rename folder

This commit is contained in:
binary-husky
2023-10-28 17:44:17 +08:00
parent 5a530df4f2
commit cf085565a7
73 changed files with 193 additions and 193 deletions

View File

@@ -38,20 +38,20 @@
| crazy_functions\读文章写摘要.py | 对论文进行解析和全文摘要生成 |
| crazy_functions\谷歌检索小助手.py | 提供谷歌学术搜索页面中相关文章的元数据信息。 |
| crazy_functions\高级功能函数模板.py | 使用Unsplash API发送相关图片以回复用户的输入。 |
| request_llm\bridge_all.py | 基于不同LLM模型进行对话。 |
| request_llm\bridge_chatglm.py | 使用ChatGLM模型生成回复支持单线程和多线程方式。 |
| request_llm\bridge_chatgpt.py | 基于GPT模型完成对话。 |
| request_llm\bridge_jittorllms_llama.py | 使用JittorLLMs模型完成对话支持单线程和多线程方式。 |
| request_llm\bridge_jittorllms_pangualpha.py | 使用JittorLLMs模型完成对话基于多进程和多线程方式。 |
| request_llm\bridge_jittorllms_rwkv.py | 使用JittorLLMs模型完成聊天功能提供包括历史信息、参数调节等在内的多个功能选项。 |
| request_llm\bridge_moss.py | 加载Moss模型完成对话功能。 |
| request_llm\bridge_newbing.py | 使用Newbing聊天机器人进行对话支持单线程和多线程方式。 |
| request_llm\bridge_newbingfree.py | 基于Bing chatbot API实现聊天机器人的文本生成功能。 |
| request_llm\bridge_stackclaude.py | 基于Slack API实现Claude与用户的交互。 |
| request_llm\bridge_tgui.py | 通过websocket实现聊天机器人与UI界面交互。 |
| request_llm\edge_gpt.py | 调用Bing chatbot API提供聊天机器人服务。 |
| request_llm\edge_gpt_free.py | 实现聊天机器人API采用aiohttp和httpx工具库。 |
| request_llm\test_llms.py | 对llm模型进行单元测试。 |
| request_llms\bridge_all.py | 基于不同LLM模型进行对话。 |
| request_llms\bridge_chatglm.py | 使用ChatGLM模型生成回复支持单线程和多线程方式。 |
| request_llms\bridge_chatgpt.py | 基于GPT模型完成对话。 |
| request_llms\bridge_jittorllms_llama.py | 使用JittorLLMs模型完成对话支持单线程和多线程方式。 |
| request_llms\bridge_jittorllms_pangualpha.py | 使用JittorLLMs模型完成对话基于多进程和多线程方式。 |
| request_llms\bridge_jittorllms_rwkv.py | 使用JittorLLMs模型完成聊天功能提供包括历史信息、参数调节等在内的多个功能选项。 |
| request_llms\bridge_moss.py | 加载Moss模型完成对话功能。 |
| request_llms\bridge_newbing.py | 使用Newbing聊天机器人进行对话支持单线程和多线程方式。 |
| request_llms\bridge_newbingfree.py | 基于Bing chatbot API实现聊天机器人的文本生成功能。 |
| request_llms\bridge_stackclaude.py | 基于Slack API实现Claude与用户的交互。 |
| request_llms\bridge_tgui.py | 通过websocket实现聊天机器人与UI界面交互。 |
| request_llms\edge_gpt.py | 调用Bing chatbot API提供聊天机器人服务。 |
| request_llms\edge_gpt_free.py | 实现聊天机器人API采用aiohttp和httpx工具库。 |
| request_llms\test_llms.py | 对llm模型进行单元测试。 |
## 接下来请你逐文件分析下面的工程[0/48] 请对下面的程序文件做一个概述: check_proxy.py
@@ -129,7 +129,7 @@ toolbox.py是一个工具类库其中主要包含了一些函数装饰器和
1. `input_clipping`: 该函数用于裁剪输入文本长度,使其不超过一定的限制。
2. `request_gpt_model_in_new_thread_with_ui_alive`: 该函数用于请求 GPT 模型并保持用户界面的响应,支持多线程和实时更新用户界面。
这两个函数都依赖于从 `toolbox``request_llm` 中导入的一些工具函数。函数的输入和输出有详细的描述文档。
这两个函数都依赖于从 `toolbox``request_llms` 中导入的一些工具函数。函数的输入和输出有详细的描述文档。
## [12/48] 请对下面的程序文件做一个概述: crazy_functions\Latex全文润色.py
@@ -137,7 +137,7 @@ toolbox.py是一个工具类库其中主要包含了一些函数装饰器和
## [13/48] 请对下面的程序文件做一个概述: crazy_functions\Latex全文翻译.py
这个文件包含两个函数 `Latex英译中``Latex中译英`它们都会对整个Latex项目进行翻译。这个文件还包含一个类 `PaperFileGroup`,它拥有一个方法 `run_file_split`,用于把长文本文件分成多个短文件。其中使用了工具库 `toolbox` 中的一些函数和从 `request_llm` 中导入了 `model_info`。接下来的函数把文件读取进来,把它们的注释删除,进行分割,并进行翻译。这个文件还包括了一些异常处理和界面更新的操作。
这个文件包含两个函数 `Latex英译中``Latex中译英`它们都会对整个Latex项目进行翻译。这个文件还包含一个类 `PaperFileGroup`,它拥有一个方法 `run_file_split`,用于把长文本文件分成多个短文件。其中使用了工具库 `toolbox` 中的一些函数和从 `request_llms` 中导入了 `model_info`。接下来的函数把文件读取进来,把它们的注释删除,进行分割,并进行翻译。这个文件还包括了一些异常处理和界面更新的操作。
## [14/48] 请对下面的程序文件做一个概述: crazy_functions\__init__.py
@@ -227,19 +227,19 @@ toolbox.py是一个工具类库其中主要包含了一些函数装饰器和
该程序文件定义了一个名为高阶功能模板函数的函数该函数接受多个参数包括输入的文本、gpt模型参数、插件模型参数、聊天显示框的句柄、聊天历史等并利用送出请求使用 Unsplash API 发送相关图片。其中,为了避免输入溢出,函数会在开始时清空历史。函数也有一些 UI 更新的语句。该程序文件还依赖于其他两个模块CatchException 和 update_ui以及一个名为 request_gpt_model_in_new_thread_with_ui_alive 的来自 crazy_utils 模块(应该是自定义的工具包)的函数。
## [34/48] 请对下面的程序文件做一个概述: request_llm\bridge_all.py
## [34/48] 请对下面的程序文件做一个概述: request_llms\bridge_all.py
该文件包含两个函数predict和predict_no_ui_long_connection用于基于不同的LLM模型进行对话。该文件还包含一个lazyloadTiktoken类和一个LLM_CATCH_EXCEPTION修饰器函数。其中lazyloadTiktoken类用于懒加载模型的tokenizerLLM_CATCH_EXCEPTION用于错误处理。整个文件还定义了一些全局变量和模型信息字典用于引用和配置LLM模型。
## [35/48] 请对下面的程序文件做一个概述: request_llm\bridge_chatglm.py
## [35/48] 请对下面的程序文件做一个概述: request_llms\bridge_chatglm.py
这是一个Python程序文件名为`bridge_chatglm.py`,其中定义了一个名为`GetGLMHandle`的类和三个方法:`predict_no_ui_long_connection``predict``stream_chat`。该文件依赖于多个Python库`transformers``sentencepiece`。该文件实现了一个聊天机器人使用ChatGLM模型来生成回复支持单线程和多线程方式。程序启动时需要加载ChatGLM的模型和tokenizer需要一段时间。在配置文件`config.py`中设置参数会影响模型的内存和显存使用,因此程序可能会导致低配计算机卡死。
## [36/48] 请对下面的程序文件做一个概述: request_llm\bridge_chatgpt.py
## [36/48] 请对下面的程序文件做一个概述: request_llms\bridge_chatgpt.py
该文件为 Python 代码文件,文件名为 request_llm\bridge_chatgpt.py。该代码文件主要提供三个函数predict、predict_no_ui和 predict_no_ui_long_connection用于发送至 chatGPT 并等待回复,获取输出。该代码文件还包含一些辅助函数,用于处理连接异常、生成 HTTP 请求等。该文件的代码架构清晰,使用了多个自定义函数和模块。
该文件为 Python 代码文件,文件名为 request_llms\bridge_chatgpt.py。该代码文件主要提供三个函数predict、predict_no_ui和 predict_no_ui_long_connection用于发送至 chatGPT 并等待回复,获取输出。该代码文件还包含一些辅助函数,用于处理连接异常、生成 HTTP 请求等。该文件的代码架构清晰,使用了多个自定义函数和模块。
## [37/48] 请对下面的程序文件做一个概述: request_llm\bridge_jittorllms_llama.py
## [37/48] 请对下面的程序文件做一个概述: request_llms\bridge_jittorllms_llama.py
该代码文件实现了一个聊天机器人,其中使用了 JittorLLMs 模型。主要包括以下几个部分:
1. GetGLMHandle 类:一个进程类,用于加载 JittorLLMs 模型并接收并处理请求。
@@ -248,17 +248,17 @@ toolbox.py是一个工具类库其中主要包含了一些函数装饰器和
这个文件中还有一些辅助函数和全局变量,例如 importlib、time、threading 等。
## [38/48] 请对下面的程序文件做一个概述: request_llm\bridge_jittorllms_pangualpha.py
## [38/48] 请对下面的程序文件做一个概述: request_llms\bridge_jittorllms_pangualpha.py
这个文件是为了实现使用jittorllms一种机器学习模型来进行聊天功能的代码。其中包括了模型加载、模型的参数加载、消息的收发等相关操作。其中使用了多进程和多线程来提高性能和效率。代码中还包括了处理依赖关系的函数和预处理函数等。
## [39/48] 请对下面的程序文件做一个概述: request_llm\bridge_jittorllms_rwkv.py
## [39/48] 请对下面的程序文件做一个概述: request_llms\bridge_jittorllms_rwkv.py
这个文件是一个Python程序文件名为request_llm\bridge_jittorllms_rwkv.py。它依赖transformers、time、threading、importlib、multiprocessing等库。在文件中通过定义GetGLMHandle类加载jittorllms模型参数和定义stream_chat方法来实现与jittorllms模型的交互。同时该文件还定义了predict_no_ui_long_connection和predict方法来处理历史信息、调用jittorllms模型、接收回复信息并输出结果。
## [40/48] 请对下面的程序文件做一个概述: request_llm\bridge_moss.py
## [40/48] 请对下面的程序文件做一个概述: request_llms\bridge_moss.py
该文件为一个Python源代码文件文件名为 request_llm\bridge_moss.py。代码定义了一个 GetGLMHandle 类和两个函数 predict_no_ui_long_connection 和 predict。
该文件为一个Python源代码文件文件名为 request_llms\bridge_moss.py。代码定义了一个 GetGLMHandle 类和两个函数 predict_no_ui_long_connection 和 predict。
GetGLMHandle 类继承自Process类多进程主要功能是启动一个子进程并加载 MOSS 模型参数,通过 Pipe 进行主子进程的通信。该类还定义了 check_dependency、moss_init、run 和 stream_chat 等方法,其中 check_dependency 和 moss_init 是子进程的初始化方法run 是子进程运行方法stream_chat 实现了主进程和子进程的交互过程。
@@ -266,7 +266,7 @@ GetGLMHandle 类继承自Process类多进程主要功能是启动一个
函数 predict 是单线程方法,通过调用 update_ui 将交互过程中 MOSS 的回复实时更新到UIUser Interface并执行一个 named functionadditional_fn指定的函数对输入进行预处理。
## [41/48] 请对下面的程序文件做一个概述: request_llm\bridge_newbing.py
## [41/48] 请对下面的程序文件做一个概述: request_llms\bridge_newbing.py
这是一个名为`bridge_newbing.py`的程序文件,包含三个部分:
@@ -276,11 +276,11 @@ GetGLMHandle 类继承自Process类多进程主要功能是启动一个
第三部分定义了一个名为`newbing_handle`的全局变量,并导出了`predict_no_ui_long_connection``predict`这两个方法,以供其他程序可以调用。
## [42/48] 请对下面的程序文件做一个概述: request_llm\bridge_newbingfree.py
## [42/48] 请对下面的程序文件做一个概述: request_llms\bridge_newbingfree.py
这个Python文件包含了三部分内容。第一部分是来自edge_gpt_free.py文件的聊天机器人程序。第二部分是子进程Worker用于调用主体。第三部分提供了两个函数predict_no_ui_long_connection和predict用于调用NewBing聊天机器人和返回响应。其中predict函数还提供了一些参数用于控制聊天机器人的回复和更新UI界面。
## [43/48] 请对下面的程序文件做一个概述: request_llm\bridge_stackclaude.py
## [43/48] 请对下面的程序文件做一个概述: request_llms\bridge_stackclaude.py
这是一个Python源代码文件文件名为request_llm\bridge_stackclaude.py。代码分为三个主要部分
@@ -290,21 +290,21 @@ GetGLMHandle 类继承自Process类多进程主要功能是启动一个
第三部分定义了predict_no_ui_long_connection和predict两个函数主要用于通过调用ClaudeHandle对象的stream_chat方法来获取Claude的回复并更新ui以显示相关信息。其中predict函数采用单线程方法而predict_no_ui_long_connection函数使用多线程方法。
## [44/48] 请对下面的程序文件做一个概述: request_llm\bridge_tgui.py
## [44/48] 请对下面的程序文件做一个概述: request_llms\bridge_tgui.py
该文件是一个Python代码文件名为request_llm\bridge_tgui.py。它包含了一些函数用于与chatbot UI交互并通过WebSocket协议与远程LLM模型通信完成文本生成任务其中最重要的函数是predict()和predict_no_ui_long_connection()。这个程序还有其他的辅助函数如random_hash()。整个代码文件在协作的基础上完成了一次修改。
## [45/48] 请对下面的程序文件做一个概述: request_llm\edge_gpt.py
## [45/48] 请对下面的程序文件做一个概述: request_llms\edge_gpt.py
该文件是一个用于调用Bing chatbot API的Python程序它由多个类和辅助函数构成可以根据给定的对话连接在对话中提出问题使用websocket与远程服务通信。程序实现了一个聊天机器人可以为用户提供人工智能聊天。
## [46/48] 请对下面的程序文件做一个概述: request_llm\edge_gpt_free.py
## [46/48] 请对下面的程序文件做一个概述: request_llms\edge_gpt_free.py
该代码文件为一个会话API可通过Chathub发送消息以返回响应。其中使用了 aiohttp 和 httpx 库进行网络请求并发送。代码中包含了一些函数和常量,多数用于生成请求数据或是请求头信息等。同时该代码文件还包含了一个 Conversation 类,调用该类可实现对话交互。
## [47/48] 请对下面的程序文件做一个概述: request_llm\test_llms.py
## [47/48] 请对下面的程序文件做一个概述: request_llms\test_llms.py
这个文件是用于对llm模型进行单元测试的Python程序。程序导入一个名为"request_llm.bridge_newbingfree"的模块然后三次使用该模块中的predict_no_ui_long_connection()函数进行预测,并输出结果。此外,还有一些注释掉的代码段,这些代码段也是关于模型预测的。
这个文件是用于对llm模型进行单元测试的Python程序。程序导入一个名为"request_llms.bridge_newbingfree"的模块然后三次使用该模块中的predict_no_ui_long_connection()函数进行预测,并输出结果。此外,还有一些注释掉的代码段,这些代码段也是关于模型预测的。
## 用一张Markdown表格简要描述以下文件的功能
check_proxy.py, colorful.py, config.py, config_private.py, core_functional.py, crazy_functional.py, main.py, multi_language.py, theme.py, toolbox.py, crazy_functions\crazy_functions_test.py, crazy_functions\crazy_utils.py, crazy_functions\Latex全文润色.py, crazy_functions\Latex全文翻译.py, crazy_functions\__init__.py, crazy_functions\下载arxiv论文翻译摘要.py。根据以上分析用一句话概括程序的整体功能。
@@ -355,24 +355,24 @@ crazy_functions\代码重写为全英文_多线程.py, crazy_functions\图片生
概括程序的整体功能:提供了一系列处理文本、文件和代码的功能,使用了各类语言模型、多线程、网络请求和数据解析技术来提高效率和精度。
## 用一张Markdown表格简要描述以下文件的功能
crazy_functions\谷歌检索小助手.py, crazy_functions\高级功能函数模板.py, request_llm\bridge_all.py, request_llm\bridge_chatglm.py, request_llm\bridge_chatgpt.py, request_llm\bridge_jittorllms_llama.py, request_llm\bridge_jittorllms_pangualpha.py, request_llm\bridge_jittorllms_rwkv.py, request_llm\bridge_moss.py, request_llm\bridge_newbing.py, request_llm\bridge_newbingfree.py, request_llm\bridge_stackclaude.py, request_llm\bridge_tgui.py, request_llm\edge_gpt.py, request_llm\edge_gpt_free.py, request_llm\test_llms.py。根据以上分析用一句话概括程序的整体功能。
crazy_functions\谷歌检索小助手.py, crazy_functions\高级功能函数模板.py, request_llms\bridge_all.py, request_llms\bridge_chatglm.py, request_llms\bridge_chatgpt.py, request_llms\bridge_jittorllms_llama.py, request_llms\bridge_jittorllms_pangualpha.py, request_llms\bridge_jittorllms_rwkv.py, request_llms\bridge_moss.py, request_llms\bridge_newbing.py, request_llms\bridge_newbingfree.py, request_llms\bridge_stackclaude.py, request_llms\bridge_tgui.py, request_llms\edge_gpt.py, request_llms\edge_gpt_free.py, request_llms\test_llms.py。根据以上分析用一句话概括程序的整体功能。
| 文件名 | 功能描述 |
| --- | --- |
| crazy_functions\谷歌检索小助手.py | 提供谷歌学术搜索页面中相关文章的元数据信息。 |
| crazy_functions\高级功能函数模板.py | 使用Unsplash API发送相关图片以回复用户的输入。 |
| request_llm\bridge_all.py | 基于不同LLM模型进行对话。 |
| request_llm\bridge_chatglm.py | 使用ChatGLM模型生成回复支持单线程和多线程方式。 |
| request_llm\bridge_chatgpt.py | 基于GPT模型完成对话。 |
| request_llm\bridge_jittorllms_llama.py | 使用JittorLLMs模型完成对话支持单线程和多线程方式。 |
| request_llm\bridge_jittorllms_pangualpha.py | 使用JittorLLMs模型完成对话基于多进程和多线程方式。 |
| request_llm\bridge_jittorllms_rwkv.py | 使用JittorLLMs模型完成聊天功能提供包括历史信息、参数调节等在内的多个功能选项。 |
| request_llm\bridge_moss.py | 加载Moss模型完成对话功能。 |
| request_llm\bridge_newbing.py | 使用Newbing聊天机器人进行对话支持单线程和多线程方式。 |
| request_llm\bridge_newbingfree.py | 基于Bing chatbot API实现聊天机器人的文本生成功能。 |
| request_llm\bridge_stackclaude.py | 基于Slack API实现Claude与用户的交互。 |
| request_llm\bridge_tgui.py | 通过websocket实现聊天机器人与UI界面交互。 |
| request_llm\edge_gpt.py | 调用Bing chatbot API提供聊天机器人服务。 |
| request_llm\edge_gpt_free.py | 实现聊天机器人API采用aiohttp和httpx工具库。 |
| request_llm\test_llms.py | 对llm模型进行单元测试。 |
| request_llms\bridge_all.py | 基于不同LLM模型进行对话。 |
| request_llms\bridge_chatglm.py | 使用ChatGLM模型生成回复支持单线程和多线程方式。 |
| request_llms\bridge_chatgpt.py | 基于GPT模型完成对话。 |
| request_llms\bridge_jittorllms_llama.py | 使用JittorLLMs模型完成对话支持单线程和多线程方式。 |
| request_llms\bridge_jittorllms_pangualpha.py | 使用JittorLLMs模型完成对话基于多进程和多线程方式。 |
| request_llms\bridge_jittorllms_rwkv.py | 使用JittorLLMs模型完成聊天功能提供包括历史信息、参数调节等在内的多个功能选项。 |
| request_llms\bridge_moss.py | 加载Moss模型完成对话功能。 |
| request_llms\bridge_newbing.py | 使用Newbing聊天机器人进行对话支持单线程和多线程方式。 |
| request_llms\bridge_newbingfree.py | 基于Bing chatbot API实现聊天机器人的文本生成功能。 |
| request_llms\bridge_stackclaude.py | 基于Slack API实现Claude与用户的交互。 |
| request_llms\bridge_tgui.py | 通过websocket实现聊天机器人与UI界面交互。 |
| request_llms\edge_gpt.py | 调用Bing chatbot API提供聊天机器人服务。 |
| request_llms\edge_gpt_free.py | 实现聊天机器人API采用aiohttp和httpx工具库。 |
| request_llms\test_llms.py | 对llm模型进行单元测试。 |
| 程序整体功能 | 实现不同种类的聊天机器人,可以根据输入进行文本生成。 |