Merge branch 'purge_print' into frontier

This commit is contained in:
binary-husky
2024-09-16 09:56:25 +00:00
81 changed files with 528 additions and 713 deletions

View File

@@ -9,6 +9,7 @@
2. predict_no_ui_long_connection(...)
"""
import tiktoken, copy, re
from loguru import logger
from functools import lru_cache
from concurrent.futures import ThreadPoolExecutor
from toolbox import get_conf, trimmed_format_exc, apply_gpt_academic_string_mask, read_one_api_model_name
@@ -51,9 +52,9 @@ class LazyloadTiktoken(object):
@staticmethod
@lru_cache(maxsize=128)
def get_encoder(model):
print('正在加载tokenizer如果是第一次运行可能需要一点时间下载参数')
logger.info('正在加载tokenizer如果是第一次运行可能需要一点时间下载参数')
tmp = tiktoken.encoding_for_model(model)
print('加载tokenizer完毕')
logger.info('加载tokenizer完毕')
return tmp
def encode(self, *args, **kwargs):
@@ -83,7 +84,7 @@ try:
API_URL = get_conf("API_URL")
if API_URL != "https://api.openai.com/v1/chat/completions":
openai_endpoint = API_URL
print("警告API_URL配置选项将被弃用请更换为API_URL_REDIRECT配置")
logger.warning("警告API_URL配置选项将被弃用请更换为API_URL_REDIRECT配置")
except:
pass
# 新版配置
@@ -255,8 +256,6 @@ model_info = {
"max_token": 128000,
"tokenizer": tokenizer_gpt4,
"token_cnt": get_token_num_gpt4,
"openai_disable_system_prompt": True,
"openai_disable_stream": True,
},
"o1-mini": {
"fn_with_ui": chatgpt_ui,
@@ -265,8 +264,6 @@ model_info = {
"max_token": 128000,
"tokenizer": tokenizer_gpt4,
"token_cnt": get_token_num_gpt4,
"openai_disable_system_prompt": True,
"openai_disable_stream": True,
},
"gpt-4-turbo": {
@@ -683,7 +680,7 @@ if "newbing" in AVAIL_LLM_MODELS: # same with newbing-free
}
})
except:
print(trimmed_format_exc())
logger.error(trimmed_format_exc())
if "chatglmft" in AVAIL_LLM_MODELS: # same with newbing-free
try:
from .bridge_chatglmft import predict_no_ui_long_connection as chatglmft_noui
@@ -699,7 +696,7 @@ if "chatglmft" in AVAIL_LLM_MODELS: # same with newbing-free
}
})
except:
print(trimmed_format_exc())
logger.error(trimmed_format_exc())
# -=-=-=-=-=-=- 上海AI-LAB书生大模型 -=-=-=-=-=-=-
if "internlm" in AVAIL_LLM_MODELS:
try:
@@ -716,7 +713,7 @@ if "internlm" in AVAIL_LLM_MODELS:
}
})
except:
print(trimmed_format_exc())
logger.error(trimmed_format_exc())
if "chatglm_onnx" in AVAIL_LLM_MODELS:
try:
from .bridge_chatglmonnx import predict_no_ui_long_connection as chatglm_onnx_noui
@@ -732,7 +729,7 @@ if "chatglm_onnx" in AVAIL_LLM_MODELS:
}
})
except:
print(trimmed_format_exc())
logger.error(trimmed_format_exc())
# -=-=-=-=-=-=- 通义-本地模型 -=-=-=-=-=-=-
if "qwen-local" in AVAIL_LLM_MODELS:
try:
@@ -750,7 +747,7 @@ if "qwen-local" in AVAIL_LLM_MODELS:
}
})
except:
print(trimmed_format_exc())
logger.error(trimmed_format_exc())
# -=-=-=-=-=-=- 通义-在线模型 -=-=-=-=-=-=-
if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-max" in AVAIL_LLM_MODELS: # zhipuai
try:
@@ -786,7 +783,7 @@ if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-
}
})
except:
print(trimmed_format_exc())
logger.error(trimmed_format_exc())
# -=-=-=-=-=-=- 零一万物模型 -=-=-=-=-=-=-
yi_models = ["yi-34b-chat-0205","yi-34b-chat-200k","yi-large","yi-medium","yi-spark","yi-large-turbo","yi-large-preview"]
if any(item in yi_models for item in AVAIL_LLM_MODELS):
@@ -866,7 +863,7 @@ if any(item in yi_models for item in AVAIL_LLM_MODELS):
},
})
except:
print(trimmed_format_exc())
logger.error(trimmed_format_exc())
# -=-=-=-=-=-=- 讯飞星火认知大模型 -=-=-=-=-=-=-
if "spark" in AVAIL_LLM_MODELS:
try:
@@ -884,7 +881,7 @@ if "spark" in AVAIL_LLM_MODELS:
}
})
except:
print(trimmed_format_exc())
logger.error(trimmed_format_exc())
if "sparkv2" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
try:
from .bridge_spark import predict_no_ui_long_connection as spark_noui
@@ -901,7 +898,7 @@ if "sparkv2" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
}
})
except:
print(trimmed_format_exc())
logger.error(trimmed_format_exc())
if any(x in AVAIL_LLM_MODELS for x in ("sparkv3", "sparkv3.5", "sparkv4")): # 讯飞星火认知大模型
try:
from .bridge_spark import predict_no_ui_long_connection as spark_noui
@@ -936,7 +933,7 @@ if any(x in AVAIL_LLM_MODELS for x in ("sparkv3", "sparkv3.5", "sparkv4")): #
}
})
except:
print(trimmed_format_exc())
logger.error(trimmed_format_exc())
if "llama2" in AVAIL_LLM_MODELS: # llama2
try:
from .bridge_llama2 import predict_no_ui_long_connection as llama2_noui
@@ -952,7 +949,7 @@ if "llama2" in AVAIL_LLM_MODELS: # llama2
}
})
except:
print(trimmed_format_exc())
logger.error(trimmed_format_exc())
# -=-=-=-=-=-=- 智谱 -=-=-=-=-=-=-
if "zhipuai" in AVAIL_LLM_MODELS: # zhipuai 是glm-4的别名向后兼容配置
try:
@@ -967,7 +964,7 @@ if "zhipuai" in AVAIL_LLM_MODELS: # zhipuai 是glm-4的别名向后兼容
},
})
except:
print(trimmed_format_exc())
logger.error(trimmed_format_exc())
# -=-=-=-=-=-=- 幻方-深度求索大模型 -=-=-=-=-=-=-
if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
try:
@@ -984,7 +981,7 @@ if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
}
})
except:
print(trimmed_format_exc())
logger.error(trimmed_format_exc())
# -=-=-=-=-=-=- 幻方-深度求索大模型在线API -=-=-=-=-=-=-
if "deepseek-chat" in AVAIL_LLM_MODELS or "deepseek-coder" in AVAIL_LLM_MODELS:
try:
@@ -1012,7 +1009,7 @@ if "deepseek-chat" in AVAIL_LLM_MODELS or "deepseek-coder" in AVAIL_LLM_MODELS:
},
})
except:
print(trimmed_format_exc())
logger.error(trimmed_format_exc())
# -=-=-=-=-=-=- one-api 对齐支持 -=-=-=-=-=-=-
for model in [m for m in AVAIL_LLM_MODELS if m.startswith("one-api-")]:
# 为了更灵活地接入one-api多模型管理界面设计了此接口例子AVAIL_LLM_MODELS = ["one-api-mixtral-8x7b(max_token=6666)"]
@@ -1025,7 +1022,7 @@ for model in [m for m in AVAIL_LLM_MODELS if m.startswith("one-api-")]:
# 如果是已知模型,则尝试获取其信息
original_model_info = model_info.get(origin_model_name.replace("one-api-", "", 1), None)
except:
print(f"one-api模型 {model} 的 max_token 配置不是整数,请检查配置文件。")
logger.error(f"one-api模型 {model} 的 max_token 配置不是整数,请检查配置文件。")
continue
this_model_info = {
"fn_with_ui": chatgpt_ui,
@@ -1056,7 +1053,7 @@ for model in [m for m in AVAIL_LLM_MODELS if m.startswith("vllm-")]:
try:
_, max_token_tmp = read_one_api_model_name(model)
except:
print(f"vllm模型 {model} 的 max_token 配置不是整数,请检查配置文件。")
logger.error(f"vllm模型 {model} 的 max_token 配置不是整数,请检查配置文件。")
continue
model_info.update({
model: {
@@ -1083,7 +1080,7 @@ for model in [m for m in AVAIL_LLM_MODELS if m.startswith("ollama-")]:
try:
_, max_token_tmp = read_one_api_model_name(model)
except:
print(f"ollama模型 {model} 的 max_token 配置不是整数,请检查配置文件。")
logger.error(f"ollama模型 {model} 的 max_token 配置不是整数,请检查配置文件。")
continue
model_info.update({
model: {

View File

@@ -1,12 +1,13 @@
from transformers import AutoModel, AutoTokenizer
from loguru import logger
from toolbox import update_ui, get_conf
from multiprocessing import Process, Pipe
import time
import os
import json
import threading
import importlib
from toolbox import update_ui, get_conf
from multiprocessing import Process, Pipe
load_message = "ChatGLMFT尚未加载加载需要一段时间。注意取决于`config.py`的配置ChatGLMFT消耗大量的内存CPU或显存GPU也许会导致低配计算机卡死 ……"
@@ -78,7 +79,7 @@ class GetGLMFTHandle(Process):
config.pre_seq_len = model_args['pre_seq_len']
config.prefix_projection = model_args['prefix_projection']
print(f"Loading prefix_encoder weight from {CHATGLM_PTUNING_CHECKPOINT}")
logger.info(f"Loading prefix_encoder weight from {CHATGLM_PTUNING_CHECKPOINT}")
model = AutoModel.from_pretrained(model_args['model_name_or_path'], config=config, trust_remote_code=True)
prefix_state_dict = torch.load(os.path.join(CHATGLM_PTUNING_CHECKPOINT, "pytorch_model.bin"))
new_prefix_state_dict = {}
@@ -88,7 +89,7 @@ class GetGLMFTHandle(Process):
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
if model_args['quantization_bit'] is not None and model_args['quantization_bit'] != 0:
print(f"Quantized to {model_args['quantization_bit']} bit")
logger.info(f"Quantized to {model_args['quantization_bit']} bit")
model = model.quantize(model_args['quantization_bit'])
model = model.cuda()
if model_args['pre_seq_len'] is not None:

View File

@@ -12,11 +12,12 @@ import json
import os
import re
import time
import logging
import traceback
import requests
import random
from loguru import logger
# config_private.py放自己的秘密如API和代理网址
# 读取时首先看是否存在私密的config_private配置文件不受git管控如果有则覆盖原config文件
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history
@@ -152,7 +153,7 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
retry += 1
traceback.print_exc()
if retry > MAX_RETRY: raise TimeoutError
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
if MAX_RETRY!=0: logger.error(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
if not stream:
# 该分支仅适用于不支持stream的o1模型其他情形一律不适用
@@ -191,7 +192,7 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
if (not has_content) and (not has_role): continue # raise RuntimeError("发现不标准的第三方接口:"+delta)
if has_content: # has_role = True/False
result += delta["content"]
if not console_slience: print(delta["content"], end='')
if not console_slience: logger.info(delta["content"], end='')
if observe_window is not None:
# 观测窗,把已经获取的数据显示出去
if len(observe_window) >= 1:
@@ -337,7 +338,6 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
# 前者是API2D的结束条件后者是OPENAI的结束条件
if ('data: [DONE]' in chunk_decoded) or (len(chunkjson['choices'][0]["delta"]) == 0):
# 判定为数据流的结束gpt_replying_buffer也写完了
# logging.info(f'[response] {gpt_replying_buffer}')
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
break
# 处理数据流的主体
@@ -364,7 +364,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
error_msg = chunk_decoded
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析异常" + error_msg) # 刷新界面
print(error_msg)
logger.error(error_msg)
return
return # return from stream-branch
@@ -524,7 +524,6 @@ def generate_payload(inputs:str, llm_kwargs:dict, history:list, system_prompt:st
"gpt-3.5-turbo-16k-0613",
"gpt-3.5-turbo-0301",
])
logging.info("Random select model:" + model)
payload = {
"model": model,
@@ -534,10 +533,7 @@ def generate_payload(inputs:str, llm_kwargs:dict, history:list, system_prompt:st
"n": 1,
"stream": stream,
}
# try:
# print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]} ..........")
# except:
# print('输入中可能存在乱码。')
return headers,payload

View File

@@ -8,15 +8,15 @@
2. predict_no_ui_long_connection支持多线程
"""
import os
import json
import time
import logging
import requests
import base64
import os
import glob
from loguru import logger
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc, is_the_upload_folder, \
update_ui_lastest_msg, get_max_token, encode_image, have_any_recent_upload_image_files
update_ui_lastest_msg, get_max_token, encode_image, have_any_recent_upload_image_files, log_chat
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
@@ -100,7 +100,6 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
raw_input = inputs
logging.info(f'[raw_input] {raw_input}')
def make_media_input(inputs, image_paths):
for image_path in image_paths:
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'
@@ -185,7 +184,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
# 判定为数据流的结束gpt_replying_buffer也写完了
lastmsg = chatbot[-1][-1] + f"\n\n\n\n{llm_kwargs['llm_model']}调用结束,该模型不具备上下文对话能力,如需追问,请及时切换模型。」"
yield from update_ui_lastest_msg(lastmsg, chatbot, history, delay=1)
logging.info(f'[response] {gpt_replying_buffer}')
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
break
# 处理数据流的主体
status_text = f"finish_reason: {chunkjson['choices'][0].get('finish_reason', 'null')}"
@@ -210,7 +209,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
error_msg = chunk_decoded
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg, api_key)
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
print(error_msg)
logger.error(error_msg)
return
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg, api_key=""):
@@ -301,10 +300,7 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths):
"presence_penalty": 0,
"frequency_penalty": 0,
}
try:
print(f" {llm_kwargs['llm_model']} : {inputs[:100]} ..........")
except:
print('输入中可能存在乱码。')
return headers, payload, api_key

View File

@@ -1,281 +0,0 @@
# 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目
"""
该文件中主要包含三个函数
不具备多线程能力的函数:
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
具备多线程调用能力的函数
2. predict_no_ui_long_connection支持多线程
"""
import json
import time
import gradio as gr
import logging
import traceback
import requests
import importlib
# config_private.py放自己的秘密如API和代理网址
# 读取时首先看是否存在私密的config_private配置文件不受git管控如果有则覆盖原config文件
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG = \
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG')
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
def get_full_error(chunk, stream_response):
"""
获取完整的从Openai返回的报错
"""
while True:
try:
chunk += next(stream_response)
except:
break
return chunk
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
"""
发送至chatGPT等待回复一次性完成不显示中间过程。但内部用stream的方法避免中途网线被掐。
inputs
是本次问询的输入
sys_prompt:
系统静默prompt
llm_kwargs
chatGPT的内部调优参数
history
是之前的对话列表
observe_window = None
用于负责跨越线程传递已经输出的部分大部分时候仅仅为了fancy的视觉效果留空即可。observe_window[0]观测窗。observe_window[1]:看门狗
"""
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
retry = 0
while True:
try:
# make a POST request to the API endpoint, stream=False
from .bridge_all import model_info
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
response = requests.post(endpoint, headers=headers, proxies=proxies,
json=payload, stream=True, timeout=TIMEOUT_SECONDS); break
except requests.exceptions.ReadTimeout as e:
retry += 1
traceback.print_exc()
if retry > MAX_RETRY: raise TimeoutError
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
stream_response = response.iter_lines()
result = ''
while True:
try: chunk = next(stream_response).decode()
except StopIteration:
break
except requests.exceptions.ConnectionError:
chunk = next(stream_response).decode() # 失败了,重试一次?再失败就没办法了。
if len(chunk)==0: continue
if not chunk.startswith('data:'):
error_msg = get_full_error(chunk.encode('utf8'), stream_response).decode()
if "reduce the length" in error_msg:
raise ConnectionAbortedError("OpenAI拒绝了请求:" + error_msg)
else:
raise RuntimeError("OpenAI拒绝了请求" + error_msg)
if ('data: [DONE]' in chunk): break # api2d 正常完成
json_data = json.loads(chunk.lstrip('data:'))['choices'][0]
delta = json_data["delta"]
if len(delta) == 0: break
if "role" in delta: continue
if "content" in delta:
result += delta["content"]
if not console_slience: print(delta["content"], end='')
if observe_window is not None:
# 观测窗,把已经获取的数据显示出去
if len(observe_window) >= 1: observe_window[0] += delta["content"]
# 看门狗,如果超过期限没有喂狗,则终止
if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience:
raise RuntimeError("用户取消了程序。")
else: raise RuntimeError("意外Json结构"+delta)
if json_data['finish_reason'] == 'content_filter':
raise RuntimeError("由于提问含不合规内容被Azure过滤。")
if json_data['finish_reason'] == 'length':
raise ConnectionAbortedError("正常结束但显示Token不足导致输出不完整请削减单次输入的文本量。")
return result
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
发送至chatGPT流式获取输出。
用于基础的对话功能。
inputs 是本次问询的输入
top_p, temperature是chatGPT的内部调优参数
history 是之前的对话列表注意无论是inputs还是history内容太长了都会触发token数量溢出的错误
chatbot 为WebUI中显示的对话列表修改它然后yeild出去可以直接修改对话界面内容
additional_fn代表点击的哪个按钮按钮见functional.py
"""
if additional_fn is not None:
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
raw_input = inputs
logging.info(f'[raw_input] {raw_input}')
chatbot.append((inputs, ""))
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
try:
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
except RuntimeError as e:
chatbot[-1] = (inputs, f"您提供的api-key不满足要求不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
return
history.append(inputs); history.append("")
retry = 0
while True:
try:
# make a POST request to the API endpoint, stream=True
from .bridge_all import model_info
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
response = requests.post(endpoint, headers=headers, proxies=proxies,
json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
except:
retry += 1
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
if retry > MAX_RETRY: raise TimeoutError
gpt_replying_buffer = ""
is_head_of_the_stream = True
if stream:
stream_response = response.iter_lines()
while True:
try:
chunk = next(stream_response)
except StopIteration:
# 非OpenAI官方接口的出现这样的报错OpenAI和API2D不会走这里
chunk_decoded = chunk.decode()
error_msg = chunk_decoded
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
yield from update_ui(chatbot=chatbot, history=history, msg="非Openai官方接口返回了错误:" + chunk.decode()) # 刷新界面
return
# print(chunk.decode()[6:])
if is_head_of_the_stream and (r'"object":"error"' not in chunk.decode()):
# 数据流的第一帧不携带content
is_head_of_the_stream = False; continue
if chunk:
try:
chunk_decoded = chunk.decode()
# 前者是API2D的结束条件后者是OPENAI的结束条件
if 'data: [DONE]' in chunk_decoded:
# 判定为数据流的结束gpt_replying_buffer也写完了
logging.info(f'[response] {gpt_replying_buffer}')
break
# 处理数据流的主体
chunkjson = json.loads(chunk_decoded[6:])
status_text = f"finish_reason: {chunkjson['choices'][0]['finish_reason']}"
delta = chunkjson['choices'][0]["delta"]
if "content" in delta:
gpt_replying_buffer = gpt_replying_buffer + delta["content"]
history[-1] = gpt_replying_buffer
chatbot[-1] = (history[-2], history[-1])
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
except Exception as e:
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
chunk = get_full_error(chunk, stream_response)
chunk_decoded = chunk.decode()
error_msg = chunk_decoded
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
print(error_msg)
return
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):
from .bridge_all import model_info
openai_website = ' 请登录OpenAI查看详情 https://platform.openai.com/signup'
if "reduce the length" in error_msg:
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入history[-2] 是本次输入, history[-1] 是本次输出
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
# history = [] # 清除历史
elif "does not exist" in error_msg:
chatbot[-1] = (chatbot[-1][0], f"[Local Message] Model {llm_kwargs['llm_model']} does not exist. 模型不存在, 或者您没有获得体验资格.")
elif "Incorrect API key" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. OpenAI以提供了不正确的API_KEY为由, 拒绝服务. " + openai_website)
elif "exceeded your current quota" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] You exceeded your current quota. OpenAI以账户额度不足为由, 拒绝服务." + openai_website)
elif "account is not active" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] Your account is not active. OpenAI以账户失效为由, 拒绝服务." + openai_website)
elif "associated with a deactivated account" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] You are associated with a deactivated account. OpenAI以账户失效为由, 拒绝服务." + openai_website)
elif "bad forward key" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] Bad forward key. API2D账户额度不足.")
elif "Not enough point" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] Not enough point. API2D账户点数不足.")
else:
from toolbox import regular_txt_to_markdown
tb_str = '```\n' + trimmed_format_exc() + '```'
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}")
return chatbot, history
def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
"""
整合所有信息选择LLM模型生成http请求为发送请求做准备
"""
if not is_any_api_key(llm_kwargs['api_key']):
raise AssertionError("你提供了错误的API_KEY。\n\n1. 临时解决方案直接在输入区键入api_key然后回车提交。\n\n2. 长效解决方案在config.py中配置。")
headers = {
"Content-Type": "application/json",
}
conversation_cnt = len(history) // 2
messages = [{"role": "system", "content": system_prompt}]
if conversation_cnt:
for index in range(0, 2*conversation_cnt, 2):
what_i_have_asked = {}
what_i_have_asked["role"] = "user"
what_i_have_asked["content"] = history[index]
what_gpt_answer = {}
what_gpt_answer["role"] = "assistant"
what_gpt_answer["content"] = history[index+1]
if what_i_have_asked["content"] != "":
if what_gpt_answer["content"] == "": continue
if what_gpt_answer["content"] == timeout_bot_msg: continue
messages.append(what_i_have_asked)
messages.append(what_gpt_answer)
else:
messages[-1]['content'] = what_gpt_answer['content']
what_i_ask_now = {}
what_i_ask_now["role"] = "user"
what_i_ask_now["content"] = inputs
messages.append(what_i_ask_now)
payload = {
"model": llm_kwargs['llm_model'].strip('api2d-'),
"messages": messages,
"temperature": llm_kwargs['temperature'], # 1.0,
"top_p": llm_kwargs['top_p'], # 1.0,
"n": 1,
"stream": stream,
"presence_penalty": 0,
"frequency_penalty": 0,
}
try:
print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]} ..........")
except:
print('输入中可能存在乱码。')
return headers,payload

View File

@@ -9,13 +9,14 @@
具备多线程调用能力的函数
2. predict_no_ui_long_connection支持多线程
"""
import logging
import os
import time
import traceback
import json
import requests
from loguru import logger
from toolbox import get_conf, update_ui, trimmed_format_exc, encode_image, every_image_file_in_path, log_chat
picture_system_prompt = "\n当回复图像时,必须说明正在回复哪张图像。所有图像仅在最后一个问题中提供,即使它们在历史记录中被提及。请使用'这是第X张图像:'的格式来指明您正在描述的是哪张图像。"
Claude_3_Models = ["claude-3-haiku-20240307", "claude-3-sonnet-20240229", "claude-3-opus-20240229", "claude-3-5-sonnet-20240620"]
@@ -101,7 +102,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
retry += 1
traceback.print_exc()
if retry > MAX_RETRY: raise TimeoutError
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
if MAX_RETRY!=0: logger.error(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
stream_response = response.iter_lines()
result = ''
while True:
@@ -116,12 +117,11 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
if need_to_pass:
pass
elif is_last_chunk:
# logging.info(f'[response] {result}')
# logger.info(f'[response] {result}')
break
else:
if chunkjson and chunkjson['type'] == 'content_block_delta':
result += chunkjson['delta']['text']
print(chunkjson['delta']['text'], end='')
if observe_window is not None:
# 观测窗,把已经获取的数据显示出去
if len(observe_window) >= 1:
@@ -134,7 +134,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
chunk = get_full_error(chunk, stream_response)
chunk_decoded = chunk.decode()
error_msg = chunk_decoded
print(error_msg)
logger.error(error_msg)
raise RuntimeError("Json解析不合常规")
return result
@@ -200,7 +200,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
retry += 1
traceback.print_exc()
if retry > MAX_RETRY: raise TimeoutError
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
if MAX_RETRY!=0: logger.error(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
stream_response = response.iter_lines()
gpt_replying_buffer = ""
@@ -217,7 +217,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
pass
elif is_last_chunk:
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
# logging.info(f'[response] {gpt_replying_buffer}')
# logger.info(f'[response] {gpt_replying_buffer}')
break
else:
if chunkjson and chunkjson['type'] == 'content_block_delta':
@@ -230,7 +230,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
chunk = get_full_error(chunk, stream_response)
chunk_decoded = chunk.decode()
error_msg = chunk_decoded
print(error_msg)
logger.error(error_msg)
raise RuntimeError("Json解析不合常规")
def multiple_picture_types(image_paths):

View File

@@ -13,11 +13,9 @@
import json
import time
import gradio as gr
import logging
import traceback
import requests
import importlib
import random
from loguru import logger
# config_private.py放自己的秘密如API和代理网址
# 读取时首先看是否存在私密的config_private配置文件不受git管控如果有则覆盖原config文件
@@ -98,7 +96,7 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
retry += 1
traceback.print_exc()
if retry > MAX_RETRY: raise TimeoutError
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
if MAX_RETRY!=0: logger.error(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
stream_response = response.iter_lines()
result = ''
@@ -113,7 +111,7 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[],
if chunkjson['event_type'] == 'stream-start': continue
if chunkjson['event_type'] == 'text-generation':
result += chunkjson["text"]
if not console_slience: print(chunkjson["text"], end='')
if not console_slience: logger.info(chunkjson["text"], end='')
if observe_window is not None:
# 观测窗,把已经获取的数据显示出去
if len(observe_window) >= 1:
@@ -153,7 +151,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
raw_input = inputs
# logging.info(f'[raw_input] {raw_input}')
# logger.info(f'[raw_input] {raw_input}')
chatbot.append((inputs, ""))
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
@@ -237,7 +235,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith
error_msg = chunk_decoded
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
print(error_msg)
logger.error(error_msg)
return
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):

View File

@@ -1,12 +1,13 @@
model_name = "deepseek-coder-6.7b-instruct"
cmd_to_install = "未知" # "`pip install -r request_llms/requirements_qwen.txt`"
import os
from toolbox import ProxyNetworkActivate
from toolbox import get_conf
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
from request_llms.local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
from threading import Thread
from loguru import logger
import torch
import os
def download_huggingface_model(model_name, max_retry, local_dir):
from huggingface_hub import snapshot_download
@@ -15,7 +16,7 @@ def download_huggingface_model(model_name, max_retry, local_dir):
snapshot_download(repo_id=model_name, local_dir=local_dir, resume_download=True)
break
except Exception as e:
print(f'\n\n下载失败,重试第{i}次中...\n\n')
logger.error(f'\n\n下载失败,重试第{i}次中...\n\n')
return local_dir
# ------------------------------------------------------------------------------------------------------------------------
# 🔌💻 Local Model
@@ -112,7 +113,6 @@ class GetCoderLMHandle(LocalLLMHandle):
generated_text = ""
for new_text in self._streamer:
generated_text += new_text
# print(generated_text)
yield generated_text

View File

@@ -65,10 +65,10 @@ class GetInternlmHandle(LocalLLMHandle):
def llm_stream_generator(self, **kwargs):
import torch
import logging
import copy
import warnings
import torch.nn as nn
from loguru import logger as logging
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
@@ -119,7 +119,7 @@ class GetInternlmHandle(LocalLLMHandle):
elif generation_config.max_new_tokens is not None:
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
if not has_default_max_length:
logging.warn(
logging.warning(
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
"Please refer to the documentation for more information. "

View File

@@ -5,7 +5,6 @@
import json
import os
import time
import logging
from toolbox import get_conf, update_ui, log_chat
from toolbox import ChatBotWithCookies

View File

@@ -13,11 +13,11 @@
import json
import time
import gradio as gr
import logging
import traceback
import requests
import importlib
import random
from loguru import logger
# config_private.py放自己的秘密如API和代理网址
# 读取时首先看是否存在私密的config_private配置文件不受git管控如果有则覆盖原config文件
@@ -81,7 +81,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
retry += 1
traceback.print_exc()
if retry > MAX_RETRY: raise TimeoutError
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
if MAX_RETRY!=0: logger.error(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
stream_response = response.iter_lines()
result = ''
@@ -96,10 +96,10 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
try:
if is_last_chunk:
# 判定为数据流的结束gpt_replying_buffer也写完了
logging.info(f'[response] {result}')
logger.info(f'[response] {result}')
break
result += chunkjson['message']["content"]
if not console_slience: print(chunkjson['message']["content"], end='')
if not console_slience: logger.info(chunkjson['message']["content"], end='')
if observe_window is not None:
# 观测窗,把已经获取的数据显示出去
if len(observe_window) >= 1:
@@ -112,7 +112,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
chunk = get_full_error(chunk, stream_response)
chunk_decoded = chunk.decode()
error_msg = chunk_decoded
print(error_msg)
logger.error(error_msg)
raise RuntimeError("Json解析不合常规")
return result
@@ -134,7 +134,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
raw_input = inputs
logging.info(f'[raw_input] {raw_input}')
logger.info(f'[raw_input] {raw_input}')
chatbot.append((inputs, ""))
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
@@ -183,7 +183,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
try:
if is_last_chunk:
# 判定为数据流的结束gpt_replying_buffer也写完了
logging.info(f'[response] {gpt_replying_buffer}')
logger.info(f'[response] {gpt_replying_buffer}')
break
# 处理数据流的主体
try:
@@ -202,7 +202,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
error_msg = chunk_decoded
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
print(error_msg)
logger.error(error_msg)
return
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):
@@ -265,8 +265,5 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
"messages": messages,
"options": options,
}
try:
print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]} ..........")
except:
print('输入中可能存在乱码。')
return headers,payload

View File

@@ -1,12 +1,13 @@
import time
import asyncio
import threading
import importlib
from .bridge_newbingfree import preprocess_newbing_out, preprocess_newbing_out_simple
from multiprocessing import Process, Pipe
from toolbox import update_ui, get_conf, trimmed_format_exc
import threading
import importlib
import logging
import time
from loguru import logger as logging
from toolbox import get_conf
import asyncio
load_message = "正在加载Claude组件请稍候..."

View File

@@ -8,7 +8,6 @@ import json
import random
import string
import websockets
import logging
import time
import threading
import importlib

View File

@@ -218,5 +218,3 @@ class GoogleChatInit:
if __name__ == "__main__":
google = GoogleChatInit()
# print(gootle.generate_message_payload('你好呀', {}, ['123123', '3123123'], ''))
# gootle.input_encode_handle('123123[123123](./123123), ![53425](./asfafa/fff.jpg)')

View File

@@ -1,7 +1,6 @@
from http import HTTPStatus
from toolbox import get_conf
import threading
import logging
timeout_bot_msg = '[Local Message] Request timeout. Network error.'

View File

@@ -1,7 +1,7 @@
from toolbox import get_conf
import threading
import logging
import os
import threading
from toolbox import get_conf
from loguru import logger as logging
timeout_bot_msg = '[Local Message] Request timeout. Network error.'
#os.environ['VOLC_ACCESSKEY'] = ''

View File

@@ -1,17 +1,18 @@
from toolbox import get_conf, get_pictures_list, encode_image
import base64
import datetime
import hashlib
import hmac
import json
from urllib.parse import urlparse
import ssl
import websocket
import threading
from toolbox import get_conf, get_pictures_list, encode_image
from loguru import logger
from urllib.parse import urlparse
from datetime import datetime
from time import mktime
from urllib.parse import urlencode
from wsgiref.handlers import format_date_time
import websocket
import threading, time
timeout_bot_msg = '[Local Message] Request timeout. Network error.'
@@ -104,7 +105,7 @@ class SparkRequestInstance():
if llm_kwargs['most_recent_uploaded'].get('path'):
file_manifest = get_pictures_list(llm_kwargs['most_recent_uploaded']['path'])
if len(file_manifest) > 0:
print('正在使用讯飞图片理解API')
logger.info('正在使用讯飞图片理解API')
gpt_url = self.gpt_url_img
wsParam = Ws_Param(self.appid, self.api_key, self.api_secret, gpt_url)
websocket.enableTrace(False)
@@ -123,7 +124,7 @@ class SparkRequestInstance():
data = json.loads(message)
code = data['header']['code']
if code != 0:
print(f'请求错误: {code}, {data}')
logger.error(f'请求错误: {code}, {data}')
self.result_buf += str(data)
ws.close()
self.time_to_exit_event.set()
@@ -140,7 +141,7 @@ class SparkRequestInstance():
# 收到websocket错误的处理
def on_error(ws, error):
print("error:", error)
logger.error("error:", error)
self.time_to_exit_event.set()
# 收到websocket关闭的处理

View File

@@ -4,7 +4,7 @@
# @Descr : 兼容最新的智谱Ai
from toolbox import get_conf
from toolbox import get_conf, encode_image, get_pictures_list
import logging, os, requests
import requests
import json
class TaichuChatInit:
def __init__(self): ...

View File

@@ -5,7 +5,8 @@
from toolbox import get_conf
from zhipuai import ZhipuAI
from toolbox import get_conf, encode_image, get_pictures_list
import logging, os
from loguru import logger
import os
def input_encode_handler(inputs:str, llm_kwargs:dict):
@@ -24,7 +25,7 @@ class ZhipuChatInit:
def __init__(self):
ZHIPUAI_API_KEY, ZHIPUAI_MODEL = get_conf("ZHIPUAI_API_KEY", "ZHIPUAI_MODEL")
if len(ZHIPUAI_MODEL) > 0:
logging.error('ZHIPUAI_MODEL 配置项选项已经弃用请在LLM_MODEL中配置')
logger.error('ZHIPUAI_MODEL 配置项选项已经弃用请在LLM_MODEL中配置')
self.zhipu_bro = ZhipuAI(api_key=ZHIPUAI_API_KEY)
self.model = ''
@@ -37,8 +38,7 @@ class ZhipuChatInit:
what_i_have_asked['content'].append({"type": 'text', "text": user_input})
if encode_img:
if len(encode_img) > 1:
logging.warning("glm-4v只支持一张图片,将只取第一张图片进行处理")
print("glm-4v只支持一张图片,将只取第一张图片进行处理")
logger.warning("glm-4v只支持一张图片,将只取第一张图片进行处理")
img_d = {"type": "image_url",
"image_url": {
"url": encode_img[0]['data']

View File

@@ -5,6 +5,7 @@ from toolbox import ChatBotWithCookies
from multiprocessing import Process, Pipe
from contextlib import redirect_stdout
from request_llms.queued_pipe import create_queue_pipe
from loguru import logger
class ThreadLock(object):
def __init__(self):
@@ -51,7 +52,7 @@ def reset_tqdm_output():
getattr(sys.stdout, 'flush', lambda: None)()
def fp_write(s):
print(s)
logger.info(s)
last_len = [0]
def print_status(s):
@@ -199,7 +200,7 @@ class LocalLLMHandle(Process):
if res.startswith(self.std_tag):
new_output = res[len(self.std_tag):]
std_out = std_out[:std_out_clip_len]
print(new_output, end='')
logger.info(new_output, end='')
std_out = new_output + std_out
yield self.std_tag + '\n```\n' + std_out + '\n```\n'
elif res == '[Finish]':

View File

@@ -1,8 +1,8 @@
import json
import time
import logging
import traceback
import requests
from loguru import logger
# config_private.py放自己的秘密如API和代理网址
# 读取时首先看是否存在私密的config_private配置文件不受git管控如果有则覆盖原config文件
@@ -106,10 +106,7 @@ def generate_message(input, model, key, history, max_output_token, system_prompt
"stream": True,
"max_tokens": max_output_token,
}
try:
print(f" {model} : {conversation_cnt} : {input[:100]} ..........")
except:
print("输入中可能存在乱码。")
return headers, playload
@@ -196,7 +193,7 @@ def get_predict_function(
if retry > MAX_RETRY:
raise TimeoutError
if MAX_RETRY != 0:
print(f"请求超时,正在重试 ({retry}/{MAX_RETRY}) ……")
logger.error(f"请求超时,正在重试 ({retry}/{MAX_RETRY}) ……")
stream_response = response.iter_lines()
result = ""
@@ -219,18 +216,17 @@ def get_predict_function(
):
chunk = get_full_error(chunk, stream_response)
chunk_decoded = chunk.decode()
print(chunk_decoded)
logger.error(chunk_decoded)
raise RuntimeError(
f"API异常,请检测终端输出。可能的原因是:{finish_reason}"
)
if chunk:
try:
if finish_reason == "stop":
logging.info(f"[response] {result}")
if not console_slience:
logger.info(f"[response] {result}")
break
result += response_text
if not console_slience:
print(response_text, end="")
if observe_window is not None:
# 观测窗,把已经获取的数据显示出去
if len(observe_window) >= 1:
@@ -243,7 +239,7 @@ def get_predict_function(
chunk = get_full_error(chunk, stream_response)
chunk_decoded = chunk.decode()
error_msg = chunk_decoded
print(error_msg)
logger.error(error_msg)
raise RuntimeError("Json解析不合常规")
return result
@@ -276,7 +272,7 @@ def get_predict_function(
inputs, history = handle_core_functionality(
additional_fn, inputs, history, chatbot
)
logging.info(f"[raw_input] {inputs}")
logger.info(f"[raw_input] {inputs}")
chatbot.append((inputs, ""))
yield from update_ui(
chatbot=chatbot, history=history, msg="等待响应"
@@ -376,11 +372,11 @@ def get_predict_function(
history=history,
msg="API异常:" + chunk_decoded,
) # 刷新界面
print(chunk_decoded)
logger.error(chunk_decoded)
return
if finish_reason == "stop":
logging.info(f"[response] {gpt_replying_buffer}")
logger.info(f"[response] {gpt_replying_buffer}")
break
status_text = f"finish_reason: {finish_reason}"
gpt_replying_buffer += response_text
@@ -403,7 +399,7 @@ def get_predict_function(
yield from update_ui(
chatbot=chatbot, history=history, msg="Json异常" + chunk_decoded
) # 刷新界面
print(chunk_decoded)
logger.error(chunk_decoded)
return
return predict_no_ui_long_connection, predict