更多模型切换
This commit is contained in:
@@ -21,38 +21,42 @@ from .bridge_chatglm import predict as chatglm_ui
|
||||
from .bridge_tgui import predict_no_ui_long_connection as tgui_noui
|
||||
from .bridge_tgui import predict as tgui_ui
|
||||
|
||||
methods = {
|
||||
"openai-no-ui": chatgpt_noui,
|
||||
"openai-ui": chatgpt_ui,
|
||||
|
||||
"chatglm-no-ui": chatglm_noui,
|
||||
"chatglm-ui": chatglm_ui,
|
||||
|
||||
"tgui-no-ui": tgui_noui,
|
||||
"tgui-ui": tgui_ui,
|
||||
}
|
||||
colors = ['#FF00FF', '#00FFFF', '#FF0000', '#990099', '#009999', '#990044']
|
||||
|
||||
model_info = {
|
||||
# openai
|
||||
"gpt-3.5-turbo": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"endpoint": "https://api.openai.com/v1/chat/completions",
|
||||
"max_token": 4096,
|
||||
"tokenizer": tiktoken.encoding_for_model("gpt-3.5-turbo"),
|
||||
"token_cnt": lambda txt: len(tiktoken.encoding_for_model("gpt-3.5-turbo").encode(txt, disallowed_special=())),
|
||||
},
|
||||
|
||||
"gpt-4": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"endpoint": "https://api.openai.com/v1/chat/completions",
|
||||
"max_token": 4096,
|
||||
"tokenizer": tiktoken.encoding_for_model("gpt-4"),
|
||||
"token_cnt": lambda txt: len(tiktoken.encoding_for_model("gpt-4").encode(txt, disallowed_special=())),
|
||||
},
|
||||
|
||||
# api_2d
|
||||
"gpt-3.5-turbo-api2d": {
|
||||
"api2d-gpt-3.5-turbo": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"endpoint": "https://openai.api2d.net/v1/chat/completions",
|
||||
"max_token": 4096,
|
||||
"tokenizer": tiktoken.encoding_for_model("gpt-3.5-turbo"),
|
||||
"token_cnt": lambda txt: len(tiktoken.encoding_for_model("gpt-3.5-turbo").encode(txt, disallowed_special=())),
|
||||
},
|
||||
|
||||
"gpt-4-api2d": {
|
||||
"api2d-gpt-4": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"endpoint": "https://openai.api2d.net/v1/chat/completions",
|
||||
"max_token": 4096,
|
||||
"tokenizer": tiktoken.encoding_for_model("gpt-4"),
|
||||
"token_cnt": lambda txt: len(tiktoken.encoding_for_model("gpt-4").encode(txt, disallowed_special=())),
|
||||
@@ -60,18 +64,20 @@ model_info = {
|
||||
|
||||
# chatglm
|
||||
"chatglm": {
|
||||
"fn_with_ui": chatglm_ui,
|
||||
"fn_without_ui": chatglm_noui,
|
||||
"endpoint": None,
|
||||
"max_token": 1024,
|
||||
"tokenizer": tiktoken.encoding_for_model("gpt-3.5-turbo"),
|
||||
"token_cnt": lambda txt: len(tiktoken.encoding_for_model("gpt-3.5-turbo").encode(txt, disallowed_special=())),
|
||||
},
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
def LLM_CATCH_EXCEPTION(f):
|
||||
"""
|
||||
装饰器函数,将错误显示出来
|
||||
装饰器函数,将错误显示出来
|
||||
"""
|
||||
def decorated(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience):
|
||||
try:
|
||||
@@ -85,21 +91,20 @@ def LLM_CATCH_EXCEPTION(f):
|
||||
return tb_str
|
||||
return decorated
|
||||
|
||||
colors = ['#FF00FF', '#00FFFF', '#FF0000', '#990099', '#009999', '#990044']
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience=False):
|
||||
"""
|
||||
发送至LLM,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||
inputs:
|
||||
是本次问询的输入
|
||||
sys_prompt:
|
||||
系统静默prompt
|
||||
llm_kwargs:
|
||||
LLM的内部调优参数
|
||||
history:
|
||||
是之前的对话列表
|
||||
observe_window = None:
|
||||
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
||||
发送至LLM,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||
inputs:
|
||||
是本次问询的输入
|
||||
sys_prompt:
|
||||
系统静默prompt
|
||||
llm_kwargs:
|
||||
LLM的内部调优参数
|
||||
history:
|
||||
是之前的对话列表
|
||||
observe_window = None:
|
||||
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
||||
"""
|
||||
import threading, time, copy
|
||||
|
||||
@@ -109,12 +114,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
|
||||
assert not model.startswith("tgui"), "TGUI不支持函数插件的实现"
|
||||
|
||||
# 如果只询问1个大语言模型:
|
||||
if model.startswith('gpt'):
|
||||
method = methods['openai-no-ui']
|
||||
elif model == 'chatglm':
|
||||
method = methods['chatglm-no-ui']
|
||||
elif model.startswith('tgui'):
|
||||
method = methods['tgui-no-ui']
|
||||
method = model_info[model]["fn_without_ui"]
|
||||
return method(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience)
|
||||
else:
|
||||
# 如果同时询问多个大语言模型:
|
||||
@@ -129,12 +129,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
|
||||
futures = []
|
||||
for i in range(n_model):
|
||||
model = models[i]
|
||||
if model.startswith('gpt'):
|
||||
method = methods['openai-no-ui']
|
||||
elif model == 'chatglm':
|
||||
method = methods['chatglm-no-ui']
|
||||
elif model.startswith('tgui'):
|
||||
method = methods['tgui-no-ui']
|
||||
method = model_info[model]["fn_without_ui"]
|
||||
llm_kwargs_feedin = copy.deepcopy(llm_kwargs)
|
||||
llm_kwargs_feedin['llm_model'] = model
|
||||
future = executor.submit(LLM_CATCH_EXCEPTION(method), inputs, llm_kwargs_feedin, history, sys_prompt, window_mutex[i], console_slience)
|
||||
@@ -176,20 +171,15 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
|
||||
|
||||
def predict(inputs, llm_kwargs, *args, **kwargs):
|
||||
"""
|
||||
发送至LLM,流式获取输出。
|
||||
用于基础的对话功能。
|
||||
inputs 是本次问询的输入
|
||||
top_p, temperature是LLM的内部调优参数
|
||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||
发送至LLM,流式获取输出。
|
||||
用于基础的对话功能。
|
||||
inputs 是本次问询的输入
|
||||
top_p, temperature是LLM的内部调优参数
|
||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||
"""
|
||||
if llm_kwargs['llm_model'].startswith('gpt'):
|
||||
method = methods['openai-ui']
|
||||
elif llm_kwargs['llm_model'] == 'chatglm':
|
||||
method = methods['chatglm-ui']
|
||||
elif llm_kwargs['llm_model'].startswith('tgui'):
|
||||
method = methods['tgui-ui']
|
||||
|
||||
method = model_info[llm_kwargs['llm_model']]["fn_with_ui"]
|
||||
yield from method(inputs, llm_kwargs, *args, **kwargs)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user