Add ChatGLM4 local deployment support and refactor ChatGLM bridge's path configuration (#2062)
* ✨ feat(request_llms and config.py): ChatGLM4 Deployment Add support for local deployment of ChatGLM4 model * 🦄 refactor(bridge_chatglm3.py): ChatGLM3 model path Added ChatGLM3 path customization (in config.py). Removed useless quantization model options that have been annotated --------- Co-authored-by: MarkDeia <17290550+MarkDeia@users.noreply.github.com>
This commit is contained in:
18
README.md
18
README.md
@@ -170,26 +170,32 @@ flowchart TD
|
||||
```
|
||||
|
||||
|
||||
<details><summary>如果需要支持清华ChatGLM2/复旦MOSS/RWKV作为后端,请点击展开此处</summary>
|
||||
<details><summary>如果需要支持清华ChatGLM系列/复旦MOSS/RWKV作为后端,请点击展开此处</summary>
|
||||
<p>
|
||||
|
||||
【可选步骤】如果需要支持清华ChatGLM3/复旦MOSS作为后端,需要额外安装更多依赖(前提条件:熟悉Python + 用过Pytorch + 电脑配置够强):
|
||||
【可选步骤】如果需要支持清华ChatGLM系列/复旦MOSS作为后端,需要额外安装更多依赖(前提条件:熟悉Python + 用过Pytorch + 电脑配置够强):
|
||||
|
||||
```sh
|
||||
# 【可选步骤I】支持清华ChatGLM3。清华ChatGLM备注:如果遇到"Call ChatGLM fail 不能正常加载ChatGLM的参数" 错误,参考如下: 1:以上默认安装的为torch+cpu版,使用cuda需要卸载torch重新安装torch+cuda; 2:如因本机配置不够无法加载模型,可以修改request_llm/bridge_chatglm.py中的模型精度, 将 AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) 都修改为 AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
|
||||
python -m pip install -r request_llms/requirements_chatglm.txt
|
||||
|
||||
# 【可选步骤II】支持复旦MOSS
|
||||
# 【可选步骤II】支持清华ChatGLM4 注意:此模型至少需要24G显存
|
||||
python -m pip install -r request_llms/requirements_chatglm4.txt
|
||||
# 可使用modelscope下载ChatGLM4模型
|
||||
# pip install modelscope
|
||||
# modelscope download --model ZhipuAI/glm-4-9b-chat --local_dir ./THUDM/glm-4-9b-chat
|
||||
|
||||
# 【可选步骤III】支持复旦MOSS
|
||||
python -m pip install -r request_llms/requirements_moss.txt
|
||||
git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llms/moss # 注意执行此行代码时,必须处于项目根路径
|
||||
|
||||
# 【可选步骤III】支持RWKV Runner
|
||||
# 【可选步骤IV】支持RWKV Runner
|
||||
参考wiki:https://github.com/binary-husky/gpt_academic/wiki/%E9%80%82%E9%85%8DRWKV-Runner
|
||||
|
||||
# 【可选步骤IV】确保config.py配置文件的AVAIL_LLM_MODELS包含了期望的模型,目前支持的全部模型如下(jittorllms系列目前仅支持docker方案):
|
||||
# 【可选步骤V】确保config.py配置文件的AVAIL_LLM_MODELS包含了期望的模型,目前支持的全部模型如下(jittorllms系列目前仅支持docker方案):
|
||||
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
|
||||
|
||||
# 【可选步骤V】支持本地模型INT8,INT4量化(这里所指的模型本身不是量化版本,目前deepseek-coder支持,后面测试后会加入更多模型量化选择)
|
||||
# 【可选步骤VI】支持本地模型INT8,INT4量化(这里所指的模型本身不是量化版本,目前deepseek-coder支持,后面测试后会加入更多模型量化选择)
|
||||
pip install bitsandbyte
|
||||
# windows用户安装bitsandbytes需要使用下面bitsandbytes-windows-webui
|
||||
python -m pip install bitsandbytes --prefer-binary --extra-index-url=https://jllllll.github.io/bitsandbytes-windows-webui
|
||||
|
||||
Reference in New Issue
Block a user