first_version

This commit is contained in:
lbykkkk
2024-09-20 00:06:59 +08:00
parent 597c320808
commit df717f8bba
3 changed files with 207 additions and 63 deletions

View File

@@ -1,16 +1,12 @@
import llama_index
import os
import atexit
from typing import List
from llama_index.core import Document
from llama_index.core.schema import TextNode
from request_llms.embed_models.openai_embed import OpenAiEmbeddingModel
from shared_utils.connect_void_terminal import get_chat_default_kwargs
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from crazy_functions.rag_fns.vector_store_index import GptacVectorStoreIndex
from llama_index.core.ingestion import run_transformations
from llama_index.core import PromptTemplate
from llama_index.core.response_synthesizers import TreeSummarize
from llama_index.core.schema import TextNode
from crazy_functions.rag_fns.vector_store_index import GptacVectorStoreIndex
from request_llms.embed_models.openai_embed import OpenAiEmbeddingModel
DEFAULT_QUERY_GENERATION_PROMPT = """\
Now, you have context information as below:
@@ -74,7 +70,7 @@ class LlamaIndexRagWorker(SaveLoad):
if auto_load_checkpoint:
self.vs_index = self.load_from_checkpoint(checkpoint_dir)
else:
self.vs_index = self.create_new_vs(checkpoint_dir)
self.vs_index = self.create_new_vs()
atexit.register(lambda: self.save_to_checkpoint(checkpoint_dir))
def assign_embedding_model(self):
@@ -84,46 +80,59 @@ class LlamaIndexRagWorker(SaveLoad):
# This function is for debugging
self.vs_index.storage_context.index_store.to_dict()
docstore = self.vs_index.storage_context.docstore.docs
vector_store_preview = "\n".join([ f"{_id} | {tn.text}" for _id, tn in docstore.items() ])
vector_store_preview = "\n".join([f"{_id} | {tn.text}" for _id, tn in docstore.items()])
print('\n++ --------inspect_vector_store begin--------')
print(vector_store_preview)
print('oo --------inspect_vector_store end--------')
return vector_store_preview
def add_documents_to_vector_store(self, document_list):
documents = [Document(text=t) for t in document_list]
def add_documents_to_vector_store(self, document_list: List[Document]):
"""
Adds a list of Document objects to the vector store after processing.
"""
documents = document_list
documents_nodes = run_transformations(
documents, # type: ignore
self.vs_index._transformations,
show_progress=True
)
documents, # type: ignore
self.vs_index._transformations,
show_progress=True
)
self.vs_index.insert_nodes(documents_nodes)
if self.debug_mode: self.inspect_vector_store()
if self.debug_mode:
self.inspect_vector_store()
def add_text_to_vector_store(self, text):
def add_text_to_vector_store(self, text: str):
node = TextNode(text=text)
documents_nodes = run_transformations(
[node],
self.vs_index._transformations,
show_progress=True
)
[node],
self.vs_index._transformations,
show_progress=True
)
self.vs_index.insert_nodes(documents_nodes)
if self.debug_mode: self.inspect_vector_store()
if self.debug_mode:
self.inspect_vector_store()
def remember_qa(self, question, answer):
formatted_str = QUESTION_ANSWER_RECORD.format(question=question, answer=answer)
self.add_text_to_vector_store(formatted_str)
def retrieve_from_store_with_query(self, query):
if self.debug_mode: self.inspect_vector_store()
if self.debug_mode:
self.inspect_vector_store()
retriever = self.vs_index.as_retriever()
return retriever.retrieve(query)
def build_prompt(self, query, nodes):
context_str = self.generate_node_array_preview(nodes)
return DEFAULT_QUERY_GENERATION_PROMPT.format(context_str=context_str, query_str=query)
def generate_node_array_preview(self, nodes):
buf = "\n".join(([f"(No.{i+1} | score {n.score:.3f}): {n.text}" for i, n in enumerate(nodes)]))
if self.debug_mode: print(buf)
buf = "\n".join([f"(No.{i+1} | score {n.score:.3f}): {n.text}" for i, n in enumerate(nodes)])
if self.debug_mode:
print(buf)
return buf
def purge_vector_store(self):
"""
Purges the current vector store and creates a new one.
"""
self.purge()

View File

@@ -0,0 +1,47 @@
import os
import markdown
from PyPDF2 import PdfReader
from bs4 import BeautifulSoup
from docx import Document as DocxDocument
def extract_text_from_pdf(file_path):
reader = PdfReader(file_path)
text = ""
for page in reader.pages:
text += page.extract_text() + "\n"
return text
def extract_text_from_docx(file_path):
doc = DocxDocument(file_path)
return "\n".join([para.text for para in doc.paragraphs])
def extract_text_from_txt(file_path):
with open(file_path, 'r', encoding='utf-8') as f:
return f.read()
def extract_text_from_md(file_path):
with open(file_path, 'r', encoding='utf-8') as f:
md_content = f.read()
return markdown.markdown(md_content)
def extract_text_from_html(file_path):
with open(file_path, 'r', encoding='utf-8') as f:
soup = BeautifulSoup(f, 'html.parser')
return soup.get_text()
def extract_text(file_path):
_, ext = os.path.splitext(file_path.lower())
if ext == '.pdf':
return extract_text_from_pdf(file_path)
elif ext in ['.docx', '.doc']:
return extract_text_from_docx(file_path)
elif ext == '.txt':
return extract_text_from_txt(file_path)
elif ext == '.md':
return extract_text_from_md(file_path)
elif ext == '.html':
return extract_text_from_html(file_path)
else:
raise ValueError(f"Unsupported file extension: {ext}")