Add 2 plugins

相当于将“批量总结PDF文档”插件拆成了两部分,目的在于使用廉价的模型干粗活,再将关键的最终总结交给GPT-4,降低使用成本
批量总结PDF文档_初步:初步总结PDF,每个PDF输出一个md文档
批量总结Markdown文档_进阶:将所有md文档高度凝练并汇总至一个md文档,可直接使用“批量总结PDF文档_初步”的输出结果作为输入
This commit is contained in:
leike0813
2023-12-20 07:44:53 +08:00
parent ac3d4cf073
commit 68a49d3758
3 changed files with 286 additions and 0 deletions

View File

@@ -0,0 +1,127 @@
import logging, os
from toolbox import update_ui, promote_file_to_downloadzone, gen_time_str, get_log_folder
from toolbox import CatchException, report_exception, trimmed_format_exc
from toolbox import write_history_to_file, promote_file_to_downloadzone
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from .crazy_utils import input_clipping
def 总结Markdown(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
file_write_buffer = []
SUMMARY_WORD_LIMIT = 800
meta_inputs_array = []
meta_inputs_show_user_array = []
meta_sys_prompt_array = []
inputs_array = []
inputs_show_user_array = []
sys_prompt_array = []
file_name_array = []
for idx, file_name in enumerate(file_manifest):
print('begin analysis on:', file_name)
file_name_array.append(f'# {idx}.{os.path.basename(file_name)}')
with open(file_name, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read()
_ = file_content.split('## metadata')
if len(_) >= 2:
file_meta = _[-2]
file_content = _[-1]
else:
file_meta = file_name
meta_inputs_array.append(
"我需要你从一段文本中识别并提取出这篇文章的1.标题、2.作者、3.作者单位、4.关键词。"
"其中1.标题和4.关键词需要给出中文和英文的双语结果2.作者和3.作者单位按原文语言给出。"
"以下是需要你识别的文本: " + file_meta
)
meta_inputs_show_user_array.append(
'开始分析元数据:' + file_name
)
meta_sys_prompt_array.append("As an academic professional, you need to extract basic informations of the paper from its metadata")
inputs_array.append(
"我需要你根据我提供的文本总结一份Markdown文档分为四个部分1.研究背景2.文章主要内容3.主要创新点4.结论。"
+ f"各部分的题目采用二级标题前缀(## ),内容可适当的分为若干条,总字数不超过{SUMMARY_WORD_LIMIT}个中文字符."
+ "以下是需要你处理的文本: " + file_content)
inputs_show_user_array.append('开始总结:' + file_name)
sys_prompt_array.append(f"As an academic professional, you need to summarize the text with less than {SUMMARY_WORD_LIMIT} Chinese characters")
gpt_meta_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=meta_inputs_array,
inputs_show_user_array=meta_inputs_show_user_array,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history_array=[[""] for _ in range(len(inputs_array))],
sys_prompt_array=meta_sys_prompt_array,
# max_workers=5, # OpenAI所允许的最大并行过载
scroller_max_len=80
)
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=inputs_array,
inputs_show_user_array=inputs_show_user_array,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history_array=[[""] for _ in range(len(inputs_array))],
sys_prompt_array=sys_prompt_array,
# max_workers=5, # OpenAI所允许的最大并行过载
scroller_max_len=80
)
try:
for idx, (gpt_say_meta, gpt_say) in enumerate(zip(gpt_meta_response_collection[1::2], gpt_response_collection[1::2])):
file_write_buffer.append(file_name_array[idx])
file_write_buffer.append("## 元数据\n\n" + gpt_say_meta)
file_write_buffer.append(gpt_say)
except:
logging.error(trimmed_format_exc())
res = write_history_to_file(file_write_buffer, file_basename="result.md", auto_caption=False)
promote_file_to_downloadzone(res, chatbot=chatbot)
yield from update_ui(chatbot=chatbot, history=gpt_response_collection) # 刷新界面
@CatchException
def 批量总结Markdown文档_进阶(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
import glob, os
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"批量总结Markdown文档。函数插件贡献者: ValeriaWongEralienJoshua Reed"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import fitz
except:
report_exception(chatbot, history,
a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 清空历史,以免输入溢出
history = []
# 检测输入参数,如没有给定输入参数,直接退出
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 搜索需要处理的文件清单
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.md', recursive=True)]
# 如果没找到任何文件
if len(file_manifest) == 0:
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.md文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 开始正式执行任务
yield from 总结Markdown(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)