first_version
This commit is contained in:
@@ -1,16 +1,12 @@
|
||||
import llama_index
|
||||
import os
|
||||
import atexit
|
||||
from typing import List
|
||||
|
||||
from llama_index.core import Document
|
||||
from llama_index.core.schema import TextNode
|
||||
from request_llms.embed_models.openai_embed import OpenAiEmbeddingModel
|
||||
from shared_utils.connect_void_terminal import get_chat_default_kwargs
|
||||
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
|
||||
from crazy_functions.rag_fns.vector_store_index import GptacVectorStoreIndex
|
||||
from llama_index.core.ingestion import run_transformations
|
||||
from llama_index.core import PromptTemplate
|
||||
from llama_index.core.response_synthesizers import TreeSummarize
|
||||
from llama_index.core.schema import TextNode
|
||||
|
||||
from crazy_functions.rag_fns.vector_store_index import GptacVectorStoreIndex
|
||||
from request_llms.embed_models.openai_embed import OpenAiEmbeddingModel
|
||||
|
||||
DEFAULT_QUERY_GENERATION_PROMPT = """\
|
||||
Now, you have context information as below:
|
||||
@@ -74,7 +70,7 @@ class LlamaIndexRagWorker(SaveLoad):
|
||||
if auto_load_checkpoint:
|
||||
self.vs_index = self.load_from_checkpoint(checkpoint_dir)
|
||||
else:
|
||||
self.vs_index = self.create_new_vs(checkpoint_dir)
|
||||
self.vs_index = self.create_new_vs()
|
||||
atexit.register(lambda: self.save_to_checkpoint(checkpoint_dir))
|
||||
|
||||
def assign_embedding_model(self):
|
||||
@@ -84,46 +80,59 @@ class LlamaIndexRagWorker(SaveLoad):
|
||||
# This function is for debugging
|
||||
self.vs_index.storage_context.index_store.to_dict()
|
||||
docstore = self.vs_index.storage_context.docstore.docs
|
||||
vector_store_preview = "\n".join([ f"{_id} | {tn.text}" for _id, tn in docstore.items() ])
|
||||
vector_store_preview = "\n".join([f"{_id} | {tn.text}" for _id, tn in docstore.items()])
|
||||
print('\n++ --------inspect_vector_store begin--------')
|
||||
print(vector_store_preview)
|
||||
print('oo --------inspect_vector_store end--------')
|
||||
return vector_store_preview
|
||||
|
||||
def add_documents_to_vector_store(self, document_list):
|
||||
documents = [Document(text=t) for t in document_list]
|
||||
def add_documents_to_vector_store(self, document_list: List[Document]):
|
||||
"""
|
||||
Adds a list of Document objects to the vector store after processing.
|
||||
"""
|
||||
documents = document_list
|
||||
documents_nodes = run_transformations(
|
||||
documents, # type: ignore
|
||||
self.vs_index._transformations,
|
||||
show_progress=True
|
||||
)
|
||||
documents, # type: ignore
|
||||
self.vs_index._transformations,
|
||||
show_progress=True
|
||||
)
|
||||
self.vs_index.insert_nodes(documents_nodes)
|
||||
if self.debug_mode: self.inspect_vector_store()
|
||||
if self.debug_mode:
|
||||
self.inspect_vector_store()
|
||||
|
||||
def add_text_to_vector_store(self, text):
|
||||
def add_text_to_vector_store(self, text: str):
|
||||
node = TextNode(text=text)
|
||||
documents_nodes = run_transformations(
|
||||
[node],
|
||||
self.vs_index._transformations,
|
||||
show_progress=True
|
||||
)
|
||||
[node],
|
||||
self.vs_index._transformations,
|
||||
show_progress=True
|
||||
)
|
||||
self.vs_index.insert_nodes(documents_nodes)
|
||||
if self.debug_mode: self.inspect_vector_store()
|
||||
if self.debug_mode:
|
||||
self.inspect_vector_store()
|
||||
|
||||
def remember_qa(self, question, answer):
|
||||
formatted_str = QUESTION_ANSWER_RECORD.format(question=question, answer=answer)
|
||||
self.add_text_to_vector_store(formatted_str)
|
||||
|
||||
def retrieve_from_store_with_query(self, query):
|
||||
if self.debug_mode: self.inspect_vector_store()
|
||||
if self.debug_mode:
|
||||
self.inspect_vector_store()
|
||||
retriever = self.vs_index.as_retriever()
|
||||
return retriever.retrieve(query)
|
||||
|
||||
def build_prompt(self, query, nodes):
|
||||
context_str = self.generate_node_array_preview(nodes)
|
||||
return DEFAULT_QUERY_GENERATION_PROMPT.format(context_str=context_str, query_str=query)
|
||||
|
||||
|
||||
def generate_node_array_preview(self, nodes):
|
||||
buf = "\n".join(([f"(No.{i+1} | score {n.score:.3f}): {n.text}" for i, n in enumerate(nodes)]))
|
||||
if self.debug_mode: print(buf)
|
||||
buf = "\n".join([f"(No.{i+1} | score {n.score:.3f}): {n.text}" for i, n in enumerate(nodes)])
|
||||
if self.debug_mode:
|
||||
print(buf)
|
||||
return buf
|
||||
|
||||
def purge_vector_store(self):
|
||||
"""
|
||||
Purges the current vector store and creates a new one.
|
||||
"""
|
||||
self.purge()
|
||||
Reference in New Issue
Block a user