Merge Frontier, Update to Version 3.72 (#1553)

* Zhipu sdk update 适配最新的智谱SDK,支持GLM4v (#1502)

* 适配 google gemini 优化为从用户input中提取文件

* 适配最新的智谱SDK、支持glm-4v

* requirements.txt fix

* pending history check

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* Update "生成多种Mermaid图表" plugin: Separate out the file reading function (#1520)

* Update crazy_functional.py with new functionality deal with PDF

* Update crazy_functional.py and Mermaid.py for plugin_kwargs

* Update crazy_functional.py with new chart type: mind map

* Update SELECT_PROMPT and i_say_show_user messages

* Update ArgsReminder message in get_crazy_functions() function

* Update with read md file and update PROMPTS

* Return the PROMPTS as the test found that the initial version worked best

* Update Mermaid chart generation function

* version 3.71

* 解决issues #1510

* Remove unnecessary text from sys_prompt in 解析历史输入 function

* Remove sys_prompt message in 解析历史输入 function

* Update bridge_all.py: supports gpt-4-turbo-preview (#1517)

* Update bridge_all.py: supports gpt-4-turbo-preview

supports gpt-4-turbo-preview

* Update bridge_all.py

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>

* Update config.py: supports gpt-4-turbo-preview (#1516)

* Update config.py: supports gpt-4-turbo-preview

supports gpt-4-turbo-preview

* Update config.py

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>

* Refactor 解析历史输入 function to handle file input

* Update Mermaid chart generation functionality

* rename files and functions

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
Co-authored-by: hongyi-zhao <hongyi.zhao@gmail.com>
Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>

* 接入mathpix ocr功能 (#1468)

* Update Latex输出PDF结果.py

借助mathpix实现了PDF翻译中文并重新编译PDF

* Update config.py

add mathpix appid & appkey

* Add 'PDF翻译中文并重新编译PDF' feature to plugins.

---------

Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>

* fix zhipuai

* check picture

* remove glm-4 due to bug

* 修改config

* 检查MATHPIX_APPID

* Remove unnecessary code and update
function_plugins dictionary

* capture non-standard token overflow

* bug fix #1524

* change mermaid style

* 支持mermaid 滚动放大缩小重置,鼠标滚动和拖拽 (#1530)

* 支持mermaid 滚动放大缩小重置,鼠标滚动和拖拽

* 微调未果 先stage一下

* update

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>
Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com>

* ver 3.72

* change live2d

* save the status of ``clear btn` in cookie

* 前端选择保持

* js ui bug fix

* reset btn bug fix

* update live2d tips

* fix missing get_token_num method

* fix live2d toggle switch

* fix persistent custom btn with cookie

* fix zhipuai feedback with core functionality

* Refactor button update and clean up functions

---------

Co-authored-by: XIao <46100050+Kilig947@users.noreply.github.com>
Co-authored-by: Menghuan1918 <menghuan2003@outlook.com>
Co-authored-by: hongyi-zhao <hongyi.zhao@gmail.com>
Co-authored-by: Hao Ma <893017927@qq.com>
Co-authored-by: zeyuan huang <599012428@qq.com>
This commit is contained in:
binary-husky
2024-02-14 18:35:09 +08:00
committed by GitHub
parent e0c5859cf9
commit 2e9b4a5770
42 changed files with 1171 additions and 9635 deletions

View File

@@ -31,6 +31,9 @@ from .bridge_qianfan import predict as qianfan_ui
from .bridge_google_gemini import predict as genai_ui
from .bridge_google_gemini import predict_no_ui_long_connection as genai_noui
from .bridge_zhipu import predict_no_ui_long_connection as zhipu_noui
from .bridge_zhipu import predict as zhipu_ui
colors = ['#FF00FF', '#00FFFF', '#FF0000', '#990099', '#009999', '#990044']
class LazyloadTiktoken(object):
@@ -44,13 +47,13 @@ class LazyloadTiktoken(object):
tmp = tiktoken.encoding_for_model(model)
print('加载tokenizer完毕')
return tmp
def encode(self, *args, **kwargs):
encoder = self.get_encoder(self.model)
encoder = self.get_encoder(self.model)
return encoder.encode(*args, **kwargs)
def decode(self, *args, **kwargs):
encoder = self.get_encoder(self.model)
encoder = self.get_encoder(self.model)
return encoder.decode(*args, **kwargs)
# Endpoint 重定向
@@ -63,7 +66,7 @@ azure_endpoint = AZURE_ENDPOINT + f'openai/deployments/{AZURE_ENGINE}/chat/compl
# 兼容旧版的配置
try:
API_URL = get_conf("API_URL")
if API_URL != "https://api.openai.com/v1/chat/completions":
if API_URL != "https://api.openai.com/v1/chat/completions":
openai_endpoint = API_URL
print("警告API_URL配置选项将被弃用请更换为API_URL_REDIRECT配置")
except:
@@ -95,7 +98,7 @@ model_info = {
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"gpt-3.5-turbo-16k": {
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
@@ -185,7 +188,7 @@ model_info = {
"tokenizer": tokenizer_gpt4,
"token_cnt": get_token_num_gpt4,
},
"gpt-4-vision-preview": {
"fn_with_ui": chatgpt_vision_ui,
"fn_without_ui": chatgpt_vision_noui,
@@ -215,16 +218,25 @@ model_info = {
"token_cnt": get_token_num_gpt4,
},
# api_2d (此后不需要在此处添加api2d的接口了因为下面的代码会自动添加)
"api2d-gpt-3.5-turbo": {
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"endpoint": api2d_endpoint,
"max_token": 4096,
# 智谱AI
"glm-4": {
"fn_with_ui": zhipu_ui,
"fn_without_ui": zhipu_noui,
"endpoint": None,
"max_token": 10124 * 8,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"glm-3-turbo": {
"fn_with_ui": zhipu_ui,
"fn_without_ui": zhipu_noui,
"endpoint": None,
"max_token": 10124 * 4,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
# api_2d (此后不需要在此处添加api2d的接口了因为下面的代码会自动添加)
"api2d-gpt-4": {
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
@@ -580,19 +592,17 @@ if "llama2" in AVAIL_LLM_MODELS: # llama2
})
except:
print(trimmed_format_exc())
if "zhipuai" in AVAIL_LLM_MODELS: # zhipuai
if "zhipuai" in AVAIL_LLM_MODELS: # zhipuai 是glm-4的别名向后兼容配置
try:
from .bridge_zhipu import predict_no_ui_long_connection as zhipu_noui
from .bridge_zhipu import predict as zhipu_ui
model_info.update({
"zhipuai": {
"fn_with_ui": zhipu_ui,
"fn_without_ui": zhipu_noui,
"endpoint": None,
"max_token": 4096,
"max_token": 10124 * 8,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
}
},
})
except:
print(trimmed_format_exc())
@@ -635,7 +645,7 @@ AZURE_CFG_ARRAY = get_conf("AZURE_CFG_ARRAY")
if len(AZURE_CFG_ARRAY) > 0:
for azure_model_name, azure_cfg_dict in AZURE_CFG_ARRAY.items():
# 可能会覆盖之前的配置,但这是意料之中的
if not azure_model_name.startswith('azure'):
if not azure_model_name.startswith('azure'):
raise ValueError("AZURE_CFG_ARRAY中配置的模型必须以azure开头")
endpoint_ = azure_cfg_dict["AZURE_ENDPOINT"] + \
f'openai/deployments/{azure_cfg_dict["AZURE_ENGINE"]}/chat/completions?api-version=2023-05-15'
@@ -701,7 +711,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
executor = ThreadPoolExecutor(max_workers=4)
models = model.split('&')
n_model = len(models)
window_len = len(observe_window)
assert window_len==3
window_mutex = [["", time.time(), ""] for _ in range(n_model)] + [True]
@@ -720,7 +730,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
time.sleep(0.25)
if not window_mutex[-1]: break
# 看门狗watchdog
for i in range(n_model):
for i in range(n_model):
window_mutex[i][1] = observe_window[1]
# 观察窗window
chat_string = []

View File

@@ -113,6 +113,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
error_msg = get_full_error(chunk, stream_response).decode()
if "reduce the length" in error_msg:
raise ConnectionAbortedError("OpenAI拒绝了请求:" + error_msg)
elif """type":"upstream_error","param":"307""" in error_msg:
raise ConnectionAbortedError("正常结束但显示Token不足导致输出不完整请削减单次输入的文本量。")
else:
raise RuntimeError("OpenAI拒绝了请求" + error_msg)
if ('data: [DONE]' in chunk_decoded): break # api2d 正常完成

View File

@@ -57,6 +57,10 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
if "vision" in llm_kwargs["llm_model"]:
have_recent_file, image_paths = have_any_recent_upload_image_files(chatbot)
if not have_recent_file:
chatbot.append((inputs, "没有检测到任何近期上传的图像文件请上传jpg格式的图片此外请注意拓展名需要小写"))
yield from update_ui(chatbot=chatbot, history=history, msg="等待图片") # 刷新界面
return
def make_media_input(inputs, image_paths):
for image_path in image_paths:
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'

View File

@@ -1,15 +1,21 @@
import time
import os
from toolbox import update_ui, get_conf, update_ui_lastest_msg
from toolbox import check_packages, report_exception
from toolbox import check_packages, report_exception, have_any_recent_upload_image_files
model_name = '智谱AI大模型'
zhipuai_default_model = 'glm-4'
def validate_key():
ZHIPUAI_API_KEY = get_conf("ZHIPUAI_API_KEY")
if ZHIPUAI_API_KEY == '': return False
return True
def make_media_input(inputs, image_paths):
for image_path in image_paths:
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'
return inputs
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
"""
⭐多线程方法
@@ -18,34 +24,40 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
watch_dog_patience = 5
response = ""
if llm_kwargs["llm_model"] == "zhipuai":
llm_kwargs["llm_model"] = zhipuai_default_model
if validate_key() is False:
raise RuntimeError('请配置ZHIPUAI_API_KEY')
from .com_zhipuapi import ZhipuRequestInstance
sri = ZhipuRequestInstance()
for response in sri.generate(inputs, llm_kwargs, history, sys_prompt):
# 开始接收回复
from .com_zhipuglm import ZhipuChatInit
zhipu_bro_init = ZhipuChatInit()
for chunk, response in zhipu_bro_init.generate_chat(inputs, llm_kwargs, history, sys_prompt):
if len(observe_window) >= 1:
observe_window[0] = response
if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience: raise RuntimeError("程序终止。")
if (time.time() - observe_window[1]) > watch_dog_patience:
raise RuntimeError("程序终止。")
return response
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream=True, additional_fn=None):
"""
⭐单线程方法
函数的说明请见 request_llms/bridge_all.py
"""
chatbot.append((inputs, ""))
chatbot.append([inputs, ""])
yield from update_ui(chatbot=chatbot, history=history)
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
check_packages(["zhipuai"])
except:
yield from update_ui_lastest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install zhipuai==1.0.7```。",
chatbot=chatbot, history=history, delay=0)
yield from update_ui_lastest_msg(f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install --upgrade zhipuai```。",
chatbot=chatbot, history=history, delay=0)
return
if validate_key() is False:
yield from update_ui_lastest_msg(lastmsg="[Local Message] 请配置ZHIPUAI_API_KEY", chatbot=chatbot, history=history, delay=0)
return
@@ -53,16 +65,29 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
if additional_fn is not None:
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
# 开始接收回复
from .com_zhipuapi import ZhipuRequestInstance
sri = ZhipuRequestInstance()
for response in sri.generate(inputs, llm_kwargs, history, system_prompt):
chatbot[-1] = (inputs, response)
chatbot[-1] = [inputs, ""]
yield from update_ui(chatbot=chatbot, history=history)
# 总结输出
if response == f"[Local Message] 等待{model_name}响应中 ...":
response = f"[Local Message] {model_name}响应异常 ..."
if llm_kwargs["llm_model"] == "zhipuai":
llm_kwargs["llm_model"] = zhipuai_default_model
if llm_kwargs["llm_model"] in ["glm-4v"]:
have_recent_file, image_paths = have_any_recent_upload_image_files(chatbot)
if not have_recent_file:
chatbot.append((inputs, "没有检测到任何近期上传的图像文件请上传jpg格式的图片此外请注意拓展名需要小写"))
yield from update_ui(chatbot=chatbot, history=history, msg="等待图片") # 刷新界面
return
if have_recent_file:
inputs = make_media_input(inputs, image_paths)
chatbot[-1] = [inputs, ""]
yield from update_ui(chatbot=chatbot, history=history)
# 开始接收回复
from .com_zhipuglm import ZhipuChatInit
zhipu_bro_init = ZhipuChatInit()
for chunk, response in zhipu_bro_init.generate_chat(inputs, llm_kwargs, history, system_prompt):
chatbot[-1] = [inputs, response]
yield from update_ui(chatbot=chatbot, history=history)
history.extend([inputs, response])
yield from update_ui(chatbot=chatbot, history=history)

View File

@@ -1,70 +0,0 @@
from toolbox import get_conf
import threading
import logging
timeout_bot_msg = '[Local Message] Request timeout. Network error.'
class ZhipuRequestInstance():
def __init__(self):
self.time_to_yield_event = threading.Event()
self.time_to_exit_event = threading.Event()
self.result_buf = ""
def generate(self, inputs, llm_kwargs, history, system_prompt):
# import _thread as thread
import zhipuai
ZHIPUAI_API_KEY, ZHIPUAI_MODEL = get_conf("ZHIPUAI_API_KEY", "ZHIPUAI_MODEL")
zhipuai.api_key = ZHIPUAI_API_KEY
self.result_buf = ""
response = zhipuai.model_api.sse_invoke(
model=ZHIPUAI_MODEL,
prompt=generate_message_payload(inputs, llm_kwargs, history, system_prompt),
top_p=llm_kwargs['top_p']*0.7, # 智谱的API抽风手动*0.7给做个线性变换
temperature=llm_kwargs['temperature']*0.95, # 智谱的API抽风手动*0.7给做个线性变换
)
for event in response.events():
if event.event == "add":
# if self.result_buf == "" and event.data.startswith(" "):
# event.data = event.data.lstrip(" ") # 每次智谱为啥都要带个空格开头呢?
self.result_buf += event.data
yield self.result_buf
elif event.event == "error" or event.event == "interrupted":
raise RuntimeError("Unknown error:" + event.data)
elif event.event == "finish":
yield self.result_buf
break
else:
raise RuntimeError("Unknown error:" + str(event))
if self.result_buf == "":
yield "智谱没有返回任何数据, 请检查ZHIPUAI_API_KEY和ZHIPUAI_MODEL是否填写正确."
logging.info(f'[raw_input] {inputs}')
logging.info(f'[response] {self.result_buf}')
return self.result_buf
def generate_message_payload(inputs, llm_kwargs, history, system_prompt):
conversation_cnt = len(history) // 2
messages = [{"role": "user", "content": system_prompt}, {"role": "assistant", "content": "Certainly!"}]
if conversation_cnt:
for index in range(0, 2*conversation_cnt, 2):
what_i_have_asked = {}
what_i_have_asked["role"] = "user"
what_i_have_asked["content"] = history[index]
what_gpt_answer = {}
what_gpt_answer["role"] = "assistant"
what_gpt_answer["content"] = history[index+1]
if what_i_have_asked["content"] != "":
if what_gpt_answer["content"] == "":
continue
if what_gpt_answer["content"] == timeout_bot_msg:
continue
messages.append(what_i_have_asked)
messages.append(what_gpt_answer)
else:
messages[-1]['content'] = what_gpt_answer['content']
what_i_ask_now = {}
what_i_ask_now["role"] = "user"
what_i_ask_now["content"] = inputs
messages.append(what_i_ask_now)
return messages

View File

@@ -0,0 +1,84 @@
# encoding: utf-8
# @Time : 2024/1/22
# @Author : Kilig947 & binary husky
# @Descr : 兼容最新的智谱Ai
from toolbox import get_conf
from zhipuai import ZhipuAI
from toolbox import get_conf, encode_image, get_pictures_list
import logging, os
def input_encode_handler(inputs, llm_kwargs):
if llm_kwargs["most_recent_uploaded"].get("path"):
image_paths = get_pictures_list(llm_kwargs["most_recent_uploaded"]["path"])
md_encode = []
for md_path in image_paths:
type_ = os.path.splitext(md_path)[1].replace(".", "")
type_ = "jpeg" if type_ == "jpg" else type_
md_encode.append({"data": encode_image(md_path), "type": type_})
return inputs, md_encode
class ZhipuChatInit:
def __init__(self):
ZHIPUAI_API_KEY, ZHIPUAI_MODEL = get_conf("ZHIPUAI_API_KEY", "ZHIPUAI_MODEL")
if len(ZHIPUAI_MODEL) > 0:
logging.error('ZHIPUAI_MODEL 配置项选项已经弃用请在LLM_MODEL中配置')
self.zhipu_bro = ZhipuAI(api_key=ZHIPUAI_API_KEY)
self.model = ''
def __conversation_user(self, user_input: str, llm_kwargs):
if self.model not in ["glm-4v"]:
return {"role": "user", "content": user_input}
else:
input_, encode_img = input_encode_handler(user_input, llm_kwargs=llm_kwargs)
what_i_have_asked = {"role": "user", "content": []}
what_i_have_asked['content'].append({"type": 'text', "text": user_input})
if encode_img:
img_d = {"type": "image_url",
"image_url": {'url': encode_img}}
what_i_have_asked['content'].append(img_d)
return what_i_have_asked
def __conversation_history(self, history, llm_kwargs):
messages = []
conversation_cnt = len(history) // 2
if conversation_cnt:
for index in range(0, 2 * conversation_cnt, 2):
what_i_have_asked = self.__conversation_user(history[index], llm_kwargs)
what_gpt_answer = {
"role": "assistant",
"content": history[index + 1]
}
messages.append(what_i_have_asked)
messages.append(what_gpt_answer)
return messages
def __conversation_message_payload(self, inputs, llm_kwargs, history, system_prompt):
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
self.model = llm_kwargs['llm_model']
messages.extend(self.__conversation_history(history, llm_kwargs)) # 处理 history
messages.append(self.__conversation_user(inputs, llm_kwargs)) # 处理用户对话
response = self.zhipu_bro.chat.completions.create(
model=self.model, messages=messages, stream=True,
temperature=llm_kwargs.get('temperature', 0.95) * 0.95, # 只能传默认的 temperature 和 top_p
top_p=llm_kwargs.get('top_p', 0.7) * 0.7,
max_tokens=llm_kwargs.get('max_tokens', 1024 * 4), # 最大输出模型的一半
)
return response
def generate_chat(self, inputs, llm_kwargs, history, system_prompt):
self.model = llm_kwargs['llm_model']
response = self.__conversation_message_payload(inputs, llm_kwargs, history, system_prompt)
bro_results = ''
for chunk in response:
bro_results += chunk.choices[0].delta.content
yield chunk.choices[0].delta.content, bro_results
if __name__ == '__main__':
zhipu = ZhipuChatInit()
zhipu.generate_chat('你好', {'llm_model': 'glm-4'}, [], '你是WPSAi')