Merge branch 'master' into frontier

This commit is contained in:
binary-husky
2024-05-18 15:52:08 +08:00
9 changed files with 627 additions and 570 deletions

View File

@@ -179,6 +179,24 @@ model_info = {
"token_cnt": get_token_num_gpt4,
},
"gpt-4o": {
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"endpoint": openai_endpoint,
"max_token": 128000,
"tokenizer": tokenizer_gpt4,
"token_cnt": get_token_num_gpt4,
},
"gpt-4o-2024-05-13": {
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"endpoint": openai_endpoint,
"max_token": 128000,
"tokenizer": tokenizer_gpt4,
"token_cnt": get_token_num_gpt4,
},
"gpt-4-turbo-preview": {
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
@@ -971,6 +989,13 @@ if len(AZURE_CFG_ARRAY) > 0:
AVAIL_LLM_MODELS += [azure_model_name]
# -=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=-=-=
# -=-=-=-=-=-=-=-=-=- ☝️ 以上是模型路由 -=-=-=-=-=-=-=-=-=
# -=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=-=-=
# -=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=-=-=
# -=-=-=-=-=-=-= 👇 以下是多模型路由切换函数 -=-=-=-=-=-=-=
# -=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=-=-=
def LLM_CATCH_EXCEPTION(f):
@@ -1007,13 +1032,11 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list, sys
model = llm_kwargs['llm_model']
n_model = 1
if '&' not in model:
# 如果只询问1个大语言模型
# 如果只询问“一个”大语言模型(多数情况):
method = model_info[model]["fn_without_ui"]
return method(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience)
else:
# 如果同时询问多个大语言模型这个稍微啰嗦一点但思路相同您不必读这个else分支
# 如果同时询问“多个”大语言模型这个稍微啰嗦一点但思路相同您不必读这个else分支
executor = ThreadPoolExecutor(max_workers=4)
models = model.split('&')
n_model = len(models)
@@ -1066,8 +1089,26 @@ def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list, sys
res = '<br/><br/>\n\n---\n\n'.join(return_string_collect)
return res
# 根据基础功能区 ModelOverride 参数调整模型类型,用于 `predict` 中
import importlib
import core_functional
def execute_model_override(llm_kwargs, additional_fn, method):
functional = core_functional.get_core_functions()
if (additional_fn in functional) and 'ModelOverride' in functional[additional_fn]:
# 热更新Prompt & ModelOverride
importlib.reload(core_functional)
functional = core_functional.get_core_functions()
model_override = functional[additional_fn]['ModelOverride']
if model_override not in model_info:
raise ValueError(f"模型覆盖参数 '{model_override}' 指向一个暂不支持的模型,请检查配置文件。")
method = model_info[model_override]["fn_with_ui"]
llm_kwargs['llm_model'] = model_override
return llm_kwargs, additional_fn, method
# 默认返回原参数
return llm_kwargs, additional_fn, method
def predict(inputs:str, llm_kwargs:dict, *args, **kwargs):
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot,
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
"""
发送至LLM流式获取输出。
用于基础的对话功能。
@@ -1086,6 +1127,11 @@ def predict(inputs:str, llm_kwargs:dict, *args, **kwargs):
"""
inputs = apply_gpt_academic_string_mask(inputs, mode="show_llm")
method = model_info[llm_kwargs['llm_model']]["fn_with_ui"] # 如果这里报错检查config中的AVAIL_LLM_MODELS选项
yield from method(inputs, llm_kwargs, *args, **kwargs)
method = model_info[llm_kwargs['llm_model']]["fn_with_ui"] # 如果这里报错检查config中的AVAIL_LLM_MODELS选项
if additional_fn: # 根据基础功能区 ModelOverride 参数调整模型类型
llm_kwargs, additional_fn, method = execute_model_override(llm_kwargs, additional_fn, method)
yield from method(inputs, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, stream, additional_fn)

View File

@@ -1,69 +1,69 @@
import time
from toolbox import update_ui, get_conf, update_ui_lastest_msg
from toolbox import check_packages, report_exception
model_name = '云雀大模型'
def validate_key():
YUNQUE_SECRET_KEY = get_conf("YUNQUE_SECRET_KEY")
if YUNQUE_SECRET_KEY == '': return False
return True
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
observe_window:list=[], console_slience:bool=False):
"""
⭐ 多线程方法
函数的说明请见 request_llms/bridge_all.py
"""
watch_dog_patience = 5
response = ""
if validate_key() is False:
raise RuntimeError('请配置YUNQUE_SECRET_KEY')
from .com_skylark2api import YUNQUERequestInstance
sri = YUNQUERequestInstance()
for response in sri.generate(inputs, llm_kwargs, history, sys_prompt):
if len(observe_window) >= 1:
observe_window[0] = response
if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience: raise RuntimeError("程序终止。")
return response
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
⭐ 单线程方法
函数的说明请见 request_llms/bridge_all.py
"""
chatbot.append((inputs, ""))
yield from update_ui(chatbot=chatbot, history=history)
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
check_packages(["zhipuai"])
except:
yield from update_ui_lastest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install --upgrade zhipuai```。",
chatbot=chatbot, history=history, delay=0)
return
if validate_key() is False:
yield from update_ui_lastest_msg(lastmsg="[Local Message] 请配置HUOSHAN_API_KEY", chatbot=chatbot, history=history, delay=0)
return
if additional_fn is not None:
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
# 开始接收回复
from .com_skylark2api import YUNQUERequestInstance
sri = YUNQUERequestInstance()
response = f"[Local Message] 等待{model_name}响应中 ..."
for response in sri.generate(inputs, llm_kwargs, history, system_prompt):
chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history)
# 总结输出
if response == f"[Local Message] 等待{model_name}响应中 ...":
response = f"[Local Message] {model_name}响应异常 ..."
history.extend([inputs, response])
import time
from toolbox import update_ui, get_conf, update_ui_lastest_msg
from toolbox import check_packages, report_exception
model_name = '云雀大模型'
def validate_key():
YUNQUE_SECRET_KEY = get_conf("YUNQUE_SECRET_KEY")
if YUNQUE_SECRET_KEY == '': return False
return True
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
observe_window:list=[], console_slience:bool=False):
"""
⭐ 多线程方法
函数的说明请见 request_llms/bridge_all.py
"""
watch_dog_patience = 5
response = ""
if validate_key() is False:
raise RuntimeError('请配置YUNQUE_SECRET_KEY')
from .com_skylark2api import YUNQUERequestInstance
sri = YUNQUERequestInstance()
for response in sri.generate(inputs, llm_kwargs, history, sys_prompt):
if len(observe_window) >= 1:
observe_window[0] = response
if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience: raise RuntimeError("程序终止。")
return response
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
⭐ 单线程方法
函数的说明请见 request_llms/bridge_all.py
"""
chatbot.append((inputs, ""))
yield from update_ui(chatbot=chatbot, history=history)
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
check_packages(["zhipuai"])
except:
yield from update_ui_lastest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install --upgrade zhipuai```。",
chatbot=chatbot, history=history, delay=0)
return
if validate_key() is False:
yield from update_ui_lastest_msg(lastmsg="[Local Message] 请配置HUOSHAN_API_KEY", chatbot=chatbot, history=history, delay=0)
return
if additional_fn is not None:
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
# 开始接收回复
from .com_skylark2api import YUNQUERequestInstance
sri = YUNQUERequestInstance()
response = f"[Local Message] 等待{model_name}响应中 ..."
for response in sri.generate(inputs, llm_kwargs, history, system_prompt):
chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history)
# 总结输出
if response == f"[Local Message] 等待{model_name}响应中 ...":
response = f"[Local Message] {model_name}响应异常 ..."
history.extend([inputs, response])
yield from update_ui(chatbot=chatbot, history=history)

View File

@@ -1,95 +1,95 @@
from toolbox import get_conf
import threading
import logging
import os
timeout_bot_msg = '[Local Message] Request timeout. Network error.'
#os.environ['VOLC_ACCESSKEY'] = ''
#os.environ['VOLC_SECRETKEY'] = ''
class YUNQUERequestInstance():
def __init__(self):
self.time_to_yield_event = threading.Event()
self.time_to_exit_event = threading.Event()
self.result_buf = ""
def generate(self, inputs, llm_kwargs, history, system_prompt):
# import _thread as thread
from volcengine.maas import MaasService, MaasException
maas = MaasService('maas-api.ml-platform-cn-beijing.volces.com', 'cn-beijing')
YUNQUE_SECRET_KEY, YUNQUE_ACCESS_KEY,YUNQUE_MODEL = get_conf("YUNQUE_SECRET_KEY", "YUNQUE_ACCESS_KEY","YUNQUE_MODEL")
maas.set_ak(YUNQUE_ACCESS_KEY) #填写 VOLC_ACCESSKEY
maas.set_sk(YUNQUE_SECRET_KEY) #填写 'VOLC_SECRETKEY'
self.result_buf = ""
req = {
"model": {
"name": YUNQUE_MODEL,
"version": "1.0", # use default version if not specified.
},
"parameters": {
"max_new_tokens": 4000, # 输出文本的最大tokens限制
"min_new_tokens": 1, # 输出文本的最小tokens限制
"temperature": llm_kwargs['temperature'], # 用于控制生成文本的随机性和创造性Temperature值越大随机性越大取值范围0~1
"top_p": llm_kwargs['top_p'], # 用于控制输出tokens的多样性TopP值越大输出的tokens类型越丰富取值范围0~1
"top_k": 0, # 选择预测值最大的k个token进行采样取值范围0-10000表示不生效
"max_prompt_tokens": 4000, # 最大输入 token 数,如果给出的 prompt 的 token 长度超过此限制,取最后 max_prompt_tokens 个 token 输入模型。
},
"messages": self.generate_message_payload(inputs, llm_kwargs, history, system_prompt)
}
response = maas.stream_chat(req)
for resp in response:
self.result_buf += resp.choice.message.content
yield self.result_buf
'''
for event in response.events():
if event.event == "add":
self.result_buf += event.data
yield self.result_buf
elif event.event == "error" or event.event == "interrupted":
raise RuntimeError("Unknown error:" + event.data)
elif event.event == "finish":
yield self.result_buf
break
else:
raise RuntimeError("Unknown error:" + str(event))
logging.info(f'[raw_input] {inputs}')
logging.info(f'[response] {self.result_buf}')
'''
return self.result_buf
def generate_message_payload(inputs, llm_kwargs, history, system_prompt):
from volcengine.maas import ChatRole
conversation_cnt = len(history) // 2
messages = [{"role": ChatRole.USER, "content": system_prompt},
{"role": ChatRole.ASSISTANT, "content": "Certainly!"}]
if conversation_cnt:
for index in range(0, 2 * conversation_cnt, 2):
what_i_have_asked = {}
what_i_have_asked["role"] = ChatRole.USER
what_i_have_asked["content"] = history[index]
what_gpt_answer = {}
what_gpt_answer["role"] = ChatRole.ASSISTANT
what_gpt_answer["content"] = history[index + 1]
if what_i_have_asked["content"] != "":
if what_gpt_answer["content"] == "":
continue
if what_gpt_answer["content"] == timeout_bot_msg:
continue
messages.append(what_i_have_asked)
messages.append(what_gpt_answer)
else:
messages[-1]['content'] = what_gpt_answer['content']
what_i_ask_now = {}
what_i_ask_now["role"] = ChatRole.USER
what_i_ask_now["content"] = inputs
messages.append(what_i_ask_now)
from toolbox import get_conf
import threading
import logging
import os
timeout_bot_msg = '[Local Message] Request timeout. Network error.'
#os.environ['VOLC_ACCESSKEY'] = ''
#os.environ['VOLC_SECRETKEY'] = ''
class YUNQUERequestInstance():
def __init__(self):
self.time_to_yield_event = threading.Event()
self.time_to_exit_event = threading.Event()
self.result_buf = ""
def generate(self, inputs, llm_kwargs, history, system_prompt):
# import _thread as thread
from volcengine.maas import MaasService, MaasException
maas = MaasService('maas-api.ml-platform-cn-beijing.volces.com', 'cn-beijing')
YUNQUE_SECRET_KEY, YUNQUE_ACCESS_KEY,YUNQUE_MODEL = get_conf("YUNQUE_SECRET_KEY", "YUNQUE_ACCESS_KEY","YUNQUE_MODEL")
maas.set_ak(YUNQUE_ACCESS_KEY) #填写 VOLC_ACCESSKEY
maas.set_sk(YUNQUE_SECRET_KEY) #填写 'VOLC_SECRETKEY'
self.result_buf = ""
req = {
"model": {
"name": YUNQUE_MODEL,
"version": "1.0", # use default version if not specified.
},
"parameters": {
"max_new_tokens": 4000, # 输出文本的最大tokens限制
"min_new_tokens": 1, # 输出文本的最小tokens限制
"temperature": llm_kwargs['temperature'], # 用于控制生成文本的随机性和创造性Temperature值越大随机性越大取值范围0~1
"top_p": llm_kwargs['top_p'], # 用于控制输出tokens的多样性TopP值越大输出的tokens类型越丰富取值范围0~1
"top_k": 0, # 选择预测值最大的k个token进行采样取值范围0-10000表示不生效
"max_prompt_tokens": 4000, # 最大输入 token 数,如果给出的 prompt 的 token 长度超过此限制,取最后 max_prompt_tokens 个 token 输入模型。
},
"messages": self.generate_message_payload(inputs, llm_kwargs, history, system_prompt)
}
response = maas.stream_chat(req)
for resp in response:
self.result_buf += resp.choice.message.content
yield self.result_buf
'''
for event in response.events():
if event.event == "add":
self.result_buf += event.data
yield self.result_buf
elif event.event == "error" or event.event == "interrupted":
raise RuntimeError("Unknown error:" + event.data)
elif event.event == "finish":
yield self.result_buf
break
else:
raise RuntimeError("Unknown error:" + str(event))
logging.info(f'[raw_input] {inputs}')
logging.info(f'[response] {self.result_buf}')
'''
return self.result_buf
def generate_message_payload(inputs, llm_kwargs, history, system_prompt):
from volcengine.maas import ChatRole
conversation_cnt = len(history) // 2
messages = [{"role": ChatRole.USER, "content": system_prompt},
{"role": ChatRole.ASSISTANT, "content": "Certainly!"}]
if conversation_cnt:
for index in range(0, 2 * conversation_cnt, 2):
what_i_have_asked = {}
what_i_have_asked["role"] = ChatRole.USER
what_i_have_asked["content"] = history[index]
what_gpt_answer = {}
what_gpt_answer["role"] = ChatRole.ASSISTANT
what_gpt_answer["content"] = history[index + 1]
if what_i_have_asked["content"] != "":
if what_gpt_answer["content"] == "":
continue
if what_gpt_answer["content"] == timeout_bot_msg:
continue
messages.append(what_i_have_asked)
messages.append(what_gpt_answer)
else:
messages[-1]['content'] = what_gpt_answer['content']
what_i_ask_now = {}
what_i_ask_now["role"] = ChatRole.USER
what_i_ask_now["content"] = inputs
messages.append(what_i_ask_now)
return messages