Compare commits

...

22 Commits

Author SHA1 Message Date
雷欧(林平凡)
2706263a4b Merge branch 'master' into HEAD
Some checks failed
build-with-all-capacity / build-and-push-image (push) Has been cancelled
build-with-audio-assistant / build-and-push-image (push) Has been cancelled
build-with-chatglm / build-and-push-image (push) Has been cancelled
build-with-latex-arm / build-and-push-image (push) Has been cancelled
build-with-latex / build-and-push-image (push) Has been cancelled
build-without-local-llms / build-and-push-image (push) Has been cancelled
2025-08-08 18:02:17 +08:00
雷欧(林平凡)
ee34f13307 1 2025-08-08 17:59:21 +08:00
binary-husky
65a4cf59c2 new ui backend 2025-07-31 22:22:18 +08:00
binary-husky
a7a56b5058 fix buggy gradio version 2025-06-25 01:34:33 +08:00
binary-husky
8c21432291 use uv to build dockerfile 2025-06-04 02:24:09 +08:00
binary-husky
87b3f79ae9 setup nv 2025-06-04 01:53:29 +08:00
binary-husky
f42aad5093 implement doc_fns 2025-06-04 00:20:09 +08:00
binary-husky
725f60fba3 add context clip policy 2025-06-03 01:05:37 +08:00
binary-husky
be83907394 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2025-05-06 22:17:34 +08:00
binary-husky
eba48a0f1a improve reset conversation ui 2025-05-06 22:10:21 +08:00
binary-husky
ee1a9e7cce support qwen3 models - edit config hint 2025-04-29 11:10:49 +08:00
binary-husky
fc06be6f7a support qwen3 models 2025-04-29 11:09:53 +08:00
binary-husky
883b513b91 add can_multi_thread 2025-04-21 00:50:24 +08:00
binary-husky
24cebaf4ec add o3 and o4 models 2025-04-21 00:48:59 +08:00
binary-husky
858b5f69b0 add in-text stop btn 2025-04-15 01:08:54 +08:00
davidfir3
63c61e6204 添加gemini-2.0-flash (#2180)
Co-authored-by: 柯仕锋 <12029064@zju.edu.cn>
2025-03-25 00:13:18 +08:00
BZfei
82aac97980 阿里云百炼(原灵积)增加对deepseek-r1、deepseek-v3模型支持 (#2182)
* 阿里云百炼(原灵积)增加对deepseek-r1、deepseek-v3模型支持

* update reasoning display

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2025-03-25 00:11:55 +08:00
binary-husky
045cdb15d8 ensure display none even if css load fails 2025-03-10 23:44:47 +08:00
binary-husky
e78e8b0909 allow copy original text instead of renderend text 2025-03-09 00:04:27 +08:00
binary-husky
07974a26d0 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2025-03-08 23:10:42 +08:00
binary-husky
3e56c074cc fix gui_toolbar 2025-03-08 23:09:22 +08:00
littleolaf
72dbe856d2 添加接入 火山引擎在线大模型 内容的支持 (#2165)
* use oai adaptive bridge function to handle vol engine

* add vol engine deepseek v3

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
2025-03-04 23:58:03 +08:00
39 changed files with 7388 additions and 121 deletions

View File

@@ -3,39 +3,36 @@
# - 如何构建: 先修改 `config.py` 然后 `docker build -t gpt-academic . `
# - 如何运行(Linux下): `docker run --rm -it --net=host gpt-academic `
# - 如何运行(其他操作系统选择任意一个固定端口50923): `docker run --rm -it -e WEB_PORT=50923 -p 50923:50923 gpt-academic `
FROM python:3.11
FROM ghcr.io/astral-sh/uv:python3.12-bookworm
# 非必要步骤更换pip源 (以下三行,可以删除)
RUN echo '[global]' > /etc/pip.conf && \
echo 'index-url = https://mirrors.aliyun.com/pypi/simple/' >> /etc/pip.conf && \
echo 'trusted-host = mirrors.aliyun.com' >> /etc/pip.conf
# 语音输出功能以下两行第一行更换阿里源第二行安装ffmpeg都可以删除
RUN UBUNTU_VERSION=$(awk -F= '/^VERSION_CODENAME=/{print $2}' /etc/os-release); echo "deb https://mirrors.aliyun.com/debian/ $UBUNTU_VERSION main non-free contrib" > /etc/apt/sources.list; apt-get update
# 语音输出功能以下1,2行更换阿里源第3,4行安装ffmpeg都可以删除
RUN sed -i 's/deb.debian.org/mirrors.aliyun.com/g' /etc/apt/sources.list.d/debian.sources && \
sed -i 's/security.debian.org/mirrors.aliyun.com/g' /etc/apt/sources.list.d/debian.sources && \
apt-get update
RUN apt-get install ffmpeg -y
RUN apt-get clean
# 进入工作路径(必要)
WORKDIR /gpt
# 安装大部分依赖利用Docker缓存加速以后的构建 (以下两行,可以删除)
COPY requirements.txt ./
RUN pip3 install -r requirements.txt
RUN uv venv --python=3.12 && uv pip install --verbose -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
ENV PATH="/gpt/.venv/bin:$PATH"
RUN python -c 'import loguru'
# 装载项目文件,安装剩余依赖(必要)
COPY . .
RUN pip3 install -r requirements.txt
# 非必要步骤,用于预热模块(可以删除)
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
RUN python3 -m pip cache purge
RUN uv venv --python=3.12 && uv pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
# # 非必要步骤,用于预热模块(可以删除)
RUN python -c 'from check_proxy import warm_up_modules; warm_up_modules()'
# 启动(必要)
CMD ["python3", "-u", "main.py"]
CMD ["bash", "-c", "python main.py"]

View File

@@ -1,4 +1,5 @@
> [!IMPORTANT]
> `master主分支`最新动态(2025.7.31): 新GUI前端Coming Soon
> `master主分支`最新动态(2025.3.2): 修复大量代码typo / 联网组件支持Jina的api / 增加deepseek-r1支持
> `frontier开发分支`最新动态(2024.12.9): 更新对话时间线功能优化xelatex论文翻译
> `wiki文档`最新动态(2024.12.5): 更新ollama接入指南

View File

@@ -7,11 +7,11 @@
Configuration reading priority: environment variable > config_private.py > config.py
"""
# [step 1-1]>> ( 接入GPT等模型 ) API_KEY = "sk-123456789xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx123456789"。极少数情况下还需要填写组织格式如org-123456789abcdefghijklmno的请向下翻找 API_ORG 设置项
# [step 1-1]>> ( 接入OpenAI模型家族 ) API_KEY = "sk-123456789xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx123456789"。极少数情况下还需要填写组织格式如org-123456789abcdefghijklmno的请向下翻找 API_ORG 设置项
API_KEY = "在此处填写APIKEY" # 可同时填写多个API-KEY用英文逗号分割例如API_KEY = "sk-openaikey1,sk-openaikey2,fkxxxx-api2dkey3,azure-apikey4"
# [step 1-2]>> ( 接入通义 qwen-max ) 接入通义千问在线大模型api-key获取地址 https://dashscope.console.aliyun.com/
DASHSCOPE_API_KEY = "" # 阿里灵积云API_KEY
# [step 1-2]>> ( 强烈推荐!接入通义家族 & 大模型服务平台百炼 ) 接入通义千问在线大模型api-key获取地址 https://dashscope.console.aliyun.com/
DASHSCOPE_API_KEY = "" # 阿里灵积云API_KEY用于接入qwen-maxdashscope-qwen3-14bdashscope-deepseek-r1等
# [step 1-3]>> ( 接入 deepseek-reasoner, 即 deepseek-r1 ) 深度求索(DeepSeek) API KEY默认请求地址为"https://api.deepseek.com/v1/chat/completions"
DEEPSEEK_API_KEY = ""
@@ -43,7 +43,10 @@ AVAIL_LLM_MODELS = ["qwen-max", "o1-mini", "o1-mini-2024-09-12", "o1", "o1-2024-
"gpt-3.5-turbo-1106", "gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
"gpt-4", "gpt-4-32k", "azure-gpt-4", "glm-4", "glm-4v", "glm-3-turbo",
"gemini-1.5-pro", "chatglm3", "chatglm4",
"deepseek-chat", "deepseek-coder", "deepseek-reasoner"
"deepseek-chat", "deepseek-coder", "deepseek-reasoner",
"volcengine-deepseek-r1-250120", "volcengine-deepseek-v3-241226",
"dashscope-deepseek-r1", "dashscope-deepseek-v3",
"dashscope-qwen3-14b", "dashscope-qwen3-235b-a22b", "dashscope-qwen3-32b",
]
EMBEDDING_MODEL = "text-embedding-3-small"
@@ -267,6 +270,10 @@ MOONSHOT_API_KEY = ""
YIMODEL_API_KEY = ""
# 接入火山引擎的在线大模型)api-key获取地址 https://console.volcengine.com/ark/region:ark+cn-beijing/endpoint
ARK_API_KEY = "00000000-0000-0000-0000-000000000000" # 火山引擎 API KEY
# 紫东太初大模型 https://ai-maas.wair.ac.cn
TAICHU_API_KEY = ""
@@ -347,6 +354,17 @@ DAAS_SERVER_URLS = [ f"https://niuziniu-biligpt{i}.hf.space/stream" for i in ran
# 在互联网搜索组件中负责将搜索结果整理成干净的Markdown
JINA_API_KEY = ""
# 是否自动裁剪上下文长度(是否启动,默认不启动)
AUTO_CONTEXT_CLIP_ENABLE = False
# 目标裁剪上下文的token长度如果超过这个长度则会自动裁剪
AUTO_CONTEXT_CLIP_TRIGGER_TOKEN_LEN = 30*1000
# 无条件丢弃x以上的轮数
AUTO_CONTEXT_MAX_ROUND = 64
# 在裁剪上下文时倒数第x次对话能“最多”保留的上下文token的比例占 AUTO_CONTEXT_CLIP_TRIGGER_TOKEN_LEN 的多少
AUTO_CONTEXT_MAX_CLIP_RATIO = [0.80, 0.60, 0.45, 0.25, 0.20, 0.18, 0.16, 0.14, 0.12, 0.10, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01]
"""
--------------- 配置关联关系说明 ---------------

View File

@@ -106,7 +106,7 @@ AVAIL_FONTS = [
# 默认的系统提示词system prompt
INIT_SYS_PROMPT = "Serve me as a writing and programming assistant."
INIT_SYS_PROMPT = " "
# 对话窗的高度 仅在LAYOUT="TOP-DOWN"时生效)

View File

@@ -1,10 +1,11 @@
from toolbox import CatchException, update_ui, promote_file_to_downloadzone, get_log_folder, get_user
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
import re
from toolbox import CatchException, update_ui, promote_file_to_downloadzone, get_log_folder, get_user, update_ui_latest_msg
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
from loguru import logger
f_prefix = 'GPT-Academic对话存档'
def write_chat_to_file(chatbot, history=None, file_name=None):
def write_chat_to_file_legacy(chatbot, history=None, file_name=None):
"""
将对话记录history以Markdown格式写入文件中。如果没有指定文件名则使用当前时间生成文件名。
"""
@@ -12,6 +13,9 @@ def write_chat_to_file(chatbot, history=None, file_name=None):
import time
from themes.theme import advanced_css
if (file_name is not None) and (file_name != "") and (not file_name.endswith('.html')): file_name += '.html'
else: file_name = None
if file_name is None:
file_name = f_prefix + time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + '.html'
fp = os.path.join(get_log_folder(get_user(chatbot), plugin_name='chat_history'), file_name)
@@ -68,6 +72,147 @@ def write_chat_to_file(chatbot, history=None, file_name=None):
promote_file_to_downloadzone(fp, rename_file=file_name, chatbot=chatbot)
return '对话历史写入:' + fp
def write_chat_to_file(chatbot, history=None, file_name=None):
"""
将对话记录history以多种格式HTML、Word、Markdown写入文件中。如果没有指定文件名则使用当前时间生成文件名。
Args:
chatbot: 聊天机器人对象,包含对话内容
history: 对话历史记录
file_name: 指定的文件名如果为None则使用时间戳
Returns:
str: 提示信息,包含文件保存路径
"""
import os
import time
import asyncio
import aiofiles
from toolbox import promote_file_to_downloadzone
from crazy_functions.doc_fns.conversation_doc.excel_doc import save_chat_tables
from crazy_functions.doc_fns.conversation_doc.html_doc import HtmlFormatter
from crazy_functions.doc_fns.conversation_doc.markdown_doc import MarkdownFormatter
from crazy_functions.doc_fns.conversation_doc.word_doc import WordFormatter
from crazy_functions.doc_fns.conversation_doc.txt_doc import TxtFormatter
from crazy_functions.doc_fns.conversation_doc.word2pdf import WordToPdfConverter
async def save_html():
try:
html_formatter = HtmlFormatter(chatbot, history)
html_content = html_formatter.create_document()
html_file = os.path.join(save_dir, base_name + '.html')
async with aiofiles.open(html_file, 'w', encoding='utf8') as f:
await f.write(html_content)
return html_file
except Exception as e:
print(f"保存HTML格式失败: {str(e)}")
return None
async def save_word():
try:
word_formatter = WordFormatter()
doc = word_formatter.create_document(history)
docx_file = os.path.join(save_dir, base_name + '.docx')
# 由于python-docx不支持异步使用线程池执行
loop = asyncio.get_event_loop()
await loop.run_in_executor(None, doc.save, docx_file)
return docx_file
except Exception as e:
print(f"保存Word格式失败: {str(e)}")
return None
async def save_pdf(docx_file):
try:
if docx_file:
# 获取文件名和保存路径
pdf_file = os.path.join(save_dir, base_name + '.pdf')
# 在线程池中执行转换
loop = asyncio.get_event_loop()
pdf_file = await loop.run_in_executor(
None,
WordToPdfConverter.convert_to_pdf,
docx_file
# save_dir
)
return pdf_file
except Exception as e:
print(f"保存PDF格式失败: {str(e)}")
return None
async def save_markdown():
try:
md_formatter = MarkdownFormatter()
md_content = md_formatter.create_document(history)
md_file = os.path.join(save_dir, base_name + '.md')
async with aiofiles.open(md_file, 'w', encoding='utf8') as f:
await f.write(md_content)
return md_file
except Exception as e:
print(f"保存Markdown格式失败: {str(e)}")
return None
async def save_txt():
try:
txt_formatter = TxtFormatter()
txt_content = txt_formatter.create_document(history)
txt_file = os.path.join(save_dir, base_name + '.txt')
async with aiofiles.open(txt_file, 'w', encoding='utf8') as f:
await f.write(txt_content)
return txt_file
except Exception as e:
print(f"保存TXT格式失败: {str(e)}")
return None
async def main():
# 并发执行所有保存任务
html_task = asyncio.create_task(save_html())
word_task = asyncio.create_task(save_word())
md_task = asyncio.create_task(save_markdown())
txt_task = asyncio.create_task(save_txt())
# 等待所有任务完成
html_file = await html_task
docx_file = await word_task
md_file = await md_task
txt_file = await txt_task
# PDF转换需要等待word文件生成完成
pdf_file = await save_pdf(docx_file)
# 收集所有成功生成的文件
result_files = [f for f in [html_file, docx_file, md_file, txt_file, pdf_file] if f]
# 保存Excel表格
excel_files = save_chat_tables(history, save_dir, base_name)
result_files.extend(excel_files)
return result_files
# 生成时间戳
timestamp = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
# 获取保存目录
save_dir = get_log_folder(get_user(chatbot), plugin_name='chat_history')
# 处理文件名
base_name = file_name if file_name else f"聊天记录_{timestamp}"
# 运行异步任务
result_files = asyncio.run(main())
# 将生成的文件添加到下载区
for file in result_files:
promote_file_to_downloadzone(file, rename_file=os.path.basename(file), chatbot=chatbot)
# 如果没有成功保存任何文件,返回错误信息
if not result_files:
return "保存对话记录失败,请检查错误日志"
ext_list = [os.path.splitext(f)[1] for f in result_files]
# 返回成功信息和文件路径
return f"对话历史已保存至以下格式文件:" + "".join(ext_list)
def gen_file_preview(file_name):
try:
with open(file_name, 'r', encoding='utf8') as f:
@@ -119,12 +264,21 @@ def 对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
user_request 当前用户的请求信息IP地址等
"""
file_name = plugin_kwargs.get("file_name", None)
if (file_name is not None) and (file_name != "") and (not file_name.endswith('.html')): file_name += '.html'
else: file_name = None
chatbot.append((None, f"[Local Message] {write_chat_to_file(chatbot, history, file_name)},您可以调用下拉菜单中的“载入对话历史存档”还原当下的对话。"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间我们先及时地做一次界面更新
chatbot.append((None, f"[Local Message] {write_chat_to_file_legacy(chatbot, history, file_name)},您可以调用下拉菜单中的“载入对话历史存档”还原当下的对话。"))
try:
chatbot.append((None, f"[Local Message] 正在尝试生成pdf以及word格式的对话存档请稍等..."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求需要一段时间,我们先及时地做一次界面更新
lastmsg = f"[Local Message] {write_chat_to_file(chatbot, history, file_name)}" \
f"您可以调用下拉菜单中的“载入对话历史会话”还原当下的对话请注意目前只支持html格式载入历史。" \
f"当模型回答中存在表格将提取表格内容存储为Excel的xlsx格式如果你提供一些数据,然后输入指令要求模型帮你整理为表格" \
f"如“请帮我将下面的数据整理为表格再利用此插件就可以获取到Excel表格。"
yield from update_ui_latest_msg(lastmsg, chatbot, history) # 刷新界面 # 由于请求需要一段时间,我们先及时地做一次界面更新
except Exception as e:
logger.exception(f"已完成对话存档pdf和word格式的对话存档生成未成功{str(e)}")
lastmsg = "已完成对话存档pdf和word格式的对话存档生成未成功"
yield from update_ui_latest_msg(lastmsg, chatbot, history) # 刷新界面 # 由于请求需要一段时间,我们先及时地做一次界面更新
return
class Conversation_To_File_Wrap(GptAcademicPluginTemplate):
def __init__(self):

View File

@@ -0,0 +1,812 @@
import os
import time
from abc import ABC, abstractmethod
from datetime import datetime
from docx import Document
from docx.enum.style import WD_STYLE_TYPE
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT, WD_LINE_SPACING
from docx.oxml.ns import qn
from docx.shared import Inches, Cm
from docx.shared import Pt, RGBColor, Inches
from typing import Dict, List, Tuple
import markdown
from crazy_functions.doc_fns.conversation_doc.word_doc import convert_markdown_to_word
class DocumentFormatter(ABC):
"""文档格式化基类,定义文档格式化的基本接口"""
def __init__(self, final_summary: str, file_summaries_map: Dict, failed_files: List[Tuple]):
self.final_summary = final_summary
self.file_summaries_map = file_summaries_map
self.failed_files = failed_files
@abstractmethod
def format_failed_files(self) -> str:
"""格式化失败文件列表"""
pass
@abstractmethod
def format_file_summaries(self) -> str:
"""格式化文件总结内容"""
pass
@abstractmethod
def create_document(self) -> str:
"""创建完整文档"""
pass
class WordFormatter(DocumentFormatter):
"""Word格式文档生成器 - 符合中国政府公文格式规范(GB/T 9704-2012),并进行了优化"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.doc = Document()
self._setup_document()
self._create_styles()
# 初始化三级标题编号系统
self.numbers = {
1: 0, # 一级标题编号
2: 0, # 二级标题编号
3: 0 # 三级标题编号
}
def _setup_document(self):
"""设置文档基本格式,包括页面设置和页眉"""
sections = self.doc.sections
for section in sections:
# 设置页面大小为A4
section.page_width = Cm(21)
section.page_height = Cm(29.7)
# 设置页边距
section.top_margin = Cm(3.7) # 上边距37mm
section.bottom_margin = Cm(3.5) # 下边距35mm
section.left_margin = Cm(2.8) # 左边距28mm
section.right_margin = Cm(2.6) # 右边距26mm
# 设置页眉页脚距离
section.header_distance = Cm(2.0)
section.footer_distance = Cm(2.0)
# 添加页眉
header = section.header
header_para = header.paragraphs[0]
header_para.alignment = WD_PARAGRAPH_ALIGNMENT.RIGHT
header_run = header_para.add_run("该文档由GPT-academic生成")
header_run.font.name = '仿宋'
header_run._element.rPr.rFonts.set(qn('w:eastAsia'), '仿宋')
header_run.font.size = Pt(9)
def _create_styles(self):
"""创建文档样式"""
# 创建正文样式
style = self.doc.styles.add_style('Normal_Custom', WD_STYLE_TYPE.PARAGRAPH)
style.font.name = '仿宋'
style._element.rPr.rFonts.set(qn('w:eastAsia'), '仿宋')
style.font.size = Pt(14)
style.paragraph_format.line_spacing_rule = WD_LINE_SPACING.ONE_POINT_FIVE
style.paragraph_format.space_after = Pt(0)
style.paragraph_format.first_line_indent = Pt(28)
# 创建各级标题样式
self._create_heading_style('Title_Custom', '方正小标宋简体', 32, WD_PARAGRAPH_ALIGNMENT.CENTER)
self._create_heading_style('Heading1_Custom', '黑体', 22, WD_PARAGRAPH_ALIGNMENT.LEFT)
self._create_heading_style('Heading2_Custom', '黑体', 18, WD_PARAGRAPH_ALIGNMENT.LEFT)
self._create_heading_style('Heading3_Custom', '黑体', 16, WD_PARAGRAPH_ALIGNMENT.LEFT)
def _create_heading_style(self, style_name: str, font_name: str, font_size: int, alignment):
"""创建标题样式"""
style = self.doc.styles.add_style(style_name, WD_STYLE_TYPE.PARAGRAPH)
style.font.name = font_name
style._element.rPr.rFonts.set(qn('w:eastAsia'), font_name)
style.font.size = Pt(font_size)
style.font.bold = True
style.paragraph_format.alignment = alignment
style.paragraph_format.space_before = Pt(12)
style.paragraph_format.space_after = Pt(12)
style.paragraph_format.line_spacing_rule = WD_LINE_SPACING.ONE_POINT_FIVE
return style
def _get_heading_number(self, level: int) -> str:
"""
生成标题编号
Args:
level: 标题级别 (0-3)
Returns:
str: 格式化的标题编号
"""
if level == 0: # 主标题不需要编号
return ""
self.numbers[level] += 1 # 增加当前级别的编号
# 重置下级标题编号
for i in range(level + 1, 4):
self.numbers[i] = 0
# 根据级别返回不同格式的编号
if level == 1:
return f"{self.numbers[1]}. "
elif level == 2:
return f"{self.numbers[1]}.{self.numbers[2]} "
elif level == 3:
return f"{self.numbers[1]}.{self.numbers[2]}.{self.numbers[3]} "
return ""
def _add_heading(self, text: str, level: int):
"""
添加带编号的标题
Args:
text: 标题文本
level: 标题级别 (0-3)
"""
style_map = {
0: 'Title_Custom',
1: 'Heading1_Custom',
2: 'Heading2_Custom',
3: 'Heading3_Custom'
}
number = self._get_heading_number(level)
paragraph = self.doc.add_paragraph(style=style_map[level])
if number:
number_run = paragraph.add_run(number)
font_size = 22 if level == 1 else (18 if level == 2 else 16)
self._get_run_style(number_run, '黑体', font_size, True)
text_run = paragraph.add_run(text)
font_size = 32 if level == 0 else (22 if level == 1 else (18 if level == 2 else 16))
self._get_run_style(text_run, '黑体', font_size, True)
# 主标题添加日期
if level == 0:
date_paragraph = self.doc.add_paragraph()
date_paragraph.alignment = WD_PARAGRAPH_ALIGNMENT.CENTER
date_run = date_paragraph.add_run(datetime.now().strftime('%Y年%m月%d'))
self._get_run_style(date_run, '仿宋', 16, False)
return paragraph
def _get_run_style(self, run, font_name: str, font_size: int, bold: bool = False):
"""设置文本运行对象的样式"""
run.font.name = font_name
run._element.rPr.rFonts.set(qn('w:eastAsia'), font_name)
run.font.size = Pt(font_size)
run.font.bold = bold
def format_failed_files(self) -> str:
"""格式化失败文件列表"""
result = []
if not self.failed_files:
return "\n".join(result)
result.append("处理失败文件:")
for fp, reason in self.failed_files:
result.append(f"{os.path.basename(fp)}: {reason}")
self._add_heading("处理失败文件", 1)
for fp, reason in self.failed_files:
self._add_content(f"{os.path.basename(fp)}: {reason}", indent=False)
self.doc.add_paragraph()
return "\n".join(result)
def _add_content(self, text: str, indent: bool = True):
"""添加正文内容使用convert_markdown_to_word处理文本"""
# 使用convert_markdown_to_word处理markdown文本
processed_text = convert_markdown_to_word(text)
paragraph = self.doc.add_paragraph(processed_text, style='Normal_Custom')
if not indent:
paragraph.paragraph_format.first_line_indent = Pt(0)
return paragraph
def format_file_summaries(self) -> str:
"""
格式化文件总结内容确保正确的标题层级并处理markdown文本
"""
result = []
# 首先对文件路径进行分组整理
file_groups = {}
for path in sorted(self.file_summaries_map.keys()):
dir_path = os.path.dirname(path)
if dir_path not in file_groups:
file_groups[dir_path] = []
file_groups[dir_path].append(path)
# 处理没有目录的文件
root_files = file_groups.get("", [])
if root_files:
for path in sorted(root_files):
file_name = os.path.basename(path)
result.append(f"\n📄 {file_name}")
result.append(self.file_summaries_map[path])
# 无目录的文件作为二级标题
self._add_heading(f"📄 {file_name}", 2)
# 使用convert_markdown_to_word处理文件内容
self._add_content(convert_markdown_to_word(self.file_summaries_map[path]))
self.doc.add_paragraph()
# 处理有目录的文件
for dir_path in sorted(file_groups.keys()):
if dir_path == "": # 跳过已处理的根目录文件
continue
# 添加目录作为二级标题
result.append(f"\n📁 {dir_path}")
self._add_heading(f"📁 {dir_path}", 2)
# 该目录下的所有文件作为三级标题
for path in sorted(file_groups[dir_path]):
file_name = os.path.basename(path)
result.append(f"\n📄 {file_name}")
result.append(self.file_summaries_map[path])
# 添加文件名作为三级标题
self._add_heading(f"📄 {file_name}", 3)
# 使用convert_markdown_to_word处理文件内容
self._add_content(convert_markdown_to_word(self.file_summaries_map[path]))
self.doc.add_paragraph()
return "\n".join(result)
def create_document(self):
"""创建完整Word文档并返回文档对象"""
# 重置所有编号
for level in self.numbers:
self.numbers[level] = 0
# 添加主标题
self._add_heading("文档总结报告", 0)
self.doc.add_paragraph()
# 添加总体摘要使用convert_markdown_to_word处理
self._add_heading("总体摘要", 1)
self._add_content(convert_markdown_to_word(self.final_summary))
self.doc.add_paragraph()
# 添加失败文件列表(如果有)
if self.failed_files:
self.format_failed_files()
# 添加文件详细总结
self._add_heading("各文件详细总结", 1)
self.format_file_summaries()
return self.doc
def save_as_pdf(self, word_path, pdf_path=None):
"""将生成的Word文档转换为PDF
参数:
word_path: Word文档的路径
pdf_path: 可选PDF文件的输出路径。如果未指定将使用与Word文档相同的名称和位置
返回:
生成的PDF文件路径如果转换失败则返回None
"""
from crazy_functions.doc_fns.conversation_doc.word2pdf import WordToPdfConverter
try:
pdf_path = WordToPdfConverter.convert_to_pdf(word_path, pdf_path)
return pdf_path
except Exception as e:
print(f"PDF转换失败: {str(e)}")
return None
class MarkdownFormatter(DocumentFormatter):
"""Markdown格式文档生成器"""
def format_failed_files(self) -> str:
if not self.failed_files:
return ""
formatted_text = ["\n## ⚠️ 处理失败的文件"]
for fp, reason in self.failed_files:
formatted_text.append(f"- {os.path.basename(fp)}: {reason}")
formatted_text.append("\n---")
return "\n".join(formatted_text)
def format_file_summaries(self) -> str:
formatted_text = []
sorted_paths = sorted(self.file_summaries_map.keys())
current_dir = ""
for path in sorted_paths:
dir_path = os.path.dirname(path)
if dir_path != current_dir:
if dir_path:
formatted_text.append(f"\n## 📁 {dir_path}")
current_dir = dir_path
file_name = os.path.basename(path)
formatted_text.append(f"\n### 📄 {file_name}")
formatted_text.append(self.file_summaries_map[path])
formatted_text.append("\n---")
return "\n".join(formatted_text)
def create_document(self) -> str:
document = [
"# 📑 文档总结报告",
"\n## 总体摘要",
self.final_summary
]
if self.failed_files:
document.append(self.format_failed_files())
document.extend([
"\n# 📚 各文件详细总结",
self.format_file_summaries()
])
return "\n".join(document)
class HtmlFormatter(DocumentFormatter):
"""HTML格式文档生成器 - 优化版"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.md = markdown.Markdown(extensions=['extra','codehilite', 'tables','nl2br'])
self.css_styles = """
@keyframes fadeIn {
from { opacity: 0; transform: translateY(20px); }
to { opacity: 1; transform: translateY(0); }
}
@keyframes slideIn {
from { transform: translateX(-20px); opacity: 0; }
to { transform: translateX(0); opacity: 1; }
}
@keyframes pulse {
0% { transform: scale(1); }
50% { transform: scale(1.05); }
100% { transform: scale(1); }
}
:root {
/* Enhanced color palette */
--primary-color: #2563eb;
--primary-light: #eff6ff;
--secondary-color: #1e293b;
--background-color: #f8fafc;
--text-color: #334155;
--text-light: #64748b;
--border-color: #e2e8f0;
--error-color: #ef4444;
--error-light: #fef2f2;
--success-color: #22c55e;
--warning-color: #f59e0b;
--card-shadow: 0 4px 6px -1px rgb(0 0 0 / 0.1), 0 2px 4px -2px rgb(0 0 0 / 0.1);
--hover-shadow: 0 20px 25px -5px rgb(0 0 0 / 0.1), 0 8px 10px -6px rgb(0 0 0 / 0.1);
/* Typography */
--heading-font: "Plus Jakarta Sans", system-ui, sans-serif;
--body-font: "Inter", system-ui, sans-serif;
}
body {
font-family: var(--body-font);
line-height: 1.8;
max-width: 1200px;
margin: 0 auto;
padding: 2rem;
color: var(--text-color);
background-color: var(--background-color);
font-size: 16px;
-webkit-font-smoothing: antialiased;
}
.container {
background: white;
padding: 3rem;
border-radius: 24px;
box-shadow: var(--card-shadow);
transition: all 0.4s cubic-bezier(0.4, 0, 0.2, 1);
animation: fadeIn 0.6s ease-out;
border: 1px solid var(--border-color);
}
.container:hover {
box-shadow: var(--hover-shadow);
transform: translateY(-2px);
}
h1, h2, h3 {
font-family: var(--heading-font);
font-weight: 600;
}
h1 {
color: var(--primary-color);
font-size: 2.8em;
text-align: center;
margin: 2rem 0 3rem;
padding-bottom: 1.5rem;
border-bottom: 3px solid var(--primary-color);
letter-spacing: -0.03em;
position: relative;
display: flex;
align-items: center;
justify-content: center;
gap: 1rem;
}
h1::after {
content: '';
position: absolute;
bottom: -3px;
left: 50%;
transform: translateX(-50%);
width: 120px;
height: 3px;
background: linear-gradient(90deg, var(--primary-color), var(--primary-light));
border-radius: 3px;
transition: width 0.3s ease;
}
h1:hover::after {
width: 180px;
}
h2 {
color: var(--secondary-color);
font-size: 1.9em;
margin: 2.5rem 0 1.5rem;
padding-left: 1.2rem;
border-left: 4px solid var(--primary-color);
letter-spacing: -0.02em;
display: flex;
align-items: center;
gap: 1rem;
transition: all 0.3s ease;
}
h2:hover {
color: var(--primary-color);
transform: translateX(5px);
}
h3 {
color: var(--text-color);
font-size: 1.5em;
margin: 2rem 0 1rem;
padding-bottom: 0.8rem;
border-bottom: 2px solid var(--border-color);
transition: all 0.3s ease;
display: flex;
align-items: center;
gap: 0.8rem;
}
h3:hover {
color: var(--primary-color);
border-bottom-color: var(--primary-color);
}
.summary {
background: var(--primary-light);
padding: 2.5rem;
border-radius: 16px;
margin: 2.5rem 0;
box-shadow: 0 4px 6px -1px rgba(37, 99, 235, 0.1);
position: relative;
overflow: hidden;
transition: transform 0.3s ease, box-shadow 0.3s ease;
animation: slideIn 0.5s ease-out;
}
.summary:hover {
transform: translateY(-3px);
box-shadow: 0 8px 12px -2px rgba(37, 99, 235, 0.15);
}
.summary::before {
content: '';
position: absolute;
top: 0;
left: 0;
width: 4px;
height: 100%;
background: linear-gradient(to bottom, var(--primary-color), rgba(37, 99, 235, 0.6));
}
.summary p {
margin: 1.2rem 0;
line-height: 1.9;
color: var(--text-color);
transition: color 0.3s ease;
}
.summary:hover p {
color: var(--secondary-color);
}
.details {
margin-top: 3.5rem;
padding-top: 2.5rem;
border-top: 2px dashed var(--border-color);
animation: fadeIn 0.8s ease-out;
}
.failed-files {
background: var(--error-light);
padding: 2rem;
border-radius: 16px;
margin: 3rem 0;
border-left: 4px solid var(--error-color);
position: relative;
transition: all 0.3s ease;
animation: slideIn 0.5s ease-out;
}
.failed-files:hover {
transform: translateX(5px);
box-shadow: 0 8px 15px -3px rgba(239, 68, 68, 0.1);
}
.failed-files h2 {
color: var(--error-color);
border-left: none;
padding-left: 0;
}
.failed-files ul {
margin: 1.8rem 0;
padding-left: 1.2rem;
list-style-type: none;
}
.failed-files li {
margin: 1.2rem 0;
padding: 1.2rem 1.8rem;
background: rgba(239, 68, 68, 0.08);
border-radius: 12px;
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1);
}
.failed-files li:hover {
transform: translateX(8px);
background: rgba(239, 68, 68, 0.12);
}
.directory-section {
margin: 3.5rem 0;
padding: 2rem;
background: var(--background-color);
border-radius: 16px;
position: relative;
transition: all 0.3s ease;
animation: fadeIn 0.6s ease-out;
}
.directory-section:hover {
background: white;
box-shadow: var(--card-shadow);
}
.file-summary {
background: white;
padding: 2rem;
margin: 1.8rem 0;
border-radius: 16px;
box-shadow: var(--card-shadow);
border-left: 4px solid var(--border-color);
transition: all 0.4s cubic-bezier(0.4, 0, 0.2, 1);
position: relative;
overflow: hidden;
}
.file-summary:hover {
border-left-color: var(--primary-color);
transform: translateX(8px) translateY(-2px);
box-shadow: var(--hover-shadow);
}
.file-summary {
background: white;
padding: 2rem;
margin: 1.8rem 0;
border-radius: 16px;
box-shadow: var(--card-shadow);
border-left: 4px solid var(--border-color);
transition: all 0.4s cubic-bezier(0.4, 0, 0.2, 1);
position: relative;
}
.file-summary:hover {
border-left-color: var(--primary-color);
transform: translateX(8px) translateY(-2px);
box-shadow: var(--hover-shadow);
}
.icon {
display: inline-flex;
align-items: center;
justify-content: center;
width: 32px;
height: 32px;
border-radius: 8px;
background: var(--primary-light);
color: var(--primary-color);
font-size: 1.2em;
transition: all 0.3s ease;
}
.file-summary:hover .icon,
.directory-section:hover .icon {
transform: scale(1.1);
background: var(--primary-color);
color: white;
}
/* Smooth scrolling */
html {
scroll-behavior: smooth;
}
/* Selection style */
::selection {
background: var(--primary-light);
color: var(--primary-color);
}
/* Print styles */
@media print {
body {
background: white;
}
.container {
box-shadow: none;
padding: 0;
}
.file-summary, .failed-files {
break-inside: avoid;
box-shadow: none;
}
.icon {
display: none;
}
}
/* Responsive design */
@media (max-width: 768px) {
body {
padding: 1rem;
font-size: 15px;
}
.container {
padding: 1.5rem;
}
h1 {
font-size: 2.2em;
margin: 1.5rem 0 2rem;
}
h2 {
font-size: 1.7em;
}
h3 {
font-size: 1.4em;
}
.summary, .failed-files, .directory-section {
padding: 1.5rem;
}
.file-summary {
padding: 1.2rem;
}
.icon {
width: 28px;
height: 28px;
}
}
/* Dark mode support */
@media (prefers-color-scheme: dark) {
:root {
--primary-light: rgba(37, 99, 235, 0.15);
--background-color: #0f172a;
--text-color: #e2e8f0;
--text-light: #94a3b8;
--border-color: #1e293b;
--error-light: rgba(239, 68, 68, 0.15);
}
.container, .file-summary {
background: #1e293b;
}
.directory-section {
background: #0f172a;
}
.directory-section:hover {
background: #1e293b;
}
}
"""
def format_failed_files(self) -> str:
if not self.failed_files:
return ""
failed_files_html = ['<div class="failed-files">']
failed_files_html.append('<h2><span class="icon">⚠️</span> 处理失败的文件</h2>')
failed_files_html.append("<ul>")
for fp, reason in self.failed_files:
failed_files_html.append(
f'<li><strong>📄 {os.path.basename(fp)}</strong><br><span style="color: var(--text-light)">{reason}</span></li>'
)
failed_files_html.append("</ul></div>")
return "\n".join(failed_files_html)
def format_file_summaries(self) -> str:
formatted_html = []
sorted_paths = sorted(self.file_summaries_map.keys())
current_dir = ""
for path in sorted_paths:
dir_path = os.path.dirname(path)
if dir_path != current_dir:
if dir_path:
formatted_html.append('<div class="directory-section">')
formatted_html.append(f'<h2><span class="icon">📁</span> {dir_path}</h2>')
formatted_html.append('</div>')
current_dir = dir_path
file_name = os.path.basename(path)
formatted_html.append('<div class="file-summary">')
formatted_html.append(f'<h3><span class="icon">📄</span> {file_name}</h3>')
formatted_html.append(self.md.convert(self.file_summaries_map[path]))
formatted_html.append('</div>')
return "\n".join(formatted_html)
def create_document(self) -> str:
"""生成HTML文档
Returns:
str: 完整的HTML文档字符串
"""
return f"""
<!DOCTYPE html>
<html lang="zh-CN">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>文档总结报告</title>
<link href="https://cdnjs.cloudflare.com/ajax/libs/inter/3.19.3/inter.css" rel="stylesheet">
<link href="https://fonts.googleapis.com/css2?family=Plus+Jakarta+Sans:wght@400;600&display=swap" rel="stylesheet">
<style>{self.css_styles}</style>
</head>
<body>
<div class="container">
<h1><span class="icon">📑</span> 文档总结报告</h1>
<div class="summary">
<h2><span class="icon">📋</span> 总体摘要</h2>
<p>{self.md.convert(self.final_summary)}</p>
</div>
{self.format_failed_files()}
<div class="details">
<h2><span class="icon">📚</span> 各文件详细总结</h2>
{self.format_file_summaries()}
</div>
</div>
</body>
</html>
"""

View File

View File

@@ -0,0 +1,812 @@
import os
import time
from abc import ABC, abstractmethod
from datetime import datetime
from docx import Document
from docx.enum.style import WD_STYLE_TYPE
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT, WD_LINE_SPACING
from docx.oxml.ns import qn
from docx.shared import Inches, Cm
from docx.shared import Pt, RGBColor, Inches
from typing import Dict, List, Tuple
import markdown
from crazy_functions.doc_fns.conversation_doc.word_doc import convert_markdown_to_word
class DocumentFormatter(ABC):
"""文档格式化基类,定义文档格式化的基本接口"""
def __init__(self, final_summary: str, file_summaries_map: Dict, failed_files: List[Tuple]):
self.final_summary = final_summary
self.file_summaries_map = file_summaries_map
self.failed_files = failed_files
@abstractmethod
def format_failed_files(self) -> str:
"""格式化失败文件列表"""
pass
@abstractmethod
def format_file_summaries(self) -> str:
"""格式化文件总结内容"""
pass
@abstractmethod
def create_document(self) -> str:
"""创建完整文档"""
pass
class WordFormatter(DocumentFormatter):
"""Word格式文档生成器 - 符合中国政府公文格式规范(GB/T 9704-2012),并进行了优化"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.doc = Document()
self._setup_document()
self._create_styles()
# 初始化三级标题编号系统
self.numbers = {
1: 0, # 一级标题编号
2: 0, # 二级标题编号
3: 0 # 三级标题编号
}
def _setup_document(self):
"""设置文档基本格式,包括页面设置和页眉"""
sections = self.doc.sections
for section in sections:
# 设置页面大小为A4
section.page_width = Cm(21)
section.page_height = Cm(29.7)
# 设置页边距
section.top_margin = Cm(3.7) # 上边距37mm
section.bottom_margin = Cm(3.5) # 下边距35mm
section.left_margin = Cm(2.8) # 左边距28mm
section.right_margin = Cm(2.6) # 右边距26mm
# 设置页眉页脚距离
section.header_distance = Cm(2.0)
section.footer_distance = Cm(2.0)
# 添加页眉
header = section.header
header_para = header.paragraphs[0]
header_para.alignment = WD_PARAGRAPH_ALIGNMENT.RIGHT
header_run = header_para.add_run("该文档由GPT-academic生成")
header_run.font.name = '仿宋'
header_run._element.rPr.rFonts.set(qn('w:eastAsia'), '仿宋')
header_run.font.size = Pt(9)
def _create_styles(self):
"""创建文档样式"""
# 创建正文样式
style = self.doc.styles.add_style('Normal_Custom', WD_STYLE_TYPE.PARAGRAPH)
style.font.name = '仿宋'
style._element.rPr.rFonts.set(qn('w:eastAsia'), '仿宋')
style.font.size = Pt(14)
style.paragraph_format.line_spacing_rule = WD_LINE_SPACING.ONE_POINT_FIVE
style.paragraph_format.space_after = Pt(0)
style.paragraph_format.first_line_indent = Pt(28)
# 创建各级标题样式
self._create_heading_style('Title_Custom', '方正小标宋简体', 32, WD_PARAGRAPH_ALIGNMENT.CENTER)
self._create_heading_style('Heading1_Custom', '黑体', 22, WD_PARAGRAPH_ALIGNMENT.LEFT)
self._create_heading_style('Heading2_Custom', '黑体', 18, WD_PARAGRAPH_ALIGNMENT.LEFT)
self._create_heading_style('Heading3_Custom', '黑体', 16, WD_PARAGRAPH_ALIGNMENT.LEFT)
def _create_heading_style(self, style_name: str, font_name: str, font_size: int, alignment):
"""创建标题样式"""
style = self.doc.styles.add_style(style_name, WD_STYLE_TYPE.PARAGRAPH)
style.font.name = font_name
style._element.rPr.rFonts.set(qn('w:eastAsia'), font_name)
style.font.size = Pt(font_size)
style.font.bold = True
style.paragraph_format.alignment = alignment
style.paragraph_format.space_before = Pt(12)
style.paragraph_format.space_after = Pt(12)
style.paragraph_format.line_spacing_rule = WD_LINE_SPACING.ONE_POINT_FIVE
return style
def _get_heading_number(self, level: int) -> str:
"""
生成标题编号
Args:
level: 标题级别 (0-3)
Returns:
str: 格式化的标题编号
"""
if level == 0: # 主标题不需要编号
return ""
self.numbers[level] += 1 # 增加当前级别的编号
# 重置下级标题编号
for i in range(level + 1, 4):
self.numbers[i] = 0
# 根据级别返回不同格式的编号
if level == 1:
return f"{self.numbers[1]}. "
elif level == 2:
return f"{self.numbers[1]}.{self.numbers[2]} "
elif level == 3:
return f"{self.numbers[1]}.{self.numbers[2]}.{self.numbers[3]} "
return ""
def _add_heading(self, text: str, level: int):
"""
添加带编号的标题
Args:
text: 标题文本
level: 标题级别 (0-3)
"""
style_map = {
0: 'Title_Custom',
1: 'Heading1_Custom',
2: 'Heading2_Custom',
3: 'Heading3_Custom'
}
number = self._get_heading_number(level)
paragraph = self.doc.add_paragraph(style=style_map[level])
if number:
number_run = paragraph.add_run(number)
font_size = 22 if level == 1 else (18 if level == 2 else 16)
self._get_run_style(number_run, '黑体', font_size, True)
text_run = paragraph.add_run(text)
font_size = 32 if level == 0 else (22 if level == 1 else (18 if level == 2 else 16))
self._get_run_style(text_run, '黑体', font_size, True)
# 主标题添加日期
if level == 0:
date_paragraph = self.doc.add_paragraph()
date_paragraph.alignment = WD_PARAGRAPH_ALIGNMENT.CENTER
date_run = date_paragraph.add_run(datetime.now().strftime('%Y年%m月%d'))
self._get_run_style(date_run, '仿宋', 16, False)
return paragraph
def _get_run_style(self, run, font_name: str, font_size: int, bold: bool = False):
"""设置文本运行对象的样式"""
run.font.name = font_name
run._element.rPr.rFonts.set(qn('w:eastAsia'), font_name)
run.font.size = Pt(font_size)
run.font.bold = bold
def format_failed_files(self) -> str:
"""格式化失败文件列表"""
result = []
if not self.failed_files:
return "\n".join(result)
result.append("处理失败文件:")
for fp, reason in self.failed_files:
result.append(f"{os.path.basename(fp)}: {reason}")
self._add_heading("处理失败文件", 1)
for fp, reason in self.failed_files:
self._add_content(f"{os.path.basename(fp)}: {reason}", indent=False)
self.doc.add_paragraph()
return "\n".join(result)
def _add_content(self, text: str, indent: bool = True):
"""添加正文内容使用convert_markdown_to_word处理文本"""
# 使用convert_markdown_to_word处理markdown文本
processed_text = convert_markdown_to_word(text)
paragraph = self.doc.add_paragraph(processed_text, style='Normal_Custom')
if not indent:
paragraph.paragraph_format.first_line_indent = Pt(0)
return paragraph
def format_file_summaries(self) -> str:
"""
格式化文件总结内容确保正确的标题层级并处理markdown文本
"""
result = []
# 首先对文件路径进行分组整理
file_groups = {}
for path in sorted(self.file_summaries_map.keys()):
dir_path = os.path.dirname(path)
if dir_path not in file_groups:
file_groups[dir_path] = []
file_groups[dir_path].append(path)
# 处理没有目录的文件
root_files = file_groups.get("", [])
if root_files:
for path in sorted(root_files):
file_name = os.path.basename(path)
result.append(f"\n📄 {file_name}")
result.append(self.file_summaries_map[path])
# 无目录的文件作为二级标题
self._add_heading(f"📄 {file_name}", 2)
# 使用convert_markdown_to_word处理文件内容
self._add_content(convert_markdown_to_word(self.file_summaries_map[path]))
self.doc.add_paragraph()
# 处理有目录的文件
for dir_path in sorted(file_groups.keys()):
if dir_path == "": # 跳过已处理的根目录文件
continue
# 添加目录作为二级标题
result.append(f"\n📁 {dir_path}")
self._add_heading(f"📁 {dir_path}", 2)
# 该目录下的所有文件作为三级标题
for path in sorted(file_groups[dir_path]):
file_name = os.path.basename(path)
result.append(f"\n📄 {file_name}")
result.append(self.file_summaries_map[path])
# 添加文件名作为三级标题
self._add_heading(f"📄 {file_name}", 3)
# 使用convert_markdown_to_word处理文件内容
self._add_content(convert_markdown_to_word(self.file_summaries_map[path]))
self.doc.add_paragraph()
return "\n".join(result)
def create_document(self):
"""创建完整Word文档并返回文档对象"""
# 重置所有编号
for level in self.numbers:
self.numbers[level] = 0
# 添加主标题
self._add_heading("文档总结报告", 0)
self.doc.add_paragraph()
# 添加总体摘要使用convert_markdown_to_word处理
self._add_heading("总体摘要", 1)
self._add_content(convert_markdown_to_word(self.final_summary))
self.doc.add_paragraph()
# 添加失败文件列表(如果有)
if self.failed_files:
self.format_failed_files()
# 添加文件详细总结
self._add_heading("各文件详细总结", 1)
self.format_file_summaries()
return self.doc
def save_as_pdf(self, word_path, pdf_path=None):
"""将生成的Word文档转换为PDF
参数:
word_path: Word文档的路径
pdf_path: 可选PDF文件的输出路径。如果未指定将使用与Word文档相同的名称和位置
返回:
生成的PDF文件路径如果转换失败则返回None
"""
from crazy_functions.doc_fns.conversation_doc.word2pdf import WordToPdfConverter
try:
pdf_path = WordToPdfConverter.convert_to_pdf(word_path, pdf_path)
return pdf_path
except Exception as e:
print(f"PDF转换失败: {str(e)}")
return None
class MarkdownFormatter(DocumentFormatter):
"""Markdown格式文档生成器"""
def format_failed_files(self) -> str:
if not self.failed_files:
return ""
formatted_text = ["\n## ⚠️ 处理失败的文件"]
for fp, reason in self.failed_files:
formatted_text.append(f"- {os.path.basename(fp)}: {reason}")
formatted_text.append("\n---")
return "\n".join(formatted_text)
def format_file_summaries(self) -> str:
formatted_text = []
sorted_paths = sorted(self.file_summaries_map.keys())
current_dir = ""
for path in sorted_paths:
dir_path = os.path.dirname(path)
if dir_path != current_dir:
if dir_path:
formatted_text.append(f"\n## 📁 {dir_path}")
current_dir = dir_path
file_name = os.path.basename(path)
formatted_text.append(f"\n### 📄 {file_name}")
formatted_text.append(self.file_summaries_map[path])
formatted_text.append("\n---")
return "\n".join(formatted_text)
def create_document(self) -> str:
document = [
"# 📑 文档总结报告",
"\n## 总体摘要",
self.final_summary
]
if self.failed_files:
document.append(self.format_failed_files())
document.extend([
"\n# 📚 各文件详细总结",
self.format_file_summaries()
])
return "\n".join(document)
class HtmlFormatter(DocumentFormatter):
"""HTML格式文档生成器 - 优化版"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.md = markdown.Markdown(extensions=['extra','codehilite', 'tables','nl2br'])
self.css_styles = """
@keyframes fadeIn {
from { opacity: 0; transform: translateY(20px); }
to { opacity: 1; transform: translateY(0); }
}
@keyframes slideIn {
from { transform: translateX(-20px); opacity: 0; }
to { transform: translateX(0); opacity: 1; }
}
@keyframes pulse {
0% { transform: scale(1); }
50% { transform: scale(1.05); }
100% { transform: scale(1); }
}
:root {
/* Enhanced color palette */
--primary-color: #2563eb;
--primary-light: #eff6ff;
--secondary-color: #1e293b;
--background-color: #f8fafc;
--text-color: #334155;
--text-light: #64748b;
--border-color: #e2e8f0;
--error-color: #ef4444;
--error-light: #fef2f2;
--success-color: #22c55e;
--warning-color: #f59e0b;
--card-shadow: 0 4px 6px -1px rgb(0 0 0 / 0.1), 0 2px 4px -2px rgb(0 0 0 / 0.1);
--hover-shadow: 0 20px 25px -5px rgb(0 0 0 / 0.1), 0 8px 10px -6px rgb(0 0 0 / 0.1);
/* Typography */
--heading-font: "Plus Jakarta Sans", system-ui, sans-serif;
--body-font: "Inter", system-ui, sans-serif;
}
body {
font-family: var(--body-font);
line-height: 1.8;
max-width: 1200px;
margin: 0 auto;
padding: 2rem;
color: var(--text-color);
background-color: var(--background-color);
font-size: 16px;
-webkit-font-smoothing: antialiased;
}
.container {
background: white;
padding: 3rem;
border-radius: 24px;
box-shadow: var(--card-shadow);
transition: all 0.4s cubic-bezier(0.4, 0, 0.2, 1);
animation: fadeIn 0.6s ease-out;
border: 1px solid var(--border-color);
}
.container:hover {
box-shadow: var(--hover-shadow);
transform: translateY(-2px);
}
h1, h2, h3 {
font-family: var(--heading-font);
font-weight: 600;
}
h1 {
color: var(--primary-color);
font-size: 2.8em;
text-align: center;
margin: 2rem 0 3rem;
padding-bottom: 1.5rem;
border-bottom: 3px solid var(--primary-color);
letter-spacing: -0.03em;
position: relative;
display: flex;
align-items: center;
justify-content: center;
gap: 1rem;
}
h1::after {
content: '';
position: absolute;
bottom: -3px;
left: 50%;
transform: translateX(-50%);
width: 120px;
height: 3px;
background: linear-gradient(90deg, var(--primary-color), var(--primary-light));
border-radius: 3px;
transition: width 0.3s ease;
}
h1:hover::after {
width: 180px;
}
h2 {
color: var(--secondary-color);
font-size: 1.9em;
margin: 2.5rem 0 1.5rem;
padding-left: 1.2rem;
border-left: 4px solid var(--primary-color);
letter-spacing: -0.02em;
display: flex;
align-items: center;
gap: 1rem;
transition: all 0.3s ease;
}
h2:hover {
color: var(--primary-color);
transform: translateX(5px);
}
h3 {
color: var(--text-color);
font-size: 1.5em;
margin: 2rem 0 1rem;
padding-bottom: 0.8rem;
border-bottom: 2px solid var(--border-color);
transition: all 0.3s ease;
display: flex;
align-items: center;
gap: 0.8rem;
}
h3:hover {
color: var(--primary-color);
border-bottom-color: var(--primary-color);
}
.summary {
background: var(--primary-light);
padding: 2.5rem;
border-radius: 16px;
margin: 2.5rem 0;
box-shadow: 0 4px 6px -1px rgba(37, 99, 235, 0.1);
position: relative;
overflow: hidden;
transition: transform 0.3s ease, box-shadow 0.3s ease;
animation: slideIn 0.5s ease-out;
}
.summary:hover {
transform: translateY(-3px);
box-shadow: 0 8px 12px -2px rgba(37, 99, 235, 0.15);
}
.summary::before {
content: '';
position: absolute;
top: 0;
left: 0;
width: 4px;
height: 100%;
background: linear-gradient(to bottom, var(--primary-color), rgba(37, 99, 235, 0.6));
}
.summary p {
margin: 1.2rem 0;
line-height: 1.9;
color: var(--text-color);
transition: color 0.3s ease;
}
.summary:hover p {
color: var(--secondary-color);
}
.details {
margin-top: 3.5rem;
padding-top: 2.5rem;
border-top: 2px dashed var(--border-color);
animation: fadeIn 0.8s ease-out;
}
.failed-files {
background: var(--error-light);
padding: 2rem;
border-radius: 16px;
margin: 3rem 0;
border-left: 4px solid var(--error-color);
position: relative;
transition: all 0.3s ease;
animation: slideIn 0.5s ease-out;
}
.failed-files:hover {
transform: translateX(5px);
box-shadow: 0 8px 15px -3px rgba(239, 68, 68, 0.1);
}
.failed-files h2 {
color: var(--error-color);
border-left: none;
padding-left: 0;
}
.failed-files ul {
margin: 1.8rem 0;
padding-left: 1.2rem;
list-style-type: none;
}
.failed-files li {
margin: 1.2rem 0;
padding: 1.2rem 1.8rem;
background: rgba(239, 68, 68, 0.08);
border-radius: 12px;
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1);
}
.failed-files li:hover {
transform: translateX(8px);
background: rgba(239, 68, 68, 0.12);
}
.directory-section {
margin: 3.5rem 0;
padding: 2rem;
background: var(--background-color);
border-radius: 16px;
position: relative;
transition: all 0.3s ease;
animation: fadeIn 0.6s ease-out;
}
.directory-section:hover {
background: white;
box-shadow: var(--card-shadow);
}
.file-summary {
background: white;
padding: 2rem;
margin: 1.8rem 0;
border-radius: 16px;
box-shadow: var(--card-shadow);
border-left: 4px solid var(--border-color);
transition: all 0.4s cubic-bezier(0.4, 0, 0.2, 1);
position: relative;
overflow: hidden;
}
.file-summary:hover {
border-left-color: var(--primary-color);
transform: translateX(8px) translateY(-2px);
box-shadow: var(--hover-shadow);
}
.file-summary {
background: white;
padding: 2rem;
margin: 1.8rem 0;
border-radius: 16px;
box-shadow: var(--card-shadow);
border-left: 4px solid var(--border-color);
transition: all 0.4s cubic-bezier(0.4, 0, 0.2, 1);
position: relative;
}
.file-summary:hover {
border-left-color: var(--primary-color);
transform: translateX(8px) translateY(-2px);
box-shadow: var(--hover-shadow);
}
.icon {
display: inline-flex;
align-items: center;
justify-content: center;
width: 32px;
height: 32px;
border-radius: 8px;
background: var(--primary-light);
color: var(--primary-color);
font-size: 1.2em;
transition: all 0.3s ease;
}
.file-summary:hover .icon,
.directory-section:hover .icon {
transform: scale(1.1);
background: var(--primary-color);
color: white;
}
/* Smooth scrolling */
html {
scroll-behavior: smooth;
}
/* Selection style */
::selection {
background: var(--primary-light);
color: var(--primary-color);
}
/* Print styles */
@media print {
body {
background: white;
}
.container {
box-shadow: none;
padding: 0;
}
.file-summary, .failed-files {
break-inside: avoid;
box-shadow: none;
}
.icon {
display: none;
}
}
/* Responsive design */
@media (max-width: 768px) {
body {
padding: 1rem;
font-size: 15px;
}
.container {
padding: 1.5rem;
}
h1 {
font-size: 2.2em;
margin: 1.5rem 0 2rem;
}
h2 {
font-size: 1.7em;
}
h3 {
font-size: 1.4em;
}
.summary, .failed-files, .directory-section {
padding: 1.5rem;
}
.file-summary {
padding: 1.2rem;
}
.icon {
width: 28px;
height: 28px;
}
}
/* Dark mode support */
@media (prefers-color-scheme: dark) {
:root {
--primary-light: rgba(37, 99, 235, 0.15);
--background-color: #0f172a;
--text-color: #e2e8f0;
--text-light: #94a3b8;
--border-color: #1e293b;
--error-light: rgba(239, 68, 68, 0.15);
}
.container, .file-summary {
background: #1e293b;
}
.directory-section {
background: #0f172a;
}
.directory-section:hover {
background: #1e293b;
}
}
"""
def format_failed_files(self) -> str:
if not self.failed_files:
return ""
failed_files_html = ['<div class="failed-files">']
failed_files_html.append('<h2><span class="icon">⚠️</span> 处理失败的文件</h2>')
failed_files_html.append("<ul>")
for fp, reason in self.failed_files:
failed_files_html.append(
f'<li><strong>📄 {os.path.basename(fp)}</strong><br><span style="color: var(--text-light)">{reason}</span></li>'
)
failed_files_html.append("</ul></div>")
return "\n".join(failed_files_html)
def format_file_summaries(self) -> str:
formatted_html = []
sorted_paths = sorted(self.file_summaries_map.keys())
current_dir = ""
for path in sorted_paths:
dir_path = os.path.dirname(path)
if dir_path != current_dir:
if dir_path:
formatted_html.append('<div class="directory-section">')
formatted_html.append(f'<h2><span class="icon">📁</span> {dir_path}</h2>')
formatted_html.append('</div>')
current_dir = dir_path
file_name = os.path.basename(path)
formatted_html.append('<div class="file-summary">')
formatted_html.append(f'<h3><span class="icon">📄</span> {file_name}</h3>')
formatted_html.append(self.md.convert(self.file_summaries_map[path]))
formatted_html.append('</div>')
return "\n".join(formatted_html)
def create_document(self) -> str:
"""生成HTML文档
Returns:
str: 完整的HTML文档字符串
"""
return f"""
<!DOCTYPE html>
<html lang="zh-CN">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>文档总结报告</title>
<link href="https://cdnjs.cloudflare.com/ajax/libs/inter/3.19.3/inter.css" rel="stylesheet">
<link href="https://fonts.googleapis.com/css2?family=Plus+Jakarta+Sans:wght@400;600&display=swap" rel="stylesheet">
<style>{self.css_styles}</style>
</head>
<body>
<div class="container">
<h1><span class="icon">📑</span> 文档总结报告</h1>
<div class="summary">
<h2><span class="icon">📋</span> 总体摘要</h2>
<p>{self.md.convert(self.final_summary)}</p>
</div>
{self.format_failed_files()}
<div class="details">
<h2><span class="icon">📚</span> 各文件详细总结</h2>
{self.format_file_summaries()}
</div>
</div>
</body>
</html>
"""

View File

@@ -0,0 +1,237 @@
from abc import ABC, abstractmethod
from typing import Any, Dict, Optional, Type, TypeVar, Generic, Union
from dataclasses import dataclass
from enum import Enum, auto
import logging
from datetime import datetime
# 设置日志
logger = logging.getLogger(__name__)
# 自定义异常类定义
class FoldingError(Exception):
"""折叠相关的自定义异常基类"""
pass
class FormattingError(FoldingError):
"""格式化过程中的错误"""
pass
class MetadataError(FoldingError):
"""元数据相关的错误"""
pass
class ValidationError(FoldingError):
"""验证错误"""
pass
class FoldingStyle(Enum):
"""折叠样式枚举"""
SIMPLE = auto() # 简单折叠
DETAILED = auto() # 详细折叠(带有额外信息)
NESTED = auto() # 嵌套折叠
@dataclass
class FoldingOptions:
"""折叠选项配置"""
style: FoldingStyle = FoldingStyle.DETAILED
code_language: Optional[str] = None # 代码块的语言
show_timestamp: bool = False # 是否显示时间戳
indent_level: int = 0 # 缩进级别
custom_css: Optional[str] = None # 自定义CSS类
T = TypeVar('T') # 用于泛型类型
class BaseMetadata(ABC):
"""元数据基类"""
@abstractmethod
def validate(self) -> bool:
"""验证元数据的有效性"""
pass
def _validate_non_empty_str(self, value: Optional[str]) -> bool:
"""验证字符串非空"""
return bool(value and value.strip())
@dataclass
class FileMetadata(BaseMetadata):
"""文件元数据"""
rel_path: str
size: float
last_modified: Optional[datetime] = None
mime_type: Optional[str] = None
encoding: str = 'utf-8'
def validate(self) -> bool:
"""验证文件元数据的有效性"""
try:
if not self._validate_non_empty_str(self.rel_path):
return False
if self.size < 0:
return False
return True
except Exception as e:
logger.error(f"File metadata validation error: {str(e)}")
return False
class ContentFormatter(ABC, Generic[T]):
"""内容格式化抽象基类
支持泛型类型参数,可以指定具体的元数据类型。
"""
@abstractmethod
def format(self,
content: str,
metadata: T,
options: Optional[FoldingOptions] = None) -> str:
"""格式化内容
Args:
content: 需要格式化的内容
metadata: 类型化的元数据
options: 折叠选项
Returns:
str: 格式化后的内容
Raises:
FormattingError: 格式化过程中的错误
"""
pass
def _create_summary(self, metadata: T) -> str:
"""创建折叠摘要,可被子类重写"""
return str(metadata)
def _format_content_block(self,
content: str,
options: Optional[FoldingOptions]) -> str:
"""格式化内容块,处理代码块等特殊格式"""
if not options:
return content
if options.code_language:
return f"```{options.code_language}\n{content}\n```"
return content
def _add_indent(self, text: str, level: int) -> str:
"""添加缩进"""
if level <= 0:
return text
indent = " " * level
return "\n".join(indent + line for line in text.splitlines())
class FileContentFormatter(ContentFormatter[FileMetadata]):
"""文件内容格式化器"""
def format(self,
content: str,
metadata: FileMetadata,
options: Optional[FoldingOptions] = None) -> str:
"""格式化文件内容"""
if not metadata.validate():
raise MetadataError("Invalid file metadata")
try:
options = options or FoldingOptions()
# 构建摘要信息
summary_parts = [
f"{metadata.rel_path} ({metadata.size:.2f}MB)",
f"Type: {metadata.mime_type}" if metadata.mime_type else None,
(f"Modified: {metadata.last_modified.strftime('%Y-%m-%d %H:%M:%S')}"
if metadata.last_modified and options.show_timestamp else None)
]
summary = " | ".join(filter(None, summary_parts))
# 构建HTML类
css_class = f' class="{options.custom_css}"' if options.custom_css else ''
# 格式化内容
formatted_content = self._format_content_block(content, options)
# 组装最终结果
result = (
f'<details{css_class}><summary>{summary}</summary>\n\n'
f'{formatted_content}\n\n'
f'</details>\n\n'
)
return self._add_indent(result, options.indent_level)
except Exception as e:
logger.error(f"Error formatting file content: {str(e)}")
raise FormattingError(f"Failed to format file content: {str(e)}")
class ContentFoldingManager:
"""内容折叠管理器"""
def __init__(self):
"""初始化折叠管理器"""
self._formatters: Dict[str, ContentFormatter] = {}
self._register_default_formatters()
def _register_default_formatters(self) -> None:
"""注册默认的格式化器"""
self.register_formatter('file', FileContentFormatter())
def register_formatter(self, name: str, formatter: ContentFormatter) -> None:
"""注册新的格式化器"""
if not isinstance(formatter, ContentFormatter):
raise TypeError("Formatter must implement ContentFormatter interface")
self._formatters[name] = formatter
def _guess_language(self, extension: str) -> Optional[str]:
"""根据文件扩展名猜测编程语言"""
extension = extension.lower().lstrip('.')
language_map = {
'py': 'python',
'js': 'javascript',
'java': 'java',
'cpp': 'cpp',
'cs': 'csharp',
'html': 'html',
'css': 'css',
'md': 'markdown',
'json': 'json',
'xml': 'xml',
'sql': 'sql',
'sh': 'bash',
'yaml': 'yaml',
'yml': 'yaml',
'txt': None # 纯文本不需要语言标识
}
return language_map.get(extension)
def format_content(self,
content: str,
formatter_type: str,
metadata: Union[FileMetadata],
options: Optional[FoldingOptions] = None) -> str:
"""格式化内容"""
formatter = self._formatters.get(formatter_type)
if not formatter:
raise KeyError(f"No formatter registered for type: {formatter_type}")
if not isinstance(metadata, FileMetadata):
raise TypeError("Invalid metadata type")
return formatter.format(content, metadata, options)

View File

@@ -0,0 +1,211 @@
import re
import os
import pandas as pd
from datetime import datetime
from openpyxl import Workbook
class ExcelTableFormatter:
"""聊天记录中Markdown表格转Excel生成器"""
def __init__(self):
"""初始化Excel文档对象"""
self.workbook = Workbook()
self._table_count = 0
self._current_sheet = None
def _normalize_table_row(self, row):
"""标准化表格行,处理不同的分隔符情况"""
row = row.strip()
if row.startswith('|'):
row = row[1:]
if row.endswith('|'):
row = row[:-1]
return [cell.strip() for cell in row.split('|')]
def _is_separator_row(self, row):
"""检查是否是分隔行(由 - 或 : 组成)"""
clean_row = re.sub(r'[\s|]', '', row)
return bool(re.match(r'^[-:]+$', clean_row))
def _extract_tables_from_text(self, text):
"""从文本中提取所有表格内容"""
if not isinstance(text, str):
return []
tables = []
current_table = []
is_in_table = False
for line in text.split('\n'):
line = line.strip()
if not line:
if is_in_table and current_table:
if len(current_table) >= 2:
tables.append(current_table)
current_table = []
is_in_table = False
continue
if '|' in line:
if not is_in_table:
is_in_table = True
current_table.append(line)
else:
if is_in_table and current_table:
if len(current_table) >= 2:
tables.append(current_table)
current_table = []
is_in_table = False
if is_in_table and current_table and len(current_table) >= 2:
tables.append(current_table)
return tables
def _parse_table(self, table_lines):
"""解析表格内容为结构化数据"""
try:
headers = self._normalize_table_row(table_lines[0])
separator_index = next(
(i for i, line in enumerate(table_lines) if self._is_separator_row(line)),
1
)
data_rows = []
for line in table_lines[separator_index + 1:]:
cells = self._normalize_table_row(line)
# 确保单元格数量与表头一致
while len(cells) < len(headers):
cells.append('')
cells = cells[:len(headers)]
data_rows.append(cells)
if headers and data_rows:
return {
'headers': headers,
'data': data_rows
}
except Exception as e:
print(f"解析表格时发生错误: {str(e)}")
return None
def _create_sheet(self, question_num, table_num):
"""创建新的工作表"""
sheet_name = f'Q{question_num}_T{table_num}'
if len(sheet_name) > 31:
sheet_name = f'Table{self._table_count}'
if sheet_name in self.workbook.sheetnames:
sheet_name = f'{sheet_name}_{datetime.now().strftime("%H%M%S")}'
return self.workbook.create_sheet(title=sheet_name)
def create_document(self, history):
"""
处理聊天历史中的所有表格并创建Excel文档
Args:
history: 聊天历史列表
Returns:
Workbook: 处理完成的Excel工作簿对象如果没有表格则返回None
"""
has_tables = False
# 删除默认创建的工作表
default_sheet = self.workbook['Sheet']
self.workbook.remove(default_sheet)
# 遍历所有回答
for i in range(1, len(history), 2):
answer = history[i]
tables = self._extract_tables_from_text(answer)
for table_lines in tables:
parsed_table = self._parse_table(table_lines)
if parsed_table:
self._table_count += 1
sheet = self._create_sheet(i // 2 + 1, self._table_count)
# 写入表头
for col, header in enumerate(parsed_table['headers'], 1):
sheet.cell(row=1, column=col, value=header)
# 写入数据
for row_idx, row_data in enumerate(parsed_table['data'], 2):
for col_idx, value in enumerate(row_data, 1):
sheet.cell(row=row_idx, column=col_idx, value=value)
has_tables = True
return self.workbook if has_tables else None
def save_chat_tables(history, save_dir, base_name):
"""
保存聊天历史中的表格到Excel文件
Args:
history: 聊天历史列表
save_dir: 保存目录
base_name: 基础文件名
Returns:
list: 保存的文件路径列表
"""
result_files = []
try:
# 创建Excel格式
excel_formatter = ExcelTableFormatter()
workbook = excel_formatter.create_document(history)
if workbook is not None:
# 确保保存目录存在
os.makedirs(save_dir, exist_ok=True)
# 生成Excel文件路径
excel_file = os.path.join(save_dir, base_name + '.xlsx')
# 保存Excel文件
workbook.save(excel_file)
result_files.append(excel_file)
print(f"已保存表格到Excel文件: {excel_file}")
except Exception as e:
print(f"保存Excel格式失败: {str(e)}")
return result_files
# 使用示例
if __name__ == "__main__":
# 示例聊天历史
history = [
"问题1",
"""这是第一个表格:
| A | B | C |
|---|---|---|
| 1 | 2 | 3 |""",
"问题2",
"这是没有表格的回答",
"问题3",
"""回答包含多个表格:
| Name | Age |
|------|-----|
| Tom | 20 |
第二个表格:
| X | Y |
|---|---|
| 1 | 2 |"""
]
# 保存表格
save_dir = "output"
base_name = "chat_tables"
saved_files = save_chat_tables(history, save_dir, base_name)

View File

@@ -0,0 +1,190 @@
class HtmlFormatter:
"""聊天记录HTML格式生成器"""
def __init__(self, chatbot, history):
self.chatbot = chatbot
self.history = history
self.css_styles = """
:root {
--primary-color: #2563eb;
--primary-light: #eff6ff;
--secondary-color: #1e293b;
--background-color: #f8fafc;
--text-color: #334155;
--border-color: #e2e8f0;
--card-shadow: 0 4px 6px -1px rgb(0 0 0 / 0.1), 0 2px 4px -2px rgb(0 0 0 / 0.1);
}
body {
font-family: system-ui, -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
line-height: 1.8;
margin: 0;
padding: 2rem;
color: var(--text-color);
background-color: var(--background-color);
}
.container {
max-width: 1200px;
margin: 0 auto;
background: white;
padding: 2rem;
border-radius: 16px;
box-shadow: var(--card-shadow);
}
::selection {
background: var(--primary-light);
color: var(--primary-color);
}
@keyframes fadeIn {
from { opacity: 0; transform: translateY(20px); }
to { opacity: 1; transform: translateY(0); }
}
@keyframes slideIn {
from { transform: translateX(-20px); opacity: 0; }
to { transform: translateX(0); opacity: 1; }
}
.container {
animation: fadeIn 0.6s ease-out;
}
.QaBox {
animation: slideIn 0.5s ease-out;
transition: all 0.3s ease;
}
.QaBox:hover {
transform: translateX(5px);
}
.Question, .Answer, .historyBox {
transition: all 0.3s ease;
}
.chat-title {
color: var(--primary-color);
font-size: 2em;
text-align: center;
margin: 1rem 0 2rem;
padding-bottom: 1rem;
border-bottom: 2px solid var(--primary-color);
}
.chat-body {
display: flex;
flex-direction: column;
gap: 1.5rem;
margin: 2rem 0;
}
.QaBox {
background: white;
padding: 1.5rem;
border-radius: 8px;
border-left: 4px solid var(--primary-color);
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
margin-bottom: 1.5rem;
}
.Question {
color: var(--secondary-color);
font-weight: 500;
margin-bottom: 1rem;
}
.Answer {
color: var(--text-color);
background: var(--primary-light);
padding: 1rem;
border-radius: 6px;
}
.history-section {
margin-top: 3rem;
padding-top: 2rem;
border-top: 2px solid var(--border-color);
}
.history-title {
color: var(--secondary-color);
font-size: 1.5em;
margin-bottom: 1.5rem;
text-align: center;
}
.historyBox {
background: white;
padding: 1rem;
margin: 0.5rem 0;
border-radius: 6px;
border: 1px solid var(--border-color);
}
@media (prefers-color-scheme: dark) {
:root {
--background-color: #0f172a;
--text-color: #e2e8f0;
--border-color: #1e293b;
}
.container, .QaBox {
background: #1e293b;
}
}
"""
def format_chat_content(self) -> str:
"""格式化聊天内容"""
chat_content = []
for q, a in self.chatbot:
question = str(q) if q is not None else ""
answer = str(a) if a is not None else ""
chat_content.append(f'''
<div class="QaBox">
<div class="Question">{question}</div>
<div class="Answer">{answer}</div>
</div>
''')
return "\n".join(chat_content)
def format_history_content(self) -> str:
"""格式化历史记录内容"""
if not self.history:
return ""
history_content = []
for entry in self.history:
history_content.append(f'''
<div class="historyBox">
<div class="entry">{entry}</div>
</div>
''')
return "\n".join(history_content)
def create_document(self) -> str:
"""生成完整的HTML文档
Returns:
str: 完整的HTML文档字符串
"""
return f"""
<!DOCTYPE html>
<html lang="zh-CN">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>对话存档</title>
<style>{self.css_styles}</style>
</head>
<body>
<div class="container">
<h1 class="chat-title">对话存档</h1>
<div class="chat-body">
{self.format_chat_content()}
</div>
</div>
</body>
</html>
"""

View File

@@ -0,0 +1,39 @@
class MarkdownFormatter:
"""Markdown格式文档生成器 - 用于生成对话记录的markdown文档"""
def __init__(self):
self.content = []
def _add_content(self, text: str):
"""添加正文内容"""
if text:
self.content.append(f"\n{text}\n")
def create_document(self, history: list) -> str:
"""
创建完整的Markdown文档
Args:
history: 历史记录列表,偶数位置为问题,奇数位置为答案
Returns:
str: 生成的Markdown文本
"""
self.content = []
# 处理问答对
for i in range(0, len(history), 2):
question = history[i]
answer = history[i + 1]
# 添加问题
self.content.append(f"\n### 问题 {i//2 + 1}")
self._add_content(question)
# 添加回答
self.content.append(f"\n### 回答 {i//2 + 1}")
self._add_content(answer)
# 添加分隔线
self.content.append("\n---\n")
return "\n".join(self.content)

View File

@@ -0,0 +1,172 @@
from datetime import datetime
import os
import re
from reportlab.pdfbase import pdfmetrics
from reportlab.pdfbase.ttfonts import TTFont
def convert_markdown_to_pdf(markdown_text):
"""将Markdown文本转换为PDF格式的纯文本"""
if not markdown_text:
return ""
# 标准化换行符
markdown_text = markdown_text.replace('\r\n', '\n').replace('\r', '\n')
# 处理标题、粗体、斜体
markdown_text = re.sub(r'^#\s+(.+)$', r'\1', markdown_text, flags=re.MULTILINE)
markdown_text = re.sub(r'\*\*(.+?)\*\*', r'\1', markdown_text)
markdown_text = re.sub(r'\*(.+?)\*', r'\1', markdown_text)
# 处理列表
markdown_text = re.sub(r'^\s*[-*+]\s+(.+?)(?=\n|$)', r'\1', markdown_text, flags=re.MULTILINE)
markdown_text = re.sub(r'^\s*\d+\.\s+(.+?)(?=\n|$)', r'\1', markdown_text, flags=re.MULTILINE)
# 处理链接
markdown_text = re.sub(r'\[([^\]]+)\]\(([^)]+)\)', r'\1', markdown_text)
# 处理段落
markdown_text = re.sub(r'\n{2,}', '\n', markdown_text)
markdown_text = re.sub(r'(?<!\n)(?<!^)(?<!•\s)(?<!\d\.\s)\n(?![\s•\d])', '\n\n', markdown_text, flags=re.MULTILINE)
# 清理空白
markdown_text = re.sub(r' +', ' ', markdown_text)
markdown_text = re.sub(r'(?m)^\s+|\s+$', '', markdown_text)
return markdown_text.strip()
class PDFFormatter:
"""聊天记录PDF文档生成器 - 使用 Noto Sans CJK 字体"""
def __init__(self):
self._init_reportlab()
self._register_fonts()
self.styles = self._get_reportlab_lib()['getSampleStyleSheet']()
self._create_styles()
def _init_reportlab(self):
"""初始化 ReportLab 相关组件"""
from reportlab.lib.pagesizes import A4
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import cm
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
self._lib = {
'A4': A4,
'getSampleStyleSheet': getSampleStyleSheet,
'ParagraphStyle': ParagraphStyle,
'cm': cm
}
self._platypus = {
'SimpleDocTemplate': SimpleDocTemplate,
'Paragraph': Paragraph,
'Spacer': Spacer
}
def _get_reportlab_lib(self):
return self._lib
def _get_reportlab_platypus(self):
return self._platypus
def _register_fonts(self):
"""注册 Noto Sans CJK 字体"""
possible_font_paths = [
'/usr/share/fonts/opentype/noto/NotoSansCJK-Regular.ttc',
'/usr/share/fonts/noto-cjk/NotoSansCJK-Regular.ttc',
'/usr/share/fonts/noto/NotoSansCJK-Regular.ttc'
]
font_registered = False
for path in possible_font_paths:
if os.path.exists(path):
try:
pdfmetrics.registerFont(TTFont('NotoSansCJK', path))
font_registered = True
break
except:
continue
if not font_registered:
print("Warning: Could not find Noto Sans CJK font. Using fallback font.")
self.font_name = 'Helvetica'
else:
self.font_name = 'NotoSansCJK'
def _create_styles(self):
"""创建文档样式"""
ParagraphStyle = self._lib['ParagraphStyle']
# 标题样式
self.styles.add(ParagraphStyle(
name='Title_Custom',
fontName=self.font_name,
fontSize=24,
leading=38,
alignment=1,
spaceAfter=32
))
# 日期样式
self.styles.add(ParagraphStyle(
name='Date_Style',
fontName=self.font_name,
fontSize=16,
leading=20,
alignment=1,
spaceAfter=20
))
# 问题样式
self.styles.add(ParagraphStyle(
name='Question_Style',
fontName=self.font_name,
fontSize=12,
leading=18,
leftIndent=28,
spaceAfter=6
))
# 回答样式
self.styles.add(ParagraphStyle(
name='Answer_Style',
fontName=self.font_name,
fontSize=12,
leading=18,
leftIndent=28,
spaceAfter=12
))
def create_document(self, history, output_path):
"""生成PDF文档"""
# 创建PDF文档
doc = self._platypus['SimpleDocTemplate'](
output_path,
pagesize=self._lib['A4'],
rightMargin=2.6 * self._lib['cm'],
leftMargin=2.8 * self._lib['cm'],
topMargin=3.7 * self._lib['cm'],
bottomMargin=3.5 * self._lib['cm']
)
# 构建内容
story = []
Paragraph = self._platypus['Paragraph']
# 添加对话内容
for i in range(0, len(history), 2):
question = history[i]
answer = convert_markdown_to_pdf(history[i + 1]) if i + 1 < len(history) else ""
if question:
q_text = f'问题 {i // 2 + 1}{str(question)}'
story.append(Paragraph(q_text, self.styles['Question_Style']))
if answer:
a_text = f'回答 {i // 2 + 1}{str(answer)}'
story.append(Paragraph(a_text, self.styles['Answer_Style']))
# 构建PDF
doc.build(story)
return doc

View File

@@ -0,0 +1,79 @@
import re
def convert_markdown_to_txt(markdown_text):
"""Convert markdown text to plain text while preserving formatting"""
# Standardize line endings
markdown_text = markdown_text.replace('\r\n', '\n').replace('\r', '\n')
# 1. Handle headers but keep their formatting instead of removing them
markdown_text = re.sub(r'^#\s+(.+)$', r'# \1', markdown_text, flags=re.MULTILINE)
markdown_text = re.sub(r'^##\s+(.+)$', r'## \1', markdown_text, flags=re.MULTILINE)
markdown_text = re.sub(r'^###\s+(.+)$', r'### \1', markdown_text, flags=re.MULTILINE)
# 2. Handle bold and italic - simply remove markers
markdown_text = re.sub(r'\*\*(.+?)\*\*', r'\1', markdown_text)
markdown_text = re.sub(r'\*(.+?)\*', r'\1', markdown_text)
# 3. Handle lists but preserve formatting
markdown_text = re.sub(r'^\s*[-*+]\s+(.+?)(?=\n|$)', r'\1', markdown_text, flags=re.MULTILINE)
# 4. Handle links - keep only the text
markdown_text = re.sub(r'\[([^\]]+)\]\(([^)]+)\)', r'\1 (\2)', markdown_text)
# 5. Handle HTML links - convert to user-friendly format
markdown_text = re.sub(r'<a href=[\'"]([^\'"]+)[\'"](?:\s+target=[\'"][^\'"]+[\'"])?>([^<]+)</a>', r'\2 (\1)',
markdown_text)
# 6. Preserve paragraph breaks
markdown_text = re.sub(r'\n{3,}', '\n\n', markdown_text) # normalize multiple newlines to double newlines
# 7. Clean up extra spaces but maintain indentation
markdown_text = re.sub(r' +', ' ', markdown_text)
return markdown_text.strip()
class TxtFormatter:
"""Chat history TXT document generator"""
def __init__(self):
self.content = []
self._setup_document()
def _setup_document(self):
"""Initialize document with header"""
self.content.append("=" * 50)
self.content.append("GPT-Academic对话记录".center(48))
self.content.append("=" * 50)
def _format_header(self):
"""Create document header with current date"""
from datetime import datetime
date_str = datetime.now().strftime('%Y年%m月%d')
return [
date_str.center(48),
"\n" # Add blank line after date
]
def create_document(self, history):
"""Generate document from chat history"""
# Add header with date
self.content.extend(self._format_header())
# Add conversation content
for i in range(0, len(history), 2):
question = history[i]
answer = convert_markdown_to_txt(history[i + 1]) if i + 1 < len(history) else ""
if question:
self.content.append(f"问题 {i // 2 + 1}{str(question)}")
self.content.append("") # Add blank line
if answer:
self.content.append(f"回答 {i // 2 + 1}{str(answer)}")
self.content.append("") # Add blank line
# Join all content with newlines
return "\n".join(self.content)

View File

@@ -0,0 +1,155 @@
from docx2pdf import convert
import os
import platform
import subprocess
from typing import Union
from pathlib import Path
from datetime import datetime
class WordToPdfConverter:
"""Word文档转PDF转换器"""
@staticmethod
def convert_to_pdf(word_path: Union[str, Path], pdf_path: Union[str, Path] = None) -> str:
"""
将Word文档转换为PDF
参数:
word_path: Word文档的路径
pdf_path: 可选PDF文件的输出路径。如果未指定将使用与Word文档相同的名称和位置
返回:
生成的PDF文件路径
异常:
如果转换失败,将抛出相应异常
"""
try:
# 确保输入路径是Path对象
word_path = Path(word_path)
# 如果未指定pdf_path则使用与word文档相同的名称
if pdf_path is None:
pdf_path = word_path.with_suffix('.pdf')
else:
pdf_path = Path(pdf_path)
# 检查操作系统
if platform.system() == 'Linux':
# Linux系统需要安装libreoffice
which_result = subprocess.run(['which', 'libreoffice'], capture_output=True, text=True)
if which_result.returncode != 0:
raise RuntimeError("请先安装LibreOffice: sudo apt-get install libreoffice")
print(f"开始转换Word文档: {word_path} 到 PDF")
# 使用subprocess代替os.system
result = subprocess.run(
['libreoffice', '--headless', '--convert-to', 'pdf:writer_pdf_Export',
str(word_path), '--outdir', str(pdf_path.parent)],
capture_output=True, text=True
)
if result.returncode != 0:
error_msg = result.stderr or "未知错误"
print(f"LibreOffice转换失败错误信息: {error_msg}")
raise RuntimeError(f"LibreOffice转换失败: {error_msg}")
print(f"LibreOffice转换输出: {result.stdout}")
# 如果输出路径与默认生成的不同,则重命名
default_pdf = word_path.with_suffix('.pdf')
if default_pdf != pdf_path and default_pdf.exists():
os.rename(default_pdf, pdf_path)
print(f"已将PDF从 {default_pdf} 重命名为 {pdf_path}")
# 验证PDF是否成功生成
if not pdf_path.exists() or pdf_path.stat().st_size == 0:
raise RuntimeError("PDF生成失败或文件为空")
print(f"PDF转换成功文件大小: {pdf_path.stat().st_size} 字节")
else:
# Windows和MacOS使用docx2pdf
print(f"使用docx2pdf转换 {word_path}{pdf_path}")
convert(word_path, pdf_path)
# 验证PDF是否成功生成
if not pdf_path.exists() or pdf_path.stat().st_size == 0:
raise RuntimeError("PDF生成失败或文件为空")
print(f"PDF转换成功文件大小: {pdf_path.stat().st_size} 字节")
return str(pdf_path)
except Exception as e:
print(f"PDF转换异常: {str(e)}")
raise Exception(f"转换PDF失败: {str(e)}")
@staticmethod
def batch_convert(word_dir: Union[str, Path], pdf_dir: Union[str, Path] = None) -> list:
"""
批量转换目录下的所有Word文档
参数:
word_dir: 包含Word文档的目录路径
pdf_dir: 可选PDF文件的输出目录。如果未指定将使用与Word文档相同的目录
返回:
生成的PDF文件路径列表
"""
word_dir = Path(word_dir)
if pdf_dir:
pdf_dir = Path(pdf_dir)
pdf_dir.mkdir(parents=True, exist_ok=True)
converted_files = []
for word_file in word_dir.glob("*.docx"):
try:
if pdf_dir:
pdf_path = pdf_dir / word_file.with_suffix('.pdf').name
else:
pdf_path = word_file.with_suffix('.pdf')
pdf_file = WordToPdfConverter.convert_to_pdf(word_file, pdf_path)
converted_files.append(pdf_file)
except Exception as e:
print(f"转换 {word_file} 失败: {str(e)}")
return converted_files
@staticmethod
def convert_doc_to_pdf(doc, output_dir: Union[str, Path] = None) -> str:
"""
将docx对象直接转换为PDF
参数:
doc: python-docx的Document对象
output_dir: 可选,输出目录。如果未指定,将使用当前目录
返回:
生成的PDF文件路径
"""
try:
# 设置临时文件路径和输出路径
output_dir = Path(output_dir) if output_dir else Path.cwd()
output_dir.mkdir(parents=True, exist_ok=True)
# 生成临时word文件
temp_docx = output_dir / f"temp_{datetime.now().strftime('%Y%m%d_%H%M%S')}.docx"
doc.save(temp_docx)
# 转换为PDF
pdf_path = temp_docx.with_suffix('.pdf')
WordToPdfConverter.convert_to_pdf(temp_docx, pdf_path)
# 删除临时word文件
temp_docx.unlink()
return str(pdf_path)
except Exception as e:
if temp_docx.exists():
temp_docx.unlink()
raise Exception(f"转换PDF失败: {str(e)}")

View File

@@ -0,0 +1,177 @@
import re
from docx import Document
from docx.shared import Cm, Pt
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT, WD_LINE_SPACING
from docx.enum.style import WD_STYLE_TYPE
from docx.oxml.ns import qn
from datetime import datetime
def convert_markdown_to_word(markdown_text):
# 0. 首先标准化所有换行符为\n
markdown_text = markdown_text.replace('\r\n', '\n').replace('\r', '\n')
# 1. 处理标题 - 支持更多级别的标题,使用更精确的正则
# 保留标题标记,以便后续处理时还能识别出标题级别
markdown_text = re.sub(r'^(#{1,6})\s+(.+?)(?:\s+#+)?$', r'\1 \2', markdown_text, flags=re.MULTILINE)
# 2. 处理粗体、斜体和加粗斜体
markdown_text = re.sub(r'\*\*\*(.+?)\*\*\*', r'\1', markdown_text) # 加粗斜体
markdown_text = re.sub(r'\*\*(.+?)\*\*', r'\1', markdown_text) # 加粗
markdown_text = re.sub(r'\*(.+?)\*', r'\1', markdown_text) # 斜体
markdown_text = re.sub(r'_(.+?)_', r'\1', markdown_text) # 下划线斜体
markdown_text = re.sub(r'__(.+?)__', r'\1', markdown_text) # 下划线加粗
# 3. 处理代码块 - 不移除,而是简化格式
# 多行代码块
markdown_text = re.sub(r'```(?:\w+)?\n([\s\S]*?)```', r'[代码块]\n\1[/代码块]', markdown_text)
# 单行代码
markdown_text = re.sub(r'`([^`]+)`', r'[代码]\1[/代码]', markdown_text)
# 4. 处理列表 - 保留列表结构
# 匹配无序列表
markdown_text = re.sub(r'^(\s*)[-*+]\s+(.+?)$', r'\1• \2', markdown_text, flags=re.MULTILINE)
# 5. 处理Markdown链接
markdown_text = re.sub(r'\[([^\]]+)\]\(([^)]+?)\s*(?:"[^"]*")?\)', r'\1 (\2)', markdown_text)
# 6. 处理HTML链接
markdown_text = re.sub(r'<a href=[\'"]([^\'"]+)[\'"](?:\s+target=[\'"][^\'"]+[\'"])?>([^<]+)</a>', r'\2 (\1)',
markdown_text)
# 7. 处理图片
markdown_text = re.sub(r'!\[([^\]]*)\]\([^)]+\)', r'[图片:\1]', markdown_text)
return markdown_text
class WordFormatter:
"""聊天记录Word文档生成器 - 符合中国政府公文格式规范(GB/T 9704-2012)"""
def __init__(self):
self.doc = Document()
self._setup_document()
self._create_styles()
def _setup_document(self):
"""设置文档基本格式,包括页面设置和页眉"""
sections = self.doc.sections
for section in sections:
# 设置页面大小为A4
section.page_width = Cm(21)
section.page_height = Cm(29.7)
# 设置页边距
section.top_margin = Cm(3.7) # 上边距37mm
section.bottom_margin = Cm(3.5) # 下边距35mm
section.left_margin = Cm(2.8) # 左边距28mm
section.right_margin = Cm(2.6) # 右边距26mm
# 设置页眉页脚距离
section.header_distance = Cm(2.0)
section.footer_distance = Cm(2.0)
# 添加页眉
header = section.header
header_para = header.paragraphs[0]
header_para.alignment = WD_PARAGRAPH_ALIGNMENT.RIGHT
header_run = header_para.add_run("GPT-Academic对话记录")
header_run.font.name = '仿宋'
header_run._element.rPr.rFonts.set(qn('w:eastAsia'), '仿宋')
header_run.font.size = Pt(9)
def _create_styles(self):
"""创建文档样式"""
# 创建正文样式
style = self.doc.styles.add_style('Normal_Custom', WD_STYLE_TYPE.PARAGRAPH)
style.font.name = '仿宋'
style._element.rPr.rFonts.set(qn('w:eastAsia'), '仿宋')
style.font.size = Pt(12) # 调整为12磅
style.paragraph_format.line_spacing_rule = WD_LINE_SPACING.ONE_POINT_FIVE
style.paragraph_format.space_after = Pt(0)
# 创建问题样式
question_style = self.doc.styles.add_style('Question_Style', WD_STYLE_TYPE.PARAGRAPH)
question_style.font.name = '黑体'
question_style._element.rPr.rFonts.set(qn('w:eastAsia'), '黑体')
question_style.font.size = Pt(14) # 调整为14磅
question_style.font.bold = True
question_style.paragraph_format.space_before = Pt(12) # 减小段前距
question_style.paragraph_format.space_after = Pt(6)
question_style.paragraph_format.line_spacing_rule = WD_LINE_SPACING.ONE_POINT_FIVE
question_style.paragraph_format.left_indent = Pt(0) # 移除左缩进
# 创建回答样式
answer_style = self.doc.styles.add_style('Answer_Style', WD_STYLE_TYPE.PARAGRAPH)
answer_style.font.name = '仿宋'
answer_style._element.rPr.rFonts.set(qn('w:eastAsia'), '仿宋')
answer_style.font.size = Pt(12) # 调整为12磅
answer_style.paragraph_format.space_before = Pt(6)
answer_style.paragraph_format.space_after = Pt(12)
answer_style.paragraph_format.line_spacing_rule = WD_LINE_SPACING.ONE_POINT_FIVE
answer_style.paragraph_format.left_indent = Pt(0) # 移除左缩进
# 创建标题样式
title_style = self.doc.styles.add_style('Title_Custom', WD_STYLE_TYPE.PARAGRAPH)
title_style.font.name = '黑体' # 改用黑体
title_style._element.rPr.rFonts.set(qn('w:eastAsia'), '黑体')
title_style.font.size = Pt(22) # 调整为22磅
title_style.font.bold = True
title_style.paragraph_format.alignment = WD_PARAGRAPH_ALIGNMENT.CENTER
title_style.paragraph_format.space_before = Pt(0)
title_style.paragraph_format.space_after = Pt(24)
title_style.paragraph_format.line_spacing_rule = WD_LINE_SPACING.ONE_POINT_FIVE
# 添加参考文献样式
ref_style = self.doc.styles.add_style('Reference_Style', WD_STYLE_TYPE.PARAGRAPH)
ref_style.font.name = '宋体'
ref_style._element.rPr.rFonts.set(qn('w:eastAsia'), '宋体')
ref_style.font.size = Pt(10.5) # 参考文献使用小号字体
ref_style.paragraph_format.space_before = Pt(3)
ref_style.paragraph_format.space_after = Pt(3)
ref_style.paragraph_format.line_spacing_rule = WD_LINE_SPACING.SINGLE
ref_style.paragraph_format.left_indent = Pt(21)
ref_style.paragraph_format.first_line_indent = Pt(-21)
# 添加参考文献标题样式
ref_title_style = self.doc.styles.add_style('Reference_Title_Style', WD_STYLE_TYPE.PARAGRAPH)
ref_title_style.font.name = '黑体'
ref_title_style._element.rPr.rFonts.set(qn('w:eastAsia'), '黑体')
ref_title_style.font.size = Pt(16)
ref_title_style.font.bold = True
ref_title_style.paragraph_format.space_before = Pt(24)
ref_title_style.paragraph_format.space_after = Pt(12)
ref_title_style.paragraph_format.line_spacing_rule = WD_LINE_SPACING.ONE_POINT_FIVE
def create_document(self, history):
"""写入聊天历史"""
# 添加标题
title_para = self.doc.add_paragraph(style='Title_Custom')
title_run = title_para.add_run('GPT-Academic 对话记录')
# 添加日期
date_para = self.doc.add_paragraph()
date_para.alignment = WD_PARAGRAPH_ALIGNMENT.CENTER
date_run = date_para.add_run(datetime.now().strftime('%Y年%m月%d'))
date_run.font.name = '仿宋'
date_run._element.rPr.rFonts.set(qn('w:eastAsia'), '仿宋')
date_run.font.size = Pt(16)
self.doc.add_paragraph() # 添加空行
# 添加对话内容
for i in range(0, len(history), 2):
question = history[i]
answer = convert_markdown_to_word(history[i + 1])
if question:
q_para = self.doc.add_paragraph(style='Question_Style')
q_para.add_run(f'问题 {i//2 + 1}').bold = True
q_para.add_run(str(question))
if answer:
a_para = self.doc.add_paragraph(style='Answer_Style')
a_para.add_run(f'回答 {i//2 + 1}').bold = True
a_para.add_run(str(answer))
return self.doc

View File

@@ -0,0 +1,6 @@
import nltk
nltk.data.path.append('~/nltk_data')
nltk.download('averaged_perceptron_tagger', download_dir='~/nltk_data',
)
nltk.download('punkt', download_dir='~/nltk_data',
)

View File

@@ -0,0 +1,286 @@
from __future__ import annotations
import pandas as pd
import numpy as np
from pathlib import Path
from typing import Optional, List, Set, Dict, Union, Iterator, Tuple
from dataclasses import dataclass, field
import logging
from concurrent.futures import ThreadPoolExecutor, as_completed
import chardet
from functools import lru_cache
import os
@dataclass
class ExtractorConfig:
"""提取器配置类"""
encoding: str = 'auto'
na_filter: bool = True
skip_blank_lines: bool = True
chunk_size: int = 10000
max_workers: int = 4
preserve_format: bool = True
read_all_sheets: bool = True # 新增:是否读取所有工作表
text_cleanup: Dict[str, bool] = field(default_factory=lambda: {
'remove_extra_spaces': True,
'normalize_whitespace': False,
'remove_special_chars': False,
'lowercase': False
})
class ExcelTextExtractor:
"""增强的Excel格式文件文本内容提取器"""
SUPPORTED_EXTENSIONS: Set[str] = {
'.xlsx', '.xls', '.csv', '.tsv', '.xlsm', '.xltx', '.xltm', '.ods'
}
def __init__(self, config: Optional[ExtractorConfig] = None):
self.config = config or ExtractorConfig()
self._setup_logging()
self._detect_encoding = lru_cache(maxsize=128)(self._detect_encoding)
def _setup_logging(self) -> None:
"""配置日志记录器"""
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
self.logger = logging.getLogger(__name__)
fh = logging.FileHandler('excel_extractor.log')
fh.setLevel(logging.ERROR)
self.logger.addHandler(fh)
def _detect_encoding(self, file_path: Path) -> str:
if self.config.encoding != 'auto':
return self.config.encoding
try:
with open(file_path, 'rb') as f:
raw_data = f.read(10000)
result = chardet.detect(raw_data)
return result['encoding'] or 'utf-8'
except Exception as e:
self.logger.warning(f"Encoding detection failed: {e}. Using utf-8")
return 'utf-8'
def _validate_file(self, file_path: Union[str, Path]) -> Path:
path = Path(file_path).resolve()
if not path.exists():
raise ValueError(f"File not found: {path}")
if not path.is_file():
raise ValueError(f"Not a file: {path}")
if not os.access(path, os.R_OK):
raise PermissionError(f"No read permission: {path}")
if path.suffix.lower() not in self.SUPPORTED_EXTENSIONS:
raise ValueError(
f"Unsupported format: {path.suffix}. "
f"Supported: {', '.join(sorted(self.SUPPORTED_EXTENSIONS))}"
)
return path
def _format_value(self, value: Any) -> str:
if pd.isna(value) or value is None:
return ''
if isinstance(value, (int, float)):
return str(value)
return str(value).strip()
def _process_chunk(self, chunk: pd.DataFrame, columns: Optional[List[str]] = None, sheet_name: str = '') -> str:
"""处理数据块新增sheet_name参数"""
try:
if columns:
chunk = chunk[columns]
if self.config.preserve_format:
formatted_chunk = chunk.applymap(self._format_value)
rows = []
# 添加工作表名称作为标题
if sheet_name:
rows.append(f"[Sheet: {sheet_name}]")
# 添加表头
headers = [str(col) for col in formatted_chunk.columns]
rows.append('\t'.join(headers))
# 添加数据行
for _, row in formatted_chunk.iterrows():
rows.append('\t'.join(row.values))
return '\n'.join(rows)
else:
flat_values = (
chunk.astype(str)
.replace({'nan': '', 'None': '', 'NaN': ''})
.values.flatten()
)
return ' '.join(v for v in flat_values if v)
except Exception as e:
self.logger.error(f"Error processing chunk: {e}")
raise
def _read_file(self, file_path: Path) -> Union[pd.DataFrame, Iterator[pd.DataFrame], Dict[str, pd.DataFrame]]:
"""读取文件,支持多工作表"""
try:
encoding = self._detect_encoding(file_path)
if file_path.suffix.lower() in {'.csv', '.tsv'}:
sep = '\t' if file_path.suffix.lower() == '.tsv' else ','
# 对大文件使用分块读取
if file_path.stat().st_size > self.config.chunk_size * 1024:
return pd.read_csv(
file_path,
encoding=encoding,
na_filter=self.config.na_filter,
skip_blank_lines=self.config.skip_blank_lines,
sep=sep,
chunksize=self.config.chunk_size,
on_bad_lines='warn'
)
else:
return pd.read_csv(
file_path,
encoding=encoding,
na_filter=self.config.na_filter,
skip_blank_lines=self.config.skip_blank_lines,
sep=sep
)
else:
# Excel文件处理支持多工作表
if self.config.read_all_sheets:
# 读取所有工作表
return pd.read_excel(
file_path,
na_filter=self.config.na_filter,
keep_default_na=self.config.na_filter,
engine='openpyxl',
sheet_name=None # None表示读取所有工作表
)
else:
# 只读取第一个工作表
return pd.read_excel(
file_path,
na_filter=self.config.na_filter,
keep_default_na=self.config.na_filter,
engine='openpyxl',
sheet_name=0 # 读取第一个工作表
)
except Exception as e:
self.logger.error(f"Error reading file {file_path}: {e}")
raise
def extract_text(
self,
file_path: Union[str, Path],
columns: Optional[List[str]] = None,
separator: str = '\n'
) -> str:
"""提取文本,支持多工作表"""
try:
path = self._validate_file(file_path)
self.logger.info(f"Processing: {path}")
reader = self._read_file(path)
texts = []
# 处理Excel多工作表
if isinstance(reader, dict):
for sheet_name, df in reader.items():
sheet_text = self._process_chunk(df, columns, sheet_name)
if sheet_text:
texts.append(sheet_text)
return separator.join(texts)
# 处理单个DataFrame
elif isinstance(reader, pd.DataFrame):
return self._process_chunk(reader, columns)
# 处理DataFrame迭代器
else:
with ThreadPoolExecutor(max_workers=self.config.max_workers) as executor:
futures = {
executor.submit(self._process_chunk, chunk, columns): i
for i, chunk in enumerate(reader)
}
chunk_texts = []
for future in as_completed(futures):
try:
text = future.result()
if text:
chunk_texts.append((futures[future], text))
except Exception as e:
self.logger.error(f"Error in chunk {futures[future]}: {e}")
# 按块的顺序排序
chunk_texts.sort(key=lambda x: x[0])
texts = [text for _, text in chunk_texts]
# 合并文本,保留格式
if texts and self.config.preserve_format:
result = texts[0] # 第一块包含表头
if len(texts) > 1:
# 跳过后续块的表头行
for text in texts[1:]:
result += '\n' + '\n'.join(text.split('\n')[1:])
return result
else:
return separator.join(texts)
except Exception as e:
self.logger.error(f"Extraction failed: {e}")
raise
@staticmethod
def get_supported_formats() -> List[str]:
"""获取支持的文件格式列表"""
return sorted(ExcelTextExtractor.SUPPORTED_EXTENSIONS)
def main():
"""主函数:演示用法"""
config = ExtractorConfig(
encoding='auto',
preserve_format=True,
read_all_sheets=True, # 启用多工作表读取
text_cleanup={
'remove_extra_spaces': True,
'normalize_whitespace': False,
'remove_special_chars': False,
'lowercase': False
}
)
extractor = ExcelTextExtractor(config)
try:
sample_file = 'example.xlsx'
if Path(sample_file).exists():
text = extractor.extract_text(
sample_file,
columns=['title', 'content']
)
print("提取的文本:")
print(text)
else:
print(f"示例文件 {sample_file} 不存在")
print("\n支持的格式:", extractor.get_supported_formats())
except Exception as e:
print(f"错误: {e}")
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,359 @@
from __future__ import annotations
from pathlib import Path
from typing import Optional, Set, Dict, Union, List
from dataclasses import dataclass, field
import logging
import os
import re
import subprocess
import tempfile
import shutil
@dataclass
class MarkdownConverterConfig:
"""PDF 到 Markdown 转换器配置类
Attributes:
extract_images: 是否提取图片
extract_tables: 是否尝试保留表格结构
extract_code_blocks: 是否识别代码块
extract_math: 是否转换数学公式
output_dir: 输出目录路径
image_dir: 图片保存目录路径
paragraph_separator: 段落之间的分隔符
text_cleanup: 文本清理选项字典
docintel_endpoint: Document Intelligence端点URL (可选)
enable_plugins: 是否启用插件
llm_client: LLM客户端对象 (例如OpenAI client)
llm_model: 要使用的LLM模型名称
"""
extract_images: bool = True
extract_tables: bool = True
extract_code_blocks: bool = True
extract_math: bool = True
output_dir: str = ""
image_dir: str = "images"
paragraph_separator: str = '\n\n'
text_cleanup: Dict[str, bool] = field(default_factory=lambda: {
'remove_extra_spaces': True,
'normalize_whitespace': True,
'remove_special_chars': False,
'lowercase': False
})
docintel_endpoint: str = ""
enable_plugins: bool = False
llm_client: Optional[object] = None
llm_model: str = ""
class MarkdownConverter:
"""PDF 到 Markdown 转换器
使用 markitdown 库实现 PDF 到 Markdown 的转换,支持多种配置选项。
"""
SUPPORTED_EXTENSIONS: Set[str] = {
'.pdf',
}
def __init__(self, config: Optional[MarkdownConverterConfig] = None):
"""初始化转换器
Args:
config: 转换器配置对象如果为None则使用默认配置
"""
self.config = config or MarkdownConverterConfig()
self._setup_logging()
# 检查是否安装了 markitdown
self._check_markitdown_installation()
def _setup_logging(self) -> None:
"""配置日志记录器"""
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
self.logger = logging.getLogger(__name__)
# 添加文件处理器
fh = logging.FileHandler('markdown_converter.log')
fh.setLevel(logging.ERROR)
self.logger.addHandler(fh)
def _check_markitdown_installation(self) -> None:
"""检查是否安装了 markitdown"""
try:
# 尝试导入 markitdown 库
from markitdown import MarkItDown
self.logger.info("markitdown 库已安装")
except ImportError:
self.logger.warning("markitdown 库未安装,尝试安装...")
try:
subprocess.check_call(["pip", "install", "markitdown"])
self.logger.info("markitdown 库安装成功")
from markitdown import MarkItDown
except (subprocess.SubprocessError, ImportError):
self.logger.error("无法安装 markitdown 库,请手动安装")
self.markitdown_available = False
return
self.markitdown_available = True
def _validate_file(self, file_path: Union[str, Path], max_size_mb: int = 100) -> Path:
"""验证文件
Args:
file_path: 文件路径
max_size_mb: 允许的最大文件大小(MB)
Returns:
Path: 验证后的Path对象
Raises:
ValueError: 文件不存在、格式不支持或大小超限
PermissionError: 没有读取权限
"""
path = Path(file_path).resolve()
if not path.exists():
raise ValueError(f"文件不存在: {path}")
if not path.is_file():
raise ValueError(f"不是一个文件: {path}")
if not os.access(path, os.R_OK):
raise PermissionError(f"没有读取权限: {path}")
file_size_mb = path.stat().st_size / (1024 * 1024)
if file_size_mb > max_size_mb:
raise ValueError(
f"文件大小 ({file_size_mb:.1f}MB) 超过限制 {max_size_mb}MB"
)
if path.suffix.lower() not in self.SUPPORTED_EXTENSIONS:
raise ValueError(
f"不支持的格式: {path.suffix}. "
f"支持的格式: {', '.join(sorted(self.SUPPORTED_EXTENSIONS))}"
)
return path
def _cleanup_text(self, text: str) -> str:
"""清理文本
Args:
text: 原始文本
Returns:
str: 清理后的文本
"""
if self.config.text_cleanup['remove_extra_spaces']:
text = ' '.join(text.split())
if self.config.text_cleanup['normalize_whitespace']:
text = text.replace('\t', ' ').replace('\r', '\n')
if self.config.text_cleanup['lowercase']:
text = text.lower()
return text.strip()
@staticmethod
def get_supported_formats() -> List[str]:
"""获取支持的文件格式列表"""
return sorted(MarkdownConverter.SUPPORTED_EXTENSIONS)
def convert_to_markdown(
self,
file_path: Union[str, Path],
output_path: Optional[Union[str, Path]] = None
) -> str:
"""将 PDF 转换为 Markdown
Args:
file_path: PDF 文件路径
output_path: 输出 Markdown 文件路径,如果为 None 则返回内容而不保存
Returns:
str: 转换后的 Markdown 内容
Raises:
Exception: 转换过程中的错误
"""
try:
path = self._validate_file(file_path)
self.logger.info(f"处理: {path}")
if not self.markitdown_available:
raise ImportError("markitdown 库未安装,无法进行转换")
# 导入 markitdown 库
from markitdown import MarkItDown
# 准备输出目录
if output_path:
output_path = Path(output_path)
output_dir = output_path.parent
output_dir.mkdir(parents=True, exist_ok=True)
else:
# 创建临时目录作为输出目录
temp_dir = tempfile.mkdtemp()
output_dir = Path(temp_dir)
output_path = output_dir / f"{path.stem}.md"
# 图片目录
image_dir = output_dir / self.config.image_dir
image_dir.mkdir(parents=True, exist_ok=True)
# 创建 MarkItDown 实例并进行转换
if self.config.docintel_endpoint:
md = MarkItDown(docintel_endpoint=self.config.docintel_endpoint)
elif self.config.llm_client and self.config.llm_model:
md = MarkItDown(
enable_plugins=self.config.enable_plugins,
llm_client=self.config.llm_client,
llm_model=self.config.llm_model
)
else:
md = MarkItDown(enable_plugins=self.config.enable_plugins)
# 执行转换
result = md.convert(str(path))
markdown_content = result.text_content
# 清理文本
markdown_content = self._cleanup_text(markdown_content)
# 如果需要保存到文件
if output_path:
with open(output_path, 'w', encoding='utf-8') as f:
f.write(markdown_content)
self.logger.info(f"转换成功,输出到: {output_path}")
return markdown_content
except Exception as e:
self.logger.error(f"转换失败: {e}")
raise
finally:
# 如果使用了临时目录且没有指定输出路径,则清理临时目录
if 'temp_dir' in locals() and not output_path:
shutil.rmtree(temp_dir, ignore_errors=True)
def convert_to_markdown_and_save(
self,
file_path: Union[str, Path],
output_path: Union[str, Path]
) -> Path:
"""将 PDF 转换为 Markdown 并保存到指定路径
Args:
file_path: PDF 文件路径
output_path: 输出 Markdown 文件路径
Returns:
Path: 输出文件的 Path 对象
Raises:
Exception: 转换过程中的错误
"""
self.convert_to_markdown(file_path, output_path)
return Path(output_path)
def batch_convert(
self,
file_paths: List[Union[str, Path]],
output_dir: Union[str, Path]
) -> List[Path]:
"""批量转换多个 PDF 文件为 Markdown
Args:
file_paths: PDF 文件路径列表
output_dir: 输出目录路径
Returns:
List[Path]: 输出文件路径列表
Raises:
Exception: 转换过程中的错误
"""
output_dir = Path(output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
output_paths = []
for file_path in file_paths:
path = Path(file_path)
output_path = output_dir / f"{path.stem}.md"
try:
self.convert_to_markdown(file_path, output_path)
output_paths.append(output_path)
self.logger.info(f"成功转换: {path} -> {output_path}")
except Exception as e:
self.logger.error(f"转换失败 {path}: {e}")
return output_paths
def main():
"""主函数:演示用法"""
# 配置
config = MarkdownConverterConfig(
extract_images=True,
extract_tables=True,
extract_code_blocks=True,
extract_math=True,
enable_plugins=False,
text_cleanup={
'remove_extra_spaces': True,
'normalize_whitespace': True,
'remove_special_chars': False,
'lowercase': False
}
)
# 创建转换器
converter = MarkdownConverter(config)
# 使用示例
try:
# 替换为实际的文件路径
sample_file = './crazy_functions/doc_fns/read_fns/paper/2501.12599v1.pdf'
if Path(sample_file).exists():
# 转换为 Markdown 并打印内容
markdown_content = converter.convert_to_markdown(sample_file)
print("转换后的 Markdown 内容:")
print(markdown_content[:500] + "...") # 只打印前500个字符
# 转换并保存到文件
output_file = f"./output_{Path(sample_file).stem}.md"
output_path = converter.convert_to_markdown_and_save(sample_file, output_file)
print(f"\n已保存到: {output_path}")
# 使用LLM增强的示例 (需要添加相应的导入和配置)
# try:
# from openai import OpenAI
# client = OpenAI()
# llm_config = MarkdownConverterConfig(
# llm_client=client,
# llm_model="gpt-4o"
# )
# llm_converter = MarkdownConverter(llm_config)
# llm_result = llm_converter.convert_to_markdown("example.jpg")
# print("LLM增强的结果:")
# print(llm_result[:500] + "...")
# except ImportError:
# print("未安装OpenAI库跳过LLM示例")
else:
print(f"示例文件 {sample_file} 不存在")
print("\n支持的格式:", converter.get_supported_formats())
except Exception as e:
print(f"错误: {e}")
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,493 @@
from __future__ import annotations
from pathlib import Path
from typing import Optional, Set, Dict, Union, List
from dataclasses import dataclass, field
import logging
import os
import re
from unstructured.partition.auto import partition
from unstructured.documents.elements import (
Text, Title, NarrativeText, ListItem, Table,
Footer, Header, PageBreak, Image, Address
)
@dataclass
class PaperMetadata:
"""论文元数据类"""
title: str = ""
authors: List[str] = field(default_factory=list)
affiliations: List[str] = field(default_factory=list)
journal: str = ""
volume: str = ""
issue: str = ""
year: str = ""
doi: str = ""
date: str = ""
publisher: str = ""
conference: str = ""
abstract: str = ""
keywords: List[str] = field(default_factory=list)
@dataclass
class ExtractorConfig:
"""元数据提取器配置类"""
paragraph_separator: str = '\n\n'
text_cleanup: Dict[str, bool] = field(default_factory=lambda: {
'remove_extra_spaces': True,
'normalize_whitespace': True,
'remove_special_chars': False,
'lowercase': False
})
class PaperMetadataExtractor:
"""论文元数据提取器
使用unstructured库从多种文档格式中提取论文的标题、作者、摘要等元数据信息。
"""
SUPPORTED_EXTENSIONS: Set[str] = {
'.pdf', '.docx', '.doc', '.txt', '.ppt', '.pptx',
'.xlsx', '.xls', '.md', '.org', '.odt', '.rst',
'.rtf', '.epub', '.html', '.xml', '.json'
}
# 定义论文各部分的关键词模式
SECTION_PATTERNS = {
'abstract': r'\b(摘要|abstract|summary|概要|résumé|zusammenfassung|аннотация)\b',
'keywords': r'\b(关键词|keywords|key\s+words|关键字|mots[- ]clés|schlüsselwörter|ключевые слова)\b',
}
def __init__(self, config: Optional[ExtractorConfig] = None):
"""初始化提取器
Args:
config: 提取器配置对象如果为None则使用默认配置
"""
self.config = config or ExtractorConfig()
self._setup_logging()
def _setup_logging(self) -> None:
"""配置日志记录器"""
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
self.logger = logging.getLogger(__name__)
# 添加文件处理器
fh = logging.FileHandler('paper_metadata_extractor.log')
fh.setLevel(logging.ERROR)
self.logger.addHandler(fh)
def _validate_file(self, file_path: Union[str, Path], max_size_mb: int = 100) -> Path:
"""验证文件
Args:
file_path: 文件路径
max_size_mb: 允许的最大文件大小(MB)
Returns:
Path: 验证后的Path对象
Raises:
ValueError: 文件不存在、格式不支持或大小超限
PermissionError: 没有读取权限
"""
path = Path(file_path).resolve()
if not path.exists():
raise ValueError(f"文件不存在: {path}")
if not path.is_file():
raise ValueError(f"不是文件: {path}")
if not os.access(path, os.R_OK):
raise PermissionError(f"没有读取权限: {path}")
file_size_mb = path.stat().st_size / (1024 * 1024)
if file_size_mb > max_size_mb:
raise ValueError(
f"文件大小 ({file_size_mb:.1f}MB) 超过限制 {max_size_mb}MB"
)
if path.suffix.lower() not in self.SUPPORTED_EXTENSIONS:
raise ValueError(
f"不支持的文件格式: {path.suffix}. "
f"支持的格式: {', '.join(sorted(self.SUPPORTED_EXTENSIONS))}"
)
return path
def _cleanup_text(self, text: str) -> str:
"""清理文本
Args:
text: 原始文本
Returns:
str: 清理后的文本
"""
if self.config.text_cleanup['remove_extra_spaces']:
text = ' '.join(text.split())
if self.config.text_cleanup['normalize_whitespace']:
text = text.replace('\t', ' ').replace('\r', '\n')
if self.config.text_cleanup['lowercase']:
text = text.lower()
return text.strip()
@staticmethod
def get_supported_formats() -> List[str]:
"""获取支持的文件格式列表"""
return sorted(PaperMetadataExtractor.SUPPORTED_EXTENSIONS)
def extract_metadata(self, file_path: Union[str, Path], strategy: str = "fast") -> PaperMetadata:
"""提取论文元数据
Args:
file_path: 文件路径
strategy: 提取策略 ("fast""accurate")
Returns:
PaperMetadata: 提取的论文元数据
Raises:
Exception: 提取过程中的错误
"""
try:
path = self._validate_file(file_path)
self.logger.info(f"正在处理: {path}")
# 使用unstructured库分解文档
elements = partition(
str(path),
strategy=strategy,
include_metadata=True,
nlp=False,
)
# 提取元数据
metadata = PaperMetadata()
# 提取标题和作者
self._extract_title_and_authors(elements, metadata)
# 提取摘要和关键词
self._extract_abstract_and_keywords(elements, metadata)
# 提取其他元数据
self._extract_additional_metadata(elements, metadata)
return metadata
except Exception as e:
self.logger.error(f"元数据提取失败: {e}")
raise
def _extract_title_and_authors(self, elements, metadata: PaperMetadata) -> None:
"""从文档中提取标题和作者信息 - 改进版"""
# 收集所有潜在的标题候选
title_candidates = []
all_text = []
raw_text = []
# 首先收集文档前30个元素的文本用于辅助判断
for i, element in enumerate(elements[:30]):
if isinstance(element, (Text, Title, NarrativeText)):
text = str(element).strip()
if text:
all_text.append(text)
raw_text.append(text)
# 打印出原始文本,用于调试
print("原始文本前10行:")
for i, text in enumerate(raw_text[:10]):
print(f"{i}: {text}")
# 1. 尝试查找连续的标题片段并合并它们
i = 0
while i < len(all_text) - 1:
current = all_text[i]
next_text = all_text[i + 1]
# 检查是否存在标题分割情况:一行以冒号结尾,下一行像是标题的延续
if current.endswith(':') and len(current) < 50 and len(next_text) > 5 and next_text[0].isupper():
# 合并这两行文本
combined_title = f"{current} {next_text}"
# 查找合并前的文本并替换
all_text[i] = combined_title
all_text.pop(i + 1)
# 给合并后的标题很高的分数
title_candidates.append((combined_title, 15, i))
else:
i += 1
# 2. 首先尝试从标题元素中查找
for i, element in enumerate(elements[:15]): # 只检查前15个元素
if isinstance(element, Title):
title_text = str(element).strip()
# 排除常见的非标题内容
if title_text.lower() not in ['abstract', '摘要', 'introduction', '引言']:
# 计算标题分数(越高越可能是真正的标题)
score = self._evaluate_title_candidate(title_text, i, element)
title_candidates.append((title_text, score, i))
# 3. 特别处理常见的论文标题格式
for i, text in enumerate(all_text[:15]):
# 特别检查"KIMI K1.5:"类型的前缀标题
if re.match(r'^[A-Z][A-Z0-9\s\.]+(\s+K\d+(\.\d+)?)?:', text):
score = 12 # 给予很高的分数
title_candidates.append((text, score, i))
# 如果下一行也是全大写,很可能是标题的延续
if i+1 < len(all_text) and all_text[i+1].isupper() and len(all_text[i+1]) > 10:
combined_title = f"{text} {all_text[i+1]}"
title_candidates.append((combined_title, 15, i)) # 给合并标题更高分数
# 匹配全大写的标题行
elif text.isupper() and len(text) > 10 and len(text) < 100:
score = 10 - i * 0.5 # 越靠前越可能是标题
title_candidates.append((text, score, i))
# 对标题候选按分数排序并选取最佳候选
if title_candidates:
title_candidates.sort(key=lambda x: x[1], reverse=True)
metadata.title = title_candidates[0][0]
title_position = title_candidates[0][2]
print(f"所有标题候选: {title_candidates[:3]}")
else:
# 如果没有找到合适的标题,使用一个备选策略
for text in all_text[:10]:
if text.isupper() and len(text) > 10 and len(text) < 200: # 大写且适当长度的文本
metadata.title = text
break
title_position = 0
# 提取作者信息 - 改进后的作者提取逻辑
author_candidates = []
# 1. 特别处理"TECHNICAL REPORT OF"之后的行,通常是作者或团队
for i, text in enumerate(all_text):
if "TECHNICAL REPORT" in text.upper() and i+1 < len(all_text):
team_text = all_text[i+1].strip()
if re.search(r'\b(team|group|lab)\b', team_text, re.IGNORECASE):
author_candidates.append((team_text, 15))
# 2. 查找包含Team的文本
for text in all_text[:20]:
if "Team" in text and len(text) < 30:
# 这很可能是团队名
author_candidates.append((text, 12))
# 添加作者到元数据
if author_candidates:
# 按分数排序
author_candidates.sort(key=lambda x: x[1], reverse=True)
# 去重
seen_authors = set()
for author, _ in author_candidates:
if author.lower() not in seen_authors and not author.isdigit():
seen_authors.add(author.lower())
metadata.authors.append(author)
# 如果没有找到作者,尝试查找隶属机构信息中的团队名称
if not metadata.authors:
for text in all_text[:20]:
if re.search(r'\b(team|group|lab|laboratory|研究组|团队)\b', text, re.IGNORECASE):
if len(text) < 50: # 避免太长的文本
metadata.authors.append(text.strip())
break
# 提取隶属机构信息
for i, element in enumerate(elements[:30]):
element_text = str(element).strip()
if re.search(r'(university|institute|department|school|laboratory|college|center|centre|\d{5,}|^[a-zA-Z]+@|学院|大学|研究所|研究院)', element_text, re.IGNORECASE):
# 可能是隶属机构
if element_text not in metadata.affiliations and len(element_text) > 10:
metadata.affiliations.append(element_text)
def _evaluate_title_candidate(self, text, position, element):
"""评估标题候选项的可能性分数"""
score = 0
# 位置因素:越靠前越可能是标题
score += max(0, 10 - position) * 0.5
# 长度因素:标题通常不会太短也不会太长
if 10 <= len(text) <= 150:
score += 3
elif len(text) < 10:
score -= 2
elif len(text) > 150:
score -= 3
# 格式因素
if text.isupper(): # 全大写可能是标题
score += 2
if re.match(r'^[A-Z]', text): # 首字母大写
score += 1
if ':' in text: # 标题常包含冒号
score += 1.5
# 内容因素
if re.search(r'\b(scaling|learning|model|approach|method|system|framework|analysis)\b', text.lower()):
score += 2 # 包含常见的学术论文关键词
# 避免误判
if re.match(r'^\d+$', text): # 纯数字
score -= 10
if re.search(r'^(http|www|doi)', text.lower()): # URL或DOI
score -= 5
if len(text.split()) <= 2 and len(text) < 15: # 太短的短语
score -= 3
# 元数据因素(如果有)
if hasattr(element, 'metadata') and element.metadata:
# 修复正确处理ElementMetadata对象
try:
# 尝试通过getattr安全地获取属性
font_size = getattr(element.metadata, 'font_size', None)
if font_size is not None and font_size > 14: # 假设标准字体大小是12
score += 3
font_weight = getattr(element.metadata, 'font_weight', None)
if font_weight == 'bold':
score += 2 # 粗体加分
except (AttributeError, TypeError):
# 如果metadata的访问方式不正确尝试其他可能的访问方式
try:
metadata_dict = element.metadata.__dict__ if hasattr(element.metadata, '__dict__') else {}
if 'font_size' in metadata_dict and metadata_dict['font_size'] > 14:
score += 3
if 'font_weight' in metadata_dict and metadata_dict['font_weight'] == 'bold':
score += 2
except Exception:
# 如果所有尝试都失败,忽略元数据处理
pass
return score
def _extract_abstract_and_keywords(self, elements, metadata: PaperMetadata) -> None:
"""从文档中提取摘要和关键词"""
abstract_found = False
keywords_found = False
abstract_text = []
for i, element in enumerate(elements):
element_text = str(element).strip().lower()
# 寻找摘要部分
if not abstract_found and (
isinstance(element, Title) and
re.search(self.SECTION_PATTERNS['abstract'], element_text, re.IGNORECASE)
):
abstract_found = True
continue
# 如果找到摘要部分,收集内容直到遇到关键词部分或新章节
if abstract_found and not keywords_found:
# 检查是否遇到关键词部分或新章节
if (
isinstance(element, Title) or
re.search(self.SECTION_PATTERNS['keywords'], element_text, re.IGNORECASE) or
re.match(r'\b(introduction|引言|method|方法)\b', element_text, re.IGNORECASE)
):
keywords_found = re.search(self.SECTION_PATTERNS['keywords'], element_text, re.IGNORECASE)
abstract_found = False # 停止收集摘要
else:
# 收集摘要文本
if isinstance(element, (Text, NarrativeText)) and element_text:
abstract_text.append(element_text)
# 如果找到关键词部分,提取关键词
if keywords_found and not abstract_found and not metadata.keywords:
if isinstance(element, (Text, NarrativeText)):
# 清除可能的"关键词:"/"Keywords:"前缀
cleaned_text = re.sub(r'^\s*(关键词|keywords|key\s+words)\s*[:]\s*', '', element_text, flags=re.IGNORECASE)
# 尝试按不同分隔符分割
for separator in [';', '', ',', '']:
if separator in cleaned_text:
metadata.keywords = [k.strip() for k in cleaned_text.split(separator) if k.strip()]
break
# 如果未能分割,将整个文本作为一个关键词
if not metadata.keywords and cleaned_text:
metadata.keywords = [cleaned_text]
keywords_found = False # 已提取关键词,停止处理
# 设置摘要文本
if abstract_text:
metadata.abstract = self.config.paragraph_separator.join(abstract_text)
def _extract_additional_metadata(self, elements, metadata: PaperMetadata) -> None:
"""提取其他元数据信息"""
for element in elements[:30]: # 只检查文档前部分
element_text = str(element).strip()
# 尝试匹配DOI
doi_match = re.search(r'(doi|DOI):\s*(10\.\d{4,}\/[a-zA-Z0-9.-]+)', element_text)
if doi_match and not metadata.doi:
metadata.doi = doi_match.group(2)
# 尝试匹配日期
date_match = re.search(r'(published|received|accepted|submitted):\s*(\d{1,2}\s+[a-zA-Z]+\s+\d{4}|\d{4}[-/]\d{1,2}[-/]\d{1,2})', element_text, re.IGNORECASE)
if date_match and not metadata.date:
metadata.date = date_match.group(2)
# 尝试匹配年份
year_match = re.search(r'\b(19|20)\d{2}\b', element_text)
if year_match and not metadata.year:
metadata.year = year_match.group(0)
# 尝试匹配期刊/会议名称
journal_match = re.search(r'(journal|conference):\s*([^,;.]+)', element_text, re.IGNORECASE)
if journal_match:
if "journal" in journal_match.group(1).lower() and not metadata.journal:
metadata.journal = journal_match.group(2).strip()
elif not metadata.conference:
metadata.conference = journal_match.group(2).strip()
def main():
"""主函数:演示用法"""
# 创建提取器
extractor = PaperMetadataExtractor()
# 使用示例
try:
# 替换为实际的文件路径
sample_file = '/Users/boyin.liu/Documents/示例文档/论文/3.pdf'
if Path(sample_file).exists():
metadata = extractor.extract_metadata(sample_file)
print("提取的元数据:")
print(f"标题: {metadata.title}")
print(f"作者: {', '.join(metadata.authors)}")
print(f"机构: {', '.join(metadata.affiliations)}")
print(f"摘要: {metadata.abstract[:200]}...")
print(f"关键词: {', '.join(metadata.keywords)}")
print(f"DOI: {metadata.doi}")
print(f"日期: {metadata.date}")
print(f"年份: {metadata.year}")
print(f"期刊: {metadata.journal}")
print(f"会议: {metadata.conference}")
else:
print(f"示例文件 {sample_file} 不存在")
print("\n支持的格式:", extractor.get_supported_formats())
except Exception as e:
print(f"错误: {e}")
if __name__ == "__main__":
main()

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,86 @@
from pathlib import Path
from crazy_functions.doc_fns.read_fns.unstructured_all.paper_structure_extractor import PaperStructureExtractor
def extract_and_save_as_markdown(paper_path, output_path=None):
"""
提取论文结构并保存为Markdown格式
参数:
paper_path: 论文文件路径
output_path: 输出的Markdown文件路径如果不指定将使用与输入相同的文件名但扩展名为.md
返回:
保存的Markdown文件路径
"""
# 创建提取器
extractor = PaperStructureExtractor()
# 解析文件路径
paper_path = Path(paper_path)
# 如果未指定输出路径,使用相同文件名但扩展名为.md
if output_path is None:
output_path = paper_path.with_suffix('.md')
else:
output_path = Path(output_path)
# 确保输出目录存在
output_path.parent.mkdir(parents=True, exist_ok=True)
print(f"正在处理论文: {paper_path}")
try:
# 提取论文结构
paper = extractor.extract_paper_structure(paper_path)
# 生成Markdown内容
markdown_content = extractor.generate_markdown(paper)
# 保存到文件
with open(output_path, 'w', encoding='utf-8') as f:
f.write(markdown_content)
print(f"已成功保存Markdown文件: {output_path}")
# 打印摘要信息
print("\n论文摘要信息:")
print(f"标题: {paper.metadata.title}")
print(f"作者: {', '.join(paper.metadata.authors)}")
print(f"关键词: {', '.join(paper.keywords)}")
print(f"章节数: {len(paper.sections)}")
print(f"图表数: {len(paper.figures)}")
print(f"表格数: {len(paper.tables)}")
print(f"公式数: {len(paper.formulas)}")
print(f"参考文献数: {len(paper.references)}")
return output_path
except Exception as e:
print(f"处理论文时出错: {e}")
import traceback
traceback.print_exc()
return None
# 使用示例
if __name__ == "__main__":
# 替换为实际的论文文件路径
sample_paper = "crazy_functions/doc_fns/read_fns/paper/2501.12599v1.pdf"
# 可以指定输出路径,也可以使用默认路径
# output_file = "/path/to/output/paper_structure.md"
# extract_and_save_as_markdown(sample_paper, output_file)
# 使用默认输出路径(与输入文件同名但扩展名为.md
extract_and_save_as_markdown(sample_paper)
# # 批量处理多个论文的示例
# paper_dir = Path("/path/to/papers/folder")
# output_dir = Path("/path/to/output/folder")
#
# # 确保输出目录存在
# output_dir.mkdir(parents=True, exist_ok=True)
#
# # 处理目录中的所有PDF文件
# for paper_file in paper_dir.glob("*.pdf"):
# output_file = output_dir / f"{paper_file.stem}.md"
# extract_and_save_as_markdown(paper_file, output_file)

View File

@@ -0,0 +1,275 @@
from __future__ import annotations
from pathlib import Path
from typing import Optional, Set, Dict, Union, List
from dataclasses import dataclass, field
import logging
import os
from unstructured.partition.auto import partition
from unstructured.documents.elements import (
Text, Title, NarrativeText, ListItem, Table,
Footer, Header, PageBreak, Image, Address
)
@dataclass
class TextExtractorConfig:
"""通用文档提取器配置类
Attributes:
extract_headers_footers: 是否提取页眉页脚
extract_tables: 是否提取表格内容
extract_lists: 是否提取列表内容
extract_titles: 是否提取标题
paragraph_separator: 段落之间的分隔符
text_cleanup: 文本清理选项字典
"""
extract_headers_footers: bool = False
extract_tables: bool = True
extract_lists: bool = True
extract_titles: bool = True
paragraph_separator: str = '\n\n'
text_cleanup: Dict[str, bool] = field(default_factory=lambda: {
'remove_extra_spaces': True,
'normalize_whitespace': True,
'remove_special_chars': False,
'lowercase': False
})
class UnstructuredTextExtractor:
"""通用文档文本内容提取器
使用 unstructured 库支持多种文档格式的文本提取,提供统一的接口和配置选项。
"""
SUPPORTED_EXTENSIONS: Set[str] = {
# 文档格式
'.pdf', '.docx', '.doc', '.txt',
# 演示文稿
'.ppt', '.pptx',
# 电子表格
'.xlsx', '.xls', '.csv',
# 图片
'.png', '.jpg', '.jpeg', '.tiff',
# 邮件
'.eml', '.msg', '.p7s',
# Markdown
".md",
# Org Mode
".org",
# Open Office
".odt",
# reStructured Text
".rst",
# Rich Text
".rtf",
# TSV
".tsv",
# EPUB
'.epub',
# 其他格式
'.html', '.xml', '.json',
}
def __init__(self, config: Optional[TextExtractorConfig] = None):
"""初始化提取器
Args:
config: 提取器配置对象如果为None则使用默认配置
"""
self.config = config or TextExtractorConfig()
self._setup_logging()
def _setup_logging(self) -> None:
"""配置日志记录器"""
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
self.logger = logging.getLogger(__name__)
# 添加文件处理器
fh = logging.FileHandler('text_extractor.log')
fh.setLevel(logging.ERROR)
self.logger.addHandler(fh)
def _validate_file(self, file_path: Union[str, Path], max_size_mb: int = 100) -> Path:
"""验证文件
Args:
file_path: 文件路径
max_size_mb: 允许的最大文件大小(MB)
Returns:
Path: 验证后的Path对象
Raises:
ValueError: 文件不存在、格式不支持或大小超限
PermissionError: 没有读取权限
"""
path = Path(file_path).resolve()
if not path.exists():
raise ValueError(f"File not found: {path}")
if not path.is_file():
raise ValueError(f"Not a file: {path}")
if not os.access(path, os.R_OK):
raise PermissionError(f"No read permission: {path}")
file_size_mb = path.stat().st_size / (1024 * 1024)
if file_size_mb > max_size_mb:
raise ValueError(
f"File size ({file_size_mb:.1f}MB) exceeds limit of {max_size_mb}MB"
)
if path.suffix.lower() not in self.SUPPORTED_EXTENSIONS:
raise ValueError(
f"Unsupported format: {path.suffix}. "
f"Supported: {', '.join(sorted(self.SUPPORTED_EXTENSIONS))}"
)
return path
def _cleanup_text(self, text: str) -> str:
"""清理文本
Args:
text: 原始文本
Returns:
str: 清理后的文本
"""
if self.config.text_cleanup['remove_extra_spaces']:
text = ' '.join(text.split())
if self.config.text_cleanup['normalize_whitespace']:
text = text.replace('\t', ' ').replace('\r', '\n')
if self.config.text_cleanup['lowercase']:
text = text.lower()
return text.strip()
def _should_extract_element(self, element) -> bool:
"""判断是否应该提取某个元素
Args:
element: 文档元素
Returns:
bool: 是否应该提取
"""
if isinstance(element, (Text, NarrativeText)):
return True
if isinstance(element, Title) and self.config.extract_titles:
return True
if isinstance(element, ListItem) and self.config.extract_lists:
return True
if isinstance(element, Table) and self.config.extract_tables:
return True
if isinstance(element, (Header, Footer)) and self.config.extract_headers_footers:
return True
return False
@staticmethod
def get_supported_formats() -> List[str]:
"""获取支持的文件格式列表"""
return sorted(UnstructuredTextExtractor.SUPPORTED_EXTENSIONS)
def extract_text(
self,
file_path: Union[str, Path],
strategy: str = "fast"
) -> str:
"""提取文本
Args:
file_path: 文件路径
strategy: 提取策略 ("fast""accurate")
Returns:
str: 提取的文本内容
Raises:
Exception: 提取过程中的错误
"""
try:
path = self._validate_file(file_path)
self.logger.info(f"Processing: {path}")
# 修改这里:添加 nlp=False 参数来禁用 NLTK
elements = partition(
str(path),
strategy=strategy,
include_metadata=True,
nlp=True,
)
# 其余代码保持不变
text_parts = []
for element in elements:
if self._should_extract_element(element):
text = str(element)
cleaned_text = self._cleanup_text(text)
if cleaned_text:
if isinstance(element, (Header, Footer)):
prefix = "[Header] " if isinstance(element, Header) else "[Footer] "
text_parts.append(f"{prefix}{cleaned_text}")
else:
text_parts.append(cleaned_text)
return self.config.paragraph_separator.join(text_parts)
except Exception as e:
self.logger.error(f"Extraction failed: {e}")
raise
def main():
"""主函数:演示用法"""
# 配置
config = TextExtractorConfig(
extract_headers_footers=True,
extract_tables=True,
extract_lists=True,
extract_titles=True,
text_cleanup={
'remove_extra_spaces': True,
'normalize_whitespace': True,
'remove_special_chars': False,
'lowercase': False
}
)
# 创建提取器
extractor = UnstructuredTextExtractor(config)
# 使用示例
try:
# 替换为实际的文件路径
sample_file = './crazy_functions/doc_fns/read_fns/paper/2501.12599v1.pdf'
if Path(sample_file).exists() or True:
text = extractor.extract_text(sample_file)
print("提取的文本:")
print(text)
else:
print(f"示例文件 {sample_file} 不存在")
print("\n支持的格式:", extractor.get_supported_formats())
except Exception as e:
print(f"错误: {e}")
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,219 @@
from __future__ import annotations
from dataclasses import dataclass, field
from typing import Dict, Optional, Union
from urllib.parse import urlparse
import logging
import trafilatura
import requests
from pathlib import Path
@dataclass
class WebExtractorConfig:
"""网页内容提取器配置类
Attributes:
extract_comments: 是否提取评论
extract_tables: 是否提取表格
extract_links: 是否保留链接信息
paragraph_separator: 段落分隔符
timeout: 网络请求超时时间(秒)
max_retries: 最大重试次数
user_agent: 自定义User-Agent
text_cleanup: 文本清理选项
"""
extract_comments: bool = False
extract_tables: bool = True
extract_links: bool = False
paragraph_separator: str = '\n\n'
timeout: int = 10
max_retries: int = 3
user_agent: str = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
text_cleanup: Dict[str, bool] = field(default_factory=lambda: {
'remove_extra_spaces': True,
'normalize_whitespace': True,
'remove_special_chars': False,
'lowercase': False
})
class WebTextExtractor:
"""网页文本内容提取器
使用trafilatura库提取网页中的主要文本内容去除广告、导航等无关内容。
"""
def __init__(self, config: Optional[WebExtractorConfig] = None):
"""初始化提取器
Args:
config: 提取器配置对象如果为None则使用默认配置
"""
self.config = config or WebExtractorConfig()
self._setup_logging()
def _setup_logging(self) -> None:
"""配置日志记录器"""
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
self.logger = logging.getLogger(__name__)
# 添加文件处理器
fh = logging.FileHandler('web_extractor.log')
fh.setLevel(logging.ERROR)
self.logger.addHandler(fh)
def _validate_url(self, url: str) -> bool:
"""验证URL格式是否有效
Args:
url: 网页URL
Returns:
bool: URL是否有效
"""
try:
result = urlparse(url)
return all([result.scheme, result.netloc])
except Exception:
return False
def _download_webpage(self, url: str) -> Optional[str]:
"""下载网页内容
Args:
url: 网页URL
Returns:
Optional[str]: 网页HTML内容失败返回None
Raises:
Exception: 下载失败时抛出异常
"""
headers = {'User-Agent': self.config.user_agent}
for attempt in range(self.config.max_retries):
try:
response = requests.get(
url,
headers=headers,
timeout=self.config.timeout
)
response.raise_for_status()
return response.text
except requests.RequestException as e:
self.logger.warning(f"Attempt {attempt + 1} failed: {e}")
if attempt == self.config.max_retries - 1:
raise Exception(f"Failed to download webpage after {self.config.max_retries} attempts: {e}")
return None
def _cleanup_text(self, text: str) -> str:
"""清理文本
Args:
text: 原始文本
Returns:
str: 清理后的文本
"""
if not text:
return ""
if self.config.text_cleanup['remove_extra_spaces']:
text = ' '.join(text.split())
if self.config.text_cleanup['normalize_whitespace']:
text = text.replace('\t', ' ').replace('\r', '\n')
if self.config.text_cleanup['lowercase']:
text = text.lower()
return text.strip()
def extract_text(self, url: str) -> str:
"""提取网页文本内容
Args:
url: 网页URL
Returns:
str: 提取的文本内容
Raises:
ValueError: URL无效时抛出
Exception: 提取失败时抛出
"""
try:
if not self._validate_url(url):
raise ValueError(f"Invalid URL: {url}")
self.logger.info(f"Processing URL: {url}")
# 下载网页
html_content = self._download_webpage(url)
if not html_content:
raise Exception("Failed to download webpage")
# 配置trafilatura提取选项
extract_config = {
'include_comments': self.config.extract_comments,
'include_tables': self.config.extract_tables,
'include_links': self.config.extract_links,
'no_fallback': False, # 允许使用后备提取器
}
# 提取文本
extracted_text = trafilatura.extract(
html_content,
**extract_config
)
if not extracted_text:
raise Exception("No content could be extracted")
# 清理文本
cleaned_text = self._cleanup_text(extracted_text)
return cleaned_text
except Exception as e:
self.logger.error(f"Extraction failed: {e}")
raise
def main():
"""主函数:演示用法"""
# 配置
config = WebExtractorConfig(
extract_comments=False,
extract_tables=True,
extract_links=False,
timeout=10,
text_cleanup={
'remove_extra_spaces': True,
'normalize_whitespace': True,
'remove_special_chars': False,
'lowercase': False
}
)
# 创建提取器
extractor = WebTextExtractor(config)
# 使用示例
try:
# 替换为实际的URL
sample_url = 'https://arxiv.org/abs/2412.00036'
text = extractor.extract_text(sample_url)
print("提取的文本:")
print(text)
except Exception as e:
print(f"错误: {e}")
if __name__ == "__main__":
main()

View File

@@ -31,7 +31,7 @@ def encode_plugin_info(k, plugin)->str:
def main():
import gradio as gr
if gr.__version__ not in ['3.32.12']:
if gr.__version__ not in ['3.32.15']:
raise ModuleNotFoundError("使用项目内置Gradio获取最优体验! 请运行 `pip install -r requirements.txt` 指令安装内置Gradio及其他依赖, 详情信息见requirements.txt.")
# 一些基础工具

View File

@@ -80,6 +80,7 @@ ollama_endpoint = "http://localhost:11434/api/chat"
yimodel_endpoint = "https://api.lingyiwanwu.com/v1/chat/completions"
deepseekapi_endpoint = "https://api.deepseek.com/v1/chat/completions"
grok_model_endpoint = "https://api.x.ai/v1/chat/completions"
volcengine_endpoint = "https://ark.cn-beijing.volces.com/api/v3/chat/completions"
if not AZURE_ENDPOINT.endswith('/'): AZURE_ENDPOINT += '/'
azure_endpoint = AZURE_ENDPOINT + f'openai/deployments/{AZURE_ENGINE}/chat/completions?api-version=2023-05-15'
@@ -102,6 +103,7 @@ if ollama_endpoint in API_URL_REDIRECT: ollama_endpoint = API_URL_REDIRECT[ollam
if yimodel_endpoint in API_URL_REDIRECT: yimodel_endpoint = API_URL_REDIRECT[yimodel_endpoint]
if deepseekapi_endpoint in API_URL_REDIRECT: deepseekapi_endpoint = API_URL_REDIRECT[deepseekapi_endpoint]
if grok_model_endpoint in API_URL_REDIRECT: grok_model_endpoint = API_URL_REDIRECT[grok_model_endpoint]
if volcengine_endpoint in API_URL_REDIRECT: volcengine_endpoint = API_URL_REDIRECT[volcengine_endpoint]
# 获取tokenizer
tokenizer_gpt35 = LazyloadTiktoken("gpt-3.5-turbo")
@@ -280,6 +282,7 @@ model_info = {
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"endpoint": openai_endpoint,
"can_multi_thread": True,
"max_token": 128000,
"tokenizer": tokenizer_gpt4,
"token_cnt": get_token_num_gpt4,
@@ -312,6 +315,50 @@ model_info = {
"openai_force_temperature_one": True,
},
"gpt-4.1":{
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"has_multimodal_capacity": True,
"endpoint": openai_endpoint,
"max_token": 828000,
"tokenizer": tokenizer_gpt4,
"token_cnt": get_token_num_gpt4,
},
"gpt-4.1-mini":{
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"has_multimodal_capacity": True,
"endpoint": openai_endpoint,
"max_token": 828000,
"tokenizer": tokenizer_gpt4,
"token_cnt": get_token_num_gpt4,
},
"o3":{
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"has_multimodal_capacity": True,
"endpoint": openai_endpoint,
"max_token": 828000,
"tokenizer": tokenizer_gpt4,
"token_cnt": get_token_num_gpt4,
"openai_disable_system_prompt": True,
"openai_disable_stream": True,
"openai_force_temperature_one": True,
},
"o4-mini":{
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"has_multimodal_capacity": True,
"can_multi_thread": True,
"endpoint": openai_endpoint,
"max_token": 828000,
"tokenizer": tokenizer_gpt4,
"token_cnt": get_token_num_gpt4,
},
"gpt-4-turbo": {
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
@@ -528,6 +575,15 @@ model_info = {
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"gemini-2.0-flash": {
"fn_with_ui": genai_ui,
"fn_without_ui": genai_noui,
"endpoint": gemini_endpoint,
"has_multimodal_capacity": True,
"max_token": 1024 * 204800,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
# cohere
"cohere-command-r-plus": {
@@ -811,8 +867,12 @@ if "qwen-local" in AVAIL_LLM_MODELS:
})
except:
logger.error(trimmed_format_exc())
# -=-=-=-=-=-=- 通义-在线模型 -=-=-=-=-=-=-
qwen_models = ["qwen-max-latest", "qwen-max-2025-01-25","qwen-max","qwen-turbo","qwen-plus"]
# -=-=-=-=-=-=- 阿里云百炼(通义)-在线模型 -=-=-=-=-=-=-
qwen_models = ["qwen-max-latest", "qwen-max-2025-01-25","qwen-max","qwen-turbo","qwen-plus",
"dashscope-deepseek-r1","dashscope-deepseek-v3",
"dashscope-qwen3-14b", "dashscope-qwen3-235b-a22b", "dashscope-qwen3-qwen3-32b",
]
if any(item in qwen_models for item in AVAIL_LLM_MODELS):
try:
from .bridge_qwen import predict_no_ui_long_connection as qwen_noui
@@ -862,10 +922,58 @@ if any(item in qwen_models for item in AVAIL_LLM_MODELS):
"max_token": 30720,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"dashscope-deepseek-r1": {
"fn_with_ui": qwen_ui,
"fn_without_ui": qwen_noui,
"enable_reasoning": True,
"can_multi_thread": True,
"endpoint": None,
"max_token": 57344,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"dashscope-deepseek-v3": {
"fn_with_ui": qwen_ui,
"fn_without_ui": qwen_noui,
"can_multi_thread": True,
"endpoint": None,
"max_token": 57344,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"dashscope-qwen3-14b": {
"fn_with_ui": qwen_ui,
"fn_without_ui": qwen_noui,
"enable_reasoning": True,
"can_multi_thread": True,
"endpoint": None,
"max_token": 129024,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"dashscope-qwen3-235b-a22b": {
"fn_with_ui": qwen_ui,
"fn_without_ui": qwen_noui,
"can_multi_thread": True,
"endpoint": None,
"max_token": 129024,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"dashscope-qwen3-32b": {
"fn_with_ui": qwen_ui,
"fn_without_ui": qwen_noui,
"can_multi_thread": True,
"endpoint": None,
"max_token": 129024,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
}
})
except:
logger.error(trimmed_format_exc())
# -=-=-=-=-=-=- 零一万物模型 -=-=-=-=-=-=-
yi_models = ["yi-34b-chat-0205","yi-34b-chat-200k","yi-large","yi-medium","yi-spark","yi-large-turbo","yi-large-preview"]
if any(item in yi_models for item in AVAIL_LLM_MODELS):
@@ -954,7 +1062,7 @@ if any(item in grok_models for item in AVAIL_LLM_MODELS):
try:
grok_beta_128k_noui, grok_beta_128k_ui = get_predict_function(
api_key_conf_name="GROK_API_KEY", max_output_token=8192, disable_proxy=False
)
)
model_info.update({
"grok-beta": {
@@ -1089,8 +1197,10 @@ if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
})
except:
logger.error(trimmed_format_exc())
# -=-=-=-=-=-=- 幻方-深度求索大模型在线API -=-=-=-=-=-=-
if "deepseek-chat" in AVAIL_LLM_MODELS or "deepseek-coder" in AVAIL_LLM_MODELS or "deepseek-reasoner" in AVAIL_LLM_MODELS:
claude_models = ["deepseek-chat", "deepseek-coder", "deepseek-reasoner"]
if any(item in claude_models for item in AVAIL_LLM_MODELS):
try:
deepseekapi_noui, deepseekapi_ui = get_predict_function(
api_key_conf_name="DEEPSEEK_API_KEY", max_output_token=4096, disable_proxy=False
@@ -1127,6 +1237,60 @@ if "deepseek-chat" in AVAIL_LLM_MODELS or "deepseek-coder" in AVAIL_LLM_MODELS o
})
except:
logger.error(trimmed_format_exc())
# -=-=-=-=-=-=- 火山引擎 对齐支持 -=-=-=-=-=-=-
for model in [m for m in AVAIL_LLM_MODELS if m.startswith("volcengine-")]:
# 为了更灵活地接入volcengine多模型管理界面设计了此接口例子AVAIL_LLM_MODELS = ["volcengine-deepseek-r1-250120(max_token=6666)"]
# 其中
# "volcengine-" 是前缀(必要)
# "deepseek-r1-250120" 是模型名(必要)
# "(max_token=6666)" 是配置(非必要)
model_info_extend = model_info
model_info_extend.update({
"deepseek-r1-250120": {
"max_token": 16384,
"enable_reasoning": True,
"can_multi_thread": True,
"endpoint": volcengine_endpoint,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"deepseek-v3-241226": {
"max_token": 16384,
"enable_reasoning": False,
"can_multi_thread": True,
"endpoint": volcengine_endpoint,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
})
try:
origin_model_name, max_token_tmp = read_one_api_model_name(model)
# 如果是已知模型,则尝试获取其信息
original_model_info = model_info_extend.get(origin_model_name.replace("volcengine-", "", 1), None)
except:
logger.error(f"volcengine模型 {model} 的 max_token 配置不是整数,请检查配置文件。")
continue
volcengine_noui, volcengine_ui = get_predict_function(api_key_conf_name="ARK_API_KEY", max_output_token=8192, disable_proxy=True, model_remove_prefix = ["volcengine-"])
this_model_info = {
"fn_with_ui": volcengine_ui,
"fn_without_ui": volcengine_noui,
"endpoint": volcengine_endpoint,
"can_multi_thread": True,
"max_token": 64000,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
}
# 同步已知模型的其他信息
attribute = "has_multimodal_capacity"
if original_model_info is not None and original_model_info.get(attribute, None) is not None: this_model_info.update({attribute: original_model_info.get(attribute, None)})
attribute = "enable_reasoning"
if original_model_info is not None and original_model_info.get(attribute, None) is not None: this_model_info.update({attribute: original_model_info.get(attribute, None)})
model_info.update({model: this_model_info})
# -=-=-=-=-=-=- one-api 对齐支持 -=-=-=-=-=-=-
for model in [m for m in AVAIL_LLM_MODELS if m.startswith("one-api-")]:
# 为了更灵活地接入one-api多模型管理界面设计了此接口例子AVAIL_LLM_MODELS = ["one-api-mixtral-8x7b(max_token=6666)"]

View File

@@ -368,12 +368,12 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
break # 对于符合规范的接口这里可以break
else:
continue # 对于不符合规范的狗屎接口,这里需要继续
continue # 对于不符合规范的接口,这里需要继续
# 到这里我们已经可以假定必须包含choice了
try:
status_text = f"finish_reason: {chunkjson['choices'][0].get('finish_reason', 'null')}"
except:
logger.error(f"一些垃圾第三方接口出现这样的错误,兼容一下吧: {chunk_decoded}")
logger.error(f"一些第三方接口出现这样的错误,兼容一下吧: {chunk_decoded}")
# 处理数据流的主体
if has_content:
# 正常情况
@@ -382,9 +382,9 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
# 一些第三方接口的出现这样的错误,兼容一下吧
continue
else:
# 至此已经超出了正常接口应该进入的范围,一些垃圾第三方接口会出现这样的错误
# 至此已经超出了正常接口应该进入的范围,一些第三方接口会出现这样的错误
if chunkjson['choices'][0]["delta"].get("content", None) is None:
logger.error(f"一些垃圾第三方接口出现这样的错误,兼容一下吧: {chunk_decoded}")
logger.error(f"一些第三方接口出现这样的错误,兼容一下吧: {chunk_decoded}")
continue
gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]

View File

@@ -3,6 +3,7 @@ from toolbox import get_conf
import threading
timeout_bot_msg = '[Local Message] Request timeout. Network error.'
model_prefix_to_remove = 'dashscope-'
class QwenRequestInstance():
def __init__(self):
@@ -20,6 +21,13 @@ class QwenRequestInstance():
raise RuntimeError('请配置 DASHSCOPE_API_KEY')
dashscope.api_key = get_conf("DASHSCOPE_API_KEY")
def format_reasoning(self, reasoning_content:str, main_content:str):
if reasoning_content:
reasoning_content_paragraphs = ''.join([f'<p style="margin: 1.25em 0;">{line}</p>' for line in reasoning_content.split('\n')])
formatted_reasoning_content = f'<div class="reasoning_process">{reasoning_content_paragraphs}</div>\n\n---\n\n'
return formatted_reasoning_content + main_content
else:
return main_content
def generate(self, inputs, llm_kwargs, history, system_prompt):
# import _thread as thread
@@ -28,9 +36,13 @@ class QwenRequestInstance():
if top_p == 0: top_p += 1e-5
if top_p == 1: top_p -= 1e-5
model_name = llm_kwargs['llm_model']
if model_name.startswith(model_prefix_to_remove): model_name = model_name[len(model_prefix_to_remove):]
self.reasoning_buf = ""
self.result_buf = ""
responses = Generation.call(
model=llm_kwargs['llm_model'],
model=model_name,
messages=generate_message_payload(inputs, llm_kwargs, history, system_prompt),
top_p=top_p,
temperature=llm_kwargs.get('temperature', 1.0),
@@ -46,18 +58,24 @@ class QwenRequestInstance():
self.result_buf += response.output.choices[0].message.content
except:
pass
yield self.result_buf
yield self.format_reasoning(self.reasoning_buf, self.result_buf)
break
elif response.output.choices[0].finish_reason == 'length':
self.result_buf += "[Local Message] 生成长度过长,后续输出被截断"
yield self.result_buf
yield self.format_reasoning(self.reasoning_buf, self.result_buf)
break
else:
try:
contain_reasoning = hasattr(response.output.choices[0].message, 'reasoning_content')
except:
contain_reasoning = False
if contain_reasoning:
self.reasoning_buf += response.output.choices[0].message.reasoning_content
self.result_buf += response.output.choices[0].message.content
yield self.result_buf
yield self.format_reasoning(self.reasoning_buf, self.result_buf)
else:
self.result_buf += f"[Local Message] 请求错误:状态码:{response.status_code},错误码:{response.code},消息:{response.message}"
yield self.result_buf
yield self.format_reasoning(self.reasoning_buf, self.result_buf)
break
# 耗尽generator避免报错

View File

@@ -57,7 +57,7 @@ def decode_chunk(chunk):
finish_reason = chunk["error"]["code"]
except:
finish_reason = "API_ERROR"
return response, reasoning_content, finish_reason
return response, reasoning_content, finish_reason, str(chunk)
try:
if chunk["choices"][0]["delta"]["content"] is not None:
@@ -122,7 +122,8 @@ def generate_message(input, model, key, history, max_output_token, system_prompt
def get_predict_function(
api_key_conf_name,
max_output_token,
disable_proxy = False
disable_proxy = False,
model_remove_prefix = [],
):
"""
为openai格式的API生成响应函数其中传入参数
@@ -137,6 +138,16 @@ def get_predict_function(
APIKEY = get_conf(api_key_conf_name)
def remove_prefix(model_name):
# 去除模型名字的前缀,输入 volcengine-deepseek-r1-250120 会返回 deepseek-r1-250120
if not model_remove_prefix:
return model_name
model_without_prefix = model_name
for prefix in model_remove_prefix:
if model_without_prefix.startswith(prefix):
model_without_prefix = model_without_prefix[len(prefix):]
return model_without_prefix
def predict_no_ui_long_connection(
inputs,
llm_kwargs,
@@ -164,9 +175,11 @@ def get_predict_function(
raise RuntimeError(f"APIKEY为空,请检查配置文件的{APIKEY}")
if inputs == "":
inputs = "你好👋"
headers, payload = generate_message(
input=inputs,
model=llm_kwargs["llm_model"],
model=remove_prefix(llm_kwargs["llm_model"]),
key=APIKEY,
history=history,
max_output_token=max_output_token,
@@ -302,7 +315,7 @@ def get_predict_function(
headers, payload = generate_message(
input=inputs,
model=llm_kwargs["llm_model"],
model=remove_prefix(llm_kwargs["llm_model"]),
key=APIKEY,
history=history,
max_output_token=max_output_token,

View File

@@ -1,4 +1,4 @@
https://public.agent-matrix.com/publish/gradio-3.32.12-py3-none-any.whl
https://public.agent-matrix.com/publish/gradio-3.32.15-py3-none-any.whl
fastapi==0.110
gradio-client==0.8
pypdf2==2.12.1

View File

@@ -3,7 +3,8 @@ import re
import os
import math
import html
import base64
import gzip
from loguru import logger
from textwrap import dedent
from functools import lru_cache
@@ -325,6 +326,14 @@ def markdown_convertion_for_file(txt):
# cat them together
return pre + convert_stage_5 + suf
def compress_string(s):
compress_string = gzip.compress(s.encode('utf-8'))
return base64.b64encode(compress_string).decode()
def decompress_string(s):
decoded_string = base64.b64decode(s)
return gzip.decompress(decoded_string).decode('utf-8')
@lru_cache(maxsize=128) # 使用 lru缓存 加快转换速度
def markdown_convertion(txt):
"""
@@ -336,6 +345,12 @@ def markdown_convertion(txt):
# print('警告,输入了已经经过转化的字符串,二次转化可能出问题')
return txt # 已经被转化过,不需要再次转化
# 在文本中插入一个base64编码的原始文本以便在复制时能够获得原始文本
raw_text_encoded = compress_string(txt)
raw_text_node = f'<div class="raw_text" style="display:none">{raw_text_encoded}</div><div class="message_tail" style="display:none"/>'
suf = raw_text_node + "</div>"
# 用于查找数学公式的正则表达式
find_equation_pattern = r'<script type="math/tex(?:.*?)>(.*?)</script>'
txt = fix_markdown_indent(txt)
@@ -493,6 +508,7 @@ def simple_markdown_convertion(text):
suf = "</div>"
if text.startswith(pre) and text.endswith(suf):
return text # 已经被转化过,不需要再次转化
text = compat_non_markdown_input(text) # 兼容非markdown输入
text = markdown.markdown(
text,

View File

@@ -0,0 +1,296 @@
import copy
from shared_utils.config_loader import get_conf
def get_token_num(txt, tokenizer):
return len(tokenizer.encode(txt, disallowed_special=()))
def get_model_info():
from request_llms.bridge_all import model_info
return model_info
def clip_history(inputs, history, tokenizer, max_token_limit):
"""
reduce the length of history by clipping.
this function search for the longest entries to clip, little by little,
until the number of token of history is reduced under threshold.
通过裁剪来缩短历史记录的长度。
此函数逐渐地搜索最长的条目进行剪辑,
直到历史记录的标记数量降低到阈值以下。
被动触发裁剪
"""
import numpy as np
input_token_num = get_token_num(inputs)
if max_token_limit < 5000:
output_token_expect = 256 # 4k & 2k models
elif max_token_limit < 9000:
output_token_expect = 512 # 8k models
else:
output_token_expect = 1024 # 16k & 32k models
if input_token_num < max_token_limit * 3 / 4:
# 当输入部分的token占比小于限制的3/4时裁剪时
# 1. 把input的余量留出来
max_token_limit = max_token_limit - input_token_num
# 2. 把输出用的余量留出来
max_token_limit = max_token_limit - output_token_expect
# 3. 如果余量太小了,直接清除历史
if max_token_limit < output_token_expect:
history = []
return history
else:
# 当输入部分的token占比 > 限制的3/4时直接清除历史
history = []
return history
everything = [""]
everything.extend(history)
n_token = get_token_num("\n".join(everything))
everything_token = [get_token_num(e) for e in everything]
# 截断时的颗粒度
delta = max(everything_token) // 16
while n_token > max_token_limit:
where = np.argmax(everything_token)
encoded = tokenizer.encode(everything[where], disallowed_special=())
clipped_encoded = encoded[: len(encoded) - delta]
everything[where] = tokenizer.decode(clipped_encoded)[
:-1
] # -1 to remove the may-be illegal char
everything_token[where] = get_token_num(everything[where])
n_token = get_token_num("\n".join(everything))
history = everything[1:]
return history
def auto_context_clip_each_message(current, history):
"""
clip_history 是被动触发的
主动触发裁剪
"""
context = history + [current]
trigger_clip_token_len = get_conf('AUTO_CONTEXT_CLIP_TRIGGER_TOKEN_LEN')
model_info = get_model_info()
tokenizer = model_info['gpt-4']['tokenizer']
# 只保留最近的128条记录无论token长度防止计算token时计算过长的时间
max_round = get_conf('AUTO_CONTEXT_MAX_ROUND')
char_len = sum([len(h) for h in context])
if char_len < trigger_clip_token_len*2:
# 不需要裁剪
history = context[:-1]
current = context[-1]
return current, history
if len(context) > max_round:
context = context[-max_round:]
# 计算各个历史记录的token长度
context_token_num = [get_token_num(h, tokenizer) for h in context]
context_token_num_old = copy.copy(context_token_num)
total_token_num = total_token_num_old = sum(context_token_num)
if total_token_num < trigger_clip_token_len:
# 不需要裁剪
history = context[:-1]
current = context[-1]
return current, history
clip_token_len = trigger_clip_token_len * 0.85
# 越长越先被裁,越靠后越先被裁
max_clip_ratio: list[float] = get_conf('AUTO_CONTEXT_MAX_CLIP_RATIO')
max_clip_ratio = list(reversed(max_clip_ratio))
if len(context) > len(max_clip_ratio):
# give up the oldest context
context = context[-len(max_clip_ratio):]
context_token_num = context_token_num[-len(max_clip_ratio):]
if len(context) < len(max_clip_ratio):
# match the length of two array
max_clip_ratio = max_clip_ratio[-len(context):]
# compute rank
clip_prior_weight = [(token_num/clip_token_len + (len(context) - index)*0.1) for index, token_num in enumerate(context_token_num)]
# print('clip_prior_weight', clip_prior_weight)
# get sorted index of context_token_num, from largest to smallest
sorted_index = sorted(range(len(context_token_num)), key=lambda k: clip_prior_weight[k], reverse=True)
# pre compute space yield
for index in sorted_index:
print('index', index, f'current total {total_token_num}, target {clip_token_len}')
if total_token_num < clip_token_len:
# no need to clip
break
# clip room left
clip_room_left = total_token_num - clip_token_len
# get the clip ratio
allowed_token_num_this_entry = max_clip_ratio[index] * clip_token_len
if context_token_num[index] < allowed_token_num_this_entry:
print('index', index, '[allowed] before', context_token_num[index], 'allowed', allowed_token_num_this_entry)
continue
token_to_clip = context_token_num[index] - allowed_token_num_this_entry
if token_to_clip*0.85 > clip_room_left:
print('index', index, '[careful clip] token_to_clip', token_to_clip, 'clip_room_left', clip_room_left)
token_to_clip = clip_room_left
token_percent_to_clip = token_to_clip / context_token_num[index]
char_percent_to_clip = token_percent_to_clip
text_this_entry = context[index]
char_num_to_clip = int(len(text_this_entry) * char_percent_to_clip)
if char_num_to_clip < 500:
# 如果裁剪的字符数小于500则不裁剪
print('index', index, 'before', context_token_num[index], 'allowed', allowed_token_num_this_entry)
continue
char_num_to_clip += 200 # 稍微多加一点
char_to_preseve = len(text_this_entry) - char_num_to_clip
_half = int(char_to_preseve / 2)
# 前半 + ... (content clipped because token overflows) ... + 后半
text_this_entry_clip = text_this_entry[:_half] + \
" ... (content clipped because token overflows) ... " \
+ text_this_entry[-_half:]
context[index] = text_this_entry_clip
post_clip_token_cnt = get_token_num(text_this_entry_clip, tokenizer)
print('index', index, 'before', context_token_num[index], 'allowed', allowed_token_num_this_entry, 'after', post_clip_token_cnt)
context_token_num[index] = post_clip_token_cnt
total_token_num = sum(context_token_num)
context_token_num_final = [get_token_num(h, tokenizer) for h in context]
print('context_token_num_old', context_token_num_old)
print('context_token_num_final', context_token_num_final)
print('token change from', total_token_num_old, 'to', sum(context_token_num_final), 'target', clip_token_len)
history = context[:-1]
current = context[-1]
return current, history
def auto_context_clip_search_optimal(current, history, promote_latest_long_message=False):
"""
current: 当前消息
history: 历史消息列表
promote_latest_long_message: 是否特别提高最后一条长message的权重避免过度裁剪
主动触发裁剪
"""
context = history + [current]
trigger_clip_token_len = get_conf('AUTO_CONTEXT_CLIP_TRIGGER_TOKEN_LEN')
model_info = get_model_info()
tokenizer = model_info['gpt-4']['tokenizer']
# 只保留最近的128条记录无论token长度防止计算token时计算过长的时间
max_round = get_conf('AUTO_CONTEXT_MAX_ROUND')
char_len = sum([len(h) for h in context])
if char_len < trigger_clip_token_len:
# 不需要裁剪
history = context[:-1]
current = context[-1]
return current, history
if len(context) > max_round:
context = context[-max_round:]
# 计算各个历史记录的token长度
context_token_num = [get_token_num(h, tokenizer) for h in context]
context_token_num_old = copy.copy(context_token_num)
total_token_num = total_token_num_old = sum(context_token_num)
if total_token_num < trigger_clip_token_len:
# 不需要裁剪
history = context[:-1]
current = context[-1]
return current, history
clip_token_len = trigger_clip_token_len * 0.90
max_clip_ratio: list[float] = get_conf('AUTO_CONTEXT_MAX_CLIP_RATIO')
max_clip_ratio = list(reversed(max_clip_ratio))
if len(context) > len(max_clip_ratio):
# give up the oldest context
context = context[-len(max_clip_ratio):]
context_token_num = context_token_num[-len(max_clip_ratio):]
if len(context) < len(max_clip_ratio):
# match the length of two array
max_clip_ratio = max_clip_ratio[-len(context):]
_scale = _scale_init = 1.25
token_percent_arr = [(token_num/clip_token_len) for index, token_num in enumerate(context_token_num)]
# promote last long message, avoid clipping it too much
if promote_latest_long_message:
promote_weight_constant = 1.6
promote_index = -1
threshold = 0.50
for index, token_percent in enumerate(token_percent_arr):
if token_percent > threshold:
promote_index = index
if promote_index >= 0:
max_clip_ratio[promote_index] = promote_weight_constant
max_clip_ratio_arr = max_clip_ratio
step = 0.05
for i in range(int(_scale_init / step) - 1):
_take = 0
for max_clip, token_r in zip(max_clip_ratio_arr, token_percent_arr):
_take += min(max_clip * _scale, token_r)
if _take < 1.0:
break
_scale -= 0.05
# print('optimal scale', _scale)
# print([_scale * max_clip for max_clip in max_clip_ratio_arr])
# print([token_r for token_r in token_percent_arr])
# print([min(token_r, _scale * max_clip) for token_r, max_clip in zip(token_percent_arr, max_clip_ratio_arr)])
eps = 0.05
max_clip_ratio = [_scale * max_clip + eps for max_clip in max_clip_ratio_arr]
# compute rank
# clip_prior_weight_old = [(token_num/clip_token_len + (len(context) - index)*0.1) for index, token_num in enumerate(context_token_num)]
clip_prior_weight = [ token_r / max_clip for max_clip, token_r in zip(max_clip_ratio_arr, token_percent_arr)]
# sorted_index_old = sorted(range(len(context_token_num)), key=lambda k: clip_prior_weight_old[k], reverse=True)
# print('sorted_index_old', sorted_index_old)
sorted_index = sorted(range(len(context_token_num)), key=lambda k: clip_prior_weight[k], reverse=True)
# print('sorted_index', sorted_index)
# pre compute space yield
for index in sorted_index:
# print('index', index, f'current total {total_token_num}, target {clip_token_len}')
if total_token_num < clip_token_len:
# no need to clip
break
# clip room left
clip_room_left = total_token_num - clip_token_len
# get the clip ratio
allowed_token_num_this_entry = max_clip_ratio[index] * clip_token_len
if context_token_num[index] < allowed_token_num_this_entry:
# print('index', index, '[allowed] before', context_token_num[index], 'allowed', allowed_token_num_this_entry)
continue
token_to_clip = context_token_num[index] - allowed_token_num_this_entry
if token_to_clip*0.85 > clip_room_left:
# print('index', index, '[careful clip] token_to_clip', token_to_clip, 'clip_room_left', clip_room_left)
token_to_clip = clip_room_left
token_percent_to_clip = token_to_clip / context_token_num[index]
char_percent_to_clip = token_percent_to_clip
text_this_entry = context[index]
char_num_to_clip = int(len(text_this_entry) * char_percent_to_clip)
if char_num_to_clip < 500:
# 如果裁剪的字符数小于500则不裁剪
# print('index', index, 'before', context_token_num[index], 'allowed', allowed_token_num_this_entry)
continue
eps = 200
char_num_to_clip = char_num_to_clip + eps # 稍微多加一点
char_to_preseve = len(text_this_entry) - char_num_to_clip
_half = int(char_to_preseve / 2)
# 前半 + ... (content clipped because token overflows) ... + 后半
text_this_entry_clip = text_this_entry[:_half] + \
" ... (content clipped because token overflows) ... " \
+ text_this_entry[-_half:]
context[index] = text_this_entry_clip
post_clip_token_cnt = get_token_num(text_this_entry_clip, tokenizer)
# print('index', index, 'before', context_token_num[index], 'allowed', allowed_token_num_this_entry, 'after', post_clip_token_cnt)
context_token_num[index] = post_clip_token_cnt
total_token_num = sum(context_token_num)
context_token_num_final = [get_token_num(h, tokenizer) for h in context]
# print('context_token_num_old', context_token_num_old)
# print('context_token_num_final', context_token_num_final)
# print('token change from', total_token_num_old, 'to', sum(context_token_num_final), 'target', clip_token_len)
history = context[:-1]
current = context[-1]
return current, history

View File

@@ -0,0 +1,622 @@
"""
FastAPI WebSocket 流式服务器模块
这个模块实现了一个基于FastAPI的WebSocket服务器用于处理前端和后端之间的实时双向通信。
主要功能包括:
1. 维护WebSocket连接
2. 处理消息队列
3. 支持实时和阻塞式消息传输
4. 提供事件管理机制
主要组件:
- FutureEvent: 用于事件管理的线程事件类
- UserInterfaceMsg: 定义前后端通信的消息格式
- PythonMethod_AsyncConnectionMaintainer_AgentcraftInterface: 连接维护器
- MasterMindWebSocketServer: WebSocket服务器主类
"""
import uuid
import time
import json
import platform
import pickle
import asyncio
import threading
import traceback
from fastapi.websockets import WebSocketState
from loguru import logger
from queue import Queue
from fastapi import FastAPI, WebSocket, File, UploadFile, Form
from fastapi.responses import JSONResponse
from datetime import datetime
from typing import List, Optional, Any, Union
from pydantic import BaseModel, Field
import shutil
import os
from enum import auto, Enum
from typing import List
from toolbox import ChatBotWithCookies
import starlette
class UserInterfaceMsg(BaseModel):
"""
用户界面消息模型,定义了前后端通信的数据结构
这个类使用Pydantic BaseModel定义了所有可能的消息字段
包括插件功能、输入内容、LLM参数、聊天记录等。
"""
function: str = Field(default="chat", description="使用哪个插件")
main_input: str = Field(default="", description="主要输入内容,通常是用户的问题")
llm_kwargs: dict = Field(default_factory=dict, description="围绕LLM的各种参数")
# llm_kwargs = {
# "api_key": cookies["api_key"],
# "llm_model": cookies["llm_model"],
# "top_p": 1.0,
# "max_length": None,
# "temperature": 1.0,
# "user_name": "default_user", # Default user name
# }
plugin_kwargs: dict = Field(default_factory=dict, description="围绕该function的各种参数")
chatbot: list[list[Union[str|None]]] = Field(default=[], description="聊天记录(给人类看的)。格式为 [ [user_msg, bot_msg], [user_msg_2, bot_msg_2],...],双层列表,第一层是每一轮对话,第二层是用户和机器人的消息。")
chatbot_cookies: dict = Field(default_factory=dict, description="其他新前端涉及的参数")
history: list[str] = Field(default=[], description="聊天记录(给模型看的)。单层列表")
system_prompt: str = Field(default="", description="系统提示词")
user_request: dict = Field(default="", description="用户相关的参数,如用户名")
special_kwargs: dict = Field(default_factory=dict, description="其他新前端涉及的参数")
special_state: dict = Field(default={}, description="特殊状态传递,例如对话结束。")
TERMINATE_MSG = UserInterfaceMsg(function="TERMINATE", special_state={"stop": True})
def setup_initial_com(initial_msg: UserInterfaceMsg):
"""
设置插件参数
从初始消息中提取各种参数并构建插件执行所需的参数字典。
参数:
initial_msg: 初始的用户消息
chatbot_with_cookies: 带有cookie的聊天机器人实例
返回:
dict: 包含插件执行所需所有参数的字典
"""
from toolbox import get_plugin_default_kwargs
com = get_plugin_default_kwargs()
com["main_input"] = initial_msg.main_input
# 设置LLM相关参数
if initial_msg.llm_kwargs.get('api_key', None): com["llm_kwargs"]['api_key'] = initial_msg.llm_kwargs.get('api_key')
if initial_msg.llm_kwargs.get('llm_model', None): com["llm_kwargs"]['llm_model'] = initial_msg.llm_kwargs.get('llm_model')
if initial_msg.llm_kwargs.get('top_p', None): com["llm_kwargs"]['top_p'] = initial_msg.llm_kwargs.get('top_p')
if initial_msg.llm_kwargs.get('max_length', None): com["llm_kwargs"]['max_length'] = initial_msg.llm_kwargs.get('max_length')
if initial_msg.llm_kwargs.get('temperature', None): com["llm_kwargs"]['temperature'] = initial_msg.llm_kwargs.get('temperature')
if initial_msg.llm_kwargs.get('user_name', None): com["llm_kwargs"]['user_name'] = initial_msg.llm_kwargs.get('user_name')
if initial_msg.llm_kwargs.get('embed_model', None): com["llm_kwargs"]['embed_model'] = initial_msg.llm_kwargs.get('embed_model')
initial_msg.chatbot_cookies.update({
'api_key': com["llm_kwargs"]['api_key'],
'top_p': com["llm_kwargs"]['top_p'],
'llm_model': com["llm_kwargs"]['llm_model'],
'embed_model': com["llm_kwargs"]['embed_model'],
'temperature': com["llm_kwargs"]['temperature'],
'user_name': com["llm_kwargs"]['user_name'],
'customize_fn_overwrite': {},
})
chatbot_with_cookies = ChatBotWithCookies(initial_msg.chatbot_cookies)
chatbot_with_cookies.write_list(initial_msg.chatbot)
# 设置其他参数
com["plugin_kwargs"] = initial_msg.plugin_kwargs
com["chatbot_with_cookie"] = chatbot_with_cookies
com["history"] = initial_msg.history
com["system_prompt"] = initial_msg.system_prompt
com["user_request"] = initial_msg.user_request
return com
class DummyRequest(object):
def __call__(self, username):
self.username = username
def task_executor(initial_msg:UserInterfaceMsg, queue_blocking_from_client:asyncio.Queue, queue_back_to_client:asyncio.Queue):
"""
initial_msg: 初始的用户消息 ( <---- begin_contact_websocket_server:initial_message )
queue_blocking_from_client: 从客户端接收阻塞消息的队列
queue_back_to_client: 发送消息回客户端的队列
"""
from toolbox import get_plugin_handle
from toolbox import get_plugin_default_kwargs
from toolbox import on_file_uploaded
def update_ui_websocket(chatbot: List[List[str]], history: List[str], chatbot_cookies: dict, special_state: dict):
send_obj = UserInterfaceMsg(chatbot=chatbot, history=history, chatbot_cookies=chatbot_cookies, special_state=special_state)
queue_back_to_client.put_nowait(send_obj)
com = setup_initial_com(initial_msg)
main_input = com["main_input"]
plugin_kwargs = com["plugin_kwargs"]
chatbot_with_cookies = com["chatbot_with_cookie"]
history = com["history"]
system_prompt = com["system_prompt"]
user_request = com["user_request"]
llm_kwargs = com["llm_kwargs"]
# ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
# '''''''''''''''''''''''''''''''' 调用插件 '''''''''''''''''''''''''''''''''
# ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
# ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
if initial_msg.function == "chat":
plugin = get_plugin_handle("crazy_functions.Chat->Chat")
my_working_plugin = (plugin)(**com)
for cookies, chatbot, hist_json, msg in my_working_plugin:
history = json.loads(hist_json)
special_state = {'msg': msg}
update_ui_websocket(chatbot=chatbot, history=history, chatbot_cookies=cookies, special_state=special_state) # ----> receive_callback_fn
if initial_msg.function == "basic":
from request_llms.bridge_all import predict
additional_fn = initial_msg.special_kwargs.get("core_function")
for cookies, chatbot, hist_json, msg in \
predict(main_input, llm_kwargs, plugin_kwargs, chatbot_with_cookies, history=history, system_prompt=system_prompt, stream = True, additional_fn=additional_fn):
history = json.loads(hist_json)
special_state = {'msg': msg}
update_ui_websocket(chatbot=chatbot, history=history, chatbot_cookies=cookies, special_state=special_state) # ----> receive_callback_fn
# ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
# '''''''''''''''''''''''''''''''' 上传文件 '''''''''''''''''''''''''''''''''
# ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
# ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
if initial_msg.function == "upload":
def wait_upload_done():
print('Waiting for file upload to complete...')
file_upload_done_msg = queue_blocking_from_client.get()
print('file upload complete...')
if file_upload_done_msg.function != "upload_done":
raise ValueError("Expected 'upload_done' function, got: {}".format(file_upload_done_msg.function))
if 'files' not in file_upload_done_msg.special_kwargs:
raise ValueError("Expected 'files' in special_kwargs, got: {}".format(file_upload_done_msg.special_kwargs))
return file_upload_done_msg.special_kwargs['files']
request = DummyRequest()
request.username = "default_user"
chatbot = initial_msg.chatbot
history = initial_msg.history
chatbot_cookies = initial_msg.chatbot_cookies
special_state = {'msg': '等待上传'}
chatbot += [[initial_msg.main_input, None]]
update_ui_websocket(chatbot=chatbot, history=history, chatbot_cookies=chatbot_cookies, special_state=special_state) # ----> receive_callback_fn
# 等待上传完成
files = wait_upload_done()
# 读取文件并预览
chatbot += [['正在处理', None]]
update_ui_websocket(chatbot=chatbot, history=history, chatbot_cookies=chatbot_cookies, special_state=special_state) # ----> receive_callback_fn
chatbot, _, _, chatbot_cookies = on_file_uploaded(
request=request, files=files, chatbot=chatbot,
txt="", txt2="", checkboxes="", cookies=chatbot_cookies
)
special_state = {'msg': '完成上传'}
# 更新前端
update_ui_websocket(chatbot=chatbot, history=history, chatbot_cookies=chatbot_cookies, special_state=special_state) # ----> receive_callback_fn
class FutureEvent(threading.Event):
"""
扩展的线程事件类,用于异步操作的结果获取
这个类扩展了threading.Event添加了返回值存储功能
使得可以在事件完成时同时传递结果数据。
"""
def __init__(self) -> None:
super().__init__()
self.return_value = None
def terminate(self, return_value):
"""
终止事件并设置返回值
参数:
return_value: 事件完成时要返回的值
"""
self.return_value = return_value
self.set()
def wait_and_get_result(self):
"""
等待事件完成并获取结果
返回:
任意类型: 事件完成时设置的返回值
"""
self.wait()
return self.return_value
class AtomicQueue:
def __init__(self):
self.queue = Queue()
def put(self, item):
self.queue.put(item)
def put_nowait(self, item):
self.queue.put(item)
def get(self, timeout=600):
while self.queue.empty() and timeout > 0:
time.sleep(1)
timeout -= 1
if timeout <= 0:
raise TimeoutError("Queue get operation timed out")
return self.queue.get()
class PythonMethod_AsyncConnectionMaintainer_AgentcraftInterface():
"""
异步连接维护器接口类
负责维护WebSocket连接的核心类处理消息队列的创建和管理
以及维护与客户端的长连接通信。
"""
def make_queue(self):
"""
创建消息队列
创建三个异步队列用于不同类型的消息传输:
1. queue_back_to_client: 发送给客户端的消息队列
2. queue_realtime_from_client: 实时接收的客户端消息队列
3. queue_blocking_from_client: 阻塞式接收的客户端消息队列
返回:
tuple: 包含三个异步队列的元组
"""
queue_back_to_client = asyncio.Queue()
queue_realtime_from_client = asyncio.Queue()
queue_blocking_from_client = AtomicQueue()
terminate_event = asyncio.Event()
return queue_back_to_client, queue_realtime_from_client, queue_blocking_from_client, terminate_event
async def maintain_connection_forever(self, initial_msg: UserInterfaceMsg, websocket: WebSocket, client_id: str):
"""
永久维护WebSocket连接
处理与客户端的持续连接,包括消息的发送和接收。
创建独立的任务处理消息发送和接收,并启动聊天处理线程。
参数:
initial_msg: 初始消息
websocket: WebSocket连接对象
client_id: 客户端标识符
"""
async def wait_message_to_send(queue_back_to_client: asyncio.Queue, terminate_event: asyncio.Event):
"""
等待并发送消息到客户端
持续监听消息队列,将消息序列化后发送给客户端。
参数:
queue_back_to_client: 发送给客户端的消息队列
"""
# 🕜 wait message to send away -> front end
msg_cnt = 0
try:
while True:
################
# get message and check terminate
while True:
try:
if terminate_event.is_set():
msg = TERMINATE_MSG
break
else:
msg: UserInterfaceMsg = await asyncio.wait_for(queue_back_to_client.get(), timeout=0.25)
break
except asyncio.TimeoutError:
continue # 继续检查条件
if msg.function == TERMINATE_MSG.function:
logger.info("Received terminate message, skip this message and stopping wait_message_to_send.")
break
################
msg_cnt += 1
if websocket.application_state != WebSocketState.CONNECTED:
break
msg.special_kwargs['uuid'] = uuid.uuid4().hex
print(msg)
await websocket.send_bytes(msg.model_dump_json())
except Exception as e:
logger.exception(f"Error in wait_message_to_send: {e}")
raise e
async def receive_forever(queue_realtime_from_client: asyncio.Queue, queue_blocking_from_client: asyncio.Queue, queue_back_to_client: asyncio.Queue, terminate_event: asyncio.Event):
"""
永久接收客户端消息
持续监听WebSocket连接接收客户端消息并根据消息类型分发到不同队列。
参数:
queue_realtime_from_client: 实时消息队列
queue_blocking_from_client: 阻塞消息队列
queue_back_to_client: 发送回客户端的消息队列
"""
# 🕜 keep listening traffic <- front end
msg_cnt:int = 0
try:
while True:
################
# get message and check terminate
while True:
try:
if terminate_event.is_set():
msg = TERMINATE_MSG
break
else:
message = await asyncio.wait_for(websocket.receive_text(), timeout=0.25)
msg: UserInterfaceMsg = UserInterfaceMsg.model_validate_json(message)
break
except asyncio.TimeoutError:
continue # 继续检查条件
if msg.function == TERMINATE_MSG.function:
logger.info("Received terminate message, stopping receive_forever")
break
################
msg_cnt += 1
logger.info(f"Received message {msg_cnt}: {msg}")
queue_blocking_from_client.put_nowait(msg)
except Exception as e:
logger.exception(f"Error in receive_forever: {e}")
raise e
queue_back_to_client, queue_realtime_from_client, queue_blocking_from_client, terminate_event = self.make_queue()
def terminate_callback():
terminate_event.set()
def ensure_last_message_sent(queue_back_to_client):
"""
确保最后一条消息被发送到客户端
"""
queue_back_to_client.put_nowait(TERMINATE_MSG)
tic = time.time()
termination_timeout = 5 # seconds
while not queue_back_to_client.empty():
time.sleep(0.25)
if queue_back_to_client.empty():
break
if time.time() - tic > termination_timeout:
break
def task_wrapper(func):
def wrapper(*args, **kwargs):
res = func(*args, **kwargs)
ensure_last_message_sent(queue_back_to_client)
terminate_callback()
return res
return wrapper
t_x = asyncio.create_task(wait_message_to_send(queue_back_to_client, terminate_event))
t_r = asyncio.create_task(receive_forever(queue_realtime_from_client, queue_blocking_from_client, queue_back_to_client, terminate_event))
task_thread = threading.Thread(target=task_wrapper(task_executor), args=(initial_msg, queue_blocking_from_client, queue_back_to_client), daemon=True)
task_thread.start()
await t_x
await t_r
await websocket.close()
class MasterMindWebSocketServer(PythonMethod_AsyncConnectionMaintainer_AgentcraftInterface):
"""
WebSocket服务器主类
继承自异步连接维护器接口实现了完整的WebSocket服务器功能。
负责处理客户端连接、事件管理和消息路由。
"""
def __init__(self, host, port) -> None:
"""
初始化WebSocket服务器
参数:
host: 服务器主机地址
port: 服务器端口号
"""
self.websocket_connections = {}
self.agentcraft_interface_websocket_connections = {}
self._event_hub = {}
self.host= host
self.port = port
pass
def create_event(self, event_name: str):
"""
创建一个新的事件
参数:
event_name: 事件名称
返回:
FutureEvent: 新创建的事件对象
"""
self._event_hub[event_name] = FutureEvent()
return self._event_hub[event_name]
def terminate_event(self, event_name: str, msg:UserInterfaceMsg):
"""
终止指定的事件并设置返回消息
参数:
event_name: 要终止的事件名称
msg: 要返回的用户界面消息
"""
self._event_hub[event_name].terminate(return_value = msg)
return
async def long_task_01_wait_incoming_connection(self):
"""
等待传入连接的长期任务
启动FastAPI服务器并等待WebSocket连接。
处理新的连接请求建立WebSocket通信。
"""
# task 1 wait incoming agent connection
logger.info("task 1 wait incoming agent connection")
async def launch_websocket_server():
"""
启动WebSocket服务器
创建FastAPI应用并配置WebSocket路由
设置服务器参数并启动uvicorn服务器。
"""
app = FastAPI()
class UserInput(BaseModel):
main_input: str
@app.post("/predict_user_input")
async def predict_user_input(main_input: UserInput):
def predict_future_input(main_input):
from request_llms.bridge_all import predict_no_ui_long_connection
from toolbox import get_plugin_default_kwargs
from textwrap import dedent
com = get_plugin_default_kwargs()
llm_kwargs = com['llm_kwargs']
llm_kwargs['llm_model'] = 'one-api-glm-4-flash'
completion_system_prompt = dedent("""Predict the next input that the user might type.
1. Do not repeat the <current_input>. The <future_input> should be a continuation of <current_input>.
2. Use same language as the input.
3. Do not predict too far ahead.
4. Use punctuation when needed. Sometimes <future_input> has to begin with some punctuation.
Example:
<current_input>北京发布暴</current_input>
<future_input>雨红色预警</future_input>
<current_input>世界是你们的,也是我们</current_input>
<future_input>的,但是归根结底是你们的</future_input>
<current_input>多年以后,面对行刑队</current_input>
<future_input>,奥雷里亚诺·布恩迪亚上校将会回想起父亲带他去见识冰块的那个遥远的下午。</future_input>
Format:
<future_input>... the predicted input ...</future_input>
""")
main_input = "<current_input>" + main_input + "</current_input>"
result = predict_no_ui_long_connection(
inputs=main_input, llm_kwargs=llm_kwargs, sys_prompt=completion_system_prompt, history=[], console_silence=True
)
print(result)
if "<future_input>" not in result or "</future_input>" not in result:
raise ValueError("The response does not contain the expected future input format.")
result = result.split("<future_input>")[-1].split("</future_input>")[0].strip()
return result
return JSONResponse(content={'future':predict_future_input(main_input.main_input)})
@app.post("/core_functional")
async def core_functional():
import core_functional, importlib
importlib.reload(core_functional) # 热更新prompt
core_functionals = core_functional.get_core_functions()
for k in list(core_functionals.keys()):
v = core_functionals[k]
# remove PreProcess if any
if "PreProcess" in v:
v.pop("PreProcess")
if "Visible" in v and not v["Visible"]:
core_functionals.pop(k)
return JSONResponse(content=core_functionals)
@app.post("/upload")
async def upload_files(files: List[UploadFile] = File(...)):
"""上传文件接口,支持多文件上传并显示进度"""
from toolbox import on_file_uploaded
results = []
upload_dir = "uploads"
# 确保上传目录存在
if not os.path.exists(upload_dir):
os.makedirs(upload_dir)
for file in files:
try:
# 构建文件保存路径
file_path = os.path.join(upload_dir, file.filename)
total_size = 0
processed_size = 0
# 分块读取并保存文件,同时计算进度
with open(file_path, "wb") as buffer:
while chunk := await file.read(8192): # 8KB chunks
buffer.write(chunk)
processed_size += len(chunk)
if file.size: # 如果文件大小可用
progress = (processed_size / file.size) * 100
logger.info(f"Uploading {file.filename}: {progress:.2f}%")
results.append({
"filename": file.filename,
"size": processed_size,
"status": "success",
"path": file_path
})
except Exception as e:
results.append({
"filename": file.filename,
"status": "error",
"error": str(e)
})
logger.error(f"Error uploading {file.filename}: {str(e)}")
return JSONResponse(content={
"message": "Files uploaded successfully",
"files": results
})
@app.websocket("/main")
async def main(websocket: WebSocket):
"""
WebSocket连接的主处理函数
处理新的WebSocket连接请求接收初始消息并建立持久连接。
参数:
websocket: WebSocket连接对象
"""
try:
await websocket.accept()
logger.info(f"WebSocket connection established: {websocket.client.host}:{websocket.client.port}")
msg: UserInterfaceMsg = UserInterfaceMsg.model_validate_json(await websocket.receive_text())
logger.info(msg)
await self.maintain_connection_forever(msg, websocket, "client_id")
except:
logger.exception("Error in WebSocket connection handler")
await websocket.close()
import uvicorn
config = uvicorn.Config(app, host=self.host, port=self.port, log_level="error", ws_ping_interval=300, ws_ping_timeout=600)
server = uvicorn.Server(config)
logger.info(f"uvicorn begin, serving at ws://{self.host}:{self.port}/main")
await server.serve()
await launch_websocket_server()
logger.info("uvicorn terminated")
if __name__ == "__main__":
mmwss = MasterMindWebSocketServer(host="0.0.0.0", port=38000)
asyncio.run(mmwss.long_task_01_wait_incoming_connection())

View File

@@ -79,6 +79,14 @@ def what_keys(keys):
return f"检测到: OpenAI Key {avail_key_list['OpenAI Key']} 个, Azure Key {avail_key_list['Azure Key']} 个, API2D Key {avail_key_list['API2D Key']}"
def is_o_family_for_openai(llm_model):
if not llm_model.startswith('o'):
return False
if llm_model in ['o1', 'o2', 'o3', 'o4', 'o5', 'o6', 'o7', 'o8']:
return True
if llm_model[:3] in ['o1-', 'o2-', 'o3-', 'o4-', 'o5-', 'o6-', 'o7-', 'o8-']:
return True
return False
def select_api_key(keys, llm_model):
import random
@@ -86,7 +94,7 @@ def select_api_key(keys, llm_model):
key_list = keys.split(',')
if llm_model.startswith('gpt-') or llm_model.startswith('chatgpt-') or \
llm_model.startswith('one-api-') or llm_model == 'o1' or llm_model.startswith('o1-'):
llm_model.startswith('one-api-') or is_o_family_for_openai(llm_model):
for k in key_list:
if is_openai_api_key(k): avail_key_list.append(k)

View File

@@ -332,3 +332,77 @@
text-wrap: wrap;
opacity: 0.8;
}
.raw_text {
display: none;
}
.message_tail {
justify-content: center;
align-items: center;
}
.message_tail_stop {
border: dotted !important;
margin-top: 5px !important;
padding-left: 8px !important;
padding-top: 1px !important;
padding-bottom: 1px !important;
padding-right: 12px !important;
}
/* ant 开始 */
/* 通用按钮样式 */
.ant-btn {
display: inline-flex;
align-items: center;
justify-content: center;
padding: 8px 16px;
font-size: 14px;
font-weight: bold;
border-radius: 4px;
cursor: pointer;
transition: background-color 0.3s;
}
/* 按钮颜色和状态 */
.ant-btn-primary {
background-color: #1890ff;
color: white;
border: none;
}
.ant-btn-primary:hover {
background-color: #40a9ff;
}
.ant-btn-loading {
pointer-events: none;
opacity: 0.7;
}
/* 图标样式 */
.ant-btn-icon {
display: inline-flex;
margin-right: 8px;
}
.anticon {
width: 1em;
height: 1em;
fill: currentColor;
}
.anticon-spin {
animation: spin 1s linear infinite;
}
/* 动画效果 */
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}

View File

@@ -259,7 +259,24 @@ function cancel_loading_status() {
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
// 第 2 部分: 复制按钮
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
// 解压缩函数
function decompressString(compressedString) {
// 第1步Base64解码
const binaryString = atob(compressedString);
// 第2步将二进制字符串转换为Uint8Array
const bytes = new Uint8Array(binaryString.length);
for (let i = 0; i < binaryString.length; i++) {
bytes[i] = binaryString.charCodeAt(i);
}
// 第3步使用DecompressionStream (基于Web Streams API)进行gzip解压缩
const ds = new DecompressionStream('gzip');
const decompressedStream = new Response(new Blob([bytes])).body.pipeThrough(ds);
// 第4步获取解压后的数据并转换为字符串
return new Response(decompressedStream).text();
}
var allow_auto_read_continously = true;
var allow_auto_read_tts_flag = false;
@@ -272,7 +289,7 @@ function addCopyButton(botElement, index, is_last_in_arr) {
const audioIcon = '<span><svg t="1713628577799" fill="currentColor" class="icon" viewBox="0 0 1024 1024" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="4587" width=".9em" height=".9em"><path d="M113.7664 540.4672c0-219.9552 178.2784-398.2336 398.2336-398.2336S910.2336 320.512 910.2336 540.4672v284.4672c0 31.4368-25.4976 56.9344-56.9344 56.9344h-56.9344c-31.4368 0-56.9344-25.4976-56.9344-56.9344V597.2992c0-31.4368 25.4976-56.9344 56.9344-56.9344h56.9344c0-188.5184-152.7808-341.2992-341.2992-341.2992S170.7008 351.9488 170.7008 540.4672h56.9344c31.4368 0 56.9344 25.4976 56.9344 56.9344v227.5328c0 31.4368-25.4976 56.9344-56.9344 56.9344h-56.9344c-31.4368 0-56.9344-25.4976-56.9344-56.9344V540.4672z" p-id="4588"></path></svg></span>';
// const cancelAudioIcon = '<span><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" height=".8em" width=".8em" xmlns="http://www.w3.org/2000/svg"><rect x="9" y="9" width="13" height="13" rx="2" ry="2"></rect><path d="M5 15H4a2 2 0 0 1-2-2V4a2 2 0 0 1 2-2h9a2 2 0 0 1 2 2v1"></path></svg></span>';
// 此功能没准备好
// audio functionality
if (allow_auto_read_continously && is_last_in_arr && allow_auto_read_tts_flag) {
process_latest_text_output(botElement.innerText, index);
}
@@ -283,19 +300,21 @@ function addCopyButton(botElement, index, is_last_in_arr) {
return;
}
var copyButton = document.createElement('button');
copyButton.classList.add('copy-bot-btn');
copyButton.setAttribute('aria-label', 'Copy');
copyButton.innerHTML = copyIcon;
copyButton.addEventListener('click', async () => {
const textToCopy = botElement.innerText;
// 原始文本拷贝
var copyButtonOrig = document.createElement('button');
copyButtonOrig.classList.add('copy-bot-btn');
copyButtonOrig.setAttribute('aria-label', 'Copy');
copyButtonOrig.innerHTML = copyIcon;
copyButtonOrig.addEventListener('click', async () => {
try {
const base64gzipcode = botElement.getElementsByClassName('raw_text')[0].innerText;
const textToCopy = await decompressString(base64gzipcode);
// push_text_to_audio(textToCopy).catch(console.error);
if ("clipboard" in navigator) {
await navigator.clipboard.writeText(textToCopy);
copyButton.innerHTML = copiedIcon;
copyButtonOrig.innerHTML = copiedIcon;
setTimeout(() => {
copyButton.innerHTML = copyIcon;
copyButtonOrig.innerHTML = copyIcon;
}, 1500);
} else {
const textArea = document.createElement("textarea");
@@ -304,9 +323,9 @@ function addCopyButton(botElement, index, is_last_in_arr) {
textArea.select();
try {
document.execCommand('copy');
copyButton.innerHTML = copiedIcon;
copyButtonOrig.innerHTML = copiedIcon;
setTimeout(() => {
copyButton.innerHTML = copyIcon;
copyButtonOrig.innerHTML = copyIcon;
}, 1500);
} catch (error) {
console.error("Copy failed: ", error);
@@ -345,7 +364,8 @@ function addCopyButton(botElement, index, is_last_in_arr) {
var messageBtnColumn = document.createElement('div');
messageBtnColumn.classList.add('message-btn-row');
messageBtnColumn.appendChild(copyButton);
// messageBtnColumn.appendChild(copyButton);
messageBtnColumn.appendChild(copyButtonOrig);
if (enable_tts) {
messageBtnColumn.appendChild(audioButton);
}
@@ -381,7 +401,6 @@ function do_something_but_not_too_frequently(min_interval, func) {
function chatbotContentChanged(attempt = 1, force = false) {
// https://github.com/GaiZhenbiao/ChuanhuChatGPT/tree/main/web_assets/javascript
for (var i = 0; i < attempt; i++) {
setTimeout(() => {
const messages = gradioApp().querySelectorAll('#gpt-chatbot .message-wrap .message.bot');
@@ -392,6 +411,9 @@ function chatbotContentChanged(attempt = 1, force = false) {
// Now pass both the message element and the is_last_in_arr boolean to addCopyButton
addCopyButton(message, index, is_last_in_arr);
// if last message, add stop btn link
addStopButton(message, index, is_last_in_arr);
// save_conversation_history
save_conversation_history_slow_down();
});
@@ -402,6 +424,79 @@ function chatbotContentChanged(attempt = 1, force = false) {
}
function addStopButton(botElement, index, is_last_in_arr) {
function is_generating() {
var statePanelElement = document.getElementById("state-panel");
var generatingElement = statePanelElement.querySelector(".generating");
if (generatingElement) {
return true;
} else {
return false;
}
}
function on_stop_btn_click() {
let stopButton = document.getElementById("elem_stop");
stopButton.click();
}
function remove_stop_generate_btn(messageTailElement) {
// remove all child elements of messageTailElement
while (messageTailElement.firstChild) {
messageTailElement.removeChild(messageTailElement.firstChild);
}
messageTailElement.style.display = 'none';
messageTailElement.classList.add('removed');
}
function add_stop_generate_btn() {
// write here: add a beautiful stop btn `bottomElement` as child, when clicked execute on_stop_btn_click
console.log("get_gradio_component")
const bottomElement = document.createElement('button');
bottomElement.className = 'ant-btn ant-btn-primary';
bottomElement.innerHTML = `
<span class="ant-btn-icon">
<svg viewBox="64 64 896 896" focusable="false" data-icon="sync" width="1em" height="1em" fill="currentColor" aria-hidden="true" class="anticon anticon-sync anticon-spin">
<path d="M168 504.2c1-43.7 10-86.1 26.9-126 17.3-41 42.1-77.7 73.7-109.4S337 212.3 378 195c42.4-17.9 87.4-27 133.9-27s91.5 9.1 133.8 27A341.5 341.5 0 01755 268.8c9.9 9.9 19.2 20.4 27.8 31.4l-60.2 47a8 8 0 003 14.1l175.7 43c5 1.2 9.9-2.6 9.9-7.7l.8-180.9c0-6.7-7.7-10.5-12.9-6.3l-56.4 44.1C765.8 155.1 646.2 92 511.8 92 282.7 92 96.3 275.6 92 503.8a8 8 0 008 8.2h60c4.4 0 7.9-3.5 8-7.8zm756 7.8h-60c-4.4 0-7.9 3.5-8 7.8-1 43.7-10 86.1-26.9 126-17.3 41-42.1 77.8-73.7 109.4A342.45 342.45 0 01512.1 856a342.24 342.24 0 01-243.2-100.8c-9.9-9.9-19.2-20.4-27.8-31.4l60.2-47a8 8 0 00-3-14.1l-175.7-43c-5-1.2-9.9 2.6-9.9 7.7l-.7 181c0 6.7 7.7 10.5 12.9 6.3l56.4-44.1C258.2 868.9 377.8 932 512.2 932c229.2 0 415.5-183.7 419.8-411.8a8 8 0 00-8-8.2z"></path>
</svg>
</span>
<span>终止</span>
`;
bottomElement.classList.add('message_tail_stop');
bottomElement.addEventListener('click', on_stop_btn_click);
messageTailElement.appendChild(bottomElement);
}
// find a sub element of class `message_tail`
const messageTailElement = botElement.querySelector('.message_tail');
// if not is_last_in_arr, hide this elem (display none)
if (!messageTailElement) {
return;
}
if (messageTailElement.classList.contains('removed')) {
return;
}
if (!is_last_in_arr) {
remove_stop_generate_btn(messageTailElement);
return;
}
messageTailElement.style.display = 'flex';
const messageTailStopElem = messageTailElement.querySelector('.message_tail_stop');
if(!is_generating()) {
setTimeout(() => {
if(!is_generating()) {
remove_stop_generate_btn(messageTailElement);
return;
} else {
if (!messageTailStopElem) {
add_stop_generate_btn()
}
}
}, 500);
} else {
if (!messageTailStopElem) {
add_stop_generate_btn()
}
}
}
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
@@ -1089,6 +1184,15 @@ async function clear_conversation(a, b, c) {
update_conversation_metadata();
let stopButton = document.getElementById("elem_stop");
stopButton.click();
// Save back to local storage
try {
const EVENT_NAME = "gptac_reset_btn_clicked";
window.dispatchEvent(
new CustomEvent(EVENT_NAME, {
detail: ""
})
);
} catch (e) {}
return reset_conversation(a, b);
}

View File

@@ -37,6 +37,9 @@ from shared_utils.handle_upload import html_local_file
from shared_utils.handle_upload import html_local_img
from shared_utils.handle_upload import file_manifest_filter_type
from shared_utils.handle_upload import extract_archive
from shared_utils.context_clip_policy import clip_history
from shared_utils.context_clip_policy import auto_context_clip_each_message
from shared_utils.context_clip_policy import auto_context_clip_search_optimal
from typing import List
pj = os.path.join
default_user_name = "default_user"
@@ -133,6 +136,9 @@ def ArgsGeneralWrapper(f):
if len(args) == 0: # 插件通道
yield from f(txt_passon, llm_kwargs, plugin_kwargs, chatbot_with_cookie, history, system_prompt, request)
else: # 对话通道,或者基础功能通道
# 基础对话通道,或者基础功能通道
if get_conf('AUTO_CONTEXT_CLIP_ENABLE'):
txt_passon, history = auto_context_clip(txt_passon, history)
yield from f(txt_passon, llm_kwargs, plugin_kwargs, chatbot_with_cookie, history, system_prompt, *args)
else:
# 处理少数情况下的特殊插件的锁定状态
@@ -588,7 +594,7 @@ def on_report_generated(cookies:dict, files:List[str], chatbot:ChatBotWithCookie
file_links += (
f'<br/><a href="file={os.path.abspath(f)}" target="_blank">{f}</a>'
)
chatbot.append(["报告如何远程获取?", f"报告已经添加到右侧“文件下载区”(可能处于折叠状态),请查收。{file_links}"])
chatbot.append([None, f"已经添加到右侧“文件下载区”(可能处于折叠状态),请查收。您也可以点击以下链接直接下载:{file_links}"])
return cookies, report_files, chatbot
@@ -712,66 +718,14 @@ def run_gradio_in_subpath(demo, auth, port, custom_path):
app = gr.mount_gradio_app(app, demo, path=custom_path)
uvicorn.run(app, host="0.0.0.0", port=port) # , auth=auth
def clip_history(inputs, history, tokenizer, max_token_limit):
"""
reduce the length of history by clipping.
this function search for the longest entries to clip, little by little,
until the number of token of history is reduced under threshold.
通过裁剪来缩短历史记录的长度。
此函数逐渐地搜索最长的条目进行剪辑,
直到历史记录的标记数量降低到阈值以下。
"""
import numpy as np
from request_llms.bridge_all import model_info
def get_token_num(txt):
return len(tokenizer.encode(txt, disallowed_special=()))
input_token_num = get_token_num(inputs)
if max_token_limit < 5000:
output_token_expect = 256 # 4k & 2k models
elif max_token_limit < 9000:
output_token_expect = 512 # 8k models
def auto_context_clip(current, history, policy='search_optimal'):
if policy == 'each_message':
return auto_context_clip_each_message(current, history)
elif policy == 'search_optimal':
return auto_context_clip_search_optimal(current, history)
else:
output_token_expect = 1024 # 16k & 32k models
raise RuntimeError(f"未知的自动上下文裁剪策略: {policy}")
if input_token_num < max_token_limit * 3 / 4:
# 当输入部分的token占比小于限制的3/4时裁剪时
# 1. 把input的余量留出来
max_token_limit = max_token_limit - input_token_num
# 2. 把输出用的余量留出来
max_token_limit = max_token_limit - output_token_expect
# 3. 如果余量太小了,直接清除历史
if max_token_limit < output_token_expect:
history = []
return history
else:
# 当输入部分的token占比 > 限制的3/4时直接清除历史
history = []
return history
everything = [""]
everything.extend(history)
n_token = get_token_num("\n".join(everything))
everything_token = [get_token_num(e) for e in everything]
# 截断时的颗粒度
delta = max(everything_token) // 16
while n_token > max_token_limit:
where = np.argmax(everything_token)
encoded = tokenizer.encode(everything[where], disallowed_special=())
clipped_encoded = encoded[: len(encoded) - delta]
everything[where] = tokenizer.decode(clipped_encoded)[
:-1
] # -1 to remove the may-be illegal char
everything_token[where] = get_token_num(everything[where])
n_token = get_token_num("\n".join(everything))
history = everything[1:]
return history
"""