Added some modules to support openrouter (#1975)
* Added some modules for supporting openrouter model Added some modules for supporting openrouter model * Update config.py * Update .gitignore * Update bridge_openrouter.py * Not changed actually * Refactor logging in bridge_openrouter.py --------- Co-authored-by: binary-husky <qingxu.fu@outlook.com>
This commit is contained in:
@@ -57,9 +57,9 @@ EMBEDDING_MODEL = "text-embedding-3-small"
|
|||||||
# "yi-34b-chat-0205","yi-34b-chat-200k","yi-large","yi-medium","yi-spark","yi-large-turbo","yi-large-preview",
|
# "yi-34b-chat-0205","yi-34b-chat-200k","yi-large","yi-medium","yi-spark","yi-large-turbo","yi-large-preview",
|
||||||
# ]
|
# ]
|
||||||
# --- --- --- ---
|
# --- --- --- ---
|
||||||
# 此外,您还可以在接入one-api/vllm/ollama时,
|
# 此外,您还可以在接入one-api/vllm/ollama/Openroute时,
|
||||||
# 使用"one-api-*","vllm-*","ollama-*"前缀直接使用非标准方式接入的模型,例如
|
# 使用"one-api-*","vllm-*","ollama-*","openrouter-*"前缀直接使用非标准方式接入的模型,例如
|
||||||
# AVAIL_LLM_MODELS = ["one-api-claude-3-sonnet-20240229(max_token=100000)", "ollama-phi3(max_token=4096)"]
|
# AVAIL_LLM_MODELS = ["one-api-claude-3-sonnet-20240229(max_token=100000)", "ollama-phi3(max_token=4096)","openrouter-openai/gpt-4o-mini","openrouter-openai/chatgpt-4o-latest"]
|
||||||
# --- --- --- ---
|
# --- --- --- ---
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -4,7 +4,7 @@ We currently support fastapi in order to solve sub-path deploy issue.
|
|||||||
|
|
||||||
1. change CUSTOM_PATH setting in `config.py`
|
1. change CUSTOM_PATH setting in `config.py`
|
||||||
|
|
||||||
``` sh
|
```sh
|
||||||
nano config.py
|
nano config.py
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -35,9 +35,8 @@ if __name__ == "__main__":
|
|||||||
main()
|
main()
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
3. Go!
|
3. Go!
|
||||||
|
|
||||||
``` sh
|
```sh
|
||||||
python main.py
|
python main.py
|
||||||
```
|
```
|
||||||
|
|||||||
@@ -1116,6 +1116,24 @@ if len(AZURE_CFG_ARRAY) > 0:
|
|||||||
if azure_model_name not in AVAIL_LLM_MODELS:
|
if azure_model_name not in AVAIL_LLM_MODELS:
|
||||||
AVAIL_LLM_MODELS += [azure_model_name]
|
AVAIL_LLM_MODELS += [azure_model_name]
|
||||||
|
|
||||||
|
# -=-=-=-=-=-=- Openrouter模型对齐支持 -=-=-=-=-=-=-
|
||||||
|
# 为了更灵活地接入Openrouter路由,设计了此接口
|
||||||
|
for model in [m for m in AVAIL_LLM_MODELS if m.startswith("openrouter-")]:
|
||||||
|
from request_llms.bridge_openrouter import predict_no_ui_long_connection as openrouter_noui
|
||||||
|
from request_llms.bridge_openrouter import predict as openrouter_ui
|
||||||
|
model_info.update({
|
||||||
|
model: {
|
||||||
|
"fn_with_ui": openrouter_ui,
|
||||||
|
"fn_without_ui": openrouter_noui,
|
||||||
|
# 以下参数参考gpt-4o-mini的配置, 请根据实际情况修改
|
||||||
|
"endpoint": openai_endpoint,
|
||||||
|
"has_multimodal_capacity": True,
|
||||||
|
"max_token": 128000,
|
||||||
|
"tokenizer": tokenizer_gpt4,
|
||||||
|
"token_cnt": get_token_num_gpt4,
|
||||||
|
},
|
||||||
|
})
|
||||||
|
|
||||||
|
|
||||||
# -=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=-=-=
|
# -=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=--=-=-=-=-=-=-=-=
|
||||||
# -=-=-=-=-=-=-=-=-=- ☝️ 以上是模型路由 -=-=-=-=-=-=-=-=-=
|
# -=-=-=-=-=-=-=-=-=- ☝️ 以上是模型路由 -=-=-=-=-=-=-=-=-=
|
||||||
@@ -1261,5 +1279,6 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot,
|
|||||||
if additional_fn: # 根据基础功能区 ModelOverride 参数调整模型类型
|
if additional_fn: # 根据基础功能区 ModelOverride 参数调整模型类型
|
||||||
llm_kwargs, additional_fn, method = execute_model_override(llm_kwargs, additional_fn, method)
|
llm_kwargs, additional_fn, method = execute_model_override(llm_kwargs, additional_fn, method)
|
||||||
|
|
||||||
|
# 更新一下llm_kwargs的参数,否则会出现参数不匹配的问题
|
||||||
yield from method(inputs, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, stream, additional_fn)
|
yield from method(inputs, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, stream, additional_fn)
|
||||||
|
|
||||||
|
|||||||
541
request_llms/bridge_openrouter.py
Normal file
541
request_llms/bridge_openrouter.py
Normal file
@@ -0,0 +1,541 @@
|
|||||||
|
"""
|
||||||
|
该文件中主要包含三个函数
|
||||||
|
|
||||||
|
不具备多线程能力的函数:
|
||||||
|
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
|
||||||
|
|
||||||
|
具备多线程调用能力的函数
|
||||||
|
2. predict_no_ui_long_connection:支持多线程
|
||||||
|
"""
|
||||||
|
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
import re
|
||||||
|
import time
|
||||||
|
import traceback
|
||||||
|
import requests
|
||||||
|
import random
|
||||||
|
from loguru import logger
|
||||||
|
|
||||||
|
# config_private.py放自己的秘密如API和代理网址
|
||||||
|
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||||
|
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history
|
||||||
|
from toolbox import trimmed_format_exc, is_the_upload_folder, read_one_api_model_name, log_chat
|
||||||
|
from toolbox import ChatBotWithCookies, have_any_recent_upload_image_files, encode_image
|
||||||
|
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
|
||||||
|
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')
|
||||||
|
|
||||||
|
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
||||||
|
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
|
||||||
|
|
||||||
|
def get_full_error(chunk, stream_response):
|
||||||
|
"""
|
||||||
|
获取完整的从Openai返回的报错
|
||||||
|
"""
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
chunk += next(stream_response)
|
||||||
|
except:
|
||||||
|
break
|
||||||
|
return chunk
|
||||||
|
|
||||||
|
def make_multimodal_input(inputs, image_paths):
|
||||||
|
image_base64_array = []
|
||||||
|
for image_path in image_paths:
|
||||||
|
path = os.path.abspath(image_path)
|
||||||
|
base64 = encode_image(path)
|
||||||
|
inputs = inputs + f'<br/><br/><div align="center"><img src="file={path}" base64="{base64}"></div>'
|
||||||
|
image_base64_array.append(base64)
|
||||||
|
return inputs, image_base64_array
|
||||||
|
|
||||||
|
def reverse_base64_from_input(inputs):
|
||||||
|
# 定义一个正则表达式来匹配 Base64 字符串(假设格式为 base64="<Base64编码>")
|
||||||
|
# pattern = re.compile(r'base64="([^"]+)"></div>')
|
||||||
|
pattern = re.compile(r'<br/><br/><div align="center"><img[^<>]+base64="([^"]+)"></div>')
|
||||||
|
# 使用 findall 方法查找所有匹配的 Base64 字符串
|
||||||
|
base64_strings = pattern.findall(inputs)
|
||||||
|
# 返回反转后的 Base64 字符串列表
|
||||||
|
return base64_strings
|
||||||
|
|
||||||
|
def contain_base64(inputs):
|
||||||
|
base64_strings = reverse_base64_from_input(inputs)
|
||||||
|
return len(base64_strings) > 0
|
||||||
|
|
||||||
|
def append_image_if_contain_base64(inputs):
|
||||||
|
if not contain_base64(inputs):
|
||||||
|
return inputs
|
||||||
|
else:
|
||||||
|
image_base64_array = reverse_base64_from_input(inputs)
|
||||||
|
pattern = re.compile(r'<br/><br/><div align="center"><img[^><]+></div>')
|
||||||
|
inputs = re.sub(pattern, '', inputs)
|
||||||
|
res = []
|
||||||
|
res.append({
|
||||||
|
"type": "text",
|
||||||
|
"text": inputs
|
||||||
|
})
|
||||||
|
for image_base64 in image_base64_array:
|
||||||
|
res.append({
|
||||||
|
"type": "image_url",
|
||||||
|
"image_url": {
|
||||||
|
"url": f"data:image/jpeg;base64,{image_base64}"
|
||||||
|
}
|
||||||
|
})
|
||||||
|
return res
|
||||||
|
|
||||||
|
def remove_image_if_contain_base64(inputs):
|
||||||
|
if not contain_base64(inputs):
|
||||||
|
return inputs
|
||||||
|
else:
|
||||||
|
pattern = re.compile(r'<br/><br/><div align="center"><img[^><]+></div>')
|
||||||
|
inputs = re.sub(pattern, '', inputs)
|
||||||
|
return inputs
|
||||||
|
|
||||||
|
def decode_chunk(chunk):
|
||||||
|
# 提前读取一些信息 (用于判断异常)
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
chunkjson = None
|
||||||
|
has_choices = False
|
||||||
|
choice_valid = False
|
||||||
|
has_content = False
|
||||||
|
has_role = False
|
||||||
|
try:
|
||||||
|
chunkjson = json.loads(chunk_decoded[6:])
|
||||||
|
has_choices = 'choices' in chunkjson
|
||||||
|
if has_choices: choice_valid = (len(chunkjson['choices']) > 0)
|
||||||
|
if has_choices and choice_valid: has_content = ("content" in chunkjson['choices'][0]["delta"])
|
||||||
|
if has_content: has_content = (chunkjson['choices'][0]["delta"]["content"] is not None)
|
||||||
|
if has_choices and choice_valid: has_role = "role" in chunkjson['choices'][0]["delta"]
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
return chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role
|
||||||
|
|
||||||
|
from functools import lru_cache
|
||||||
|
@lru_cache(maxsize=32)
|
||||||
|
def verify_endpoint(endpoint):
|
||||||
|
"""
|
||||||
|
检查endpoint是否可用
|
||||||
|
"""
|
||||||
|
if "你亲手写的api名称" in endpoint:
|
||||||
|
raise ValueError("Endpoint不正确, 请检查AZURE_ENDPOINT的配置! 当前的Endpoint为:" + endpoint)
|
||||||
|
return endpoint
|
||||||
|
|
||||||
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_slience:bool=False):
|
||||||
|
"""
|
||||||
|
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||||
|
inputs:
|
||||||
|
是本次问询的输入
|
||||||
|
sys_prompt:
|
||||||
|
系统静默prompt
|
||||||
|
llm_kwargs:
|
||||||
|
chatGPT的内部调优参数
|
||||||
|
history:
|
||||||
|
是之前的对话列表
|
||||||
|
observe_window = None:
|
||||||
|
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
||||||
|
"""
|
||||||
|
from request_llms.bridge_all import model_info
|
||||||
|
|
||||||
|
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
||||||
|
|
||||||
|
if model_info[llm_kwargs['llm_model']].get('openai_disable_stream', False): stream = False
|
||||||
|
else: stream = True
|
||||||
|
|
||||||
|
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=stream)
|
||||||
|
retry = 0
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
# make a POST request to the API endpoint, stream=False
|
||||||
|
endpoint = verify_endpoint(model_info[llm_kwargs['llm_model']]['endpoint'])
|
||||||
|
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
||||||
|
json=payload, stream=stream, timeout=TIMEOUT_SECONDS); break
|
||||||
|
except requests.exceptions.ReadTimeout as e:
|
||||||
|
retry += 1
|
||||||
|
traceback.print_exc()
|
||||||
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
|
if MAX_RETRY!=0: logger.error(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||||
|
|
||||||
|
if not stream:
|
||||||
|
# 该分支仅适用于不支持stream的o1模型,其他情形一律不适用
|
||||||
|
chunkjson = json.loads(response.content.decode())
|
||||||
|
gpt_replying_buffer = chunkjson['choices'][0]["message"]["content"]
|
||||||
|
return gpt_replying_buffer
|
||||||
|
|
||||||
|
stream_response = response.iter_lines()
|
||||||
|
result = ''
|
||||||
|
json_data = None
|
||||||
|
while True:
|
||||||
|
try: chunk = next(stream_response)
|
||||||
|
except StopIteration:
|
||||||
|
break
|
||||||
|
except requests.exceptions.ConnectionError:
|
||||||
|
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||||
|
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
|
||||||
|
if len(chunk_decoded)==0: continue
|
||||||
|
if not chunk_decoded.startswith('data:'):
|
||||||
|
error_msg = get_full_error(chunk, stream_response).decode()
|
||||||
|
if "reduce the length" in error_msg:
|
||||||
|
raise ConnectionAbortedError("OpenAI拒绝了请求:" + error_msg)
|
||||||
|
elif """type":"upstream_error","param":"307""" in error_msg:
|
||||||
|
raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。")
|
||||||
|
else:
|
||||||
|
raise RuntimeError("OpenAI拒绝了请求:" + error_msg)
|
||||||
|
if ('data: [DONE]' in chunk_decoded): break # api2d 正常完成
|
||||||
|
# 提前读取一些信息 (用于判断异常)
|
||||||
|
if (has_choices and not choice_valid) or ('OPENROUTER PROCESSING' in chunk_decoded):
|
||||||
|
# 一些垃圾第三方接口的出现这样的错误,openrouter的特殊处理
|
||||||
|
continue
|
||||||
|
json_data = chunkjson['choices'][0]
|
||||||
|
delta = json_data["delta"]
|
||||||
|
if len(delta) == 0: break
|
||||||
|
if (not has_content) and has_role: continue
|
||||||
|
if (not has_content) and (not has_role): continue # raise RuntimeError("发现不标准的第三方接口:"+delta)
|
||||||
|
if has_content: # has_role = True/False
|
||||||
|
result += delta["content"]
|
||||||
|
if not console_slience: print(delta["content"], end='')
|
||||||
|
if observe_window is not None:
|
||||||
|
# 观测窗,把已经获取的数据显示出去
|
||||||
|
if len(observe_window) >= 1:
|
||||||
|
observe_window[0] += delta["content"]
|
||||||
|
# 看门狗,如果超过期限没有喂狗,则终止
|
||||||
|
if len(observe_window) >= 2:
|
||||||
|
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||||
|
raise RuntimeError("用户取消了程序。")
|
||||||
|
else: raise RuntimeError("意外Json结构:"+delta)
|
||||||
|
if json_data and json_data['finish_reason'] == 'content_filter':
|
||||||
|
raise RuntimeError("由于提问含不合规内容被Azure过滤。")
|
||||||
|
if json_data and json_data['finish_reason'] == 'length':
|
||||||
|
raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。")
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
|
||||||
|
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||||
|
"""
|
||||||
|
发送至chatGPT,流式获取输出。
|
||||||
|
用于基础的对话功能。
|
||||||
|
inputs 是本次问询的输入
|
||||||
|
top_p, temperature是chatGPT的内部调优参数
|
||||||
|
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||||
|
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||||
|
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||||
|
"""
|
||||||
|
from request_llms.bridge_all import model_info
|
||||||
|
if is_any_api_key(inputs):
|
||||||
|
chatbot._cookies['api_key'] = inputs
|
||||||
|
chatbot.append(("输入已识别为openai的api_key", what_keys(inputs)))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="api_key已导入") # 刷新界面
|
||||||
|
return
|
||||||
|
elif not is_any_api_key(chatbot._cookies['api_key']):
|
||||||
|
chatbot.append((inputs, "缺少api_key。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。"))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="缺少api_key") # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
user_input = inputs
|
||||||
|
if additional_fn is not None:
|
||||||
|
from core_functional import handle_core_functionality
|
||||||
|
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||||
|
|
||||||
|
# 多模态模型
|
||||||
|
has_multimodal_capacity = model_info[llm_kwargs['llm_model']].get('has_multimodal_capacity', False)
|
||||||
|
if has_multimodal_capacity:
|
||||||
|
has_recent_image_upload, image_paths = have_any_recent_upload_image_files(chatbot, pop=True)
|
||||||
|
else:
|
||||||
|
has_recent_image_upload, image_paths = False, []
|
||||||
|
if has_recent_image_upload:
|
||||||
|
_inputs, image_base64_array = make_multimodal_input(inputs, image_paths)
|
||||||
|
else:
|
||||||
|
_inputs, image_base64_array = inputs, []
|
||||||
|
chatbot.append((_inputs, ""))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||||
|
|
||||||
|
# 禁用stream的特殊模型处理
|
||||||
|
if model_info[llm_kwargs['llm_model']].get('openai_disable_stream', False): stream = False
|
||||||
|
else: stream = True
|
||||||
|
|
||||||
|
# check mis-behavior
|
||||||
|
if is_the_upload_folder(user_input):
|
||||||
|
chatbot[-1] = (inputs, f"[Local Message] 检测到操作错误!当您上传文档之后,需点击“**函数插件区**”按钮进行处理,请勿点击“提交”按钮或者“基础功能区”按钮。")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="正常") # 刷新界面
|
||||||
|
time.sleep(2)
|
||||||
|
|
||||||
|
try:
|
||||||
|
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, image_base64_array, has_multimodal_capacity, stream)
|
||||||
|
except RuntimeError as e:
|
||||||
|
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
# 检查endpoint是否合法
|
||||||
|
try:
|
||||||
|
endpoint = verify_endpoint(model_info[llm_kwargs['llm_model']]['endpoint'])
|
||||||
|
except:
|
||||||
|
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||||
|
chatbot[-1] = (inputs, tb_str)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="Endpoint不满足要求") # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
# 加入历史
|
||||||
|
if has_recent_image_upload:
|
||||||
|
history.extend([_inputs, ""])
|
||||||
|
else:
|
||||||
|
history.extend([inputs, ""])
|
||||||
|
|
||||||
|
retry = 0
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
# make a POST request to the API endpoint, stream=True
|
||||||
|
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
||||||
|
json=payload, stream=stream, timeout=TIMEOUT_SECONDS);break
|
||||||
|
except:
|
||||||
|
retry += 1
|
||||||
|
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
|
||||||
|
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
|
||||||
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
|
|
||||||
|
|
||||||
|
if not stream:
|
||||||
|
# 该分支仅适用于不支持stream的o1模型,其他情形一律不适用
|
||||||
|
yield from handle_o1_model_special(response, inputs, llm_kwargs, chatbot, history)
|
||||||
|
return
|
||||||
|
|
||||||
|
if stream:
|
||||||
|
gpt_replying_buffer = ""
|
||||||
|
is_head_of_the_stream = True
|
||||||
|
stream_response = response.iter_lines()
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
chunk = next(stream_response)
|
||||||
|
except StopIteration:
|
||||||
|
# 非OpenAI官方接口的出现这样的报错,OpenAI和API2D不会走这里
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
error_msg = chunk_decoded
|
||||||
|
# 首先排除一个one-api没有done数据包的第三方Bug情形
|
||||||
|
if len(gpt_replying_buffer.strip()) > 0 and len(error_msg) == 0:
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="检测到有缺陷的非OpenAI官方接口,建议选择更稳定的接口。")
|
||||||
|
break
|
||||||
|
# 其他情况,直接返回报错
|
||||||
|
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="非OpenAI官方接口返回了错误:" + chunk.decode()) # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
# 提前读取一些信息 (用于判断异常)
|
||||||
|
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
|
||||||
|
|
||||||
|
if is_head_of_the_stream and (r'"object":"error"' not in chunk_decoded) and (r"content" not in chunk_decoded):
|
||||||
|
# 数据流的第一帧不携带content
|
||||||
|
is_head_of_the_stream = False; continue
|
||||||
|
|
||||||
|
if chunk:
|
||||||
|
try:
|
||||||
|
if (has_choices and not choice_valid) or ('OPENROUTER PROCESSING' in chunk_decoded):
|
||||||
|
# 一些垃圾第三方接口的出现这样的错误, 或者OPENROUTER的特殊处理,因为OPENROUTER的数据流未连接到模型时会出现OPENROUTER PROCESSING
|
||||||
|
continue
|
||||||
|
if ('data: [DONE]' not in chunk_decoded) and len(chunk_decoded) > 0 and (chunkjson is None):
|
||||||
|
# 传递进来一些奇怪的东西
|
||||||
|
raise ValueError(f'无法读取以下数据,请检查配置。\n\n{chunk_decoded}')
|
||||||
|
# 前者是API2D的结束条件,后者是OPENAI的结束条件
|
||||||
|
if ('data: [DONE]' in chunk_decoded) or (len(chunkjson['choices'][0]["delta"]) == 0):
|
||||||
|
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
||||||
|
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
||||||
|
break
|
||||||
|
# 处理数据流的主体
|
||||||
|
status_text = f"finish_reason: {chunkjson['choices'][0].get('finish_reason', 'null')}"
|
||||||
|
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
|
||||||
|
if has_content:
|
||||||
|
# 正常情况
|
||||||
|
gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]
|
||||||
|
elif has_role:
|
||||||
|
# 一些第三方接口的出现这样的错误,兼容一下吧
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
# 至此已经超出了正常接口应该进入的范围,一些垃圾第三方接口会出现这样的错误
|
||||||
|
if chunkjson['choices'][0]["delta"]["content"] is None: continue # 一些垃圾第三方接口出现这样的错误,兼容一下吧
|
||||||
|
gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]
|
||||||
|
|
||||||
|
history[-1] = gpt_replying_buffer
|
||||||
|
chatbot[-1] = (history[-2], history[-1])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
|
||||||
|
except Exception as e:
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
|
||||||
|
chunk = get_full_error(chunk, stream_response)
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
error_msg = chunk_decoded
|
||||||
|
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析异常" + error_msg) # 刷新界面
|
||||||
|
logger.error(error_msg)
|
||||||
|
return
|
||||||
|
return # return from stream-branch
|
||||||
|
|
||||||
|
def handle_o1_model_special(response, inputs, llm_kwargs, chatbot, history):
|
||||||
|
try:
|
||||||
|
chunkjson = json.loads(response.content.decode())
|
||||||
|
gpt_replying_buffer = chunkjson['choices'][0]["message"]["content"]
|
||||||
|
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
||||||
|
history[-1] = gpt_replying_buffer
|
||||||
|
chatbot[-1] = (history[-2], history[-1])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
except Exception as e:
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析异常" + response.text) # 刷新界面
|
||||||
|
|
||||||
|
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):
|
||||||
|
from request_llms.bridge_all import model_info
|
||||||
|
openai_website = ' 请登录OpenAI查看详情 https://platform.openai.com/signup'
|
||||||
|
if "reduce the length" in error_msg:
|
||||||
|
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
|
||||||
|
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
|
||||||
|
max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
|
||||||
|
elif "does not exist" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], f"[Local Message] Model {llm_kwargs['llm_model']} does not exist. 模型不存在, 或者您没有获得体验资格.")
|
||||||
|
elif "Incorrect API key" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. OpenAI以提供了不正确的API_KEY为由, 拒绝服务. " + openai_website)
|
||||||
|
elif "exceeded your current quota" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] You exceeded your current quota. OpenAI以账户额度不足为由, 拒绝服务." + openai_website)
|
||||||
|
elif "account is not active" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Your account is not active. OpenAI以账户失效为由, 拒绝服务." + openai_website)
|
||||||
|
elif "associated with a deactivated account" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] You are associated with a deactivated account. OpenAI以账户失效为由, 拒绝服务." + openai_website)
|
||||||
|
elif "API key has been deactivated" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] API key has been deactivated. OpenAI以账户失效为由, 拒绝服务." + openai_website)
|
||||||
|
elif "bad forward key" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Bad forward key. API2D账户额度不足.")
|
||||||
|
elif "Not enough point" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Not enough point. API2D账户点数不足.")
|
||||||
|
else:
|
||||||
|
from toolbox import regular_txt_to_markdown
|
||||||
|
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||||
|
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}")
|
||||||
|
return chatbot, history
|
||||||
|
|
||||||
|
def generate_payload(inputs:str, llm_kwargs:dict, history:list, system_prompt:str, image_base64_array:list=[], has_multimodal_capacity:bool=False, stream:bool=True):
|
||||||
|
"""
|
||||||
|
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
|
||||||
|
"""
|
||||||
|
from request_llms.bridge_all import model_info
|
||||||
|
|
||||||
|
if not is_any_api_key(llm_kwargs['api_key']):
|
||||||
|
raise AssertionError("你提供了错误的API_KEY。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。")
|
||||||
|
|
||||||
|
if llm_kwargs['llm_model'].startswith('vllm-'):
|
||||||
|
api_key = 'no-api-key'
|
||||||
|
else:
|
||||||
|
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
|
||||||
|
|
||||||
|
headers = {
|
||||||
|
"Content-Type": "application/json",
|
||||||
|
"Authorization": f"Bearer {api_key}"
|
||||||
|
}
|
||||||
|
if API_ORG.startswith('org-'): headers.update({"OpenAI-Organization": API_ORG})
|
||||||
|
if llm_kwargs['llm_model'].startswith('azure-'):
|
||||||
|
headers.update({"api-key": api_key})
|
||||||
|
if llm_kwargs['llm_model'] in AZURE_CFG_ARRAY.keys():
|
||||||
|
azure_api_key_unshared = AZURE_CFG_ARRAY[llm_kwargs['llm_model']]["AZURE_API_KEY"]
|
||||||
|
headers.update({"api-key": azure_api_key_unshared})
|
||||||
|
|
||||||
|
if has_multimodal_capacity:
|
||||||
|
# 当以下条件满足时,启用多模态能力:
|
||||||
|
# 1. 模型本身是多模态模型(has_multimodal_capacity)
|
||||||
|
# 2. 输入包含图像(len(image_base64_array) > 0)
|
||||||
|
# 3. 历史输入包含图像( any([contain_base64(h) for h in history]) )
|
||||||
|
enable_multimodal_capacity = (len(image_base64_array) > 0) or any([contain_base64(h) for h in history])
|
||||||
|
else:
|
||||||
|
enable_multimodal_capacity = False
|
||||||
|
|
||||||
|
conversation_cnt = len(history) // 2
|
||||||
|
openai_disable_system_prompt = model_info[llm_kwargs['llm_model']].get('openai_disable_system_prompt', False)
|
||||||
|
|
||||||
|
if openai_disable_system_prompt:
|
||||||
|
messages = [{"role": "user", "content": system_prompt}]
|
||||||
|
else:
|
||||||
|
messages = [{"role": "system", "content": system_prompt}]
|
||||||
|
|
||||||
|
if not enable_multimodal_capacity:
|
||||||
|
# 不使用多模态能力
|
||||||
|
if conversation_cnt:
|
||||||
|
for index in range(0, 2*conversation_cnt, 2):
|
||||||
|
what_i_have_asked = {}
|
||||||
|
what_i_have_asked["role"] = "user"
|
||||||
|
what_i_have_asked["content"] = remove_image_if_contain_base64(history[index])
|
||||||
|
what_gpt_answer = {}
|
||||||
|
what_gpt_answer["role"] = "assistant"
|
||||||
|
what_gpt_answer["content"] = remove_image_if_contain_base64(history[index+1])
|
||||||
|
if what_i_have_asked["content"] != "":
|
||||||
|
if what_gpt_answer["content"] == "": continue
|
||||||
|
if what_gpt_answer["content"] == timeout_bot_msg: continue
|
||||||
|
messages.append(what_i_have_asked)
|
||||||
|
messages.append(what_gpt_answer)
|
||||||
|
else:
|
||||||
|
messages[-1]['content'] = what_gpt_answer['content']
|
||||||
|
what_i_ask_now = {}
|
||||||
|
what_i_ask_now["role"] = "user"
|
||||||
|
what_i_ask_now["content"] = inputs
|
||||||
|
messages.append(what_i_ask_now)
|
||||||
|
else:
|
||||||
|
# 多模态能力
|
||||||
|
if conversation_cnt:
|
||||||
|
for index in range(0, 2*conversation_cnt, 2):
|
||||||
|
what_i_have_asked = {}
|
||||||
|
what_i_have_asked["role"] = "user"
|
||||||
|
what_i_have_asked["content"] = append_image_if_contain_base64(history[index])
|
||||||
|
what_gpt_answer = {}
|
||||||
|
what_gpt_answer["role"] = "assistant"
|
||||||
|
what_gpt_answer["content"] = append_image_if_contain_base64(history[index+1])
|
||||||
|
if what_i_have_asked["content"] != "":
|
||||||
|
if what_gpt_answer["content"] == "": continue
|
||||||
|
if what_gpt_answer["content"] == timeout_bot_msg: continue
|
||||||
|
messages.append(what_i_have_asked)
|
||||||
|
messages.append(what_gpt_answer)
|
||||||
|
else:
|
||||||
|
messages[-1]['content'] = what_gpt_answer['content']
|
||||||
|
what_i_ask_now = {}
|
||||||
|
what_i_ask_now["role"] = "user"
|
||||||
|
what_i_ask_now["content"] = []
|
||||||
|
what_i_ask_now["content"].append({
|
||||||
|
"type": "text",
|
||||||
|
"text": inputs
|
||||||
|
})
|
||||||
|
for image_base64 in image_base64_array:
|
||||||
|
what_i_ask_now["content"].append({
|
||||||
|
"type": "image_url",
|
||||||
|
"image_url": {
|
||||||
|
"url": f"data:image/jpeg;base64,{image_base64}"
|
||||||
|
}
|
||||||
|
})
|
||||||
|
messages.append(what_i_ask_now)
|
||||||
|
|
||||||
|
|
||||||
|
model = llm_kwargs['llm_model']
|
||||||
|
if llm_kwargs['llm_model'].startswith('api2d-'):
|
||||||
|
model = llm_kwargs['llm_model'][len('api2d-'):]
|
||||||
|
if llm_kwargs['llm_model'].startswith('one-api-'):
|
||||||
|
model = llm_kwargs['llm_model'][len('one-api-'):]
|
||||||
|
model, _ = read_one_api_model_name(model)
|
||||||
|
if llm_kwargs['llm_model'].startswith('vllm-'):
|
||||||
|
model = llm_kwargs['llm_model'][len('vllm-'):]
|
||||||
|
model, _ = read_one_api_model_name(model)
|
||||||
|
if llm_kwargs['llm_model'].startswith('openrouter-'):
|
||||||
|
model = llm_kwargs['llm_model'][len('openrouter-'):]
|
||||||
|
model= read_one_api_model_name(model)
|
||||||
|
if model == "gpt-3.5-random": # 随机选择, 绕过openai访问频率限制
|
||||||
|
model = random.choice([
|
||||||
|
"gpt-3.5-turbo",
|
||||||
|
"gpt-3.5-turbo-16k",
|
||||||
|
"gpt-3.5-turbo-1106",
|
||||||
|
"gpt-3.5-turbo-0613",
|
||||||
|
"gpt-3.5-turbo-16k-0613",
|
||||||
|
"gpt-3.5-turbo-0301",
|
||||||
|
])
|
||||||
|
|
||||||
|
payload = {
|
||||||
|
"model": model,
|
||||||
|
"messages": messages,
|
||||||
|
"temperature": llm_kwargs['temperature'], # 1.0,
|
||||||
|
"top_p": llm_kwargs['top_p'], # 1.0,
|
||||||
|
"n": 1,
|
||||||
|
"stream": stream,
|
||||||
|
}
|
||||||
|
|
||||||
|
return headers,payload
|
||||||
|
|
||||||
|
|
||||||
@@ -34,6 +34,9 @@ def is_api2d_key(key):
|
|||||||
API_MATCH_API2D = re.match(r"fk[a-zA-Z0-9]{6}-[a-zA-Z0-9]{32}$", key)
|
API_MATCH_API2D = re.match(r"fk[a-zA-Z0-9]{6}-[a-zA-Z0-9]{32}$", key)
|
||||||
return bool(API_MATCH_API2D)
|
return bool(API_MATCH_API2D)
|
||||||
|
|
||||||
|
def is_openroute_api_key(key):
|
||||||
|
API_MATCH_OPENROUTE = re.match(r"sk-or-v1-[a-zA-Z0-9]{64}$", key)
|
||||||
|
return bool(API_MATCH_OPENROUTE)
|
||||||
|
|
||||||
def is_cohere_api_key(key):
|
def is_cohere_api_key(key):
|
||||||
API_MATCH_AZURE = re.match(r"[a-zA-Z0-9]{40}$", key)
|
API_MATCH_AZURE = re.match(r"[a-zA-Z0-9]{40}$", key)
|
||||||
@@ -90,6 +93,10 @@ def select_api_key(keys, llm_model):
|
|||||||
for k in key_list:
|
for k in key_list:
|
||||||
if is_cohere_api_key(k): avail_key_list.append(k)
|
if is_cohere_api_key(k): avail_key_list.append(k)
|
||||||
|
|
||||||
|
if llm_model.startswith('openrouter-'):
|
||||||
|
for k in key_list:
|
||||||
|
if is_openroute_api_key(k): avail_key_list.append(k)
|
||||||
|
|
||||||
if len(avail_key_list) == 0:
|
if len(avail_key_list) == 0:
|
||||||
raise RuntimeError(f"您提供的api-key不满足要求,不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源(左上角更换模型菜单中可切换openai,azure,claude,cohere等请求源)。")
|
raise RuntimeError(f"您提供的api-key不满足要求,不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源(左上角更换模型菜单中可切换openai,azure,claude,cohere等请求源)。")
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user