This commit is contained in:
binary-husky
2023-12-26 23:59:53 +08:00
parent 8dd4d48474
commit d245958dfa
17 changed files with 1270 additions and 0 deletions

View File

@@ -0,0 +1,59 @@
model_name = "Qwen_Local"
cmd_to_install = "`pip install -r request_llms/requirements_qwen_local.txt`"
from toolbox import ProxyNetworkActivate, get_conf
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
# ------------------------------------------------------------------------------------------------------------------------
# 🔌💻 Local Model
# ------------------------------------------------------------------------------------------------------------------------
class GetQwenLMHandle(LocalLLMHandle):
def load_model_info(self):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
self.model_name = model_name
self.cmd_to_install = cmd_to_install
def load_model_and_tokenizer(self):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
# from modelscope import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
with ProxyNetworkActivate('Download_LLM'):
model_id = get_conf('QWEN_LOCAL_MODEL_SELECTION')
self._tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, resume_download=True)
# use fp16
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True).eval()
model.generation_config = GenerationConfig.from_pretrained(model_id, trust_remote_code=True) # 可指定不同的生成长度、top_p等相关超参
self._model = model
return self._model, self._tokenizer
def llm_stream_generator(self, **kwargs):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
def adaptor(kwargs):
query = kwargs['query']
max_length = kwargs['max_length']
top_p = kwargs['top_p']
temperature = kwargs['temperature']
history = kwargs['history']
return query, max_length, top_p, temperature, history
query, max_length, top_p, temperature, history = adaptor(kwargs)
for response in self._model.chat_stream(self._tokenizer, query, history=history):
yield response
def try_to_import_special_deps(self, **kwargs):
# import something that will raise error if the user does not install requirement_*.txt
# 🏃‍♂️🏃‍♂️🏃‍♂️ 主进程执行
import importlib
importlib.import_module('modelscope')
# ------------------------------------------------------------------------------------------------------------------------
# 🔌💻 GPT-Academic Interface
# ------------------------------------------------------------------------------------------------------------------------
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(GetQwenLMHandle, model_name)

View File

@@ -0,0 +1,94 @@
from http import HTTPStatus
from toolbox import get_conf
import threading
import logging
timeout_bot_msg = '[Local Message] Request timeout. Network error.'
class QwenRequestInstance():
def __init__(self):
import dashscope
self.time_to_yield_event = threading.Event()
self.time_to_exit_event = threading.Event()
self.result_buf = ""
def validate_key():
DASHSCOPE_API_KEY = get_conf("DASHSCOPE_API_KEY")
if DASHSCOPE_API_KEY == '': return False
return True
if not validate_key():
raise RuntimeError('请配置 DASHSCOPE_API_KEY')
dashscope.api_key = get_conf("DASHSCOPE_API_KEY")
def generate(self, inputs, llm_kwargs, history, system_prompt):
# import _thread as thread
from dashscope import Generation
QWEN_MODEL = {
'qwen-turbo': Generation.Models.qwen_turbo,
'qwen-plus': Generation.Models.qwen_plus,
'qwen-max': Generation.Models.qwen_max,
}[llm_kwargs['llm_model']]
top_p = llm_kwargs.get('top_p', 0.8)
if top_p == 0: top_p += 1e-5
if top_p == 1: top_p -= 1e-5
self.result_buf = ""
responses = Generation.call(
model=QWEN_MODEL,
messages=generate_message_payload(inputs, llm_kwargs, history, system_prompt),
top_p=top_p,
temperature=llm_kwargs.get('temperature', 1.0),
result_format='message',
stream=True,
incremental_output=True
)
for response in responses:
if response.status_code == HTTPStatus.OK:
if response.output.choices[0].finish_reason == 'stop':
yield self.result_buf
break
elif response.output.choices[0].finish_reason == 'length':
self.result_buf += "[Local Message] 生成长度过长,后续输出被截断"
yield self.result_buf
break
else:
self.result_buf += response.output.choices[0].message.content
yield self.result_buf
else:
self.result_buf += f"[Local Message] 请求错误:状态码:{response.status_code},错误码:{response.code},消息:{response.message}"
yield self.result_buf
break
logging.info(f'[raw_input] {inputs}')
logging.info(f'[response] {self.result_buf}')
return self.result_buf
def generate_message_payload(inputs, llm_kwargs, history, system_prompt):
conversation_cnt = len(history) // 2
if system_prompt == '': system_prompt = 'Hello!'
messages = [{"role": "user", "content": system_prompt}, {"role": "assistant", "content": "Certainly!"}]
if conversation_cnt:
for index in range(0, 2*conversation_cnt, 2):
what_i_have_asked = {}
what_i_have_asked["role"] = "user"
what_i_have_asked["content"] = history[index]
what_gpt_answer = {}
what_gpt_answer["role"] = "assistant"
what_gpt_answer["content"] = history[index+1]
if what_i_have_asked["content"] != "":
if what_gpt_answer["content"] == "":
continue
if what_gpt_answer["content"] == timeout_bot_msg:
continue
messages.append(what_i_have_asked)
messages.append(what_gpt_answer)
else:
messages[-1]['content'] = what_gpt_answer['content']
what_i_ask_now = {}
what_i_ask_now["role"] = "user"
what_i_ask_now["content"] = inputs
messages.append(what_i_ask_now)
return messages

View File

@@ -0,0 +1,5 @@
modelscope
transformers_stream_generator
auto-gptq
optimum
urllib3<2