update gr
This commit is contained in:
@@ -32,4 +32,4 @@ P.S. 如果您按照以下步骤成功接入了新的大模型,欢迎发Pull R
|
||||
|
||||
5. 测试通过后,在`request_llms/bridge_all.py`中做最后的修改,把你的模型完全接入到框架中(聪慧如您,只需要看一眼该文件就明白怎么修改了)
|
||||
|
||||
6. 修改`LLM_MODEL`配置,然后运行`python main.py`,测试最后的效果
|
||||
6. 修改`LLM_MODEL`配置,然后运行`python main.py`,测试最后的效果
|
||||
|
||||
@@ -28,6 +28,9 @@ from .bridge_chatglm3 import predict as chatglm3_ui
|
||||
from .bridge_qianfan import predict_no_ui_long_connection as qianfan_noui
|
||||
from .bridge_qianfan import predict as qianfan_ui
|
||||
|
||||
from .bridge_google_gemini import predict as genai_ui
|
||||
from .bridge_google_gemini import predict_no_ui_long_connection as genai_noui
|
||||
|
||||
colors = ['#FF00FF', '#00FFFF', '#FF0000', '#990099', '#009999', '#990044']
|
||||
|
||||
class LazyloadTiktoken(object):
|
||||
@@ -246,6 +249,22 @@ model_info = {
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
"gemini-pro": {
|
||||
"fn_with_ui": genai_ui,
|
||||
"fn_without_ui": genai_noui,
|
||||
"endpoint": None,
|
||||
"max_token": 1024 * 32,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
"gemini-pro-vision": {
|
||||
"fn_with_ui": genai_ui,
|
||||
"fn_without_ui": genai_noui,
|
||||
"endpoint": None,
|
||||
"max_token": 1024 * 32,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
}
|
||||
|
||||
# -=-=-=-=-=-=- api2d 对齐支持 -=-=-=-=-=-=-
|
||||
@@ -479,22 +498,6 @@ if "qwen-turbo" in AVAIL_LLM_MODELS or "qwen-plus" in AVAIL_LLM_MODELS or "qwen-
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
if "chatgpt_website" in AVAIL_LLM_MODELS: # 接入一些逆向工程https://github.com/acheong08/ChatGPT-to-API/
|
||||
try:
|
||||
from .bridge_chatgpt_website import predict_no_ui_long_connection as chatgpt_website_noui
|
||||
from .bridge_chatgpt_website import predict as chatgpt_website_ui
|
||||
model_info.update({
|
||||
"chatgpt_website": {
|
||||
"fn_with_ui": chatgpt_website_ui,
|
||||
"fn_without_ui": chatgpt_website_noui,
|
||||
"endpoint": openai_endpoint,
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
}
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
if "spark" in AVAIL_LLM_MODELS: # 讯飞星火认知大模型
|
||||
try:
|
||||
from .bridge_spark import predict_no_ui_long_connection as spark_noui
|
||||
@@ -591,6 +594,23 @@ if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
# if "skylark" in AVAIL_LLM_MODELS:
|
||||
# try:
|
||||
# from .bridge_skylark2 import predict_no_ui_long_connection as skylark_noui
|
||||
# from .bridge_skylark2 import predict as skylark_ui
|
||||
# model_info.update({
|
||||
# "skylark": {
|
||||
# "fn_with_ui": skylark_ui,
|
||||
# "fn_without_ui": skylark_noui,
|
||||
# "endpoint": None,
|
||||
# "max_token": 4096,
|
||||
# "tokenizer": tokenizer_gpt35,
|
||||
# "token_cnt": get_token_num_gpt35,
|
||||
# }
|
||||
# })
|
||||
# except:
|
||||
# print(trimmed_format_exc())
|
||||
|
||||
|
||||
# <-- 用于定义和切换多个azure模型 -->
|
||||
AZURE_CFG_ARRAY = get_conf("AZURE_CFG_ARRAY")
|
||||
|
||||
@@ -244,6 +244,9 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
if has_choices and not choice_valid:
|
||||
# 一些垃圾第三方接口的出现这样的错误
|
||||
continue
|
||||
if ('data: [DONE]' not in chunk_decoded) and len(chunk_decoded) > 0 and (chunkjson is None):
|
||||
# 传递进来一些奇怪的东西
|
||||
raise ValueError(f'无法读取以下数据,请检查配置。\n\n{chunk_decoded}')
|
||||
# 前者是API2D的结束条件,后者是OPENAI的结束条件
|
||||
if ('data: [DONE]' in chunk_decoded) or (len(chunkjson['choices'][0]["delta"]) == 0):
|
||||
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
||||
|
||||
114
request_llms/bridge_google_gemini.py
Normal file
114
request_llms/bridge_google_gemini.py
Normal file
@@ -0,0 +1,114 @@
|
||||
# encoding: utf-8
|
||||
# @Time : 2023/12/21
|
||||
# @Author : Spike
|
||||
# @Descr :
|
||||
import json
|
||||
import re
|
||||
import os
|
||||
import time
|
||||
from request_llms.com_google import GoogleChatInit
|
||||
from toolbox import get_conf, update_ui, update_ui_lastest_msg, have_any_recent_upload_image_files, trimmed_format_exc
|
||||
|
||||
proxies, TIMEOUT_SECONDS, MAX_RETRY = get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY')
|
||||
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
||||
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
|
||||
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None,
|
||||
console_slience=False):
|
||||
# 检查API_KEY
|
||||
if get_conf("GEMINI_API_KEY") == "":
|
||||
raise ValueError(f"请配置 GEMINI_API_KEY。")
|
||||
|
||||
genai = GoogleChatInit()
|
||||
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
||||
gpt_replying_buffer = ''
|
||||
stream_response = genai.generate_chat(inputs, llm_kwargs, history, sys_prompt)
|
||||
for response in stream_response:
|
||||
results = response.decode()
|
||||
match = re.search(r'"text":\s*"((?:[^"\\]|\\.)*)"', results, flags=re.DOTALL)
|
||||
error_match = re.search(r'\"message\":\s*\"(.*?)\"', results, flags=re.DOTALL)
|
||||
if match:
|
||||
try:
|
||||
paraphrase = json.loads('{"text": "%s"}' % match.group(1))
|
||||
except:
|
||||
raise ValueError(f"解析GEMINI消息出错。")
|
||||
buffer = paraphrase['text']
|
||||
gpt_replying_buffer += buffer
|
||||
if len(observe_window) >= 1:
|
||||
observe_window[0] = gpt_replying_buffer
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time() - observe_window[1]) > watch_dog_patience: raise RuntimeError("程序终止。")
|
||||
if error_match:
|
||||
raise RuntimeError(f'{gpt_replying_buffer} 对话错误')
|
||||
return gpt_replying_buffer
|
||||
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream=True, additional_fn=None):
|
||||
# 检查API_KEY
|
||||
if get_conf("GEMINI_API_KEY") == "":
|
||||
yield from update_ui_lastest_msg(f"请配置 GEMINI_API_KEY。", chatbot=chatbot, history=history, delay=0)
|
||||
return
|
||||
|
||||
# 适配润色区域
|
||||
if additional_fn is not None:
|
||||
from core_functional import handle_core_functionality
|
||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||
|
||||
if "vision" in llm_kwargs["llm_model"]:
|
||||
have_recent_file, image_paths = have_any_recent_upload_image_files(chatbot)
|
||||
def make_media_input(inputs, image_paths):
|
||||
for image_path in image_paths:
|
||||
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'
|
||||
return inputs
|
||||
if have_recent_file:
|
||||
inputs = make_media_input(inputs, image_paths)
|
||||
|
||||
chatbot.append((inputs, ""))
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
genai = GoogleChatInit()
|
||||
retry = 0
|
||||
while True:
|
||||
try:
|
||||
stream_response = genai.generate_chat(inputs, llm_kwargs, history, system_prompt)
|
||||
break
|
||||
except Exception as e:
|
||||
retry += 1
|
||||
chatbot[-1] = ((chatbot[-1][0], trimmed_format_exc()))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="请求失败") # 刷新界面
|
||||
return
|
||||
gpt_replying_buffer = ""
|
||||
gpt_security_policy = ""
|
||||
history.extend([inputs, ''])
|
||||
for response in stream_response:
|
||||
results = response.decode("utf-8") # 被这个解码给耍了。。
|
||||
gpt_security_policy += results
|
||||
match = re.search(r'"text":\s*"((?:[^"\\]|\\.)*)"', results, flags=re.DOTALL)
|
||||
error_match = re.search(r'\"message\":\s*\"(.*)\"', results, flags=re.DOTALL)
|
||||
if match:
|
||||
try:
|
||||
paraphrase = json.loads('{"text": "%s"}' % match.group(1))
|
||||
except:
|
||||
raise ValueError(f"解析GEMINI消息出错。")
|
||||
gpt_replying_buffer += paraphrase['text'] # 使用 json 解析库进行处理
|
||||
chatbot[-1] = (inputs, gpt_replying_buffer)
|
||||
history[-1] = gpt_replying_buffer
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
if error_match:
|
||||
history = history[-2] # 错误的不纳入对话
|
||||
chatbot[-1] = (inputs, gpt_replying_buffer + f"对话错误,请查看message\n\n```\n{error_match.group(1)}\n```")
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
raise RuntimeError('对话错误')
|
||||
if not gpt_replying_buffer:
|
||||
history = history[-2] # 错误的不纳入对话
|
||||
chatbot[-1] = (inputs, gpt_replying_buffer + f"触发了Google的安全访问策略,没有回答\n\n```\n{gpt_security_policy}\n```")
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
llm_kwargs = {'llm_model': 'gemini-pro'}
|
||||
result = predict('Write long a story about a magic backpack.', llm_kwargs, llm_kwargs, [])
|
||||
for i in result:
|
||||
print(i)
|
||||
@@ -1,16 +1,17 @@
|
||||
"""
|
||||
========================================================================
|
||||
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
第一部分:来自EdgeGPT.py
|
||||
https://github.com/acheong08/EdgeGPT
|
||||
========================================================================
|
||||
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
"""
|
||||
from .edge_gpt_free import Chatbot as NewbingChatbot
|
||||
|
||||
load_message = "等待NewBing响应。"
|
||||
|
||||
"""
|
||||
========================================================================
|
||||
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
第二部分:子进程Worker(调用主体)
|
||||
========================================================================
|
||||
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
"""
|
||||
import time
|
||||
import json
|
||||
@@ -22,19 +23,30 @@ import threading
|
||||
from toolbox import update_ui, get_conf, trimmed_format_exc
|
||||
from multiprocessing import Process, Pipe
|
||||
|
||||
|
||||
def preprocess_newbing_out(s):
|
||||
pattern = r'\^(\d+)\^' # 匹配^数字^
|
||||
sub = lambda m: '('+m.group(1)+')' # 将匹配到的数字作为替换值
|
||||
result = re.sub(pattern, sub, s) # 替换操作
|
||||
if '[1]' in result:
|
||||
result += '\n\n```reference\n' + "\n".join([r for r in result.split('\n') if r.startswith('[')]) + '\n```\n'
|
||||
pattern = r"\^(\d+)\^" # 匹配^数字^
|
||||
sub = lambda m: "(" + m.group(1) + ")" # 将匹配到的数字作为替换值
|
||||
result = re.sub(pattern, sub, s) # 替换操作
|
||||
if "[1]" in result:
|
||||
result += (
|
||||
"\n\n```reference\n"
|
||||
+ "\n".join([r for r in result.split("\n") if r.startswith("[")])
|
||||
+ "\n```\n"
|
||||
)
|
||||
return result
|
||||
|
||||
|
||||
def preprocess_newbing_out_simple(result):
|
||||
if '[1]' in result:
|
||||
result += '\n\n```reference\n' + "\n".join([r for r in result.split('\n') if r.startswith('[')]) + '\n```\n'
|
||||
if "[1]" in result:
|
||||
result += (
|
||||
"\n\n```reference\n"
|
||||
+ "\n".join([r for r in result.split("\n") if r.startswith("[")])
|
||||
+ "\n```\n"
|
||||
)
|
||||
return result
|
||||
|
||||
|
||||
class NewBingHandle(Process):
|
||||
def __init__(self):
|
||||
super().__init__(daemon=True)
|
||||
@@ -46,11 +58,12 @@ class NewBingHandle(Process):
|
||||
self.check_dependency()
|
||||
self.start()
|
||||
self.threadLock = threading.Lock()
|
||||
|
||||
|
||||
def check_dependency(self):
|
||||
try:
|
||||
self.success = False
|
||||
import certifi, httpx, rich
|
||||
|
||||
self.info = "依赖检测通过,等待NewBing响应。注意目前不能多人同时调用NewBing接口(有线程锁),否则将导致每个人的NewBing问询历史互相渗透。调用NewBing时,会自动使用已配置的代理。"
|
||||
self.success = True
|
||||
except:
|
||||
@@ -62,18 +75,19 @@ class NewBingHandle(Process):
|
||||
|
||||
async def async_run(self):
|
||||
# 读取配置
|
||||
NEWBING_STYLE = get_conf('NEWBING_STYLE')
|
||||
NEWBING_STYLE = get_conf("NEWBING_STYLE")
|
||||
from request_llms.bridge_all import model_info
|
||||
endpoint = model_info['newbing']['endpoint']
|
||||
|
||||
endpoint = model_info["newbing"]["endpoint"]
|
||||
while True:
|
||||
# 等待
|
||||
kwargs = self.child.recv()
|
||||
question=kwargs['query']
|
||||
history=kwargs['history']
|
||||
system_prompt=kwargs['system_prompt']
|
||||
question = kwargs["query"]
|
||||
history = kwargs["history"]
|
||||
system_prompt = kwargs["system_prompt"]
|
||||
|
||||
# 是否重置
|
||||
if len(self.local_history) > 0 and len(history)==0:
|
||||
if len(self.local_history) > 0 and len(history) == 0:
|
||||
await self.newbing_model.reset()
|
||||
self.local_history = []
|
||||
|
||||
@@ -81,34 +95,33 @@ class NewBingHandle(Process):
|
||||
prompt = ""
|
||||
if system_prompt not in self.local_history:
|
||||
self.local_history.append(system_prompt)
|
||||
prompt += system_prompt + '\n'
|
||||
prompt += system_prompt + "\n"
|
||||
|
||||
# 追加历史
|
||||
for ab in history:
|
||||
a, b = ab
|
||||
if a not in self.local_history:
|
||||
self.local_history.append(a)
|
||||
prompt += a + '\n'
|
||||
prompt += a + "\n"
|
||||
|
||||
# 问题
|
||||
prompt += question
|
||||
self.local_history.append(question)
|
||||
print('question:', prompt)
|
||||
print("question:", prompt)
|
||||
# 提交
|
||||
async for final, response in self.newbing_model.ask_stream(
|
||||
prompt=question,
|
||||
conversation_style=NEWBING_STYLE, # ["creative", "balanced", "precise"]
|
||||
wss_link=endpoint, # "wss://sydney.bing.com/sydney/ChatHub"
|
||||
conversation_style=NEWBING_STYLE, # ["creative", "balanced", "precise"]
|
||||
wss_link=endpoint, # "wss://sydney.bing.com/sydney/ChatHub"
|
||||
):
|
||||
if not final:
|
||||
print(response)
|
||||
self.child.send(str(response))
|
||||
else:
|
||||
print('-------- receive final ---------')
|
||||
self.child.send('[Finish]')
|
||||
print("-------- receive final ---------")
|
||||
self.child.send("[Finish]")
|
||||
# self.local_history.append(response)
|
||||
|
||||
|
||||
def run(self):
|
||||
"""
|
||||
这个函数运行在子进程
|
||||
@@ -118,32 +131,37 @@ class NewBingHandle(Process):
|
||||
self.local_history = []
|
||||
if (self.newbing_model is None) or (not self.success):
|
||||
# 代理设置
|
||||
proxies, NEWBING_COOKIES = get_conf('proxies', 'NEWBING_COOKIES')
|
||||
if proxies is None:
|
||||
proxies, NEWBING_COOKIES = get_conf("proxies", "NEWBING_COOKIES")
|
||||
if proxies is None:
|
||||
self.proxies_https = None
|
||||
else:
|
||||
self.proxies_https = proxies['https']
|
||||
else:
|
||||
self.proxies_https = proxies["https"]
|
||||
|
||||
if (NEWBING_COOKIES is not None) and len(NEWBING_COOKIES) > 100:
|
||||
try:
|
||||
cookies = json.loads(NEWBING_COOKIES)
|
||||
except:
|
||||
self.success = False
|
||||
tb_str = '\n```\n' + trimmed_format_exc() + '\n```\n'
|
||||
self.child.send(f'[Local Message] NEWBING_COOKIES未填写或有格式错误。')
|
||||
self.child.send('[Fail]'); self.child.send('[Finish]')
|
||||
tb_str = "\n```\n" + trimmed_format_exc() + "\n```\n"
|
||||
self.child.send(f"[Local Message] NEWBING_COOKIES未填写或有格式错误。")
|
||||
self.child.send("[Fail]")
|
||||
self.child.send("[Finish]")
|
||||
raise RuntimeError(f"NEWBING_COOKIES未填写或有格式错误。")
|
||||
else:
|
||||
cookies = None
|
||||
|
||||
try:
|
||||
self.newbing_model = NewbingChatbot(proxy=self.proxies_https, cookies=cookies)
|
||||
self.newbing_model = NewbingChatbot(
|
||||
proxy=self.proxies_https, cookies=cookies
|
||||
)
|
||||
except:
|
||||
self.success = False
|
||||
tb_str = '\n```\n' + trimmed_format_exc() + '\n```\n'
|
||||
self.child.send(f'[Local Message] 不能加载Newbing组件,请注意Newbing组件已不再维护。{tb_str}')
|
||||
self.child.send('[Fail]')
|
||||
self.child.send('[Finish]')
|
||||
tb_str = "\n```\n" + trimmed_format_exc() + "\n```\n"
|
||||
self.child.send(
|
||||
f"[Local Message] 不能加载Newbing组件,请注意Newbing组件已不再维护。{tb_str}"
|
||||
)
|
||||
self.child.send("[Fail]")
|
||||
self.child.send("[Finish]")
|
||||
raise RuntimeError(f"不能加载Newbing组件,请注意Newbing组件已不再维护。")
|
||||
|
||||
self.success = True
|
||||
@@ -151,66 +169,100 @@ class NewBingHandle(Process):
|
||||
# 进入任务等待状态
|
||||
asyncio.run(self.async_run())
|
||||
except Exception:
|
||||
tb_str = '\n```\n' + trimmed_format_exc() + '\n```\n'
|
||||
self.child.send(f'[Local Message] Newbing 请求失败,报错信息如下. 如果是与网络相关的问题,建议更换代理协议(推荐http)或代理节点 {tb_str}.')
|
||||
self.child.send('[Fail]')
|
||||
self.child.send('[Finish]')
|
||||
|
||||
tb_str = "\n```\n" + trimmed_format_exc() + "\n```\n"
|
||||
self.child.send(
|
||||
f"[Local Message] Newbing 请求失败,报错信息如下. 如果是与网络相关的问题,建议更换代理协议(推荐http)或代理节点 {tb_str}."
|
||||
)
|
||||
self.child.send("[Fail]")
|
||||
self.child.send("[Finish]")
|
||||
|
||||
def stream_chat(self, **kwargs):
|
||||
"""
|
||||
这个函数运行在主进程
|
||||
"""
|
||||
self.threadLock.acquire() # 获取线程锁
|
||||
self.parent.send(kwargs) # 请求子进程
|
||||
self.threadLock.acquire() # 获取线程锁
|
||||
self.parent.send(kwargs) # 请求子进程
|
||||
while True:
|
||||
res = self.parent.recv() # 等待newbing回复的片段
|
||||
if res == '[Finish]': break # 结束
|
||||
elif res == '[Fail]': self.success = False; break # 失败
|
||||
else: yield res # newbing回复的片段
|
||||
self.threadLock.release() # 释放线程锁
|
||||
res = self.parent.recv() # 等待newbing回复的片段
|
||||
if res == "[Finish]":
|
||||
break # 结束
|
||||
elif res == "[Fail]":
|
||||
self.success = False
|
||||
break # 失败
|
||||
else:
|
||||
yield res # newbing回复的片段
|
||||
self.threadLock.release() # 释放线程锁
|
||||
|
||||
|
||||
"""
|
||||
========================================================================
|
||||
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
第三部分:主进程统一调用函数接口
|
||||
========================================================================
|
||||
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
"""
|
||||
global newbingfree_handle
|
||||
newbingfree_handle = None
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
|
||||
def predict_no_ui_long_connection(
|
||||
inputs,
|
||||
llm_kwargs,
|
||||
history=[],
|
||||
sys_prompt="",
|
||||
observe_window=[],
|
||||
console_slience=False,
|
||||
):
|
||||
"""
|
||||
多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
global newbingfree_handle
|
||||
if (newbingfree_handle is None) or (not newbingfree_handle.success):
|
||||
newbingfree_handle = NewBingHandle()
|
||||
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + newbingfree_handle.info
|
||||
if not newbingfree_handle.success:
|
||||
if len(observe_window) >= 1:
|
||||
observe_window[0] = load_message + "\n\n" + newbingfree_handle.info
|
||||
if not newbingfree_handle.success:
|
||||
error = newbingfree_handle.info
|
||||
newbingfree_handle = None
|
||||
raise RuntimeError(error)
|
||||
|
||||
# 没有 sys_prompt 接口,因此把prompt加入 history
|
||||
history_feedin = []
|
||||
for i in range(len(history)//2):
|
||||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||||
for i in range(len(history) // 2):
|
||||
history_feedin.append([history[2 * i], history[2 * i + 1]])
|
||||
|
||||
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
|
||||
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
|
||||
response = ""
|
||||
if len(observe_window) >= 1: observe_window[0] = "[Local Message] 等待NewBing响应中 ..."
|
||||
for response in newbingfree_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
if len(observe_window) >= 1: observe_window[0] = preprocess_newbing_out_simple(response)
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||
if len(observe_window) >= 1:
|
||||
observe_window[0] = "[Local Message] 等待NewBing响应中 ..."
|
||||
for response in newbingfree_handle.stream_chat(
|
||||
query=inputs,
|
||||
history=history_feedin,
|
||||
system_prompt=sys_prompt,
|
||||
max_length=llm_kwargs["max_length"],
|
||||
top_p=llm_kwargs["top_p"],
|
||||
temperature=llm_kwargs["temperature"],
|
||||
):
|
||||
if len(observe_window) >= 1:
|
||||
observe_window[0] = preprocess_newbing_out_simple(response)
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time() - observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("程序终止。")
|
||||
return preprocess_newbing_out_simple(response)
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
|
||||
def predict(
|
||||
inputs,
|
||||
llm_kwargs,
|
||||
plugin_kwargs,
|
||||
chatbot,
|
||||
history=[],
|
||||
system_prompt="",
|
||||
stream=True,
|
||||
additional_fn=None,
|
||||
):
|
||||
"""
|
||||
单线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
单线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
chatbot.append((inputs, "[Local Message] 等待NewBing响应中 ..."))
|
||||
|
||||
@@ -219,27 +271,41 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
newbingfree_handle = NewBingHandle()
|
||||
chatbot[-1] = (inputs, load_message + "\n\n" + newbingfree_handle.info)
|
||||
yield from update_ui(chatbot=chatbot, history=[])
|
||||
if not newbingfree_handle.success:
|
||||
if not newbingfree_handle.success:
|
||||
newbingfree_handle = None
|
||||
return
|
||||
|
||||
if additional_fn is not None:
|
||||
from core_functional import handle_core_functionality
|
||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||
|
||||
inputs, history = handle_core_functionality(
|
||||
additional_fn, inputs, history, chatbot
|
||||
)
|
||||
|
||||
history_feedin = []
|
||||
for i in range(len(history)//2):
|
||||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||||
for i in range(len(history) // 2):
|
||||
history_feedin.append([history[2 * i], history[2 * i + 1]])
|
||||
|
||||
chatbot[-1] = (inputs, "[Local Message] 等待NewBing响应中 ...")
|
||||
response = "[Local Message] 等待NewBing响应中 ..."
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="NewBing响应缓慢,尚未完成全部响应,请耐心完成后再提交新问题。")
|
||||
for response in newbingfree_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=system_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
yield from update_ui(
|
||||
chatbot=chatbot, history=history, msg="NewBing响应缓慢,尚未完成全部响应,请耐心完成后再提交新问题。"
|
||||
)
|
||||
for response in newbingfree_handle.stream_chat(
|
||||
query=inputs,
|
||||
history=history_feedin,
|
||||
system_prompt=system_prompt,
|
||||
max_length=llm_kwargs["max_length"],
|
||||
top_p=llm_kwargs["top_p"],
|
||||
temperature=llm_kwargs["temperature"],
|
||||
):
|
||||
chatbot[-1] = (inputs, preprocess_newbing_out(response))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="NewBing响应缓慢,尚未完成全部响应,请耐心完成后再提交新问题。")
|
||||
if response == "[Local Message] 等待NewBing响应中 ...": response = "[Local Message] NewBing响应异常,请刷新界面重试 ..."
|
||||
yield from update_ui(
|
||||
chatbot=chatbot, history=history, msg="NewBing响应缓慢,尚未完成全部响应,请耐心完成后再提交新问题。"
|
||||
)
|
||||
if response == "[Local Message] 等待NewBing响应中 ...":
|
||||
response = "[Local Message] NewBing响应异常,请刷新界面重试 ..."
|
||||
history.extend([inputs, response])
|
||||
logging.info(f'[raw_input] {inputs}')
|
||||
logging.info(f'[response] {response}')
|
||||
logging.info(f"[raw_input] {inputs}")
|
||||
logging.info(f"[response] {response}")
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="完成全部响应,请提交新问题。")
|
||||
|
||||
|
||||
67
request_llms/bridge_skylark2.py
Normal file
67
request_llms/bridge_skylark2.py
Normal file
@@ -0,0 +1,67 @@
|
||||
import time
|
||||
from toolbox import update_ui, get_conf, update_ui_lastest_msg
|
||||
from toolbox import check_packages, report_exception
|
||||
|
||||
model_name = '云雀大模型'
|
||||
|
||||
def validate_key():
|
||||
YUNQUE_SECRET_KEY = get_conf("YUNQUE_SECRET_KEY")
|
||||
if YUNQUE_SECRET_KEY == '': return False
|
||||
return True
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
"""
|
||||
⭐ 多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
watch_dog_patience = 5
|
||||
response = ""
|
||||
|
||||
if validate_key() is False:
|
||||
raise RuntimeError('请配置YUNQUE_SECRET_KEY')
|
||||
|
||||
from .com_skylark2api import YUNQUERequestInstance
|
||||
sri = YUNQUERequestInstance()
|
||||
for response in sri.generate(inputs, llm_kwargs, history, sys_prompt):
|
||||
if len(observe_window) >= 1:
|
||||
observe_window[0] = response
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience: raise RuntimeError("程序终止。")
|
||||
return response
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
"""
|
||||
⭐ 单线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
chatbot.append((inputs, ""))
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
check_packages(["zhipuai"])
|
||||
except:
|
||||
yield from update_ui_lastest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install --upgrade zhipuai```。",
|
||||
chatbot=chatbot, history=history, delay=0)
|
||||
return
|
||||
|
||||
if validate_key() is False:
|
||||
yield from update_ui_lastest_msg(lastmsg="[Local Message] 请配置HUOSHAN_API_KEY", chatbot=chatbot, history=history, delay=0)
|
||||
return
|
||||
|
||||
if additional_fn is not None:
|
||||
from core_functional import handle_core_functionality
|
||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||
|
||||
# 开始接收回复
|
||||
from .com_skylark2api import YUNQUERequestInstance
|
||||
sri = YUNQUERequestInstance()
|
||||
for response in sri.generate(inputs, llm_kwargs, history, system_prompt):
|
||||
chatbot[-1] = (inputs, response)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
# 总结输出
|
||||
if response == f"[Local Message] 等待{model_name}响应中 ...":
|
||||
response = f"[Local Message] {model_name}响应异常 ..."
|
||||
history.extend([inputs, response])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
@@ -7,14 +7,15 @@ import logging
|
||||
import time
|
||||
from toolbox import get_conf
|
||||
import asyncio
|
||||
|
||||
load_message = "正在加载Claude组件,请稍候..."
|
||||
|
||||
try:
|
||||
"""
|
||||
========================================================================
|
||||
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
第一部分:Slack API Client
|
||||
https://github.com/yokonsan/claude-in-slack-api
|
||||
========================================================================
|
||||
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
"""
|
||||
|
||||
from slack_sdk.errors import SlackApiError
|
||||
@@ -23,20 +24,23 @@ try:
|
||||
class SlackClient(AsyncWebClient):
|
||||
"""SlackClient类用于与Slack API进行交互,实现消息发送、接收等功能。
|
||||
|
||||
属性:
|
||||
- CHANNEL_ID:str类型,表示频道ID。
|
||||
属性:
|
||||
- CHANNEL_ID:str类型,表示频道ID。
|
||||
|
||||
方法:
|
||||
- open_channel():异步方法。通过调用conversations_open方法打开一个频道,并将返回的频道ID保存在属性CHANNEL_ID中。
|
||||
- chat(text: str):异步方法。向已打开的频道发送一条文本消息。
|
||||
- get_slack_messages():异步方法。获取已打开频道的最新消息并返回消息列表,目前不支持历史消息查询。
|
||||
- get_reply():异步方法。循环监听已打开频道的消息,如果收到"Typing…_"结尾的消息说明Claude还在继续输出,否则结束循环。
|
||||
方法:
|
||||
- open_channel():异步方法。通过调用conversations_open方法打开一个频道,并将返回的频道ID保存在属性CHANNEL_ID中。
|
||||
- chat(text: str):异步方法。向已打开的频道发送一条文本消息。
|
||||
- get_slack_messages():异步方法。获取已打开频道的最新消息并返回消息列表,目前不支持历史消息查询。
|
||||
- get_reply():异步方法。循环监听已打开频道的消息,如果收到"Typing…_"结尾的消息说明Claude还在继续输出,否则结束循环。
|
||||
|
||||
"""
|
||||
|
||||
CHANNEL_ID = None
|
||||
|
||||
async def open_channel(self):
|
||||
response = await self.conversations_open(users=get_conf('SLACK_CLAUDE_BOT_ID'))
|
||||
response = await self.conversations_open(
|
||||
users=get_conf("SLACK_CLAUDE_BOT_ID")
|
||||
)
|
||||
self.CHANNEL_ID = response["channel"]["id"]
|
||||
|
||||
async def chat(self, text):
|
||||
@@ -49,33 +53,39 @@ try:
|
||||
async def get_slack_messages(self):
|
||||
try:
|
||||
# TODO:暂时不支持历史消息,因为在同一个频道里存在多人使用时历史消息渗透问题
|
||||
resp = await self.conversations_history(channel=self.CHANNEL_ID, oldest=self.LAST_TS, limit=1)
|
||||
msg = [msg for msg in resp["messages"]
|
||||
if msg.get("user") == get_conf('SLACK_CLAUDE_BOT_ID')]
|
||||
resp = await self.conversations_history(
|
||||
channel=self.CHANNEL_ID, oldest=self.LAST_TS, limit=1
|
||||
)
|
||||
msg = [
|
||||
msg
|
||||
for msg in resp["messages"]
|
||||
if msg.get("user") == get_conf("SLACK_CLAUDE_BOT_ID")
|
||||
]
|
||||
return msg
|
||||
except (SlackApiError, KeyError) as e:
|
||||
raise RuntimeError(f"获取Slack消息失败。")
|
||||
|
||||
|
||||
async def get_reply(self):
|
||||
while True:
|
||||
slack_msgs = await self.get_slack_messages()
|
||||
if len(slack_msgs) == 0:
|
||||
await asyncio.sleep(0.5)
|
||||
continue
|
||||
|
||||
|
||||
msg = slack_msgs[-1]
|
||||
if msg["text"].endswith("Typing…_"):
|
||||
yield False, msg["text"]
|
||||
else:
|
||||
yield True, msg["text"]
|
||||
break
|
||||
|
||||
except:
|
||||
pass
|
||||
|
||||
"""
|
||||
========================================================================
|
||||
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
第二部分:子进程Worker(调用主体)
|
||||
========================================================================
|
||||
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
"""
|
||||
|
||||
|
||||
@@ -88,7 +98,7 @@ class ClaudeHandle(Process):
|
||||
self.success = True
|
||||
self.local_history = []
|
||||
self.check_dependency()
|
||||
if self.success:
|
||||
if self.success:
|
||||
self.start()
|
||||
self.threadLock = threading.Lock()
|
||||
|
||||
@@ -96,6 +106,7 @@ class ClaudeHandle(Process):
|
||||
try:
|
||||
self.success = False
|
||||
import slack_sdk
|
||||
|
||||
self.info = "依赖检测通过,等待Claude响应。注意目前不能多人同时调用Claude接口(有线程锁),否则将导致每个人的Claude问询历史互相渗透。调用Claude时,会自动使用已配置的代理。"
|
||||
self.success = True
|
||||
except:
|
||||
@@ -103,40 +114,44 @@ class ClaudeHandle(Process):
|
||||
self.success = False
|
||||
|
||||
def ready(self):
|
||||
return self.claude_model is not None
|
||||
|
||||
return self.claude_model is not None
|
||||
|
||||
async def async_run(self):
|
||||
await self.claude_model.open_channel()
|
||||
while True:
|
||||
# 等待
|
||||
kwargs = self.child.recv()
|
||||
question = kwargs['query']
|
||||
history = kwargs['history']
|
||||
question = kwargs["query"]
|
||||
history = kwargs["history"]
|
||||
|
||||
# 开始问问题
|
||||
prompt = ""
|
||||
|
||||
# 问题
|
||||
prompt += question
|
||||
print('question:', prompt)
|
||||
print("question:", prompt)
|
||||
|
||||
# 提交
|
||||
await self.claude_model.chat(prompt)
|
||||
|
||||
|
||||
# 获取回复
|
||||
async for final, response in self.claude_model.get_reply():
|
||||
async for final, response in self.claude_model.get_reply():
|
||||
if not final:
|
||||
print(response)
|
||||
self.child.send(str(response))
|
||||
else:
|
||||
# 防止丢失最后一条消息
|
||||
slack_msgs = await self.claude_model.get_slack_messages()
|
||||
last_msg = slack_msgs[-1]["text"] if slack_msgs and len(slack_msgs) > 0 else ""
|
||||
last_msg = (
|
||||
slack_msgs[-1]["text"]
|
||||
if slack_msgs and len(slack_msgs) > 0
|
||||
else ""
|
||||
)
|
||||
if last_msg:
|
||||
self.child.send(last_msg)
|
||||
print('-------- receive final ---------')
|
||||
self.child.send('[Finish]')
|
||||
|
||||
print("-------- receive final ---------")
|
||||
self.child.send("[Finish]")
|
||||
|
||||
def run(self):
|
||||
"""
|
||||
这个函数运行在子进程
|
||||
@@ -146,22 +161,24 @@ class ClaudeHandle(Process):
|
||||
self.local_history = []
|
||||
if (self.claude_model is None) or (not self.success):
|
||||
# 代理设置
|
||||
proxies = get_conf('proxies')
|
||||
proxies = get_conf("proxies")
|
||||
if proxies is None:
|
||||
self.proxies_https = None
|
||||
else:
|
||||
self.proxies_https = proxies['https']
|
||||
self.proxies_https = proxies["https"]
|
||||
|
||||
try:
|
||||
SLACK_CLAUDE_USER_TOKEN = get_conf('SLACK_CLAUDE_USER_TOKEN')
|
||||
self.claude_model = SlackClient(token=SLACK_CLAUDE_USER_TOKEN, proxy=self.proxies_https)
|
||||
print('Claude组件初始化成功。')
|
||||
SLACK_CLAUDE_USER_TOKEN = get_conf("SLACK_CLAUDE_USER_TOKEN")
|
||||
self.claude_model = SlackClient(
|
||||
token=SLACK_CLAUDE_USER_TOKEN, proxy=self.proxies_https
|
||||
)
|
||||
print("Claude组件初始化成功。")
|
||||
except:
|
||||
self.success = False
|
||||
tb_str = '\n```\n' + trimmed_format_exc() + '\n```\n'
|
||||
self.child.send(f'[Local Message] 不能加载Claude组件。{tb_str}')
|
||||
self.child.send('[Fail]')
|
||||
self.child.send('[Finish]')
|
||||
tb_str = "\n```\n" + trimmed_format_exc() + "\n```\n"
|
||||
self.child.send(f"[Local Message] 不能加载Claude组件。{tb_str}")
|
||||
self.child.send("[Fail]")
|
||||
self.child.send("[Finish]")
|
||||
raise RuntimeError(f"不能加载Claude组件。")
|
||||
|
||||
self.success = True
|
||||
@@ -169,42 +186,49 @@ class ClaudeHandle(Process):
|
||||
# 进入任务等待状态
|
||||
asyncio.run(self.async_run())
|
||||
except Exception:
|
||||
tb_str = '\n```\n' + trimmed_format_exc() + '\n```\n'
|
||||
self.child.send(f'[Local Message] Claude失败 {tb_str}.')
|
||||
self.child.send('[Fail]')
|
||||
self.child.send('[Finish]')
|
||||
tb_str = "\n```\n" + trimmed_format_exc() + "\n```\n"
|
||||
self.child.send(f"[Local Message] Claude失败 {tb_str}.")
|
||||
self.child.send("[Fail]")
|
||||
self.child.send("[Finish]")
|
||||
|
||||
def stream_chat(self, **kwargs):
|
||||
"""
|
||||
这个函数运行在主进程
|
||||
"""
|
||||
self.threadLock.acquire()
|
||||
self.parent.send(kwargs) # 发送请求到子进程
|
||||
self.parent.send(kwargs) # 发送请求到子进程
|
||||
while True:
|
||||
res = self.parent.recv() # 等待Claude回复的片段
|
||||
if res == '[Finish]':
|
||||
break # 结束
|
||||
elif res == '[Fail]':
|
||||
res = self.parent.recv() # 等待Claude回复的片段
|
||||
if res == "[Finish]":
|
||||
break # 结束
|
||||
elif res == "[Fail]":
|
||||
self.success = False
|
||||
break
|
||||
else:
|
||||
yield res # Claude回复的片段
|
||||
yield res # Claude回复的片段
|
||||
self.threadLock.release()
|
||||
|
||||
|
||||
"""
|
||||
========================================================================
|
||||
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
第三部分:主进程统一调用函数接口
|
||||
========================================================================
|
||||
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
"""
|
||||
global claude_handle
|
||||
claude_handle = None
|
||||
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
||||
def predict_no_ui_long_connection(
|
||||
inputs,
|
||||
llm_kwargs,
|
||||
history=[],
|
||||
sys_prompt="",
|
||||
observe_window=None,
|
||||
console_slience=False,
|
||||
):
|
||||
"""
|
||||
多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
global claude_handle
|
||||
if (claude_handle is None) or (not claude_handle.success):
|
||||
@@ -217,24 +241,40 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
|
||||
# 没有 sys_prompt 接口,因此把prompt加入 history
|
||||
history_feedin = []
|
||||
for i in range(len(history)//2):
|
||||
history_feedin.append([history[2*i], history[2*i+1]])
|
||||
for i in range(len(history) // 2):
|
||||
history_feedin.append([history[2 * i], history[2 * i + 1]])
|
||||
|
||||
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
|
||||
response = ""
|
||||
observe_window[0] = "[Local Message] 等待Claude响应中 ..."
|
||||
for response in claude_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
for response in claude_handle.stream_chat(
|
||||
query=inputs,
|
||||
history=history_feedin,
|
||||
system_prompt=sys_prompt,
|
||||
max_length=llm_kwargs["max_length"],
|
||||
top_p=llm_kwargs["top_p"],
|
||||
temperature=llm_kwargs["temperature"],
|
||||
):
|
||||
observe_window[0] = preprocess_newbing_out_simple(response)
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||
if (time.time() - observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("程序终止。")
|
||||
return preprocess_newbing_out_simple(response)
|
||||
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream=True, additional_fn=None):
|
||||
def predict(
|
||||
inputs,
|
||||
llm_kwargs,
|
||||
plugin_kwargs,
|
||||
chatbot,
|
||||
history=[],
|
||||
system_prompt="",
|
||||
stream=True,
|
||||
additional_fn=None,
|
||||
):
|
||||
"""
|
||||
单线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
单线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
chatbot.append((inputs, "[Local Message] 等待Claude响应中 ..."))
|
||||
|
||||
@@ -249,21 +289,30 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
|
||||
if additional_fn is not None:
|
||||
from core_functional import handle_core_functionality
|
||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||
|
||||
inputs, history = handle_core_functionality(
|
||||
additional_fn, inputs, history, chatbot
|
||||
)
|
||||
|
||||
history_feedin = []
|
||||
for i in range(len(history)//2):
|
||||
history_feedin.append([history[2*i], history[2*i+1]])
|
||||
for i in range(len(history) // 2):
|
||||
history_feedin.append([history[2 * i], history[2 * i + 1]])
|
||||
|
||||
chatbot[-1] = (inputs, "[Local Message] 等待Claude响应中 ...")
|
||||
response = "[Local Message] 等待Claude响应中 ..."
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="Claude响应缓慢,尚未完成全部响应,请耐心完成后再提交新问题。")
|
||||
for response in claude_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=system_prompt):
|
||||
yield from update_ui(
|
||||
chatbot=chatbot, history=history, msg="Claude响应缓慢,尚未完成全部响应,请耐心完成后再提交新问题。"
|
||||
)
|
||||
for response in claude_handle.stream_chat(
|
||||
query=inputs, history=history_feedin, system_prompt=system_prompt
|
||||
):
|
||||
chatbot[-1] = (inputs, preprocess_newbing_out(response))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="Claude响应缓慢,尚未完成全部响应,请耐心完成后再提交新问题。")
|
||||
yield from update_ui(
|
||||
chatbot=chatbot, history=history, msg="Claude响应缓慢,尚未完成全部响应,请耐心完成后再提交新问题。"
|
||||
)
|
||||
if response == "[Local Message] 等待Claude响应中 ...":
|
||||
response = "[Local Message] Claude响应异常,请刷新界面重试 ..."
|
||||
history.extend([inputs, response])
|
||||
logging.info(f'[raw_input] {inputs}')
|
||||
logging.info(f'[response] {response}')
|
||||
logging.info(f"[raw_input] {inputs}")
|
||||
logging.info(f"[response] {response}")
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="完成全部响应,请提交新问题。")
|
||||
|
||||
@@ -42,7 +42,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
try:
|
||||
check_packages(["zhipuai"])
|
||||
except:
|
||||
yield from update_ui_lastest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install --upgrade zhipuai```。",
|
||||
yield from update_ui_lastest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install zhipuai==1.0.7```。",
|
||||
chatbot=chatbot, history=history, delay=0)
|
||||
return
|
||||
|
||||
|
||||
229
request_llms/com_google.py
Normal file
229
request_llms/com_google.py
Normal file
@@ -0,0 +1,229 @@
|
||||
# encoding: utf-8
|
||||
# @Time : 2023/12/25
|
||||
# @Author : Spike
|
||||
# @Descr :
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import requests
|
||||
from typing import List, Dict, Tuple
|
||||
from toolbox import get_conf, encode_image, get_pictures_list
|
||||
|
||||
proxies, TIMEOUT_SECONDS = get_conf("proxies", "TIMEOUT_SECONDS")
|
||||
|
||||
"""
|
||||
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
第五部分 一些文件处理方法
|
||||
files_filter_handler 根据type过滤文件
|
||||
input_encode_handler 提取input中的文件,并解析
|
||||
file_manifest_filter_html 根据type过滤文件, 并解析为html or md 文本
|
||||
link_mtime_to_md 文件增加本地时间参数,避免下载到缓存文件
|
||||
html_view_blank 超链接
|
||||
html_local_file 本地文件取相对路径
|
||||
to_markdown_tabs 文件list 转换为 md tab
|
||||
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
"""
|
||||
|
||||
|
||||
def files_filter_handler(file_list):
|
||||
new_list = []
|
||||
filter_ = [
|
||||
"png",
|
||||
"jpg",
|
||||
"jpeg",
|
||||
"bmp",
|
||||
"svg",
|
||||
"webp",
|
||||
"ico",
|
||||
"tif",
|
||||
"tiff",
|
||||
"raw",
|
||||
"eps",
|
||||
]
|
||||
for file in file_list:
|
||||
file = str(file).replace("file=", "")
|
||||
if os.path.exists(file):
|
||||
if str(os.path.basename(file)).split(".")[-1] in filter_:
|
||||
new_list.append(file)
|
||||
return new_list
|
||||
|
||||
|
||||
def input_encode_handler(inputs, llm_kwargs):
|
||||
if llm_kwargs["most_recent_uploaded"].get("path"):
|
||||
image_paths = get_pictures_list(llm_kwargs["most_recent_uploaded"]["path"])
|
||||
md_encode = []
|
||||
for md_path in image_paths:
|
||||
type_ = os.path.splitext(md_path)[1].replace(".", "")
|
||||
type_ = "jpeg" if type_ == "jpg" else type_
|
||||
md_encode.append({"data": encode_image(md_path), "type": type_})
|
||||
return inputs, md_encode
|
||||
|
||||
|
||||
def file_manifest_filter_html(file_list, filter_: list = None, md_type=False):
|
||||
new_list = []
|
||||
if not filter_:
|
||||
filter_ = [
|
||||
"png",
|
||||
"jpg",
|
||||
"jpeg",
|
||||
"bmp",
|
||||
"svg",
|
||||
"webp",
|
||||
"ico",
|
||||
"tif",
|
||||
"tiff",
|
||||
"raw",
|
||||
"eps",
|
||||
]
|
||||
for file in file_list:
|
||||
if str(os.path.basename(file)).split(".")[-1] in filter_:
|
||||
new_list.append(html_local_img(file, md=md_type))
|
||||
elif os.path.exists(file):
|
||||
new_list.append(link_mtime_to_md(file))
|
||||
else:
|
||||
new_list.append(file)
|
||||
return new_list
|
||||
|
||||
|
||||
def link_mtime_to_md(file):
|
||||
link_local = html_local_file(file)
|
||||
link_name = os.path.basename(file)
|
||||
a = f"[{link_name}]({link_local}?{os.path.getmtime(file)})"
|
||||
return a
|
||||
|
||||
|
||||
def html_local_file(file):
|
||||
base_path = os.path.dirname(__file__) # 项目目录
|
||||
if os.path.exists(str(file)):
|
||||
file = f'file={file.replace(base_path, ".")}'
|
||||
return file
|
||||
|
||||
|
||||
def html_local_img(__file, layout="left", max_width=None, max_height=None, md=True):
|
||||
style = ""
|
||||
if max_width is not None:
|
||||
style += f"max-width: {max_width};"
|
||||
if max_height is not None:
|
||||
style += f"max-height: {max_height};"
|
||||
__file = html_local_file(__file)
|
||||
a = f'<div align="{layout}"><img src="{__file}" style="{style}"></div>'
|
||||
if md:
|
||||
a = f""
|
||||
return a
|
||||
|
||||
|
||||
def to_markdown_tabs(head: list, tabs: list, alignment=":---:", column=False):
|
||||
"""
|
||||
Args:
|
||||
head: 表头:[]
|
||||
tabs: 表值:[[列1], [列2], [列3], [列4]]
|
||||
alignment: :--- 左对齐, :---: 居中对齐, ---: 右对齐
|
||||
column: True to keep data in columns, False to keep data in rows (default).
|
||||
Returns:
|
||||
A string representation of the markdown table.
|
||||
"""
|
||||
if column:
|
||||
transposed_tabs = list(map(list, zip(*tabs)))
|
||||
else:
|
||||
transposed_tabs = tabs
|
||||
# Find the maximum length among the columns
|
||||
max_len = max(len(column) for column in transposed_tabs)
|
||||
|
||||
tab_format = "| %s "
|
||||
tabs_list = "".join([tab_format % i for i in head]) + "|\n"
|
||||
tabs_list += "".join([tab_format % alignment for i in head]) + "|\n"
|
||||
|
||||
for i in range(max_len):
|
||||
row_data = [tab[i] if i < len(tab) else "" for tab in transposed_tabs]
|
||||
row_data = file_manifest_filter_html(row_data, filter_=None)
|
||||
tabs_list += "".join([tab_format % i for i in row_data]) + "|\n"
|
||||
|
||||
return tabs_list
|
||||
|
||||
|
||||
class GoogleChatInit:
|
||||
def __init__(self):
|
||||
self.url_gemini = "https://generativelanguage.googleapis.com/v1beta/models/%m:streamGenerateContent?key=%k"
|
||||
|
||||
def generate_chat(self, inputs, llm_kwargs, history, system_prompt):
|
||||
headers, payload = self.generate_message_payload(
|
||||
inputs, llm_kwargs, history, system_prompt
|
||||
)
|
||||
response = requests.post(
|
||||
url=self.url_gemini,
|
||||
headers=headers,
|
||||
data=json.dumps(payload),
|
||||
stream=True,
|
||||
proxies=proxies,
|
||||
timeout=TIMEOUT_SECONDS,
|
||||
)
|
||||
return response.iter_lines()
|
||||
|
||||
def __conversation_user(self, user_input, llm_kwargs):
|
||||
what_i_have_asked = {"role": "user", "parts": []}
|
||||
if "vision" not in self.url_gemini:
|
||||
input_ = user_input
|
||||
encode_img = []
|
||||
else:
|
||||
input_, encode_img = input_encode_handler(user_input, llm_kwargs=llm_kwargs)
|
||||
what_i_have_asked["parts"].append({"text": input_})
|
||||
if encode_img:
|
||||
for data in encode_img:
|
||||
what_i_have_asked["parts"].append(
|
||||
{
|
||||
"inline_data": {
|
||||
"mime_type": f"image/{data['type']}",
|
||||
"data": data["data"],
|
||||
}
|
||||
}
|
||||
)
|
||||
return what_i_have_asked
|
||||
|
||||
def __conversation_history(self, history, llm_kwargs):
|
||||
messages = []
|
||||
conversation_cnt = len(history) // 2
|
||||
if conversation_cnt:
|
||||
for index in range(0, 2 * conversation_cnt, 2):
|
||||
what_i_have_asked = self.__conversation_user(history[index], llm_kwargs)
|
||||
what_gpt_answer = {
|
||||
"role": "model",
|
||||
"parts": [{"text": history[index + 1]}],
|
||||
}
|
||||
messages.append(what_i_have_asked)
|
||||
messages.append(what_gpt_answer)
|
||||
return messages
|
||||
|
||||
def generate_message_payload(
|
||||
self, inputs, llm_kwargs, history, system_prompt
|
||||
) -> Tuple[Dict, Dict]:
|
||||
messages = [
|
||||
# {"role": "system", "parts": [{"text": system_prompt}]}, # gemini 不允许对话轮次为偶数,所以这个没有用,看后续支持吧。。。
|
||||
# {"role": "user", "parts": [{"text": ""}]},
|
||||
# {"role": "model", "parts": [{"text": ""}]}
|
||||
]
|
||||
self.url_gemini = self.url_gemini.replace(
|
||||
"%m", llm_kwargs["llm_model"]
|
||||
).replace("%k", get_conf("GEMINI_API_KEY"))
|
||||
header = {"Content-Type": "application/json"}
|
||||
if "vision" not in self.url_gemini: # 不是vision 才处理history
|
||||
messages.extend(
|
||||
self.__conversation_history(history, llm_kwargs)
|
||||
) # 处理 history
|
||||
messages.append(self.__conversation_user(inputs, llm_kwargs)) # 处理用户对话
|
||||
payload = {
|
||||
"contents": messages,
|
||||
"generationConfig": {
|
||||
# "maxOutputTokens": 800,
|
||||
"stopSequences": str(llm_kwargs.get("stop", "")).split(" "),
|
||||
"temperature": llm_kwargs.get("temperature", 1),
|
||||
"topP": llm_kwargs.get("top_p", 0.8),
|
||||
"topK": 10,
|
||||
},
|
||||
}
|
||||
return header, payload
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
google = GoogleChatInit()
|
||||
# print(gootle.generate_message_payload('你好呀', {}, ['123123', '3123123'], ''))
|
||||
# gootle.input_encode_handle('123123[123123](./123123), ')
|
||||
95
request_llms/com_skylark2api.py
Normal file
95
request_llms/com_skylark2api.py
Normal file
@@ -0,0 +1,95 @@
|
||||
from toolbox import get_conf
|
||||
import threading
|
||||
import logging
|
||||
import os
|
||||
|
||||
timeout_bot_msg = '[Local Message] Request timeout. Network error.'
|
||||
#os.environ['VOLC_ACCESSKEY'] = ''
|
||||
#os.environ['VOLC_SECRETKEY'] = ''
|
||||
|
||||
class YUNQUERequestInstance():
|
||||
def __init__(self):
|
||||
|
||||
self.time_to_yield_event = threading.Event()
|
||||
self.time_to_exit_event = threading.Event()
|
||||
|
||||
self.result_buf = ""
|
||||
|
||||
def generate(self, inputs, llm_kwargs, history, system_prompt):
|
||||
# import _thread as thread
|
||||
from volcengine.maas import MaasService, MaasException
|
||||
|
||||
maas = MaasService('maas-api.ml-platform-cn-beijing.volces.com', 'cn-beijing')
|
||||
|
||||
YUNQUE_SECRET_KEY, YUNQUE_ACCESS_KEY,YUNQUE_MODEL = get_conf("YUNQUE_SECRET_KEY", "YUNQUE_ACCESS_KEY","YUNQUE_MODEL")
|
||||
maas.set_ak(YUNQUE_ACCESS_KEY) #填写 VOLC_ACCESSKEY
|
||||
maas.set_sk(YUNQUE_SECRET_KEY) #填写 'VOLC_SECRETKEY'
|
||||
|
||||
self.result_buf = ""
|
||||
|
||||
req = {
|
||||
"model": {
|
||||
"name": YUNQUE_MODEL,
|
||||
"version": "1.0", # use default version if not specified.
|
||||
},
|
||||
"parameters": {
|
||||
"max_new_tokens": 4000, # 输出文本的最大tokens限制
|
||||
"min_new_tokens": 1, # 输出文本的最小tokens限制
|
||||
"temperature": llm_kwargs['temperature'], # 用于控制生成文本的随机性和创造性,Temperature值越大随机性越大,取值范围0~1
|
||||
"top_p": llm_kwargs['top_p'], # 用于控制输出tokens的多样性,TopP值越大输出的tokens类型越丰富,取值范围0~1
|
||||
"top_k": 0, # 选择预测值最大的k个token进行采样,取值范围0-1000,0表示不生效
|
||||
"max_prompt_tokens": 4000, # 最大输入 token 数,如果给出的 prompt 的 token 长度超过此限制,取最后 max_prompt_tokens 个 token 输入模型。
|
||||
},
|
||||
"messages": self.generate_message_payload(inputs, llm_kwargs, history, system_prompt)
|
||||
}
|
||||
|
||||
response = maas.stream_chat(req)
|
||||
|
||||
for resp in response:
|
||||
self.result_buf += resp.choice.message.content
|
||||
yield self.result_buf
|
||||
'''
|
||||
for event in response.events():
|
||||
if event.event == "add":
|
||||
self.result_buf += event.data
|
||||
yield self.result_buf
|
||||
elif event.event == "error" or event.event == "interrupted":
|
||||
raise RuntimeError("Unknown error:" + event.data)
|
||||
elif event.event == "finish":
|
||||
yield self.result_buf
|
||||
break
|
||||
else:
|
||||
raise RuntimeError("Unknown error:" + str(event))
|
||||
|
||||
logging.info(f'[raw_input] {inputs}')
|
||||
logging.info(f'[response] {self.result_buf}')
|
||||
'''
|
||||
return self.result_buf
|
||||
|
||||
def generate_message_payload(inputs, llm_kwargs, history, system_prompt):
|
||||
from volcengine.maas import ChatRole
|
||||
conversation_cnt = len(history) // 2
|
||||
messages = [{"role": ChatRole.USER, "content": system_prompt},
|
||||
{"role": ChatRole.ASSISTANT, "content": "Certainly!"}]
|
||||
if conversation_cnt:
|
||||
for index in range(0, 2 * conversation_cnt, 2):
|
||||
what_i_have_asked = {}
|
||||
what_i_have_asked["role"] = ChatRole.USER
|
||||
what_i_have_asked["content"] = history[index]
|
||||
what_gpt_answer = {}
|
||||
what_gpt_answer["role"] = ChatRole.ASSISTANT
|
||||
what_gpt_answer["content"] = history[index + 1]
|
||||
if what_i_have_asked["content"] != "":
|
||||
if what_gpt_answer["content"] == "":
|
||||
continue
|
||||
if what_gpt_answer["content"] == timeout_bot_msg:
|
||||
continue
|
||||
messages.append(what_i_have_asked)
|
||||
messages.append(what_gpt_answer)
|
||||
else:
|
||||
messages[-1]['content'] = what_gpt_answer['content']
|
||||
what_i_ask_now = {}
|
||||
what_i_ask_now["role"] = ChatRole.USER
|
||||
what_i_ask_now["content"] = inputs
|
||||
messages.append(what_i_ask_now)
|
||||
return messages
|
||||
@@ -21,11 +21,13 @@ class ZhipuRequestInstance():
|
||||
response = zhipuai.model_api.sse_invoke(
|
||||
model=ZHIPUAI_MODEL,
|
||||
prompt=generate_message_payload(inputs, llm_kwargs, history, system_prompt),
|
||||
top_p=llm_kwargs['top_p'],
|
||||
temperature=llm_kwargs['temperature'],
|
||||
top_p=llm_kwargs['top_p']*0.7, # 智谱的API抽风,手动*0.7给做个线性变换
|
||||
temperature=llm_kwargs['temperature']*0.95, # 智谱的API抽风,手动*0.7给做个线性变换
|
||||
)
|
||||
for event in response.events():
|
||||
if event.event == "add":
|
||||
# if self.result_buf == "" and event.data.startswith(" "):
|
||||
# event.data = event.data.lstrip(" ") # 每次智谱为啥都要带个空格开头呢?
|
||||
self.result_buf += event.data
|
||||
yield self.result_buf
|
||||
elif event.event == "error" or event.event == "interrupted":
|
||||
@@ -35,7 +37,8 @@ class ZhipuRequestInstance():
|
||||
break
|
||||
else:
|
||||
raise RuntimeError("Unknown error:" + str(event))
|
||||
|
||||
if self.result_buf == "":
|
||||
yield "智谱没有返回任何数据, 请检查ZHIPUAI_API_KEY和ZHIPUAI_MODEL是否填写正确."
|
||||
logging.info(f'[raw_input] {inputs}')
|
||||
logging.info(f'[response] {self.result_buf}')
|
||||
return self.result_buf
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
"""
|
||||
========================================================================
|
||||
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
第一部分:来自EdgeGPT.py
|
||||
https://github.com/acheong08/EdgeGPT
|
||||
========================================================================
|
||||
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
"""
|
||||
"""
|
||||
Main.py
|
||||
@@ -196,9 +196,9 @@ class _ChatHubRequest:
|
||||
self,
|
||||
prompt: str,
|
||||
conversation_style: CONVERSATION_STYLE_TYPE,
|
||||
options = None,
|
||||
webpage_context = None,
|
||||
search_result = False,
|
||||
options=None,
|
||||
webpage_context=None,
|
||||
search_result=False,
|
||||
) -> None:
|
||||
"""
|
||||
Updates request object
|
||||
@@ -294,9 +294,9 @@ class _Conversation:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
proxy = None,
|
||||
async_mode = False,
|
||||
cookies = None,
|
||||
proxy=None,
|
||||
async_mode=False,
|
||||
cookies=None,
|
||||
) -> None:
|
||||
if async_mode:
|
||||
return
|
||||
@@ -350,8 +350,8 @@ class _Conversation:
|
||||
|
||||
@staticmethod
|
||||
async def create(
|
||||
proxy = None,
|
||||
cookies = None,
|
||||
proxy=None,
|
||||
cookies=None,
|
||||
):
|
||||
self = _Conversation(async_mode=True)
|
||||
self.struct = {
|
||||
@@ -418,8 +418,8 @@ class _ChatHub:
|
||||
def __init__(
|
||||
self,
|
||||
conversation: _Conversation,
|
||||
proxy = None,
|
||||
cookies = None,
|
||||
proxy=None,
|
||||
cookies=None,
|
||||
) -> None:
|
||||
self.session = None
|
||||
self.wss = None
|
||||
@@ -441,7 +441,7 @@ class _ChatHub:
|
||||
conversation_style: CONVERSATION_STYLE_TYPE = None,
|
||||
raw: bool = False,
|
||||
options: dict = None,
|
||||
webpage_context = None,
|
||||
webpage_context=None,
|
||||
search_result: bool = False,
|
||||
) -> Generator[str, None, None]:
|
||||
"""
|
||||
@@ -452,10 +452,12 @@ class _ChatHub:
|
||||
ws_cookies = []
|
||||
for cookie in self.cookies:
|
||||
ws_cookies.append(f"{cookie['name']}={cookie['value']}")
|
||||
req_header.update({
|
||||
'Cookie': ';'.join(ws_cookies),
|
||||
})
|
||||
|
||||
req_header.update(
|
||||
{
|
||||
"Cookie": ";".join(ws_cookies),
|
||||
}
|
||||
)
|
||||
|
||||
timeout = aiohttp.ClientTimeout(total=30)
|
||||
self.session = aiohttp.ClientSession(timeout=timeout)
|
||||
|
||||
@@ -521,9 +523,9 @@ class _ChatHub:
|
||||
msg = await self.wss.receive()
|
||||
try:
|
||||
objects = msg.data.split(DELIMITER)
|
||||
except :
|
||||
except:
|
||||
continue
|
||||
|
||||
|
||||
for obj in objects:
|
||||
if obj is None or not obj:
|
||||
continue
|
||||
@@ -624,8 +626,8 @@ class Chatbot:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
proxy = None,
|
||||
cookies = None,
|
||||
proxy=None,
|
||||
cookies=None,
|
||||
) -> None:
|
||||
self.proxy = proxy
|
||||
self.chat_hub: _ChatHub = _ChatHub(
|
||||
@@ -636,8 +638,8 @@ class Chatbot:
|
||||
|
||||
@staticmethod
|
||||
async def create(
|
||||
proxy = None,
|
||||
cookies = None,
|
||||
proxy=None,
|
||||
cookies=None,
|
||||
):
|
||||
self = Chatbot.__new__(Chatbot)
|
||||
self.proxy = proxy
|
||||
@@ -654,7 +656,7 @@ class Chatbot:
|
||||
wss_link: str = "wss://sydney.bing.com/sydney/ChatHub",
|
||||
conversation_style: CONVERSATION_STYLE_TYPE = None,
|
||||
options: dict = None,
|
||||
webpage_context = None,
|
||||
webpage_context=None,
|
||||
search_result: bool = False,
|
||||
) -> dict:
|
||||
"""
|
||||
@@ -680,7 +682,7 @@ class Chatbot:
|
||||
conversation_style: CONVERSATION_STYLE_TYPE = None,
|
||||
raw: bool = False,
|
||||
options: dict = None,
|
||||
webpage_context = None,
|
||||
webpage_context=None,
|
||||
search_result: bool = False,
|
||||
) -> Generator[str, None, None]:
|
||||
"""
|
||||
|
||||
@@ -2,4 +2,4 @@ protobuf
|
||||
cpm_kernels
|
||||
torch>=1.10
|
||||
mdtex2html
|
||||
sentencepiece
|
||||
sentencepiece
|
||||
|
||||
@@ -3,4 +3,4 @@ jtorch >= 0.1.3
|
||||
torch
|
||||
torchvision
|
||||
pandas
|
||||
jieba
|
||||
jieba
|
||||
|
||||
@@ -5,4 +5,3 @@ accelerate
|
||||
matplotlib
|
||||
huggingface_hub
|
||||
triton
|
||||
|
||||
|
||||
@@ -1 +1 @@
|
||||
dashscope
|
||||
dashscope
|
||||
|
||||
@@ -2,4 +2,4 @@ modelscope
|
||||
transformers_stream_generator
|
||||
auto-gptq
|
||||
optimum
|
||||
urllib3<2
|
||||
urllib3<2
|
||||
|
||||
@@ -1 +1 @@
|
||||
slack-sdk==3.21.3
|
||||
slack-sdk==3.21.3
|
||||
|
||||
Reference in New Issue
Block a user