token, consumer_secret
)
# 初始化握手
redirect, request_token = mwoauth.initiate(
f"https://{self.language}.wikipedia.org/w/index.php",
consumer
)
print(f"请访问此URL授权应用: {redirect}")
# 这里通常会提示用户访问URL并输入授权码
# 实际应用中需要实现适当的授权流程
return False
except ImportError:
print("请安装 mwoauth 库: pip install mwoauth")
return False
except Exception as e:
print(f"设置OAuth时发生错误: {str(e)}")
return False
async def example_usage():
"""演示WikipediaAPI的使用方法"""
# 创建默认中文维基百科API客户端
wiki_zh = WikipediaAPI(language="zh")
try:
# 示例1: 基本搜索
print("\n=== 示例1: 搜索维基百科 ===")
results = await wiki_zh.search("人工智能", limit=3)
for i, result in enumerate(results, 1):
print(f"\n--- 结果 {i} ---")
print(f"标题: {result.get('title')}")
snippet = result.get('snippet', '')
# 清理HTML标签
snippet = re.sub(r'<.*?>', '', snippet)
print(f"摘要: {snippet}")
print(f"字数: {result.get('wordcount')}")
print(f"大小: {result.get('size')} 字节")
# 示例2: 获取页面摘要
print("\n=== 示例2: 获取页面摘要 ===")
summary = await wiki_zh.get_summary("深度学习", sentences=2)
print(f"深度学习摘要: {summary}")
# 示例3: 获取页面内容
print("\n=== 示例3: 获取页面内容 ===")
content = await wiki_zh.get_page_content("机器学习")
if content and "text" in content:
text = content["text"].get("*", "")
# 移除HTML标签以便控制台显示
clean_text = re.sub(r'<.*?>', '', text)
print(f"机器学习页面内容片段: {clean_text[:200]}...")
# 显示页面包含的分类数量
categories = content.get("categories", [])
print(f"分类数量: {len(categories)}")
# 显示页面包含的链接数量
links = content.get("links", [])
print(f"链接数量: {len(links)}")
# 示例4: 获取特定章节内容
print("\n=== 示例4: 获取特定章节内容 ===")
# 获取引言部分(通常是0号章节)
intro_content = await wiki_zh.get_page_content("人工智能", section=0)
if intro_content and "text" in intro_content:
intro_text = intro_content["text"].get("*", "")
clean_intro = re.sub(r'<.*?>', '', intro_text)
print(f"人工智能引言内容片段: {clean_intro[:200]}...")
# 示例5: 获取随机文章
print("\n=== 示例5: 获取随机文章 ===")
random_articles = await wiki_zh.get_random_articles(count=2)
print("随机文章:")
for i, article in enumerate(random_articles, 1):
print(f"{i}. {article.get('title')}")
# 显示随机文章的简短摘要
article_summary = await wiki_zh.get_summary(article.get('title'), sentences=1)
print(f" 摘要: {article_summary[:100]}...")
except Exception as e:
print(f"发生错误: {str(e)}")
import traceback
print(traceback.format_exc())
if __name__ == "__main__":
import asyncio
# 运行示例
asyncio.run(example_usage())

View File

@@ -1,275 +0,0 @@
from crazy_functions.ipc_fns.mp import run_in_subprocess_with_timeout
from loguru import logger
import time
import re
def force_breakdown(txt, limit, get_token_fn):
""" 当无法用标点、空行分割时,我们用最暴力的方法切割
"""
for i in reversed(range(len(txt))):
if get_token_fn(txt[:i]) < limit:
return txt[:i], txt[i:]
return "Tiktoken未知错误", "Tiktoken未知错误"
def maintain_storage(remain_txt_to_cut, remain_txt_to_cut_storage):
""" 为了加速计算,我们采样一个特殊的手段。当 remain_txt_to_cut > `_max` 时, 我们把 _max 后的文字转存至 remain_txt_to_cut_storage
当 remain_txt_to_cut < `_min` 时,我们再把 remain_txt_to_cut_storage 中的部分文字取出
"""
_min = int(5e4)
_max = int(1e5)
# print(len(remain_txt_to_cut), len(remain_txt_to_cut_storage))
if len(remain_txt_to_cut) < _min and len(remain_txt_to_cut_storage) > 0:
remain_txt_to_cut = remain_txt_to_cut + remain_txt_to_cut_storage
remain_txt_to_cut_storage = ""
if len(remain_txt_to_cut) > _max:
remain_txt_to_cut_storage = remain_txt_to_cut[_max:] + remain_txt_to_cut_storage
remain_txt_to_cut = remain_txt_to_cut[:_max]
return remain_txt_to_cut, remain_txt_to_cut_storage
def cut(limit, get_token_fn, txt_tocut, must_break_at_empty_line, break_anyway=False):
""" 文本切分
"""
res = []
total_len = len(txt_tocut)
fin_len = 0
remain_txt_to_cut = txt_tocut
remain_txt_to_cut_storage = ""
# 为了加速计算,我们采样一个特殊的手段。当 remain_txt_to_cut > `_max` 时, 我们把 _max 后的文字转存至 remain_txt_to_cut_storage
remain_txt_to_cut, remain_txt_to_cut_storage = maintain_storage(remain_txt_to_cut, remain_txt_to_cut_storage)
while True:
if get_token_fn(remain_txt_to_cut) <= limit:
# 如果剩余文本的token数小于限制那么就不用切了
res.append(remain_txt_to_cut); fin_len+=len(remain_txt_to_cut)
break
else:
# 如果剩余文本的token数大于限制那么就切
lines = remain_txt_to_cut.split('\n')
# 估计一个切分点
estimated_line_cut = limit / get_token_fn(remain_txt_to_cut) * len(lines)
estimated_line_cut = int(estimated_line_cut)
# 开始查找合适切分点的偏移cnt
cnt = 0
for cnt in reversed(range(estimated_line_cut)):
if must_break_at_empty_line:
# 首先尝试用双空行(\n\n作为切分点
if lines[cnt] != "":
continue
prev = "\n".join(lines[:cnt])
post = "\n".join(lines[cnt:])
if get_token_fn(prev) < limit:
break
if cnt == 0:
# 如果没有找到合适的切分点
if break_anyway:
# 是否允许暴力切分
prev, post = force_breakdown(remain_txt_to_cut, limit, get_token_fn)
else:
# 不允许直接报错
raise RuntimeError(f"存在一行极长的文本!{remain_txt_to_cut}")
# 追加列表
res.append(prev); fin_len+=len(prev)
# 准备下一次迭代
remain_txt_to_cut = post
remain_txt_to_cut, remain_txt_to_cut_storage = maintain_storage(remain_txt_to_cut, remain_txt_to_cut_storage)
process = fin_len/total_len
logger.info(f'正在文本切分 {int(process*100)}%')
if len(remain_txt_to_cut.strip()) == 0:
break
return res
def breakdown_text_to_satisfy_token_limit_(txt, limit, llm_model="gpt-3.5-turbo"):
""" 使用多种方式尝试切分文本,以满足 token 限制
"""
from request_llms.bridge_all import model_info
enc = model_info[llm_model]['tokenizer']
def get_token_fn(txt): return len(enc.encode(txt, disallowed_special=()))
try:
# 第1次尝试将双空行\n\n作为切分点
return cut(limit, get_token_fn, txt, must_break_at_empty_line=True)
except RuntimeError:
try:
# 第2次尝试将单空行\n作为切分点
return cut(limit, get_token_fn, txt, must_break_at_empty_line=False)
except RuntimeError:
try:
# 第3次尝试将英文句号.)作为切分点
res = cut(limit, get_token_fn, txt.replace('.', '\n'), must_break_at_empty_line=False) # 这个中文的句号是故意的,作为一个标识而存在
return [r.replace('\n', '.') for r in res]
except RuntimeError as e:
try:
# 第4次尝试将中文句号作为切分点
res = cut(limit, get_token_fn, txt.replace('', '。。\n'), must_break_at_empty_line=False)
return [r.replace('。。\n', '') for r in res]
except RuntimeError as e:
# 第5次尝试没办法了随便切一下吧
return cut(limit, get_token_fn, txt, must_break_at_empty_line=False, break_anyway=True)
breakdown_text_to_satisfy_token_limit = run_in_subprocess_with_timeout(breakdown_text_to_satisfy_token_limit_, timeout=60)
def cut_new(limit, get_token_fn, txt_tocut, must_break_at_empty_line, must_break_at_one_empty_line=False, break_anyway=False):
""" 文本切分
"""
res = []
res_empty_line = []
total_len = len(txt_tocut)
fin_len = 0
remain_txt_to_cut = txt_tocut
remain_txt_to_cut_storage = ""
# 为了加速计算,我们采样一个特殊的手段。当 remain_txt_to_cut > `_max` 时, 我们把 _max 后的文字转存至 remain_txt_to_cut_storage
remain_txt_to_cut, remain_txt_to_cut_storage = maintain_storage(remain_txt_to_cut, remain_txt_to_cut_storage)
empty=0
while True:
if get_token_fn(remain_txt_to_cut) <= limit:
# 如果剩余文本的token数小于限制那么就不用切了
res.append(remain_txt_to_cut); fin_len+=len(remain_txt_to_cut)
res_empty_line.append(empty)
break
else:
# 如果剩余文本的token数大于限制那么就切
lines = remain_txt_to_cut.split('\n')
# 估计一个切分点
estimated_line_cut = limit / get_token_fn(remain_txt_to_cut) * len(lines)
estimated_line_cut = int(estimated_line_cut)
# 开始查找合适切分点的偏移cnt
cnt = 0
for cnt in reversed(range(estimated_line_cut)):
if must_break_at_empty_line:
# 首先尝试用双空行(\n\n作为切分点
if lines[cnt] != "":
continue
if must_break_at_empty_line or must_break_at_one_empty_line:
empty=1
prev = "\n".join(lines[:cnt])
post = "\n".join(lines[cnt:])
if get_token_fn(prev) < limit :
break
# empty=0
if get_token_fn(prev)>limit:
if '.' not in prev or '' not in prev:
# empty = 0
break
# if cnt
if cnt == 0:
# 如果没有找到合适的切分点
if break_anyway:
# 是否允许暴力切分
prev, post = force_breakdown(remain_txt_to_cut, limit, get_token_fn)
empty =0
else:
# 不允许直接报错
raise RuntimeError(f"存在一行极长的文本!{remain_txt_to_cut}")
# 追加列表
res.append(prev); fin_len+=len(prev)
res_empty_line.append(empty)
# 准备下一次迭代
remain_txt_to_cut = post
remain_txt_to_cut, remain_txt_to_cut_storage = maintain_storage(remain_txt_to_cut, remain_txt_to_cut_storage)
process = fin_len/total_len
logger.info(f'正在文本切分 {int(process*100)}%')
if len(remain_txt_to_cut.strip()) == 0:
break
return res,res_empty_line
def breakdown_text_to_satisfy_token_limit_new_(txt, limit, llm_model="gpt-3.5-turbo"):
""" 使用多种方式尝试切分文本,以满足 token 限制
"""
from request_llms.bridge_all import model_info
enc = model_info[llm_model]['tokenizer']
def get_token_fn(txt): return len(enc.encode(txt, disallowed_special=()))
try:
# 第1次尝试将双空行\n\n作为切分点
res, empty_line =cut_new(limit, get_token_fn, txt, must_break_at_empty_line=True)
return res,empty_line
except RuntimeError:
try:
# 第2次尝试将单空行\n作为切分点
res, _ = cut_new(limit, get_token_fn, txt, must_break_at_empty_line=False,must_break_at_one_empty_line=True)
return res, _
except RuntimeError:
try:
# 第3次尝试将英文句号.)作为切分点
res, _ = cut_new(limit, get_token_fn, txt.replace('.', '\n'), must_break_at_empty_line=False) # 这个中文的句号是故意的,作为一个标识而存在
return [r.replace('\n', '.') for r in res],_
except RuntimeError as e:
try:
# 第4次尝试将中文句号作为切分点
res,_ = cut_new(limit, get_token_fn, txt.replace('', '。。\n'), must_break_at_empty_line=False)
return [r.replace('。。\n', '') for r in res], _
except RuntimeError as e:
# 第5次尝试没办法了随便切一下吧
res, _ = cut_new(limit, get_token_fn, txt, must_break_at_empty_line=False, break_anyway=True)
return res,_
breakdown_text_to_satisfy_token_limit_new = run_in_subprocess_with_timeout(breakdown_text_to_satisfy_token_limit_new_, timeout=60)
def cut_from_end_to_satisfy_token_limit_(txt, limit, reserve_token=500, llm_model="gpt-3.5-turbo"):
"""从后往前裁剪文本,以论文为单位进行裁剪
参数:
txt: 要处理的文本(格式化后的论文列表字符串)
limit: token数量上限
reserve_token: 需要预留的token数量默认500
llm_model: 使用的模型名称
返回:
裁剪后的文本
"""
from request_llms.bridge_all import model_info
enc = model_info[llm_model]['tokenizer']
def get_token_fn(txt): return len(enc.encode(txt, disallowed_special=()))
# 计算当前文本的token数
current_tokens = get_token_fn(txt)
target_limit = limit - reserve_token
# 如果当前token数已经在限制范围内直接返回
if current_tokens <= target_limit:
return txt
# 按论文编号分割文本
papers = re.split(r'\n(?=\d+\. \*\*)', txt)
if not papers:
return txt
# 从前往后累加论文直到达到token限制
result = papers[0] # 保留第一篇
current_tokens = get_token_fn(result)
for paper in papers[1:]:
paper_tokens = get_token_fn(paper)
if current_tokens + paper_tokens <= target_limit:
result += "\n" + paper
current_tokens += paper_tokens
else:
break
return result
# 添加超时保护
cut_from_end_to_satisfy_token_limit = run_in_subprocess_with_timeout(cut_from_end_to_satisfy_token_limit_, timeout=20)
if __name__ == '__main__':
from crazy_functions.crazy_utils import read_and_clean_pdf_text
file_content, page_one = read_and_clean_pdf_text("build/assets/at.pdf")
from request_llms.bridge_all import model_info
for i in range(5):
file_content += file_content
logger.info(len(file_content))
TOKEN_LIMIT_PER_FRAGMENT = 2500
res = breakdown_text_to_satisfy_token_limit(file_content, TOKEN_LIMIT_PER_FRAGMENT)

View File

@@ -113,7 +113,7 @@ def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_fi
return [txt]
else:
# raw_token_num > TOKEN_LIMIT_PER_FRAGMENT
# find a smooth token limit to achieve even separation
# find a smooth token limit to achieve even seperation
count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
token_limit_smooth = raw_token_num // count + count
return breakdown_text_to_satisfy_token_limit(txt, limit=token_limit_smooth, llm_model=llm_kwargs['llm_model'])

View File

@@ -1,6 +1,6 @@
import os
from toolbox import CatchException, report_exception, get_log_folder, gen_time_str, check_packages
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_latest_msg, disable_auto_promotion
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
from toolbox import write_history_to_file, promote_file_to_downloadzone, get_conf, extract_archive
from crazy_functions.pdf_fns.parse_pdf import parse_pdf, translate_pdf

View File

@@ -4,225 +4,123 @@ from toolbox import promote_file_to_downloadzone, extract_archive
from toolbox import generate_file_link, zip_folder
from crazy_functions.crazy_utils import get_files_from_everything
from shared_utils.colorful import *
from loguru import logger
import os
import requests
import time
def retry_request(max_retries=3, delay=3):
"""
Decorator for retrying HTTP requests
Args:
max_retries: Maximum number of retry attempts
delay: Delay between retries in seconds
"""
def decorator(func):
def wrapper(*args, **kwargs):
for attempt in range(max_retries):
try:
return func(*args, **kwargs)
except Exception as e:
if attempt < max_retries - 1:
logger.error(
f"Request failed, retrying... ({attempt + 1}/{max_retries}) Error: {e}"
def refresh_key(doc2x_api_key):
import requests, json
url = "https://api.doc2x.noedgeai.com/api/token/refresh"
res = requests.post(
url,
headers={"Authorization": "Bearer " + doc2x_api_key}
)
time.sleep(delay)
continue
raise e
return None
return wrapper
return decorator
@retry_request()
def make_request(method, url, **kwargs):
"""
Make HTTP request with retry mechanism
"""
return requests.request(method, url, **kwargs)
def doc2x_api_response_status(response, uid=""):
"""
Check the status of Doc2x API response
Args:
response_data: Response object from Doc2x API
"""
response_json = response.json()
response_data = response_json.get("data", {})
code = response_json.get("code", "Unknown")
meg = response_data.get("message", response_json)
trace_id = response.headers.get("trace-id", "Failed to get trace-id")
if response.status_code != 200:
raise RuntimeError(
f"Doc2x return an error:\nTrace ID: {trace_id} {uid}\n{response.status_code} - {response_json}"
)
if code in ["parse_page_limit_exceeded", "parse_concurrency_limit"]:
raise RuntimeError(
f"Reached the limit of Doc2x:\nTrace ID: {trace_id} {uid}\n{code} - {meg}"
)
if code not in ["ok", "success"]:
raise RuntimeError(
f"Doc2x return an error:\nTrace ID: {trace_id} {uid}\n{code} - {meg}"
)
return response_data
res_json = []
if res.status_code == 200:
decoded = res.content.decode("utf-8")
res_json = json.loads(decoded)
doc2x_api_key = res_json['data']['token']
else:
raise RuntimeError(format("[ERROR] status code: %d, body: %s" % (res.status_code, res.text)))
return doc2x_api_key
def 解析PDF_DOC2X_转Latex(pdf_file_path):
zip_file_path, unzipped_folder = 解析PDF_DOC2X(pdf_file_path, format="tex")
return unzipped_folder
def 解析PDF_DOC2X(pdf_file_path, format="tex"):
"""
format: 'tex', 'md', 'docx'
"""
DOC2X_API_KEY = get_conf("DOC2X_API_KEY")
import requests, json, os
DOC2X_API_KEY = get_conf('DOC2X_API_KEY')
latex_dir = get_log_folder(plugin_name="pdf_ocr_latex")
doc2x_api_key = DOC2X_API_KEY
if doc2x_api_key.startswith('sk-'):
url = "https://api.doc2x.noedgeai.com/api/v1/pdf"
else:
doc2x_api_key = refresh_key(doc2x_api_key)
url = "https://api.doc2x.noedgeai.com/api/platform/pdf"
res = requests.post(
url,
files={"file": open(pdf_file_path, "rb")},
data={"ocr": "1"},
headers={"Authorization": "Bearer " + doc2x_api_key}
)
res_json = []
if res.status_code == 200:
decoded = res.content.decode("utf-8")
for z_decoded in decoded.split('\n'):
if len(z_decoded) == 0: continue
assert z_decoded.startswith("data: ")
z_decoded = z_decoded[len("data: "):]
decoded_json = json.loads(z_decoded)
res_json.append(decoded_json)
else:
raise RuntimeError(format("[ERROR] status code: %d, body: %s" % (res.status_code, res.text)))
uuid = res_json[0]['uuid']
to = "latex" # latex, md, docx
url = "https://api.doc2x.noedgeai.com/api/export"+"?request_id="+uuid+"&to="+to
res = requests.get(url, headers={"Authorization": "Bearer " + doc2x_api_key})
latex_zip_path = os.path.join(latex_dir, gen_time_str() + '.zip')
latex_unzip_path = os.path.join(latex_dir, gen_time_str())
if res.status_code == 200:
with open(latex_zip_path, "wb") as f: f.write(res.content)
else:
raise RuntimeError(format("[ERROR] status code: %d, body: %s" % (res.status_code, res.text)))
import zipfile
with zipfile.ZipFile(latex_zip_path, 'r') as zip_ref:
zip_ref.extractall(latex_unzip_path)
return latex_unzip_path
def 解析PDF_DOC2X_单文件(fp, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, DOC2X_API_KEY, user_request):
def pdf2markdown(filepath):
import requests, json, os
markdown_dir = get_log_folder(plugin_name="pdf_ocr")
doc2x_api_key = DOC2X_API_KEY
# < ------ 第1步预上传获取URL然后上传文件 ------ >
logger.info("Doc2x 上传文件预上传获取URL")
res = make_request(
"POST",
"https://v2.doc2x.noedgeai.com/api/v2/parse/preupload",
headers={"Authorization": "Bearer " + doc2x_api_key},
timeout=15,
)
res_data = doc2x_api_response_status(res)
upload_url = res_data["url"]
uuid = res_data["uid"]
logger.info("Doc2x 上传文件:上传文件")
with open(pdf_file_path, "rb") as file:
res = make_request("PUT", upload_url, data=file, timeout=60)
res.raise_for_status()
# < ------ 第2步轮询等待 ------ >
logger.info("Doc2x 处理文件中:轮询等待")
params = {"uid": uuid}
max_attempts = 60
attempt = 0
while attempt < max_attempts:
res = make_request(
"GET",
"https://v2.doc2x.noedgeai.com/api/v2/parse/status",
headers={"Authorization": "Bearer " + doc2x_api_key},
params=params,
timeout=15,
)
res_data = doc2x_api_response_status(res)
if res_data["status"] == "success":
break
elif res_data["status"] == "processing":
time.sleep(5)
logger.info(f"Doc2x is processing at {res_data['progress']}%")
attempt += 1
if doc2x_api_key.startswith('sk-'):
url = "https://api.doc2x.noedgeai.com/api/v1/pdf"
else:
raise RuntimeError(f"Doc2x return an error: {res_data}")
if attempt >= max_attempts:
raise RuntimeError("Doc2x processing timeout after maximum attempts")
doc2x_api_key = refresh_key(doc2x_api_key)
url = "https://api.doc2x.noedgeai.com/api/platform/pdf"
# < ------ 第3步提交转化 ------ >
logger.info("Doc2x 第3步提交转化")
data = {
"uid": uuid,
"to": format,
"formula_mode": "dollar",
"filename": "output"
}
res = make_request(
"POST",
"https://v2.doc2x.noedgeai.com/api/v2/convert/parse",
headers={"Authorization": "Bearer " + doc2x_api_key},
json=data,
timeout=15,
)
doc2x_api_response_status(res, uid=f"uid: {uuid}")
# < ------ 第4步等待结果 ------ >
logger.info("Doc2x 第4步等待结果")
params = {"uid": uuid}
max_attempts = 36
attempt = 0
while attempt < max_attempts:
res = make_request(
"GET",
"https://v2.doc2x.noedgeai.com/api/v2/convert/parse/result",
headers={"Authorization": "Bearer " + doc2x_api_key},
params=params,
timeout=15,
)
res_data = doc2x_api_response_status(res, uid=f"uid: {uuid}")
if res_data["status"] == "success":
break
elif res_data["status"] == "processing":
time.sleep(3)
logger.info("Doc2x still processing to convert file")
attempt += 1
if attempt >= max_attempts:
raise RuntimeError("Doc2x conversion timeout after maximum attempts")
# < ------ 第5步最后的处理 ------ >
logger.info("Doc2x 第5步下载转换后的文件")
if format == "tex":
target_path = latex_dir
if format == "md":
target_path = markdown_dir
os.makedirs(target_path, exist_ok=True)
max_attempt = 3
# < ------ 下载 ------ >
for attempt in range(max_attempt):
try:
result_url = res_data["url"]
res = make_request("GET", result_url, timeout=60)
zip_path = os.path.join(target_path, gen_time_str() + ".zip")
unzip_path = os.path.join(target_path, gen_time_str())
if res.status_code == 200:
with open(zip_path, "wb") as f:
f.write(res.content)
else:
raise RuntimeError(f"Doc2x return an error: {res.json()}")
except Exception as e:
if attempt < max_attempt - 1:
logger.error(f"Failed to download uid = {uuid} file, retrying... {e}")
time.sleep(3)
continue
else:
raise e
# < ------ 解压 ------ >
import zipfile
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(unzip_path)
return zip_path, unzip_path
def 解析PDF_DOC2X_单文件(
fp,
project_folder,
llm_kwargs,
plugin_kwargs,
chatbot,
history,
system_prompt,
DOC2X_API_KEY,
user_request,
):
def pdf2markdown(filepath):
chatbot.append((None, f"Doc2x 解析中"))
chatbot.append((None, "加载PDF文件发送至DOC2X解析..."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
md_zip_path, unzipped_folder = 解析PDF_DOC2X(filepath, format="md")
res = requests.post(
url,
files={"file": open(filepath, "rb")},
data={"ocr": "1"},
headers={"Authorization": "Bearer " + doc2x_api_key}
)
res_json = []
if res.status_code == 200:
decoded = res.content.decode("utf-8")
for z_decoded in decoded.split('\n'):
if len(z_decoded) == 0: continue
assert z_decoded.startswith("data: ")
z_decoded = z_decoded[len("data: "):]
decoded_json = json.loads(z_decoded)
res_json.append(decoded_json)
if 'limit exceeded' in decoded_json.get('status', ''):
raise RuntimeError("Doc2x API 页数受限,请联系 Doc2x 方面,并更换新的 API 秘钥。")
else:
raise RuntimeError(format("[ERROR] status code: %d, body: %s" % (res.status_code, res.text)))
uuid = res_json[0]['uuid']
to = "md" # latex, md, docx
url = "https://api.doc2x.noedgeai.com/api/export"+"?request_id="+uuid+"&to="+to
chatbot.append((None, f"读取解析: {url} ..."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
res = requests.get(url, headers={"Authorization": "Bearer " + doc2x_api_key})
md_zip_path = os.path.join(markdown_dir, gen_time_str() + '.zip')
if res.status_code == 200:
with open(md_zip_path, "wb") as f: f.write(res.content)
else:
raise RuntimeError(format("[ERROR] status code: %d, body: %s" % (res.status_code, res.text)))
promote_file_to_downloadzone(md_zip_path, chatbot=chatbot)
chatbot.append((None, f"完成解析 {md_zip_path} ..."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@@ -239,97 +137,77 @@ def 解析PDF_DOC2X_单文件(
os.makedirs(target_path_base, exist_ok=True)
shutil.copyfile(md_zip_path, this_file_path)
ex_folder = this_file_path + ".extract"
extract_archive(file_path=this_file_path, dest_dir=ex_folder)
extract_archive(
file_path=this_file_path, dest_dir=ex_folder
)
# edit markdown files
success, file_manifest, project_folder = get_files_from_everything(
ex_folder, type=".md"
)
success, file_manifest, project_folder = get_files_from_everything(ex_folder, type='.md')
for generated_fp in file_manifest:
# 修正一些公式问题
with open(generated_fp, "r", encoding="utf8") as f:
with open(generated_fp, 'r', encoding='utf8') as f:
content = f.read()
# 将公式中的\[ \]替换成$$
content = content.replace(r"\[", r"$$").replace(r"\]", r"$$")
content = content.replace(r'\[', r'$$').replace(r'\]', r'$$')
# 将公式中的\( \)替换成$
content = content.replace(r"\(", r"$").replace(r"\)", r"$")
content = content.replace("```markdown", "\n").replace("```", "\n")
with open(generated_fp, "w", encoding="utf8") as f:
content = content.replace(r'\(', r'$').replace(r'\)', r'$')
content = content.replace('```markdown', '\n').replace('```', '\n')
with open(generated_fp, 'w', encoding='utf8') as f:
f.write(content)
promote_file_to_downloadzone(generated_fp, chatbot=chatbot)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 生成在线预览html
file_name = "在线预览翻译(原文)" + gen_time_str() + ".html"
file_name = '在线预览翻译(原文)' + gen_time_str() + '.html'
preview_fp = os.path.join(ex_folder, file_name)
from shared_utils.advanced_markdown_format import (
markdown_convertion_for_file,
)
from shared_utils.advanced_markdown_format import markdown_convertion_for_file
with open(generated_fp, "r", encoding="utf-8") as f:
md = f.read()
# # Markdown中使用不标准的表格需要在表格前加上一个emoji以便公式渲染
# md = re.sub(r'^<table>', r'.<table>', md, flags=re.MULTILINE)
html = markdown_convertion_for_file(md)
with open(preview_fp, "w", encoding="utf-8") as f:
f.write(html)
with open(preview_fp, "w", encoding="utf-8") as f: f.write(html)
chatbot.append([None, f"生成在线预览:{generate_file_link([preview_fp])}"])
promote_file_to_downloadzone(preview_fp, chatbot=chatbot)
chatbot.append((None, f"调用Markdown插件 {ex_folder} ..."))
plugin_kwargs["markdown_expected_output_dir"] = ex_folder
translated_f_name = "translated_markdown.md"
generated_fp = plugin_kwargs["markdown_expected_output_path"] = os.path.join(
ex_folder, translated_f_name
)
chatbot.append((None, f"调用Markdown插件 {ex_folder} ..."))
plugin_kwargs['markdown_expected_output_dir'] = ex_folder
translated_f_name = 'translated_markdown.md'
generated_fp = plugin_kwargs['markdown_expected_output_path'] = os.path.join(ex_folder, translated_f_name)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
yield from Markdown英译中(
ex_folder,
llm_kwargs,
plugin_kwargs,
chatbot,
history,
system_prompt,
user_request,
)
yield from Markdown英译中(ex_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
if os.path.exists(generated_fp):
# 修正一些公式问题
with open(generated_fp, "r", encoding="utf8") as f:
content = f.read()
content = content.replace("```markdown", "\n").replace("```", "\n")
with open(generated_fp, 'r', encoding='utf8') as f: content = f.read()
content = content.replace('```markdown', '\n').replace('```', '\n')
# Markdown中使用不标准的表格需要在表格前加上一个emoji以便公式渲染
# content = re.sub(r'^<table>', r'.<table>', content, flags=re.MULTILINE)
with open(generated_fp, "w", encoding="utf8") as f:
f.write(content)
with open(generated_fp, 'w', encoding='utf8') as f: f.write(content)
# 生成在线预览html
file_name = "在线预览翻译" + gen_time_str() + ".html"
file_name = '在线预览翻译' + gen_time_str() + '.html'
preview_fp = os.path.join(ex_folder, file_name)
from shared_utils.advanced_markdown_format import (
markdown_convertion_for_file,
)
from shared_utils.advanced_markdown_format import markdown_convertion_for_file
with open(generated_fp, "r", encoding="utf-8") as f:
md = f.read()
html = markdown_convertion_for_file(md)
with open(preview_fp, "w", encoding="utf-8") as f:
f.write(html)
with open(preview_fp, "w", encoding="utf-8") as f: f.write(html)
promote_file_to_downloadzone(preview_fp, chatbot=chatbot)
# 生成包含图片的压缩包
dest_folder = get_log_folder(chatbot.get_user())
zip_name = "翻译后的带图文档.zip"
zip_folder(
source_folder=ex_folder, dest_folder=dest_folder, zip_name=zip_name
)
zip_name = '翻译后的带图文档.zip'
zip_folder(source_folder=ex_folder, dest_folder=dest_folder, zip_name=zip_name)
zip_fp = os.path.join(dest_folder, zip_name)
promote_file_to_downloadzone(zip_fp, chatbot=chatbot)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
md_zip_path = yield from pdf2markdown(fp)
yield from deliver_to_markdown_plugin(md_zip_path, user_request)
def 解析PDF_基于DOC2X(file_manifest, *args):
for index, fp in enumerate(file_manifest):
yield from 解析PDF_DOC2X_单文件(fp, *args)
return

View File

@@ -14,17 +14,17 @@ def extract_text_from_files(txt, chatbot, history):
final_result(list):文本内容
page_one(list):第一页内容/摘要
file_manifest(list):文件路径
exception(string):需要用户手动处理的信息,如没出错则保持为空
excption(string):需要用户手动处理的信息,如没出错则保持为空
"""
final_result = []
page_one = []
file_manifest = []
exception = ""
excption = ""
if txt == "":
final_result.append(txt)
return False, final_result, page_one, file_manifest, exception #如输入区内容不是文件则直接返回输入区内容
return False, final_result, page_one, file_manifest, excption #如输入区内容不是文件则直接返回输入区内容
#查找输入区内容中的文件
file_pdf,pdf_manifest,folder_pdf = get_files_from_everything(txt, '.pdf')
@@ -33,20 +33,20 @@ def extract_text_from_files(txt, chatbot, history):
file_doc,doc_manifest,folder_doc = get_files_from_everything(txt, '.doc')
if file_doc:
exception = "word"
return False, final_result, page_one, file_manifest, exception
excption = "word"
return False, final_result, page_one, file_manifest, excption
file_num = len(pdf_manifest) + len(md_manifest) + len(word_manifest)
if file_num == 0:
final_result.append(txt)
return False, final_result, page_one, file_manifest, exception #如输入区内容不是文件则直接返回输入区内容
return False, final_result, page_one, file_manifest, excption #如输入区内容不是文件则直接返回输入区内容
if file_pdf:
try: # 尝试导入依赖,如果缺少依赖,则给出安装建议
import fitz
except:
exception = "pdf"
return False, final_result, page_one, file_manifest, exception
excption = "pdf"
return False, final_result, page_one, file_manifest, excption
for index, fp in enumerate(pdf_manifest):
file_content, pdf_one = read_and_clean_pdf_text(fp) # 尝试按照章节切割PDF
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
@@ -72,8 +72,8 @@ def extract_text_from_files(txt, chatbot, history):
try: # 尝试导入依赖,如果缺少依赖,则给出安装建议
from docx import Document
except:
exception = "word_pip"
return False, final_result, page_one, file_manifest, exception
excption = "word_pip"
return False, final_result, page_one, file_manifest, excption
for index, fp in enumerate(word_manifest):
doc = Document(fp)
file_content = '\n'.join([p.text for p in doc.paragraphs])
@@ -82,4 +82,4 @@ def extract_text_from_files(txt, chatbot, history):
final_result.append(file_content)
file_manifest.append(os.path.relpath(fp, folder_word))
return True, final_result, page_one, file_manifest, exception
return True, final_result, page_one, file_manifest, excption

View File

@@ -1,13 +1,17 @@
import llama_index
import os
import atexit
from loguru import logger
from typing import List
from llama_index.core import Document
from llama_index.core.ingestion import run_transformations
from llama_index.core.schema import TextNode
from crazy_functions.rag_fns.vector_store_index import GptacVectorStoreIndex
from request_llms.embed_models.openai_embed import OpenAiEmbeddingModel
from shared_utils.connect_void_terminal import get_chat_default_kwargs
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from crazy_functions.rag_fns.vector_store_index import GptacVectorStoreIndex
from llama_index.core.ingestion import run_transformations
from llama_index.core import PromptTemplate
from llama_index.core.response_synthesizers import TreeSummarize
DEFAULT_QUERY_GENERATION_PROMPT = """\
Now, you have context information as below:
@@ -59,7 +63,7 @@ class SaveLoad():
def purge(self):
import shutil
shutil.rmtree(self.checkpoint_dir, ignore_errors=True)
self.vs_index = self.create_new_vs(self.checkpoint_dir)
self.vs_index = self.create_new_vs()
class LlamaIndexRagWorker(SaveLoad):
@@ -71,7 +75,7 @@ class LlamaIndexRagWorker(SaveLoad):
if auto_load_checkpoint:
self.vs_index = self.load_from_checkpoint(checkpoint_dir)
else:
self.vs_index = self.create_new_vs()
self.vs_index = self.create_new_vs(checkpoint_dir)
atexit.register(lambda: self.save_to_checkpoint(checkpoint_dir))
def assign_embedding_model(self):
@@ -87,21 +91,17 @@ class LlamaIndexRagWorker(SaveLoad):
logger.info('oo --------inspect_vector_store end--------')
return vector_store_preview
def add_documents_to_vector_store(self, document_list: List[Document]):
"""
Adds a list of Document objects to the vector store after processing.
"""
documents = document_list
def add_documents_to_vector_store(self, document_list):
documents = [Document(text=t) for t in document_list]
documents_nodes = run_transformations(
documents, # type: ignore
self.vs_index._transformations,
show_progress=True
)
self.vs_index.insert_nodes(documents_nodes)
if self.debug_mode:
self.inspect_vector_store()
if self.debug_mode: self.inspect_vector_store()
def add_text_to_vector_store(self, text: str):
def add_text_to_vector_store(self, text):
node = TextNode(text=text)
documents_nodes = run_transformations(
[node],
@@ -109,16 +109,14 @@ class LlamaIndexRagWorker(SaveLoad):
show_progress=True
)
self.vs_index.insert_nodes(documents_nodes)
if self.debug_mode:
self.inspect_vector_store()
if self.debug_mode: self.inspect_vector_store()
def remember_qa(self, question, answer):
formatted_str = QUESTION_ANSWER_RECORD.format(question=question, answer=answer)
self.add_text_to_vector_store(formatted_str)
def retrieve_from_store_with_query(self, query):
if self.debug_mode:
self.inspect_vector_store()
if self.debug_mode: self.inspect_vector_store()
retriever = self.vs_index.as_retriever()
return retriever.retrieve(query)
@@ -130,9 +128,3 @@ class LlamaIndexRagWorker(SaveLoad):
buf = "\n".join(([f"(No.{i+1} | score {n.score:.3f}): {n.text}" for i, n in enumerate(nodes)]))
if self.debug_mode: logger.info(buf)
return buf
def purge_vector_store(self):
"""
Purges the current vector store and creates a new one.
"""
self.purge()

View File

@@ -1,48 +0,0 @@
import subprocess
import os
supports_format = ['.csv', '.docx', '.epub', '.ipynb', '.mbox', '.md', '.pdf', '.txt', '.ppt', '.pptm', '.pptx', '.bat']
def convert_to_markdown(file_path: str) -> str:
"""
将支持的文件格式转换为Markdown格式
Args:
file_path: 输入文件路径
Returns:
str: 转换后的Markdown文件路径如果转换失败则返回原始文件路径
"""
_, ext = os.path.splitext(file_path.lower())
if ext in ['.docx', '.doc', '.pptx', '.ppt', '.pptm', '.xls', '.xlsx', '.csv', 'pdf']:
try:
# 创建输出Markdown文件路径
md_path = os.path.splitext(file_path)[0] + '.md'
# 使用markitdown工具将文件转换为Markdown
command = f"markitdown {file_path} > {md_path}"
subprocess.run(command, shell=True, check=True)
print(f"已将{ext}文件转换为Markdown: {md_path}")
return md_path
except Exception as e:
print(f"{ext}转Markdown失败: {str(e)},将继续处理原文件")
return file_path
return file_path
# 修改后的 extract_text 函数,结合 SimpleDirectoryReader 和自定义解析逻辑
def extract_text(file_path):
from llama_index.core import SimpleDirectoryReader
_, ext = os.path.splitext(file_path.lower())
# 使用 SimpleDirectoryReader 处理它支持的文件格式
if ext in supports_format:
try:
reader = SimpleDirectoryReader(input_files=[file_path])
print(f"Extracting text from {file_path} using SimpleDirectoryReader")
documents = reader.load_data()
print(f"Complete: Extracting text from {file_path} using SimpleDirectoryReader")
buffer = [ doc.text for doc in documents ]
return '\n'.join(buffer)
except Exception as e:
pass
else:
return '格式不支持'

View File

@@ -1,68 +0,0 @@
from typing import List
from crazy_functions.review_fns.data_sources.base_source import PaperMetadata
class EndNoteFormatter:
"""EndNote参考文献格式生成器"""
def __init__(self):
pass
def create_document(self, papers: List[PaperMetadata]) -> str:
"""生成EndNote格式的参考文献文本
Args:
papers: 论文列表
Returns:
str: EndNote格式的参考文献文本
"""
endnote_text = ""
for paper in papers:
# 开始一个新条目
endnote_text += "%0 Journal Article\n" # 默认类型为期刊文章
# 根据venue_type调整条目类型
if hasattr(paper, 'venue_type') and paper.venue_type:
if paper.venue_type.lower() == 'conference':
endnote_text = endnote_text.replace("Journal Article", "Conference Paper")
elif paper.venue_type.lower() == 'preprint':
endnote_text = endnote_text.replace("Journal Article", "Electronic Article")
# 添加标题
endnote_text += f"%T {paper.title}\n"
# 添加作者
for author in paper.authors:
endnote_text += f"%A {author}\n"
# 添加年份
if paper.year:
endnote_text += f"%D {paper.year}\n"
# 添加期刊/会议名称
if hasattr(paper, 'venue_name') and paper.venue_name:
endnote_text += f"%J {paper.venue_name}\n"
elif paper.venue:
endnote_text += f"%J {paper.venue}\n"
# 添加DOI
if paper.doi:
endnote_text += f"%R {paper.doi}\n"
endnote_text += f"%U https://doi.org/{paper.doi}\n"
elif paper.url:
endnote_text += f"%U {paper.url}\n"
# 添加摘要
if paper.abstract:
endnote_text += f"%X {paper.abstract}\n"
# 添加机构
if hasattr(paper, 'institutions'):
for institution in paper.institutions:
endnote_text += f"%I {institution}\n"
# 条目之间添加空行
endnote_text += "\n"
return endnote_text

Some files were not shown because too many files have changed in this diff Show More