From 7de6015800d2d4de5f626dd3a278356db3292779 Mon Sep 17 00:00:00 2001 From: binary-husky Date: Thu, 6 Jun 2024 07:36:37 +0000 Subject: [PATCH] multimodal support for gpt-4o etc --- config.py | 4 - request_llms/bridge_all.py | 38 ++++-- request_llms/bridge_chatgpt.py | 161 +++++++++++++++++++++----- request_llms/bridge_chatgpt_vision.py | 6 +- toolbox.py | 9 +- 5 files changed, 164 insertions(+), 54 deletions(-) diff --git a/config.py b/config.py index d00b3563..9cbce1c9 100644 --- a/config.py +++ b/config.py @@ -283,10 +283,6 @@ WHEN_TO_USE_PROXY = ["Download_LLM", "Download_Gradio_Theme", "Connect_Grobid", "Warmup_Modules", "Nougat_Download", "AutoGen"] -# *实验性功能*: 自动检测并屏蔽失效的KEY,请勿使用 -BLOCK_INVALID_APIKEY = False - - # 启用插件热加载 PLUGIN_HOT_RELOAD = False diff --git a/request_llms/bridge_all.py b/request_llms/bridge_all.py index 06e69583..4e4a06b9 100644 --- a/request_llms/bridge_all.py +++ b/request_llms/bridge_all.py @@ -183,6 +183,7 @@ model_info = { "fn_with_ui": chatgpt_ui, "fn_without_ui": chatgpt_noui, "endpoint": openai_endpoint, + "has_multimodal_capacity": True, "max_token": 128000, "tokenizer": tokenizer_gpt4, "token_cnt": get_token_num_gpt4, @@ -191,6 +192,7 @@ model_info = { "gpt-4o-2024-05-13": { "fn_with_ui": chatgpt_ui, "fn_without_ui": chatgpt_noui, + "has_multimodal_capacity": True, "endpoint": openai_endpoint, "max_token": 128000, "tokenizer": tokenizer_gpt4, @@ -227,6 +229,7 @@ model_info = { "gpt-4-turbo": { "fn_with_ui": chatgpt_ui, "fn_without_ui": chatgpt_noui, + "has_multimodal_capacity": True, "endpoint": openai_endpoint, "max_token": 128000, "tokenizer": tokenizer_gpt4, @@ -236,6 +239,7 @@ model_info = { "gpt-4-turbo-2024-04-09": { "fn_with_ui": chatgpt_ui, "fn_without_ui": chatgpt_noui, + "has_multimodal_capacity": True, "endpoint": openai_endpoint, "max_token": 128000, "tokenizer": tokenizer_gpt4, @@ -900,21 +904,31 @@ for model in [m for m in AVAIL_LLM_MODELS if m.startswith("one-api-")]: # "mixtral-8x7b" 是模型名(必要) # "(max_token=6666)" 是配置(非必要) try: - _, max_token_tmp = read_one_api_model_name(model) + origin_model_name, max_token_tmp = read_one_api_model_name(model) + # 如果是已知模型,则尝试获取其信息 + original_model_info = model_info.get(origin_model_name.replace("one-api-", "", 1), None) except: print(f"one-api模型 {model} 的 max_token 配置不是整数,请检查配置文件。") continue - model_info.update({ - model: { - "fn_with_ui": chatgpt_ui, - "fn_without_ui": chatgpt_noui, - "can_multi_thread": True, - "endpoint": openai_endpoint, - "max_token": max_token_tmp, - "tokenizer": tokenizer_gpt35, - "token_cnt": get_token_num_gpt35, - }, - }) + this_model_info = { + "fn_with_ui": chatgpt_ui, + "fn_without_ui": chatgpt_noui, + "can_multi_thread": True, + "endpoint": openai_endpoint, + "max_token": max_token_tmp, + "tokenizer": tokenizer_gpt35, + "token_cnt": get_token_num_gpt35, + } + + # 同步已知模型的其他信息 + attribute = "has_multimodal_capacity" + if original_model_info is not None and original_model_info.get(attribute, None) is not None: this_model_info.update({attribute: original_model_info.get(attribute, None)}) + # attribute = "attribute2" + # if original_model_info is not None and original_model_info.get(attribute, None) is not None: this_model_info.update({attribute: original_model_info.get(attribute, None)}) + # attribute = "attribute3" + # if original_model_info is not None and original_model_info.get(attribute, None) is not None: this_model_info.update({attribute: original_model_info.get(attribute, None)}) + model_info.update({model: this_model_info}) + # -=-=-=-=-=-=- vllm 对齐支持 -=-=-=-=-=-=- for model in [m for m in AVAIL_LLM_MODELS if m.startswith("vllm-")]: # 为了更灵活地接入vllm多模型管理界面,设计了此接口,例子:AVAIL_LLM_MODELS = ["vllm-/home/hmp/llm/cache/Qwen1___5-32B-Chat(max_token=6666)"] diff --git a/request_llms/bridge_chatgpt.py b/request_llms/bridge_chatgpt.py index d68026ad..618a8e2d 100644 --- a/request_llms/bridge_chatgpt.py +++ b/request_llms/bridge_chatgpt.py @@ -1,5 +1,3 @@ -# 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目 - """ 该文件中主要包含三个函数 @@ -11,19 +9,19 @@ """ import json +import os +import re import time -import gradio as gr import logging import traceback import requests -import importlib import random # config_private.py放自己的秘密如API和代理网址 # 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件 from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history from toolbox import trimmed_format_exc, is_the_upload_folder, read_one_api_model_name, log_chat -from toolbox import ChatBotWithCookies +from toolbox import ChatBotWithCookies, have_any_recent_upload_image_files, encode_image proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \ get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY') @@ -41,6 +39,48 @@ def get_full_error(chunk, stream_response): break return chunk +def make_multimodal_input(inputs, image_paths): + image_base64_array = [] + for image_path in image_paths: + path = os.path.abspath(image_path) + base64 = encode_image(path) + inputs = inputs + f'

' + image_base64_array.append(base64) + return inputs, image_base64_array + +def reverse_base64_from_input(inputs): + # 定义一个正则表达式来匹配 Base64 字符串(假设格式为 base64="") + pattern = re.compile(r'base64="([^"]+)"') + # 使用 findall 方法查找所有匹配的 Base64 字符串 + base64_strings = pattern.findall(inputs) + # 返回反转后的 Base64 字符串列表 + return base64_strings + +def contain_base64(inputs): + base64_strings = reverse_base64_from_input(inputs) + return len(base64_strings) > 0 + +def append_image_if_contain_base64(inputs): + if not contain_base64(inputs): + return inputs + else: + image_base64_array = reverse_base64_from_input(inputs) + pattern = re.compile(r'

<]+>
') + inputs = re.sub(pattern, '', inputs) + res = [] + res.append({ + "type": "text", + "text": inputs + }) + for image_base64 in image_base64_array: + res.append({ + "type": "image_url", + "image_url": { + "url": f"data:image/jpeg;base64,{image_base64}" + } + }) + return res + def decode_chunk(chunk): # 提前读取一些信息 (用于判断异常) chunk_decoded = chunk.decode() @@ -159,6 +199,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容 additional_fn代表点击的哪个按钮,按钮见functional.py """ + from .bridge_all import model_info if is_any_api_key(inputs): chatbot._cookies['api_key'] = inputs chatbot.append(("输入已识别为openai的api_key", what_keys(inputs))) @@ -174,7 +215,17 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith from core_functional import handle_core_functionality inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot) - chatbot.append((inputs, "")) + # 多模态模型 + has_multimodal_capacity = model_info[llm_kwargs['llm_model']].get('has_multimodal_capacity', False) + if has_multimodal_capacity: + has_recent_image_upload, image_paths = have_any_recent_upload_image_files(chatbot, pop=True) + else: + has_recent_image_upload, image_paths = False, [] + if has_recent_image_upload: + _inputs, image_base64_array = make_multimodal_input(inputs, image_paths) + else: + _inputs, image_base64_array = inputs, [] + chatbot.append((_inputs, "")) yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面 # check mis-behavior @@ -184,7 +235,7 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith time.sleep(2) try: - headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, stream) + headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, image_base64_array, has_multimodal_capacity, stream) except RuntimeError as e: chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。") yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面 @@ -192,7 +243,6 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith # 检查endpoint是否合法 try: - from .bridge_all import model_info endpoint = verify_endpoint(model_info[llm_kwargs['llm_model']]['endpoint']) except: tb_str = '```\n' + trimmed_format_exc() + '```' @@ -200,7 +250,11 @@ def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWith yield from update_ui(chatbot=chatbot, history=history, msg="Endpoint不满足要求") # 刷新界面 return - history.append(inputs); history.append("") + # 加入历史 + if has_recent_image_upload: + history.extend([_inputs, ""]) + else: + history.extend([inputs, ""]) retry = 0 while True: @@ -314,7 +368,7 @@ def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg) chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}") return chatbot, history -def generate_payload(inputs, llm_kwargs, history, system_prompt, stream): +def generate_payload(inputs:str, llm_kwargs:dict, history:list, system_prompt:str, image_base64_array:list=[], has_multimodal_capacity:bool=False, stream:bool=True): """ 整合所有信息,选择LLM模型,生成http请求,为发送请求做准备 """ @@ -337,29 +391,74 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream): azure_api_key_unshared = AZURE_CFG_ARRAY[llm_kwargs['llm_model']]["AZURE_API_KEY"] headers.update({"api-key": azure_api_key_unshared}) - conversation_cnt = len(history) // 2 + if has_multimodal_capacity: + # 当以下条件满足时,启用多模态能力: + # 1. 模型本身是多模态模型(has_multimodal_capacity) + # 2. 输入包含图像(len(image_base64_array) > 0) + # 3. 历史输入包含图像( any([contain_base64(h) for h in history]) ) + enable_multimodal_capacity = (len(image_base64_array) > 0) or any([contain_base64(h) for h in history]) + else: + enable_multimodal_capacity = False + + if not enable_multimodal_capacity: + # 不使用多模态能力 + conversation_cnt = len(history) // 2 + messages = [{"role": "system", "content": system_prompt}] + if conversation_cnt: + for index in range(0, 2*conversation_cnt, 2): + what_i_have_asked = {} + what_i_have_asked["role"] = "user" + what_i_have_asked["content"] = history[index] + what_gpt_answer = {} + what_gpt_answer["role"] = "assistant" + what_gpt_answer["content"] = history[index+1] + if what_i_have_asked["content"] != "": + if what_gpt_answer["content"] == "": continue + if what_gpt_answer["content"] == timeout_bot_msg: continue + messages.append(what_i_have_asked) + messages.append(what_gpt_answer) + else: + messages[-1]['content'] = what_gpt_answer['content'] + what_i_ask_now = {} + what_i_ask_now["role"] = "user" + what_i_ask_now["content"] = inputs + messages.append(what_i_ask_now) + else: + # 多模态能力 + conversation_cnt = len(history) // 2 + messages = [{"role": "system", "content": system_prompt}] + if conversation_cnt: + for index in range(0, 2*conversation_cnt, 2): + what_i_have_asked = {} + what_i_have_asked["role"] = "user" + what_i_have_asked["content"] = append_image_if_contain_base64(history[index]) + what_gpt_answer = {} + what_gpt_answer["role"] = "assistant" + what_gpt_answer["content"] = append_image_if_contain_base64(history[index+1]) + if what_i_have_asked["content"] != "": + if what_gpt_answer["content"] == "": continue + if what_gpt_answer["content"] == timeout_bot_msg: continue + messages.append(what_i_have_asked) + messages.append(what_gpt_answer) + else: + messages[-1]['content'] = what_gpt_answer['content'] + what_i_ask_now = {} + what_i_ask_now["role"] = "user" + what_i_ask_now["content"] = [] + what_i_ask_now["content"].append({ + "type": "text", + "text": inputs + }) + for image_base64 in image_base64_array: + what_i_ask_now["content"].append({ + "type": "image_url", + "image_url": { + "url": f"data:image/jpeg;base64,{image_base64}" + } + }) + messages.append(what_i_ask_now) - messages = [{"role": "system", "content": system_prompt}] - if conversation_cnt: - for index in range(0, 2*conversation_cnt, 2): - what_i_have_asked = {} - what_i_have_asked["role"] = "user" - what_i_have_asked["content"] = history[index] - what_gpt_answer = {} - what_gpt_answer["role"] = "assistant" - what_gpt_answer["content"] = history[index+1] - if what_i_have_asked["content"] != "": - if what_gpt_answer["content"] == "": continue - if what_gpt_answer["content"] == timeout_bot_msg: continue - messages.append(what_i_have_asked) - messages.append(what_gpt_answer) - else: - messages[-1]['content'] = what_gpt_answer['content'] - what_i_ask_now = {} - what_i_ask_now["role"] = "user" - what_i_ask_now["content"] = inputs - messages.append(what_i_ask_now) model = llm_kwargs['llm_model'] if llm_kwargs['llm_model'].startswith('api2d-'): model = llm_kwargs['llm_model'][len('api2d-'):] diff --git a/request_llms/bridge_chatgpt_vision.py b/request_llms/bridge_chatgpt_vision.py index 45b71bd6..449a8cf5 100644 --- a/request_llms/bridge_chatgpt_vision.py +++ b/request_llms/bridge_chatgpt_vision.py @@ -27,10 +27,8 @@ timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check def report_invalid_key(key): - if get_conf("BLOCK_INVALID_APIKEY"): - # 实验性功能,自动检测并屏蔽失效的KEY,请勿使用 - from request_llms.key_manager import ApiKeyManager - api_key = ApiKeyManager().add_key_to_blacklist(key) + # 弃用功能 + return def get_full_error(chunk, stream_response): """ diff --git a/toolbox.py b/toolbox.py index d42e6075..2446a208 100644 --- a/toolbox.py +++ b/toolbox.py @@ -903,15 +903,18 @@ def get_pictures_list(path): return file_manifest -def have_any_recent_upload_image_files(chatbot:ChatBotWithCookies): +def have_any_recent_upload_image_files(chatbot:ChatBotWithCookies, pop:bool=False): _5min = 5 * 60 if chatbot is None: return False, None # chatbot is None - most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None) + if pop: + most_recent_uploaded = chatbot._cookies.pop("most_recent_uploaded", None) + else: + most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None) + # most_recent_uploaded 是一个放置最新上传图像的路径 if not most_recent_uploaded: return False, None # most_recent_uploaded is None if time.time() - most_recent_uploaded["time"] < _5min: - most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None) path = most_recent_uploaded["path"] file_manifest = get_pictures_list(path) if len(file_manifest) == 0: