del
This commit is contained in:
@@ -1,6 +1,6 @@
|
||||
|
||||
from toolbox import get_conf, update_ui
|
||||
from crazy_functions.Image_Generate import 图片生成_DALLE2, 图片生成_DALLE3, 图片修改_DALLE2
|
||||
from crazy_functions.AntFin import 图片生成_DALLE2, 图片生成_DALLE3, 图片修改_DALLE2
|
||||
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
|
||||
|
||||
|
||||
@@ -1,220 +0,0 @@
|
||||
from toolbox import CatchException, update_ui, promote_file_to_downloadzone, get_log_folder, get_user
|
||||
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
|
||||
import re
|
||||
|
||||
f_prefix = 'GPT-Academic对话存档'
|
||||
|
||||
def write_chat_to_file(chatbot, history=None, file_name=None):
|
||||
"""
|
||||
将对话记录history以Markdown格式写入文件中。如果没有指定文件名,则使用当前时间生成文件名。
|
||||
"""
|
||||
import os
|
||||
import time
|
||||
from themes.theme import advanced_css
|
||||
|
||||
if file_name is None:
|
||||
file_name = f_prefix + time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + '.html'
|
||||
fp = os.path.join(get_log_folder(get_user(chatbot), plugin_name='chat_history'), file_name)
|
||||
|
||||
with open(fp, 'w', encoding='utf8') as f:
|
||||
from textwrap import dedent
|
||||
form = dedent("""
|
||||
<!DOCTYPE html><head><meta charset="utf-8"><title>对话存档</title><style>{CSS}</style></head>
|
||||
<body>
|
||||
<div class="test_temp1" style="width:10%; height: 500px; float:left;"></div>
|
||||
<div class="test_temp2" style="width:80%;padding: 40px;float:left;padding-left: 20px;padding-right: 20px;box-shadow: rgba(0, 0, 0, 0.2) 0px 0px 8px 8px;border-radius: 10px;">
|
||||
<div class="chat-body" style="display: flex;justify-content: center;flex-direction: column;align-items: center;flex-wrap: nowrap;">
|
||||
{CHAT_PREVIEW}
|
||||
<div></div>
|
||||
<div></div>
|
||||
<div style="text-align: center;width:80%;padding: 0px;float:left;padding-left:20px;padding-right:20px;box-shadow: rgba(0, 0, 0, 0.05) 0px 0px 1px 2px;border-radius: 1px;">对话(原始数据)</div>
|
||||
{HISTORY_PREVIEW}
|
||||
</div>
|
||||
</div>
|
||||
<div class="test_temp3" style="width:10%; height: 500px; float:left;"></div>
|
||||
</body>
|
||||
""")
|
||||
|
||||
qa_from = dedent("""
|
||||
<div class="QaBox" style="width:80%;padding: 20px;margin-bottom: 20px;box-shadow: rgb(0 255 159 / 50%) 0px 0px 1px 2px;border-radius: 4px;">
|
||||
<div class="Question" style="border-radius: 2px;">{QUESTION}</div>
|
||||
<hr color="blue" style="border-top: dotted 2px #ccc;">
|
||||
<div class="Answer" style="border-radius: 2px;">{ANSWER}</div>
|
||||
</div>
|
||||
""")
|
||||
|
||||
history_from = dedent("""
|
||||
<div class="historyBox" style="width:80%;padding: 0px;float:left;padding-left:20px;padding-right:20px;box-shadow: rgba(0, 0, 0, 0.05) 0px 0px 1px 2px;border-radius: 1px;">
|
||||
<div class="entry" style="border-radius: 2px;">{ENTRY}</div>
|
||||
</div>
|
||||
""")
|
||||
CHAT_PREVIEW_BUF = ""
|
||||
for i, contents in enumerate(chatbot):
|
||||
question, answer = contents[0], contents[1]
|
||||
if question is None: question = ""
|
||||
try: question = str(question)
|
||||
except: question = ""
|
||||
if answer is None: answer = ""
|
||||
try: answer = str(answer)
|
||||
except: answer = ""
|
||||
CHAT_PREVIEW_BUF += qa_from.format(QUESTION=question, ANSWER=answer)
|
||||
|
||||
HISTORY_PREVIEW_BUF = ""
|
||||
for h in history:
|
||||
HISTORY_PREVIEW_BUF += history_from.format(ENTRY=h)
|
||||
html_content = form.format(CHAT_PREVIEW=CHAT_PREVIEW_BUF, HISTORY_PREVIEW=HISTORY_PREVIEW_BUF, CSS=advanced_css)
|
||||
f.write(html_content)
|
||||
|
||||
promote_file_to_downloadzone(fp, rename_file=file_name, chatbot=chatbot)
|
||||
return '对话历史写入:' + fp
|
||||
|
||||
def gen_file_preview(file_name):
|
||||
try:
|
||||
with open(file_name, 'r', encoding='utf8') as f:
|
||||
file_content = f.read()
|
||||
# pattern to match the text between <head> and </head>
|
||||
pattern = re.compile(r'<head>.*?</head>', flags=re.DOTALL)
|
||||
file_content = re.sub(pattern, '', file_content)
|
||||
html, history = file_content.split('<hr color="blue"> \n\n 对话数据 (无渲染):\n')
|
||||
history = history.strip('<code>')
|
||||
history = history.strip('</code>')
|
||||
history = history.split("\n>>>")
|
||||
return list(filter(lambda x:x!="", history))[0][:100]
|
||||
except:
|
||||
return ""
|
||||
|
||||
def read_file_to_chat(chatbot, history, file_name):
|
||||
with open(file_name, 'r', encoding='utf8') as f:
|
||||
file_content = f.read()
|
||||
from bs4 import BeautifulSoup
|
||||
soup = BeautifulSoup(file_content, 'lxml')
|
||||
# 提取QaBox信息
|
||||
chatbot.clear()
|
||||
qa_box_list = []
|
||||
qa_boxes = soup.find_all("div", class_="QaBox")
|
||||
for box in qa_boxes:
|
||||
question = box.find("div", class_="Question").get_text(strip=False)
|
||||
answer = box.find("div", class_="Answer").get_text(strip=False)
|
||||
qa_box_list.append({"Question": question, "Answer": answer})
|
||||
chatbot.append([question, answer])
|
||||
# 提取historyBox信息
|
||||
history_box_list = []
|
||||
history_boxes = soup.find_all("div", class_="historyBox")
|
||||
for box in history_boxes:
|
||||
entry = box.find("div", class_="entry").get_text(strip=False)
|
||||
history_box_list.append(entry)
|
||||
history = history_box_list
|
||||
chatbot.append([None, f"[Local Message] 载入对话{len(qa_box_list)}条,上下文{len(history)}条。"])
|
||||
return chatbot, history
|
||||
|
||||
@CatchException
|
||||
def 对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数,暂时没有用武之地
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
file_name = plugin_kwargs.get("file_name", None)
|
||||
if (file_name is not None) and (file_name != "") and (not file_name.endswith('.html')): file_name += '.html'
|
||||
else: file_name = None
|
||||
|
||||
chatbot.append((None, f"[Local Message] {write_chat_to_file(chatbot, history, file_name)},您可以调用下拉菜单中的“载入对话历史存档”还原当下的对话。"))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||
|
||||
|
||||
class Conversation_To_File_Wrap(GptAcademicPluginTemplate):
|
||||
def __init__(self):
|
||||
"""
|
||||
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
|
||||
"""
|
||||
pass
|
||||
|
||||
def define_arg_selection_menu(self):
|
||||
"""
|
||||
定义插件的二级选项菜单
|
||||
|
||||
第一个参数,名称`file_name`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
|
||||
"""
|
||||
gui_definition = {
|
||||
"file_name": ArgProperty(title="保存文件名", description="输入对话存档文件名,留空则使用时间作为文件名", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
|
||||
}
|
||||
return gui_definition
|
||||
|
||||
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
执行插件
|
||||
"""
|
||||
yield from 对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def hide_cwd(str):
|
||||
import os
|
||||
current_path = os.getcwd()
|
||||
replace_path = "."
|
||||
return str.replace(current_path, replace_path)
|
||||
|
||||
@CatchException
|
||||
def 载入对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数,暂时没有用武之地
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
from crazy_functions.crazy_utils import get_files_from_everything
|
||||
success, file_manifest, _ = get_files_from_everything(txt, type='.html')
|
||||
|
||||
if not success:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
import glob
|
||||
local_history = "<br/>".join([
|
||||
"`"+hide_cwd(f)+f" ({gen_file_preview(f)})"+"`"
|
||||
for f in glob.glob(
|
||||
f'{get_log_folder(get_user(chatbot), plugin_name="chat_history")}/**/{f_prefix}*.html',
|
||||
recursive=True
|
||||
)])
|
||||
chatbot.append([f"正在查找对话历史文件(html格式): {txt}", f"找不到任何html文件: {txt}。但本地存储了以下历史文件,您可以将任意一个文件路径粘贴到输入区,然后重试:<br/>{local_history}"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
try:
|
||||
chatbot, history = read_file_to_chat(chatbot, history, file_manifest[0])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
except:
|
||||
chatbot.append([f"载入对话历史文件", f"对话历史文件损坏!"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
@CatchException
|
||||
def 删除所有本地对话历史记录(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数,暂时没有用武之地
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
|
||||
import glob, os
|
||||
local_history = "<br/>".join([
|
||||
"`"+hide_cwd(f)+"`"
|
||||
for f in glob.glob(
|
||||
f'{get_log_folder(get_user(chatbot), plugin_name="chat_history")}/**/{f_prefix}*.html', recursive=True
|
||||
)])
|
||||
for f in glob.glob(f'{get_log_folder(get_user(chatbot), plugin_name="chat_history")}/**/{f_prefix}*.html', recursive=True):
|
||||
os.remove(f)
|
||||
chatbot.append([f"删除所有历史对话文件", f"已删除<br/>{local_history}"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
@@ -1,278 +0,0 @@
|
||||
import requests
|
||||
import random
|
||||
import time
|
||||
import re
|
||||
import json
|
||||
from bs4 import BeautifulSoup
|
||||
from functools import lru_cache
|
||||
from itertools import zip_longest
|
||||
from check_proxy import check_proxy
|
||||
from toolbox import CatchException, update_ui, get_conf
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
|
||||
from request_llms.bridge_all import model_info
|
||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||
from crazy_functions.prompts.internet import SearchOptimizerPrompt, SearchAcademicOptimizerPrompt
|
||||
|
||||
def search_optimizer(
|
||||
query,
|
||||
proxies,
|
||||
history,
|
||||
llm_kwargs,
|
||||
optimizer=1,
|
||||
categories="general",
|
||||
searxng_url=None,
|
||||
engines=None,
|
||||
):
|
||||
# ------------- < 第1步:尝试进行搜索优化 > -------------
|
||||
# * 增强优化,会尝试结合历史记录进行搜索优化
|
||||
if optimizer == 2:
|
||||
his = " "
|
||||
if len(history) == 0:
|
||||
pass
|
||||
else:
|
||||
for i, h in enumerate(history):
|
||||
if i % 2 == 0:
|
||||
his += f"Q: {h}\n"
|
||||
else:
|
||||
his += f"A: {h}\n"
|
||||
if categories == "general":
|
||||
sys_prompt = SearchOptimizerPrompt.format(query=query, history=his, num=4)
|
||||
elif categories == "science":
|
||||
sys_prompt = SearchAcademicOptimizerPrompt.format(query=query, history=his, num=4)
|
||||
else:
|
||||
his = " "
|
||||
if categories == "general":
|
||||
sys_prompt = SearchOptimizerPrompt.format(query=query, history=his, num=3)
|
||||
elif categories == "science":
|
||||
sys_prompt = SearchAcademicOptimizerPrompt.format(query=query, history=his, num=3)
|
||||
|
||||
mutable = ["", time.time(), ""]
|
||||
llm_kwargs["temperature"] = 0.8
|
||||
try:
|
||||
querys_json = predict_no_ui_long_connection(
|
||||
inputs=query,
|
||||
llm_kwargs=llm_kwargs,
|
||||
history=[],
|
||||
sys_prompt=sys_prompt,
|
||||
observe_window=mutable,
|
||||
)
|
||||
except Exception:
|
||||
querys_json = "1234"
|
||||
#* 尝试解码优化后的搜索结果
|
||||
querys_json = re.sub(r"```json|```", "", querys_json)
|
||||
try:
|
||||
querys = json.loads(querys_json)
|
||||
except Exception:
|
||||
#* 如果解码失败,降低温度再试一次
|
||||
try:
|
||||
llm_kwargs["temperature"] = 0.4
|
||||
querys_json = predict_no_ui_long_connection(
|
||||
inputs=query,
|
||||
llm_kwargs=llm_kwargs,
|
||||
history=[],
|
||||
sys_prompt=sys_prompt,
|
||||
observe_window=mutable,
|
||||
)
|
||||
querys_json = re.sub(r"```json|```", "", querys_json)
|
||||
querys = json.loads(querys_json)
|
||||
except Exception:
|
||||
#* 如果再次失败,直接返回原始问题
|
||||
querys = [query]
|
||||
links = []
|
||||
success = 0
|
||||
Exceptions = ""
|
||||
for q in querys:
|
||||
try:
|
||||
link = searxng_request(q, proxies, categories, searxng_url, engines=engines)
|
||||
if len(link) > 0:
|
||||
links.append(link[:-5])
|
||||
success += 1
|
||||
except Exception:
|
||||
Exceptions = Exception
|
||||
pass
|
||||
if success == 0:
|
||||
raise ValueError(f"在线搜索失败!\n{Exceptions}")
|
||||
# * 清洗搜索结果,依次放入每组第一,第二个搜索结果,并清洗重复的搜索结果
|
||||
seen_links = set()
|
||||
result = []
|
||||
for tuple in zip_longest(*links, fillvalue=None):
|
||||
for item in tuple:
|
||||
if item is not None:
|
||||
link = item["link"]
|
||||
if link not in seen_links:
|
||||
seen_links.add(link)
|
||||
result.append(item)
|
||||
return result
|
||||
|
||||
|
||||
@lru_cache
|
||||
def get_auth_ip():
|
||||
ip = check_proxy(None, return_ip=True)
|
||||
if ip is None:
|
||||
return '114.114.114.' + str(random.randint(1, 10))
|
||||
return ip
|
||||
|
||||
|
||||
def searxng_request(query, proxies, categories='general', searxng_url=None, engines=None):
|
||||
if searxng_url is None:
|
||||
url = get_conf("SEARXNG_URL")
|
||||
else:
|
||||
url = searxng_url
|
||||
|
||||
if engines == "Mixed":
|
||||
engines = None
|
||||
|
||||
if categories == 'general':
|
||||
params = {
|
||||
'q': query, # 搜索查询
|
||||
'format': 'json', # 输出格式为JSON
|
||||
'language': 'zh', # 搜索语言
|
||||
'engines': engines,
|
||||
}
|
||||
elif categories == 'science':
|
||||
params = {
|
||||
'q': query, # 搜索查询
|
||||
'format': 'json', # 输出格式为JSON
|
||||
'language': 'zh', # 搜索语言
|
||||
'categories': 'science'
|
||||
}
|
||||
else:
|
||||
raise ValueError('不支持的检索类型')
|
||||
|
||||
headers = {
|
||||
'Accept-Language': 'zh-CN,zh;q=0.9',
|
||||
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36',
|
||||
'X-Forwarded-For': get_auth_ip(),
|
||||
'X-Real-IP': get_auth_ip()
|
||||
}
|
||||
results = []
|
||||
response = requests.post(url, params=params, headers=headers, proxies=proxies, timeout=30)
|
||||
if response.status_code == 200:
|
||||
json_result = response.json()
|
||||
for result in json_result['results']:
|
||||
item = {
|
||||
"title": result.get("title", ""),
|
||||
"source": result.get("engines", "unknown"),
|
||||
"content": result.get("content", ""),
|
||||
"link": result["url"],
|
||||
}
|
||||
results.append(item)
|
||||
return results
|
||||
else:
|
||||
if response.status_code == 429:
|
||||
raise ValueError("Searxng(在线搜索服务)当前使用人数太多,请稍后。")
|
||||
else:
|
||||
raise ValueError("在线搜索失败,状态码: " + str(response.status_code) + '\t' + response.content.decode('utf-8'))
|
||||
|
||||
|
||||
def scrape_text(url, proxies) -> str:
|
||||
"""Scrape text from a webpage
|
||||
|
||||
Args:
|
||||
url (str): The URL to scrape text from
|
||||
|
||||
Returns:
|
||||
str: The scraped text
|
||||
"""
|
||||
headers = {
|
||||
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36',
|
||||
'Content-Type': 'text/plain',
|
||||
}
|
||||
try:
|
||||
response = requests.get(url, headers=headers, proxies=proxies, timeout=8)
|
||||
if response.encoding == "ISO-8859-1": response.encoding = response.apparent_encoding
|
||||
except:
|
||||
return "无法连接到该网页"
|
||||
soup = BeautifulSoup(response.text, "html.parser")
|
||||
for script in soup(["script", "style"]):
|
||||
script.extract()
|
||||
text = soup.get_text()
|
||||
lines = (line.strip() for line in text.splitlines())
|
||||
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
|
||||
text = "\n".join(chunk for chunk in chunks if chunk)
|
||||
return text
|
||||
|
||||
|
||||
@CatchException
|
||||
def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
optimizer_history = history[:-8]
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
chatbot.append((f"请结合互联网信息回答以下问题:{txt}", "检索中..."))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# ------------- < 第1步:爬取搜索引擎的结果 > -------------
|
||||
from toolbox import get_conf
|
||||
proxies = get_conf('proxies')
|
||||
categories = plugin_kwargs.get('categories', 'general')
|
||||
searxng_url = plugin_kwargs.get('searxng_url', None)
|
||||
engines = plugin_kwargs.get('engine', None)
|
||||
optimizer = plugin_kwargs.get('optimizer', "关闭")
|
||||
if optimizer == "关闭":
|
||||
urls = searxng_request(txt, proxies, categories, searxng_url, engines=engines)
|
||||
else:
|
||||
urls = search_optimizer(txt, proxies, optimizer_history, llm_kwargs, optimizer, categories, searxng_url, engines)
|
||||
history = []
|
||||
if len(urls) == 0:
|
||||
chatbot.append((f"结论:{txt}",
|
||||
"[Local Message] 受到限制,无法从searxng获取信息!请尝试更换搜索引擎。"))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# ------------- < 第2步:依次访问网页 > -------------
|
||||
max_search_result = 5 # 最多收纳多少个网页的结果
|
||||
if optimizer == "开启(增强)":
|
||||
max_search_result = 8
|
||||
chatbot.append(["联网检索中 ...", None])
|
||||
for index, url in enumerate(urls[:max_search_result]):
|
||||
res = scrape_text(url['link'], proxies)
|
||||
prefix = f"第{index}份搜索结果 [源自{url['source'][0]}搜索] ({url['title'][:25]}):"
|
||||
history.extend([prefix, res])
|
||||
res_squeeze = res.replace('\n', '...')
|
||||
chatbot[-1] = [prefix + "\n\n" + res_squeeze[:500] + "......", None]
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# ------------- < 第3步:ChatGPT综合 > -------------
|
||||
if (optimizer != "开启(增强)"):
|
||||
i_say = f"从以上搜索结果中抽取信息,然后回答问题:{txt}"
|
||||
i_say, history = input_clipping( # 裁剪输入,从最长的条目开始裁剪,防止爆token
|
||||
inputs=i_say,
|
||||
history=history,
|
||||
max_token_limit=min(model_info[llm_kwargs['llm_model']]['max_token']*3//4, 8192)
|
||||
)
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say, inputs_show_user=i_say,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||
sys_prompt="请从给定的若干条搜索结果中抽取信息,对最相关的两个搜索结果进行总结,然后回答问题。"
|
||||
)
|
||||
chatbot[-1] = (i_say, gpt_say)
|
||||
history.append(i_say);history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
|
||||
#* 或者使用搜索优化器,这样可以保证后续问答能读取到有效的历史记录
|
||||
else:
|
||||
i_say = f"从以上搜索结果中抽取与问题:{txt} 相关的信息:"
|
||||
i_say, history = input_clipping( # 裁剪输入,从最长的条目开始裁剪,防止爆token
|
||||
inputs=i_say,
|
||||
history=history,
|
||||
max_token_limit=min(model_info[llm_kwargs['llm_model']]['max_token']*3//4, 8192)
|
||||
)
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say, inputs_show_user=i_say,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||
sys_prompt="请从给定的若干条搜索结果中抽取信息,对最相关的三个搜索结果进行总结"
|
||||
)
|
||||
chatbot[-1] = (i_say, gpt_say)
|
||||
history = []
|
||||
history.append(i_say);history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
|
||||
# ------------- < 第4步:根据综合回答问题 > -------------
|
||||
i_say = f"请根据以上搜索结果回答问题:{txt}"
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say, inputs_show_user=i_say,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||
sys_prompt="请根据给定的若干条搜索结果回答问题"
|
||||
)
|
||||
chatbot[-1] = (i_say, gpt_say)
|
||||
history.append(i_say);history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
@@ -1,45 +0,0 @@
|
||||
|
||||
from toolbox import get_conf
|
||||
from crazy_functions.Internet_GPT import 连接网络回答问题
|
||||
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
|
||||
|
||||
|
||||
class NetworkGPT_Wrap(GptAcademicPluginTemplate):
|
||||
def __init__(self):
|
||||
"""
|
||||
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
|
||||
"""
|
||||
pass
|
||||
|
||||
def define_arg_selection_menu(self):
|
||||
"""
|
||||
定义插件的二级选项菜单
|
||||
|
||||
第一个参数,名称`main_input`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
|
||||
第二个参数,名称`advanced_arg`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
|
||||
第三个参数,名称`allow_cache`,参数`type`声明这是一个下拉菜单,下拉菜单上方显示`title`+`description`,下拉菜单的选项为`options`,`default_value`为下拉菜单默认值;
|
||||
|
||||
"""
|
||||
gui_definition = {
|
||||
"main_input":
|
||||
ArgProperty(title="输入问题", description="待通过互联网检索的问题,会自动读取输入框内容", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
|
||||
"categories":
|
||||
ArgProperty(title="搜索分类", options=["网页", "学术论文"], default_value="网页", description="无", type="dropdown").model_dump_json(),
|
||||
"engine":
|
||||
ArgProperty(title="选择搜索引擎", options=["Mixed", "bing", "google", "duckduckgo"], default_value="google", description="无", type="dropdown").model_dump_json(),
|
||||
"optimizer":
|
||||
ArgProperty(title="搜索优化", options=["关闭", "开启", "开启(增强)"], default_value="关闭", description="是否使用搜索增强。注意这可能会消耗较多token", type="dropdown").model_dump_json(),
|
||||
"searxng_url":
|
||||
ArgProperty(title="Searxng服务地址", description="输入Searxng的地址", default_value=get_conf("SEARXNG_URL"), type="string").model_dump_json(), # 主输入,自动从输入框同步
|
||||
|
||||
}
|
||||
return gui_definition
|
||||
|
||||
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
执行插件
|
||||
"""
|
||||
if plugin_kwargs["categories"] == "网页": plugin_kwargs["categories"] = "general"
|
||||
if plugin_kwargs["categories"] == "学术论文": plugin_kwargs["categories"] = "science"
|
||||
yield from 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||
|
||||
@@ -1,595 +0,0 @@
|
||||
from toolbox import update_ui, trimmed_format_exc, get_conf, get_log_folder, promote_file_to_downloadzone, check_repeat_upload, map_file_to_sha256
|
||||
from toolbox import CatchException, report_exception, update_ui_lastest_msg, zip_result, gen_time_str
|
||||
from functools import partial
|
||||
from loguru import logger
|
||||
|
||||
import glob, os, requests, time, json, tarfile, threading
|
||||
|
||||
pj = os.path.join
|
||||
ARXIV_CACHE_DIR = get_conf("ARXIV_CACHE_DIR")
|
||||
|
||||
|
||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- 工具函数 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||
# 专业词汇声明 = 'If the term "agent" is used in this section, it should be translated to "智能体". '
|
||||
def switch_prompt(pfg, mode, more_requirement):
|
||||
"""
|
||||
Generate prompts and system prompts based on the mode for proofreading or translating.
|
||||
Args:
|
||||
- pfg: Proofreader or Translator instance.
|
||||
- mode: A string specifying the mode, either 'proofread' or 'translate_zh'.
|
||||
|
||||
Returns:
|
||||
- inputs_array: A list of strings containing prompts for users to respond to.
|
||||
- sys_prompt_array: A list of strings containing prompts for system prompts.
|
||||
"""
|
||||
n_split = len(pfg.sp_file_contents)
|
||||
if mode == 'proofread_en':
|
||||
inputs_array = [r"Below is a section from an academic paper, proofread this section." +
|
||||
r"Do not modify any latex command such as \section, \cite, \begin, \item and equations. " + more_requirement +
|
||||
r"Answer me only with the revised text:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
sys_prompt_array = ["You are a professional academic paper writer." for _ in range(n_split)]
|
||||
elif mode == 'translate_zh':
|
||||
inputs_array = [
|
||||
r"Below is a section from an English academic paper, translate it into Chinese. " + more_requirement +
|
||||
r"Do not modify any latex command such as \section, \cite, \begin, \item and equations. " +
|
||||
r"Answer me only with the translated text:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
sys_prompt_array = ["You are a professional translator." for _ in range(n_split)]
|
||||
else:
|
||||
assert False, "未知指令"
|
||||
return inputs_array, sys_prompt_array
|
||||
|
||||
|
||||
def desend_to_extracted_folder_if_exist(project_folder):
|
||||
"""
|
||||
Descend into the extracted folder if it exists, otherwise return the original folder.
|
||||
|
||||
Args:
|
||||
- project_folder: A string specifying the folder path.
|
||||
|
||||
Returns:
|
||||
- A string specifying the path to the extracted folder, or the original folder if there is no extracted folder.
|
||||
"""
|
||||
maybe_dir = [f for f in glob.glob(f'{project_folder}/*') if os.path.isdir(f)]
|
||||
if len(maybe_dir) == 0: return project_folder
|
||||
if maybe_dir[0].endswith('.extract'): return maybe_dir[0]
|
||||
return project_folder
|
||||
|
||||
|
||||
def move_project(project_folder, arxiv_id=None):
|
||||
"""
|
||||
Create a new work folder and copy the project folder to it.
|
||||
|
||||
Args:
|
||||
- project_folder: A string specifying the folder path of the project.
|
||||
|
||||
Returns:
|
||||
- A string specifying the path to the new work folder.
|
||||
"""
|
||||
import shutil, time
|
||||
time.sleep(2) # avoid time string conflict
|
||||
if arxiv_id is not None:
|
||||
new_workfolder = pj(ARXIV_CACHE_DIR, arxiv_id, 'workfolder')
|
||||
else:
|
||||
new_workfolder = f'{get_log_folder()}/{gen_time_str()}'
|
||||
try:
|
||||
shutil.rmtree(new_workfolder)
|
||||
except:
|
||||
pass
|
||||
|
||||
# align subfolder if there is a folder wrapper
|
||||
items = glob.glob(pj(project_folder, '*'))
|
||||
items = [item for item in items if os.path.basename(item) != '__MACOSX']
|
||||
if len(glob.glob(pj(project_folder, '*.tex'))) == 0 and len(items) == 1:
|
||||
if os.path.isdir(items[0]): project_folder = items[0]
|
||||
|
||||
shutil.copytree(src=project_folder, dst=new_workfolder)
|
||||
return new_workfolder
|
||||
|
||||
|
||||
def arxiv_download(chatbot, history, txt, allow_cache=True):
|
||||
def check_cached_translation_pdf(arxiv_id):
|
||||
translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'translation')
|
||||
if not os.path.exists(translation_dir):
|
||||
os.makedirs(translation_dir)
|
||||
target_file = pj(translation_dir, 'translate_zh.pdf')
|
||||
if os.path.exists(target_file):
|
||||
promote_file_to_downloadzone(target_file, rename_file=None, chatbot=chatbot)
|
||||
target_file_compare = pj(translation_dir, 'comparison.pdf')
|
||||
if os.path.exists(target_file_compare):
|
||||
promote_file_to_downloadzone(target_file_compare, rename_file=None, chatbot=chatbot)
|
||||
return target_file
|
||||
return False
|
||||
|
||||
def is_float(s):
|
||||
try:
|
||||
float(s)
|
||||
return True
|
||||
except ValueError:
|
||||
return False
|
||||
|
||||
if txt.startswith('https://arxiv.org/pdf/'):
|
||||
arxiv_id = txt.split('/')[-1] # 2402.14207v2.pdf
|
||||
txt = arxiv_id.split('v')[0] # 2402.14207
|
||||
|
||||
if ('.' in txt) and ('/' not in txt) and is_float(txt): # is arxiv ID
|
||||
txt = 'https://arxiv.org/abs/' + txt.strip()
|
||||
if ('.' in txt) and ('/' not in txt) and is_float(txt[:10]): # is arxiv ID
|
||||
txt = 'https://arxiv.org/abs/' + txt[:10]
|
||||
|
||||
if not txt.startswith('https://arxiv.org'):
|
||||
return txt, None # 是本地文件,跳过下载
|
||||
|
||||
# <-------------- inspect format ------------->
|
||||
chatbot.append([f"检测到arxiv文档连接", '尝试下载 ...'])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
time.sleep(1) # 刷新界面
|
||||
|
||||
url_ = txt # https://arxiv.org/abs/1707.06690
|
||||
|
||||
if not txt.startswith('https://arxiv.org/abs/'):
|
||||
msg = f"解析arxiv网址失败, 期望格式例如: https://arxiv.org/abs/1707.06690。实际得到格式: {url_}。"
|
||||
yield from update_ui_lastest_msg(msg, chatbot=chatbot, history=history) # 刷新界面
|
||||
return msg, None
|
||||
# <-------------- set format ------------->
|
||||
arxiv_id = url_.split('/abs/')[-1]
|
||||
if 'v' in arxiv_id: arxiv_id = arxiv_id[:10]
|
||||
cached_translation_pdf = check_cached_translation_pdf(arxiv_id)
|
||||
if cached_translation_pdf and allow_cache: return cached_translation_pdf, arxiv_id
|
||||
|
||||
extract_dst = pj(ARXIV_CACHE_DIR, arxiv_id, 'extract')
|
||||
translation_dir = pj(ARXIV_CACHE_DIR, arxiv_id, 'e-print')
|
||||
dst = pj(translation_dir, arxiv_id + '.tar')
|
||||
os.makedirs(translation_dir, exist_ok=True)
|
||||
# <-------------- download arxiv source file ------------->
|
||||
|
||||
def fix_url_and_download():
|
||||
# for url_tar in [url_.replace('/abs/', '/e-print/'), url_.replace('/abs/', '/src/')]:
|
||||
for url_tar in [url_.replace('/abs/', '/src/'), url_.replace('/abs/', '/e-print/')]:
|
||||
proxies = get_conf('proxies')
|
||||
r = requests.get(url_tar, proxies=proxies)
|
||||
if r.status_code == 200:
|
||||
with open(dst, 'wb+') as f:
|
||||
f.write(r.content)
|
||||
return True
|
||||
return False
|
||||
|
||||
if os.path.exists(dst) and allow_cache:
|
||||
yield from update_ui_lastest_msg(f"调用缓存 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
|
||||
success = True
|
||||
else:
|
||||
yield from update_ui_lastest_msg(f"开始下载 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
|
||||
success = fix_url_and_download()
|
||||
yield from update_ui_lastest_msg(f"下载完成 {arxiv_id}", chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
|
||||
if not success:
|
||||
yield from update_ui_lastest_msg(f"下载失败 {arxiv_id}", chatbot=chatbot, history=history)
|
||||
raise tarfile.ReadError(f"论文下载失败 {arxiv_id}")
|
||||
|
||||
# <-------------- extract file ------------->
|
||||
from toolbox import extract_archive
|
||||
try:
|
||||
extract_archive(file_path=dst, dest_dir=extract_dst)
|
||||
except tarfile.ReadError:
|
||||
os.remove(dst)
|
||||
raise tarfile.ReadError(f"论文下载失败")
|
||||
return extract_dst, arxiv_id
|
||||
|
||||
|
||||
def pdf2tex_project(pdf_file_path, plugin_kwargs):
|
||||
if plugin_kwargs["method"] == "MATHPIX":
|
||||
# Mathpix API credentials
|
||||
app_id, app_key = get_conf('MATHPIX_APPID', 'MATHPIX_APPKEY')
|
||||
headers = {"app_id": app_id, "app_key": app_key}
|
||||
|
||||
# Step 1: Send PDF file for processing
|
||||
options = {
|
||||
"conversion_formats": {"tex.zip": True},
|
||||
"math_inline_delimiters": ["$", "$"],
|
||||
"rm_spaces": True
|
||||
}
|
||||
|
||||
response = requests.post(url="https://api.mathpix.com/v3/pdf",
|
||||
headers=headers,
|
||||
data={"options_json": json.dumps(options)},
|
||||
files={"file": open(pdf_file_path, "rb")})
|
||||
|
||||
if response.ok:
|
||||
pdf_id = response.json()["pdf_id"]
|
||||
logger.info(f"PDF processing initiated. PDF ID: {pdf_id}")
|
||||
|
||||
# Step 2: Check processing status
|
||||
while True:
|
||||
conversion_response = requests.get(f"https://api.mathpix.com/v3/pdf/{pdf_id}", headers=headers)
|
||||
conversion_data = conversion_response.json()
|
||||
|
||||
if conversion_data["status"] == "completed":
|
||||
logger.info("PDF processing completed.")
|
||||
break
|
||||
elif conversion_data["status"] == "error":
|
||||
logger.info("Error occurred during processing.")
|
||||
else:
|
||||
logger.info(f"Processing status: {conversion_data['status']}")
|
||||
time.sleep(5) # wait for a few seconds before checking again
|
||||
|
||||
# Step 3: Save results to local files
|
||||
output_dir = os.path.join(os.path.dirname(pdf_file_path), 'mathpix_output')
|
||||
if not os.path.exists(output_dir):
|
||||
os.makedirs(output_dir)
|
||||
|
||||
url = f"https://api.mathpix.com/v3/pdf/{pdf_id}.tex"
|
||||
response = requests.get(url, headers=headers)
|
||||
file_name_wo_dot = '_'.join(os.path.basename(pdf_file_path).split('.')[:-1])
|
||||
output_name = f"{file_name_wo_dot}.tex.zip"
|
||||
output_path = os.path.join(output_dir, output_name)
|
||||
with open(output_path, "wb") as output_file:
|
||||
output_file.write(response.content)
|
||||
logger.info(f"tex.zip file saved at: {output_path}")
|
||||
|
||||
import zipfile
|
||||
unzip_dir = os.path.join(output_dir, file_name_wo_dot)
|
||||
with zipfile.ZipFile(output_path, 'r') as zip_ref:
|
||||
zip_ref.extractall(unzip_dir)
|
||||
|
||||
return unzip_dir
|
||||
|
||||
else:
|
||||
logger.error(f"Error sending PDF for processing. Status code: {response.status_code}")
|
||||
return None
|
||||
else:
|
||||
from crazy_functions.pdf_fns.parse_pdf_via_doc2x import 解析PDF_DOC2X_转Latex
|
||||
unzip_dir = 解析PDF_DOC2X_转Latex(pdf_file_path)
|
||||
return unzip_dir
|
||||
|
||||
|
||||
|
||||
|
||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 插件主程序1 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||
|
||||
|
||||
@CatchException
|
||||
def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
# <-------------- information about this plugin ------------->
|
||||
chatbot.append(["函数插件功能?",
|
||||
"对整个Latex项目进行纠错, 用latex编译为PDF对修正处做高亮。函数插件贡献者: Binary-Husky。注意事项: 目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。仅在Windows系统进行了测试,其他操作系统表现未知。"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# <-------------- more requirements ------------->
|
||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||
more_req = plugin_kwargs.get("advanced_arg", "")
|
||||
_switch_prompt_ = partial(switch_prompt, more_requirement=more_req)
|
||||
|
||||
# <-------------- check deps ------------->
|
||||
try:
|
||||
import glob, os, time, subprocess
|
||||
subprocess.Popen(['pdflatex', '-version'])
|
||||
from .latex_fns.latex_actions import Latex精细分解与转化, 编译Latex
|
||||
except Exception as e:
|
||||
chatbot.append([f"解析项目: {txt}",
|
||||
f"尝试执行Latex指令失败。Latex没有安装, 或者不在环境变量PATH中。安装方法https://tug.org/texlive/。报错信息\n\n```\n\n{trimmed_format_exc()}\n\n```\n\n"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# <-------------- clear history and read input ------------->
|
||||
history = []
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# <-------------- if is a zip/tar file ------------->
|
||||
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
||||
|
||||
# <-------------- move latex project away from temp folder ------------->
|
||||
from shared_utils.fastapi_server import validate_path_safety
|
||||
validate_path_safety(project_folder, chatbot.get_user())
|
||||
project_folder = move_project(project_folder, arxiv_id=None)
|
||||
|
||||
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
|
||||
if not os.path.exists(project_folder + '/merge_proofread_en.tex'):
|
||||
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
||||
chatbot, history, system_prompt, mode='proofread_en',
|
||||
switch_prompt=_switch_prompt_)
|
||||
|
||||
# <-------------- compile PDF ------------->
|
||||
success = yield from 编译Latex(chatbot, history, main_file_original='merge',
|
||||
main_file_modified='merge_proofread_en',
|
||||
work_folder_original=project_folder, work_folder_modified=project_folder,
|
||||
work_folder=project_folder)
|
||||
|
||||
# <-------------- zip PDF ------------->
|
||||
zip_res = zip_result(project_folder)
|
||||
if success:
|
||||
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history);
|
||||
time.sleep(1) # 刷新界面
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
else:
|
||||
chatbot.append((f"失败了",
|
||||
'虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 也是可读的, 您可以到Github Issue区, 用该压缩包+Conversation_To_File进行反馈 ...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history);
|
||||
time.sleep(1) # 刷新界面
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
|
||||
# <-------------- we are done ------------->
|
||||
return success
|
||||
|
||||
|
||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 插件主程序2 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||
|
||||
@CatchException
|
||||
def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
# <-------------- information about this plugin ------------->
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
"对整个Latex项目进行翻译, 生成中文PDF。函数插件贡献者: Binary-Husky。注意事项: 此插件Windows支持最佳,Linux下必须使用Docker安装,详见项目主README.md。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# <-------------- more requirements ------------->
|
||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||
more_req = plugin_kwargs.get("advanced_arg", "")
|
||||
|
||||
no_cache = ("--no-cache" in more_req)
|
||||
if no_cache: more_req = more_req.replace("--no-cache", "").strip()
|
||||
|
||||
allow_gptac_cloud_io = ("--allow-cloudio" in more_req) # 从云端下载翻译结果,以及上传翻译结果到云端
|
||||
if allow_gptac_cloud_io: more_req = more_req.replace("--allow-cloudio", "").strip()
|
||||
|
||||
allow_cache = not no_cache
|
||||
_switch_prompt_ = partial(switch_prompt, more_requirement=more_req)
|
||||
|
||||
|
||||
# <-------------- check deps ------------->
|
||||
try:
|
||||
import glob, os, time, subprocess
|
||||
subprocess.Popen(['pdflatex', '-version'])
|
||||
from .latex_fns.latex_actions import Latex精细分解与转化, 编译Latex
|
||||
except Exception as e:
|
||||
chatbot.append([f"解析项目: {txt}",
|
||||
f"尝试执行Latex指令失败。Latex没有安装, 或者不在环境变量PATH中。安装方法https://tug.org/texlive/。报错信息\n\n```\n\n{trimmed_format_exc()}\n\n```\n\n"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# <-------------- clear history and read input ------------->
|
||||
history = []
|
||||
try:
|
||||
txt, arxiv_id = yield from arxiv_download(chatbot, history, txt, allow_cache)
|
||||
except tarfile.ReadError as e:
|
||||
yield from update_ui_lastest_msg(
|
||||
"无法自动下载该论文的Latex源码,请前往arxiv打开此论文下载页面,点other Formats,然后download source手动下载latex源码包。接下来调用本地Latex翻译插件即可。",
|
||||
chatbot=chatbot, history=history)
|
||||
return
|
||||
|
||||
if txt.endswith('.pdf'):
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"发现已经存在翻译好的PDF文档")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# #################################################################
|
||||
if allow_gptac_cloud_io and arxiv_id:
|
||||
# 访问 GPTAC学术云,查询云端是否存在该论文的翻译版本
|
||||
from crazy_functions.latex_fns.latex_actions import check_gptac_cloud
|
||||
success, downloaded = check_gptac_cloud(arxiv_id, chatbot)
|
||||
if success:
|
||||
chatbot.append([
|
||||
f"检测到GPTAC云端存在翻译版本, 如果不满意翻译结果, 请禁用云端分享, 然后重新执行。",
|
||||
None
|
||||
])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
return
|
||||
#################################################################
|
||||
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无法处理: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# <-------------- if is a zip/tar file ------------->
|
||||
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
||||
|
||||
# <-------------- move latex project away from temp folder ------------->
|
||||
from shared_utils.fastapi_server import validate_path_safety
|
||||
validate_path_safety(project_folder, chatbot.get_user())
|
||||
project_folder = move_project(project_folder, arxiv_id)
|
||||
|
||||
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
|
||||
if not os.path.exists(project_folder + '/merge_translate_zh.tex'):
|
||||
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
||||
chatbot, history, system_prompt, mode='translate_zh',
|
||||
switch_prompt=_switch_prompt_)
|
||||
|
||||
# <-------------- compile PDF ------------->
|
||||
success = yield from 编译Latex(chatbot, history, main_file_original='merge',
|
||||
main_file_modified='merge_translate_zh', mode='translate_zh',
|
||||
work_folder_original=project_folder, work_folder_modified=project_folder,
|
||||
work_folder=project_folder)
|
||||
|
||||
# <-------------- zip PDF ------------->
|
||||
zip_res = zip_result(project_folder)
|
||||
if success:
|
||||
if allow_gptac_cloud_io and arxiv_id:
|
||||
# 如果用户允许,我们将翻译好的arxiv论文PDF上传到GPTAC学术云
|
||||
from crazy_functions.latex_fns.latex_actions import upload_to_gptac_cloud_if_user_allow
|
||||
threading.Thread(target=upload_to_gptac_cloud_if_user_allow,
|
||||
args=(chatbot, arxiv_id), daemon=True).start()
|
||||
|
||||
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
time.sleep(1) # 刷新界面
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
|
||||
else:
|
||||
chatbot.append((f"失败了",
|
||||
'虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 您可以到Github Issue区, 用该压缩包进行反馈。如系统是Linux,请检查系统字体(见Github wiki) ...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
time.sleep(1) # 刷新界面
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
|
||||
# <-------------- we are done ------------->
|
||||
return success
|
||||
|
||||
|
||||
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- 插件主程序3 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||
|
||||
@CatchException
|
||||
def PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
# <-------------- information about this plugin ------------->
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
"将PDF转换为Latex项目,翻译为中文后重新编译为PDF。函数插件贡献者: Marroh。注意事项: 此插件Windows支持最佳,Linux下必须使用Docker安装,详见项目主README.md。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# <-------------- more requirements ------------->
|
||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||
more_req = plugin_kwargs.get("advanced_arg", "")
|
||||
no_cache = more_req.startswith("--no-cache")
|
||||
if no_cache: more_req.lstrip("--no-cache")
|
||||
allow_cache = not no_cache
|
||||
_switch_prompt_ = partial(switch_prompt, more_requirement=more_req)
|
||||
|
||||
# <-------------- check deps ------------->
|
||||
try:
|
||||
import glob, os, time, subprocess
|
||||
subprocess.Popen(['pdflatex', '-version'])
|
||||
from .latex_fns.latex_actions import Latex精细分解与转化, 编译Latex
|
||||
except Exception as e:
|
||||
chatbot.append([f"解析项目: {txt}",
|
||||
f"尝试执行Latex指令失败。Latex没有安装, 或者不在环境变量PATH中。安装方法https://tug.org/texlive/。报错信息\n\n```\n\n{trimmed_format_exc()}\n\n```\n\n"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# <-------------- clear history and read input ------------->
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无法处理: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.pdf', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.pdf文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
if len(file_manifest) != 1:
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"不支持同时处理多个pdf文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
if plugin_kwargs.get("method", "") == 'MATHPIX':
|
||||
app_id, app_key = get_conf('MATHPIX_APPID', 'MATHPIX_APPKEY')
|
||||
if len(app_id) == 0 or len(app_key) == 0:
|
||||
report_exception(chatbot, history, a="缺失 MATHPIX_APPID 和 MATHPIX_APPKEY。", b=f"请配置 MATHPIX_APPID 和 MATHPIX_APPKEY")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
if plugin_kwargs.get("method", "") == 'DOC2X':
|
||||
app_id, app_key = "", ""
|
||||
DOC2X_API_KEY = get_conf('DOC2X_API_KEY')
|
||||
if len(DOC2X_API_KEY) == 0:
|
||||
report_exception(chatbot, history, a="缺失 DOC2X_API_KEY。", b=f"请配置 DOC2X_API_KEY")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
hash_tag = map_file_to_sha256(file_manifest[0])
|
||||
|
||||
# # <-------------- check repeated pdf ------------->
|
||||
# chatbot.append([f"检查PDF是否被重复上传", "正在检查..."])
|
||||
# yield from update_ui(chatbot=chatbot, history=history)
|
||||
# repeat, project_folder = check_repeat_upload(file_manifest[0], hash_tag)
|
||||
|
||||
# if repeat:
|
||||
# yield from update_ui_lastest_msg(f"发现重复上传,请查收结果(压缩包)...", chatbot=chatbot, history=history)
|
||||
# try:
|
||||
# translate_pdf = [f for f in glob.glob(f'{project_folder}/**/merge_translate_zh.pdf', recursive=True)][0]
|
||||
# promote_file_to_downloadzone(translate_pdf, rename_file=None, chatbot=chatbot)
|
||||
# comparison_pdf = [f for f in glob.glob(f'{project_folder}/**/comparison.pdf', recursive=True)][0]
|
||||
# promote_file_to_downloadzone(comparison_pdf, rename_file=None, chatbot=chatbot)
|
||||
# zip_res = zip_result(project_folder)
|
||||
# promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
# return
|
||||
# except:
|
||||
# report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"发现重复上传,但是无法找到相关文件")
|
||||
# yield from update_ui(chatbot=chatbot, history=history)
|
||||
# else:
|
||||
# yield from update_ui_lastest_msg(f"未发现重复上传", chatbot=chatbot, history=history)
|
||||
|
||||
# <-------------- convert pdf into tex ------------->
|
||||
chatbot.append([f"解析项目: {txt}", "正在将PDF转换为tex项目,请耐心等待..."])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
project_folder = pdf2tex_project(file_manifest[0], plugin_kwargs)
|
||||
if project_folder is None:
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"PDF转换为tex项目失败")
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
return False
|
||||
|
||||
# <-------------- translate latex file into Chinese ------------->
|
||||
yield from update_ui_lastest_msg("正在tex项目将翻译为中文...", chatbot=chatbot, history=history)
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# <-------------- if is a zip/tar file ------------->
|
||||
project_folder = desend_to_extracted_folder_if_exist(project_folder)
|
||||
|
||||
# <-------------- move latex project away from temp folder ------------->
|
||||
from shared_utils.fastapi_server import validate_path_safety
|
||||
validate_path_safety(project_folder, chatbot.get_user())
|
||||
project_folder = move_project(project_folder)
|
||||
|
||||
# <-------------- set a hash tag for repeat-checking ------------->
|
||||
with open(pj(project_folder, hash_tag + '.tag'), 'w', encoding='utf8') as f:
|
||||
f.write(hash_tag)
|
||||
f.close()
|
||||
|
||||
|
||||
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
|
||||
if not os.path.exists(project_folder + '/merge_translate_zh.tex'):
|
||||
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
||||
chatbot, history, system_prompt, mode='translate_zh',
|
||||
switch_prompt=_switch_prompt_)
|
||||
|
||||
# <-------------- compile PDF ------------->
|
||||
yield from update_ui_lastest_msg("正在将翻译好的项目tex项目编译为PDF...", chatbot=chatbot, history=history)
|
||||
success = yield from 编译Latex(chatbot, history, main_file_original='merge',
|
||||
main_file_modified='merge_translate_zh', mode='translate_zh',
|
||||
work_folder_original=project_folder, work_folder_modified=project_folder,
|
||||
work_folder=project_folder)
|
||||
|
||||
# <-------------- zip PDF ------------->
|
||||
zip_res = zip_result(project_folder)
|
||||
if success:
|
||||
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history);
|
||||
time.sleep(1) # 刷新界面
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
else:
|
||||
chatbot.append((f"失败了",
|
||||
'虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 您可以到Github Issue区, 用该压缩包进行反馈。如系统是Linux,请检查系统字体(见Github wiki) ...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history);
|
||||
time.sleep(1) # 刷新界面
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
|
||||
# <-------------- we are done ------------->
|
||||
return success
|
||||
@@ -1,85 +0,0 @@
|
||||
|
||||
from crazy_functions.Latex_Function import Latex翻译中文并重新编译PDF, PDF翻译中文并重新编译PDF
|
||||
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
|
||||
|
||||
|
||||
class Arxiv_Localize(GptAcademicPluginTemplate):
|
||||
def __init__(self):
|
||||
"""
|
||||
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
|
||||
"""
|
||||
pass
|
||||
|
||||
def define_arg_selection_menu(self):
|
||||
"""
|
||||
定义插件的二级选项菜单
|
||||
|
||||
第一个参数,名称`main_input`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
|
||||
第二个参数,名称`advanced_arg`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
|
||||
第三个参数,名称`allow_cache`,参数`type`声明这是一个下拉菜单,下拉菜单上方显示`title`+`description`,下拉菜单的选项为`options`,`default_value`为下拉菜单默认值;
|
||||
|
||||
"""
|
||||
gui_definition = {
|
||||
"main_input":
|
||||
ArgProperty(title="ArxivID", description="输入Arxiv的ID或者网址", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
|
||||
"advanced_arg":
|
||||
ArgProperty(title="额外的翻译提示词",
|
||||
description=r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
|
||||
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
|
||||
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
||||
default_value="", type="string").model_dump_json(), # 高级参数输入区,自动同步
|
||||
"allow_cache":
|
||||
ArgProperty(title="是否允许从缓存中调取结果", options=["允许缓存", "从头执行"], default_value="允许缓存", description="无", type="dropdown").model_dump_json(),
|
||||
"allow_cloudio":
|
||||
ArgProperty(title="是否允许从GPTAC学术云下载(或者上传)翻译结果(仅针对Arxiv论文)", options=["允许", "禁止"], default_value="禁止", description="共享文献,互助互利", type="dropdown").model_dump_json(),
|
||||
}
|
||||
return gui_definition
|
||||
|
||||
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
执行插件
|
||||
"""
|
||||
allow_cache = plugin_kwargs["allow_cache"]
|
||||
allow_cloudio = plugin_kwargs["allow_cloudio"]
|
||||
advanced_arg = plugin_kwargs["advanced_arg"]
|
||||
|
||||
if allow_cache == "从头执行": plugin_kwargs["advanced_arg"] = "--no-cache " + plugin_kwargs["advanced_arg"]
|
||||
|
||||
# 从云端下载翻译结果,以及上传翻译结果到云端;人人为我,我为人人。
|
||||
if allow_cloudio == "允许": plugin_kwargs["advanced_arg"] = "--allow-cloudio " + plugin_kwargs["advanced_arg"]
|
||||
|
||||
yield from Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||
|
||||
|
||||
|
||||
class PDF_Localize(GptAcademicPluginTemplate):
|
||||
def __init__(self):
|
||||
"""
|
||||
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
|
||||
"""
|
||||
pass
|
||||
|
||||
def define_arg_selection_menu(self):
|
||||
"""
|
||||
定义插件的二级选项菜单
|
||||
"""
|
||||
gui_definition = {
|
||||
"main_input":
|
||||
ArgProperty(title="PDF文件路径", description="未指定路径,请上传文件后,再点击该插件", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
|
||||
"advanced_arg":
|
||||
ArgProperty(title="额外的翻译提示词",
|
||||
description=r"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "
|
||||
r"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: "
|
||||
r'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
||||
default_value="", type="string").model_dump_json(), # 高级参数输入区,自动同步
|
||||
"method":
|
||||
ArgProperty(title="采用哪种方法执行转换", options=["MATHPIX", "DOC2X"], default_value="DOC2X", description="无", type="dropdown").model_dump_json(),
|
||||
|
||||
}
|
||||
return gui_definition
|
||||
|
||||
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
执行插件
|
||||
"""
|
||||
yield from PDF翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||
@@ -1,245 +0,0 @@
|
||||
from toolbox import update_ui, trimmed_format_exc, promote_file_to_downloadzone, get_log_folder
|
||||
from toolbox import CatchException, report_exception, write_history_to_file, zip_folder
|
||||
from loguru import logger
|
||||
|
||||
class PaperFileGroup():
|
||||
def __init__(self):
|
||||
self.file_paths = []
|
||||
self.file_contents = []
|
||||
self.sp_file_contents = []
|
||||
self.sp_file_index = []
|
||||
self.sp_file_tag = []
|
||||
|
||||
# count_token
|
||||
from request_llms.bridge_all import model_info
|
||||
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
||||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||||
self.get_token_num = get_token_num
|
||||
|
||||
def run_file_split(self, max_token_limit=1900):
|
||||
"""
|
||||
将长文本分离开来
|
||||
"""
|
||||
for index, file_content in enumerate(self.file_contents):
|
||||
if self.get_token_num(file_content) < max_token_limit:
|
||||
self.sp_file_contents.append(file_content)
|
||||
self.sp_file_index.append(index)
|
||||
self.sp_file_tag.append(self.file_paths[index])
|
||||
else:
|
||||
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
||||
segments = breakdown_text_to_satisfy_token_limit(file_content, max_token_limit)
|
||||
for j, segment in enumerate(segments):
|
||||
self.sp_file_contents.append(segment)
|
||||
self.sp_file_index.append(index)
|
||||
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.tex")
|
||||
|
||||
logger.info('Segmentation: done')
|
||||
def merge_result(self):
|
||||
self.file_result = ["" for _ in range(len(self.file_paths))]
|
||||
for r, k in zip(self.sp_file_result, self.sp_file_index):
|
||||
self.file_result[k] += r
|
||||
|
||||
def write_result(self):
|
||||
manifest = []
|
||||
for path, res in zip(self.file_paths, self.file_result):
|
||||
with open(path + '.polish.tex', 'w', encoding='utf8') as f:
|
||||
manifest.append(path + '.polish.tex')
|
||||
f.write(res)
|
||||
return manifest
|
||||
|
||||
def zip_result(self):
|
||||
import os, time
|
||||
folder = os.path.dirname(self.file_paths[0])
|
||||
t = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
|
||||
zip_folder(folder, get_log_folder(), f'{t}-polished.zip')
|
||||
|
||||
|
||||
def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en', mode='polish'):
|
||||
import time, os, re
|
||||
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||
|
||||
|
||||
# <-------- 读取Latex文件,删除其中的所有注释 ---------->
|
||||
pfg = PaperFileGroup()
|
||||
|
||||
for index, fp in enumerate(file_manifest):
|
||||
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
|
||||
file_content = f.read()
|
||||
# 定义注释的正则表达式
|
||||
comment_pattern = r'(?<!\\)%.*'
|
||||
# 使用正则表达式查找注释,并替换为空字符串
|
||||
clean_tex_content = re.sub(comment_pattern, '', file_content)
|
||||
# 记录删除注释后的文本
|
||||
pfg.file_paths.append(fp)
|
||||
pfg.file_contents.append(clean_tex_content)
|
||||
|
||||
# <-------- 拆分过长的latex文件 ---------->
|
||||
pfg.run_file_split(max_token_limit=1024)
|
||||
n_split = len(pfg.sp_file_contents)
|
||||
|
||||
|
||||
# <-------- 多线程润色开始 ---------->
|
||||
if language == 'en':
|
||||
if mode == 'polish':
|
||||
inputs_array = [r"Below is a section from an academic paper, polish this section to meet the academic standard, " +
|
||||
r"improve the grammar, clarity and overall readability, do not modify any latex command such as \section, \cite and equations:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
else:
|
||||
inputs_array = [r"Below is a section from an academic paper, proofread this section." +
|
||||
r"Do not modify any latex command such as \section, \cite, \begin, \item and equations. " +
|
||||
r"Answer me only with the revised text:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
inputs_show_user_array = [f"Polish {f}" for f in pfg.sp_file_tag]
|
||||
sys_prompt_array = ["You are a professional academic paper writer." for _ in range(n_split)]
|
||||
elif language == 'zh':
|
||||
if mode == 'polish':
|
||||
inputs_array = [r"以下是一篇学术论文中的一段内容,请将此部分润色以满足学术标准,提高语法、清晰度和整体可读性,不要修改任何LaTeX命令,例如\section,\cite和方程式:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
else:
|
||||
inputs_array = [r"以下是一篇学术论文中的一段内容,请对这部分内容进行语法矫正。不要修改任何LaTeX命令,例如\section,\cite和方程式:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
inputs_show_user_array = [f"润色 {f}" for f in pfg.sp_file_tag]
|
||||
sys_prompt_array=["你是一位专业的中文学术论文作家。" for _ in range(n_split)]
|
||||
|
||||
|
||||
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
inputs_array=inputs_array,
|
||||
inputs_show_user_array=inputs_show_user_array,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
history_array=[[""] for _ in range(n_split)],
|
||||
sys_prompt_array=sys_prompt_array,
|
||||
# max_workers=5, # 并行任务数量限制,最多同时执行5个,其他的排队等待
|
||||
scroller_max_len = 80
|
||||
)
|
||||
|
||||
# <-------- 文本碎片重组为完整的tex文件,整理结果为压缩包 ---------->
|
||||
try:
|
||||
pfg.sp_file_result = []
|
||||
for i_say, gpt_say in zip(gpt_response_collection[0::2], gpt_response_collection[1::2]):
|
||||
pfg.sp_file_result.append(gpt_say)
|
||||
pfg.merge_result()
|
||||
pfg.write_result()
|
||||
pfg.zip_result()
|
||||
except:
|
||||
logger.error(trimmed_format_exc())
|
||||
|
||||
# <-------- 整理结果,退出 ---------->
|
||||
create_report_file_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + f"-chatgpt.polish.md"
|
||||
res = write_history_to_file(gpt_response_collection, file_basename=create_report_file_name)
|
||||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
||||
|
||||
history = gpt_response_collection
|
||||
chatbot.append((f"{fp}完成了吗?", res))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
|
||||
@CatchException
|
||||
def Latex英文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
"对整个Latex项目进行润色。函数插件贡献者: Binary-Husky。(注意,此插件不调用Latex,如果有Latex环境,请使用「Latex英文纠错+高亮修正位置(需Latex)插件」"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
import tiktoken
|
||||
except:
|
||||
report_exception(chatbot, history,
|
||||
a=f"解析项目: {txt}",
|
||||
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
yield from 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en')
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@CatchException
|
||||
def Latex中文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
"对整个Latex项目进行润色。函数插件贡献者: Binary-Husky"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
import tiktoken
|
||||
except:
|
||||
report_exception(chatbot, history,
|
||||
a=f"解析项目: {txt}",
|
||||
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
yield from 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='zh')
|
||||
|
||||
|
||||
|
||||
|
||||
@CatchException
|
||||
def Latex英文纠错(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
"对整个Latex项目进行纠错。函数插件贡献者: Binary-Husky"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
import tiktoken
|
||||
except:
|
||||
report_exception(chatbot, history,
|
||||
a=f"解析项目: {txt}",
|
||||
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
yield from 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en', mode='proofread')
|
||||
|
||||
|
||||
|
||||
@@ -1,176 +0,0 @@
|
||||
from toolbox import update_ui, promote_file_to_downloadzone
|
||||
from toolbox import CatchException, report_exception, write_history_to_file
|
||||
from loguru import logger
|
||||
|
||||
class PaperFileGroup():
|
||||
def __init__(self):
|
||||
self.file_paths = []
|
||||
self.file_contents = []
|
||||
self.sp_file_contents = []
|
||||
self.sp_file_index = []
|
||||
self.sp_file_tag = []
|
||||
|
||||
# count_token
|
||||
from request_llms.bridge_all import model_info
|
||||
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
||||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||||
self.get_token_num = get_token_num
|
||||
|
||||
def run_file_split(self, max_token_limit=1900):
|
||||
"""
|
||||
将长文本分离开来
|
||||
"""
|
||||
for index, file_content in enumerate(self.file_contents):
|
||||
if self.get_token_num(file_content) < max_token_limit:
|
||||
self.sp_file_contents.append(file_content)
|
||||
self.sp_file_index.append(index)
|
||||
self.sp_file_tag.append(self.file_paths[index])
|
||||
else:
|
||||
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
||||
segments = breakdown_text_to_satisfy_token_limit(file_content, max_token_limit)
|
||||
for j, segment in enumerate(segments):
|
||||
self.sp_file_contents.append(segment)
|
||||
self.sp_file_index.append(index)
|
||||
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.tex")
|
||||
|
||||
logger.info('Segmentation: done')
|
||||
|
||||
def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en'):
|
||||
import time, os, re
|
||||
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||
|
||||
# <-------- 读取Latex文件,删除其中的所有注释 ---------->
|
||||
pfg = PaperFileGroup()
|
||||
|
||||
for index, fp in enumerate(file_manifest):
|
||||
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
|
||||
file_content = f.read()
|
||||
# 定义注释的正则表达式
|
||||
comment_pattern = r'(?<!\\)%.*'
|
||||
# 使用正则表达式查找注释,并替换为空字符串
|
||||
clean_tex_content = re.sub(comment_pattern, '', file_content)
|
||||
# 记录删除注释后的文本
|
||||
pfg.file_paths.append(fp)
|
||||
pfg.file_contents.append(clean_tex_content)
|
||||
|
||||
# <-------- 拆分过长的latex文件 ---------->
|
||||
pfg.run_file_split(max_token_limit=1024)
|
||||
n_split = len(pfg.sp_file_contents)
|
||||
|
||||
# <-------- 抽取摘要 ---------->
|
||||
# if language == 'en':
|
||||
# abs_extract_inputs = f"Please write an abstract for this paper"
|
||||
|
||||
# # 单线,获取文章meta信息
|
||||
# paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
# inputs=abs_extract_inputs,
|
||||
# inputs_show_user=f"正在抽取摘要信息。",
|
||||
# llm_kwargs=llm_kwargs,
|
||||
# chatbot=chatbot, history=[],
|
||||
# sys_prompt="Your job is to collect information from materials。",
|
||||
# )
|
||||
|
||||
# <-------- 多线程润色开始 ---------->
|
||||
if language == 'en->zh':
|
||||
inputs_array = ["Below is a section from an English academic paper, translate it into Chinese, do not modify any latex command such as \section, \cite and equations:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
||||
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
|
||||
elif language == 'zh->en':
|
||||
inputs_array = [f"Below is a section from a Chinese academic paper, translate it into English, do not modify any latex command such as \section, \cite and equations:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
||||
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
|
||||
|
||||
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
inputs_array=inputs_array,
|
||||
inputs_show_user_array=inputs_show_user_array,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
history_array=[[""] for _ in range(n_split)],
|
||||
sys_prompt_array=sys_prompt_array,
|
||||
# max_workers=5, # OpenAI所允许的最大并行过载
|
||||
scroller_max_len = 80
|
||||
)
|
||||
|
||||
# <-------- 整理结果,退出 ---------->
|
||||
create_report_file_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + f"-chatgpt.polish.md"
|
||||
res = write_history_to_file(gpt_response_collection, create_report_file_name)
|
||||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
||||
history = gpt_response_collection
|
||||
chatbot.append((f"{fp}完成了吗?", res))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@CatchException
|
||||
def Latex英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
"对整个Latex项目进行翻译。函数插件贡献者: Binary-Husky"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
import tiktoken
|
||||
except:
|
||||
report_exception(chatbot, history,
|
||||
a=f"解析项目: {txt}",
|
||||
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en->zh')
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@CatchException
|
||||
def Latex中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
"对整个Latex项目进行翻译。函数插件贡献者: Binary-Husky"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
import tiktoken
|
||||
except:
|
||||
report_exception(chatbot, history,
|
||||
a=f"解析项目: {txt}",
|
||||
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='zh->en')
|
||||
@@ -1,264 +0,0 @@
|
||||
import glob, shutil, os, re
|
||||
from loguru import logger
|
||||
from toolbox import update_ui, trimmed_format_exc, gen_time_str
|
||||
from toolbox import CatchException, report_exception, get_log_folder
|
||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||
fast_debug = False
|
||||
|
||||
class PaperFileGroup():
|
||||
def __init__(self):
|
||||
self.file_paths = []
|
||||
self.file_contents = []
|
||||
self.sp_file_contents = []
|
||||
self.sp_file_index = []
|
||||
self.sp_file_tag = []
|
||||
|
||||
# count_token
|
||||
from request_llms.bridge_all import model_info
|
||||
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
||||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||||
self.get_token_num = get_token_num
|
||||
|
||||
def run_file_split(self, max_token_limit=2048):
|
||||
"""
|
||||
将长文本分离开来
|
||||
"""
|
||||
for index, file_content in enumerate(self.file_contents):
|
||||
if self.get_token_num(file_content) < max_token_limit:
|
||||
self.sp_file_contents.append(file_content)
|
||||
self.sp_file_index.append(index)
|
||||
self.sp_file_tag.append(self.file_paths[index])
|
||||
else:
|
||||
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
||||
segments = breakdown_text_to_satisfy_token_limit(file_content, max_token_limit)
|
||||
for j, segment in enumerate(segments):
|
||||
self.sp_file_contents.append(segment)
|
||||
self.sp_file_index.append(index)
|
||||
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.md")
|
||||
logger.info('Segmentation: done')
|
||||
|
||||
def merge_result(self):
|
||||
self.file_result = ["" for _ in range(len(self.file_paths))]
|
||||
for r, k in zip(self.sp_file_result, self.sp_file_index):
|
||||
self.file_result[k] += r
|
||||
|
||||
def write_result(self, language):
|
||||
manifest = []
|
||||
for path, res in zip(self.file_paths, self.file_result):
|
||||
dst_file = os.path.join(get_log_folder(), f'{gen_time_str()}.md')
|
||||
with open(dst_file, 'w', encoding='utf8') as f:
|
||||
manifest.append(dst_file)
|
||||
f.write(res)
|
||||
return manifest
|
||||
|
||||
def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en'):
|
||||
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||
|
||||
# <-------- 读取Markdown文件,删除其中的所有注释 ---------->
|
||||
pfg = PaperFileGroup()
|
||||
|
||||
for index, fp in enumerate(file_manifest):
|
||||
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
|
||||
file_content = f.read()
|
||||
# 记录删除注释后的文本
|
||||
pfg.file_paths.append(fp)
|
||||
pfg.file_contents.append(file_content)
|
||||
|
||||
# <-------- 拆分过长的Markdown文件 ---------->
|
||||
pfg.run_file_split(max_token_limit=1024)
|
||||
n_split = len(pfg.sp_file_contents)
|
||||
|
||||
# <-------- 多线程翻译开始 ---------->
|
||||
if language == 'en->zh':
|
||||
inputs_array = ["This is a Markdown file, translate it into Chinese, do NOT modify any existing Markdown commands, do NOT use code wrapper (```), ONLY answer me with translated results:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
||||
sys_prompt_array = ["You are a professional academic paper translator." + plugin_kwargs.get("additional_prompt", "") for _ in range(n_split)]
|
||||
elif language == 'zh->en':
|
||||
inputs_array = [f"This is a Markdown file, translate it into English, do NOT modify any existing Markdown commands, do NOT use code wrapper (```), ONLY answer me with translated results:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
||||
sys_prompt_array = ["You are a professional academic paper translator." + plugin_kwargs.get("additional_prompt", "") for _ in range(n_split)]
|
||||
else:
|
||||
inputs_array = [f"This is a Markdown file, translate it into {language}, do NOT modify any existing Markdown commands, do NOT use code wrapper (```), ONLY answer me with translated results:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
|
||||
sys_prompt_array = ["You are a professional academic paper translator." + plugin_kwargs.get("additional_prompt", "") for _ in range(n_split)]
|
||||
|
||||
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
inputs_array=inputs_array,
|
||||
inputs_show_user_array=inputs_show_user_array,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
history_array=[[""] for _ in range(n_split)],
|
||||
sys_prompt_array=sys_prompt_array,
|
||||
# max_workers=5, # OpenAI所允许的最大并行过载
|
||||
scroller_max_len = 80
|
||||
)
|
||||
try:
|
||||
pfg.sp_file_result = []
|
||||
for i_say, gpt_say in zip(gpt_response_collection[0::2], gpt_response_collection[1::2]):
|
||||
pfg.sp_file_result.append(gpt_say)
|
||||
pfg.merge_result()
|
||||
output_file_arr = pfg.write_result(language)
|
||||
for output_file in output_file_arr:
|
||||
promote_file_to_downloadzone(output_file, chatbot=chatbot)
|
||||
if 'markdown_expected_output_path' in plugin_kwargs:
|
||||
expected_f_name = plugin_kwargs['markdown_expected_output_path']
|
||||
shutil.copyfile(output_file, expected_f_name)
|
||||
except:
|
||||
logger.error(trimmed_format_exc())
|
||||
|
||||
# <-------- 整理结果,退出 ---------->
|
||||
create_report_file_name = gen_time_str() + f"-chatgpt.md"
|
||||
res = write_history_to_file(gpt_response_collection, file_basename=create_report_file_name)
|
||||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
||||
history = gpt_response_collection
|
||||
chatbot.append((f"{fp}完成了吗?", res))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
|
||||
def get_files_from_everything(txt, preference=''):
|
||||
if txt == "": return False, None, None
|
||||
success = True
|
||||
if txt.startswith('http'):
|
||||
import requests
|
||||
from toolbox import get_conf
|
||||
proxies = get_conf('proxies')
|
||||
# 网络的远程文件
|
||||
if preference == 'Github':
|
||||
logger.info('正在从github下载资源 ...')
|
||||
if not txt.endswith('.md'):
|
||||
# Make a request to the GitHub API to retrieve the repository information
|
||||
url = txt.replace("https://github.com/", "https://api.github.com/repos/") + '/readme'
|
||||
response = requests.get(url, proxies=proxies)
|
||||
txt = response.json()['download_url']
|
||||
else:
|
||||
txt = txt.replace("https://github.com/", "https://raw.githubusercontent.com/")
|
||||
txt = txt.replace("/blob/", "/")
|
||||
|
||||
r = requests.get(txt, proxies=proxies)
|
||||
download_local = f'{get_log_folder(plugin_name="批量Markdown翻译")}/raw-readme-{gen_time_str()}.md'
|
||||
project_folder = f'{get_log_folder(plugin_name="批量Markdown翻译")}'
|
||||
with open(download_local, 'wb+') as f: f.write(r.content)
|
||||
file_manifest = [download_local]
|
||||
elif txt.endswith('.md'):
|
||||
# 直接给定文件
|
||||
file_manifest = [txt]
|
||||
project_folder = os.path.dirname(txt)
|
||||
elif os.path.exists(txt):
|
||||
# 本地路径,递归搜索
|
||||
project_folder = txt
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.md', recursive=True)]
|
||||
else:
|
||||
project_folder = None
|
||||
file_manifest = []
|
||||
success = False
|
||||
|
||||
return success, file_manifest, project_folder
|
||||
|
||||
|
||||
@CatchException
|
||||
def Markdown英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
"对整个Markdown项目进行翻译。函数插件贡献者: Binary-Husky"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
import tiktoken
|
||||
except:
|
||||
report_exception(chatbot, history,
|
||||
a=f"解析项目: {txt}",
|
||||
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
|
||||
success, file_manifest, project_folder = get_files_from_everything(txt, preference="Github")
|
||||
|
||||
if not success:
|
||||
# 什么都没有
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.md文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en->zh')
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@CatchException
|
||||
def Markdown中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
"对整个Markdown项目进行翻译。函数插件贡献者: Binary-Husky"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
import tiktoken
|
||||
except:
|
||||
report_exception(chatbot, history,
|
||||
a=f"解析项目: {txt}",
|
||||
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
success, file_manifest, project_folder = get_files_from_everything(txt)
|
||||
if not success:
|
||||
# 什么都没有
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.md文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='zh->en')
|
||||
|
||||
|
||||
@CatchException
|
||||
def Markdown翻译指定语言(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
"对整个Markdown项目进行翻译。函数插件贡献者: Binary-Husky"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
import tiktoken
|
||||
except:
|
||||
report_exception(chatbot, history,
|
||||
a=f"解析项目: {txt}",
|
||||
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
success, file_manifest, project_folder = get_files_from_everything(txt)
|
||||
if not success:
|
||||
# 什么都没有
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.md文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||
language = plugin_kwargs.get("advanced_arg", 'Chinese')
|
||||
yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language=language)
|
||||
@@ -1,83 +0,0 @@
|
||||
from toolbox import CatchException, check_packages, get_conf
|
||||
from toolbox import update_ui, update_ui_lastest_msg, disable_auto_promotion
|
||||
from toolbox import trimmed_format_exc_markdown
|
||||
from crazy_functions.crazy_utils import get_files_from_everything
|
||||
from crazy_functions.pdf_fns.parse_pdf import get_avail_grobid_url
|
||||
from crazy_functions.pdf_fns.parse_pdf_via_doc2x import 解析PDF_基于DOC2X
|
||||
from crazy_functions.pdf_fns.parse_pdf_legacy import 解析PDF_简单拆解
|
||||
from crazy_functions.pdf_fns.parse_pdf_grobid import 解析PDF_基于GROBID
|
||||
from shared_utils.colorful import *
|
||||
|
||||
@CatchException
|
||||
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
|
||||
disable_auto_promotion(chatbot)
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append([None, "插件功能:批量翻译PDF文档。函数插件贡献者: Binary-Husky"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
check_packages(["fitz", "tiktoken", "scipdf"])
|
||||
except:
|
||||
chatbot.append([None, f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf tiktoken scipdf_parser```。"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# 清空历史,以免输入溢出
|
||||
history = []
|
||||
success, file_manifest, project_folder = get_files_from_everything(txt, type='.pdf')
|
||||
|
||||
# 检测输入参数,如没有给定输入参数,直接退出
|
||||
if (not success) and txt == "": txt = '空空如也的输入栏。提示:请先上传文件(把PDF文件拖入对话)。'
|
||||
|
||||
# 如果没找到任何文件
|
||||
if len(file_manifest) == 0:
|
||||
chatbot.append([None, f"找不到任何.pdf拓展名的文件: {txt}"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# 开始正式执行任务
|
||||
method = plugin_kwargs.get("pdf_parse_method", None)
|
||||
if method == "DOC2X":
|
||||
# ------- 第一种方法,效果最好,但是需要DOC2X服务 -------
|
||||
DOC2X_API_KEY = get_conf("DOC2X_API_KEY")
|
||||
if len(DOC2X_API_KEY) != 0:
|
||||
try:
|
||||
yield from 解析PDF_基于DOC2X(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, DOC2X_API_KEY, user_request)
|
||||
return
|
||||
except:
|
||||
chatbot.append([None, f"DOC2X服务不可用,现在将执行效果稍差的旧版代码。{trimmed_format_exc_markdown()}"])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
if method == "GROBID":
|
||||
# ------- 第二种方法,效果次优 -------
|
||||
grobid_url = get_avail_grobid_url()
|
||||
if grobid_url is not None:
|
||||
yield from 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url)
|
||||
return
|
||||
|
||||
if method == "ClASSIC":
|
||||
# ------- 第三种方法,早期代码,效果不理想 -------
|
||||
yield from update_ui_lastest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
|
||||
yield from 解析PDF_简单拆解(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
return
|
||||
|
||||
if method is None:
|
||||
# ------- 以上三种方法都试一遍 -------
|
||||
DOC2X_API_KEY = get_conf("DOC2X_API_KEY")
|
||||
if len(DOC2X_API_KEY) != 0:
|
||||
try:
|
||||
yield from 解析PDF_基于DOC2X(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, DOC2X_API_KEY, user_request)
|
||||
return
|
||||
except:
|
||||
chatbot.append([None, f"DOC2X服务不可用,正在尝试GROBID。{trimmed_format_exc_markdown()}"])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
grobid_url = get_avail_grobid_url()
|
||||
if grobid_url is not None:
|
||||
yield from 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url)
|
||||
return
|
||||
yield from update_ui_lastest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
|
||||
yield from 解析PDF_简单拆解(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
return
|
||||
|
||||
@@ -1,33 +0,0 @@
|
||||
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
|
||||
from .PDF_Translate import 批量翻译PDF文档
|
||||
|
||||
|
||||
class PDF_Tran(GptAcademicPluginTemplate):
|
||||
def __init__(self):
|
||||
"""
|
||||
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
|
||||
"""
|
||||
pass
|
||||
|
||||
def define_arg_selection_menu(self):
|
||||
"""
|
||||
定义插件的二级选项菜单
|
||||
"""
|
||||
gui_definition = {
|
||||
"main_input":
|
||||
ArgProperty(title="PDF文件路径", description="未指定路径,请上传文件后,再点击该插件", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
|
||||
"additional_prompt":
|
||||
ArgProperty(title="额外提示词", description="例如:对专有名词、翻译语气等方面的要求", default_value="", type="string").model_dump_json(), # 高级参数输入区,自动同步
|
||||
"pdf_parse_method":
|
||||
ArgProperty(title="PDF解析方法", options=["DOC2X", "GROBID", "ClASSIC"], description="无", default_value="GROBID", type="dropdown").model_dump_json(),
|
||||
}
|
||||
return gui_definition
|
||||
|
||||
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
执行插件
|
||||
"""
|
||||
main_input = plugin_kwargs["main_input"]
|
||||
additional_prompt = plugin_kwargs["additional_prompt"]
|
||||
pdf_parse_method = plugin_kwargs["pdf_parse_method"]
|
||||
yield from 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||
@@ -1,153 +0,0 @@
|
||||
import os,glob
|
||||
from typing import List
|
||||
|
||||
from shared_utils.fastapi_server import validate_path_safety
|
||||
|
||||
from toolbox import report_exception
|
||||
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_lastest_msg
|
||||
from shared_utils.fastapi_server import validate_path_safety
|
||||
from crazy_functions.crazy_utils import input_clipping
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
|
||||
RAG_WORKER_REGISTER = {}
|
||||
MAX_HISTORY_ROUND = 5
|
||||
MAX_CONTEXT_TOKEN_LIMIT = 4096
|
||||
REMEMBER_PREVIEW = 1000
|
||||
|
||||
@CatchException
|
||||
def handle_document_upload(files: List[str], llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request, rag_worker):
|
||||
"""
|
||||
Handles document uploads by extracting text and adding it to the vector store.
|
||||
"""
|
||||
from llama_index.core import Document
|
||||
from crazy_functions.rag_fns.rag_file_support import extract_text, supports_format
|
||||
user_name = chatbot.get_user()
|
||||
checkpoint_dir = get_log_folder(user_name, plugin_name='experimental_rag')
|
||||
|
||||
for file_path in files:
|
||||
try:
|
||||
validate_path_safety(file_path, user_name)
|
||||
text = extract_text(file_path)
|
||||
if text is None:
|
||||
chatbot.append(
|
||||
[f"上传文件: {os.path.basename(file_path)}", f"文件解析失败,无法提取文本内容,请更换文件。失败原因可能为:1.文档格式过于复杂;2. 不支持的文件格式,支持的文件格式后缀有:" + ", ".join(supports_format)])
|
||||
else:
|
||||
chatbot.append(
|
||||
[f"上传文件: {os.path.basename(file_path)}", f"上传文件前50个字符为:{text[:50]}。"])
|
||||
document = Document(text=text, metadata={"source": file_path})
|
||||
rag_worker.add_documents_to_vector_store([document])
|
||||
chatbot.append([f"上传文件: {os.path.basename(file_path)}", "文件已成功添加到知识库。"])
|
||||
except Exception as e:
|
||||
report_exception(chatbot, history, a=f"处理文件: {file_path}", b=str(e))
|
||||
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
|
||||
|
||||
# Main Q&A function with document upload support
|
||||
@CatchException
|
||||
def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
|
||||
# import vector store lib
|
||||
VECTOR_STORE_TYPE = "Milvus"
|
||||
if VECTOR_STORE_TYPE == "Milvus":
|
||||
try:
|
||||
from crazy_functions.rag_fns.milvus_worker import MilvusRagWorker as LlamaIndexRagWorker
|
||||
except:
|
||||
VECTOR_STORE_TYPE = "Simple"
|
||||
if VECTOR_STORE_TYPE == "Simple":
|
||||
from crazy_functions.rag_fns.llama_index_worker import LlamaIndexRagWorker
|
||||
|
||||
# 1. we retrieve rag worker from global context
|
||||
user_name = chatbot.get_user()
|
||||
checkpoint_dir = get_log_folder(user_name, plugin_name='experimental_rag')
|
||||
|
||||
if user_name in RAG_WORKER_REGISTER:
|
||||
rag_worker = RAG_WORKER_REGISTER[user_name]
|
||||
else:
|
||||
rag_worker = RAG_WORKER_REGISTER[user_name] = LlamaIndexRagWorker(
|
||||
user_name,
|
||||
llm_kwargs,
|
||||
checkpoint_dir=checkpoint_dir,
|
||||
auto_load_checkpoint=True
|
||||
)
|
||||
|
||||
current_context = f"{VECTOR_STORE_TYPE} @ {checkpoint_dir}"
|
||||
tip = "提示:输入“清空向量数据库”可以清空RAG向量数据库"
|
||||
|
||||
# 2. Handle special commands
|
||||
if os.path.exists(txt) and os.path.isdir(txt):
|
||||
project_folder = txt
|
||||
validate_path_safety(project_folder, chatbot.get_user())
|
||||
# Extract file paths from the user input
|
||||
# Assuming the user inputs file paths separated by commas after the command
|
||||
file_paths = [f for f in glob.glob(f'{project_folder}/**/*', recursive=True)]
|
||||
chatbot.append([txt, f'正在处理上传的文档 ({current_context}) ...'])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
yield from handle_document_upload(file_paths, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request, rag_worker)
|
||||
return
|
||||
|
||||
elif txt == "清空向量数据库":
|
||||
chatbot.append([txt, f'正在清空 ({current_context}) ...'])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
rag_worker.purge_vector_store()
|
||||
yield from update_ui_lastest_msg('已清空', chatbot, history, delay=0) # 刷新界面
|
||||
return
|
||||
|
||||
# 3. Normal Q&A processing
|
||||
chatbot.append([txt, f'正在召回知识 ({current_context}) ...'])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 4. Clip history to reduce token consumption
|
||||
txt_origin = txt
|
||||
|
||||
if len(history) > MAX_HISTORY_ROUND * 2:
|
||||
history = history[-(MAX_HISTORY_ROUND * 2):]
|
||||
txt_clip, history, flags = input_clipping(txt, history, max_token_limit=MAX_CONTEXT_TOKEN_LIMIT, return_clip_flags=True)
|
||||
input_is_clipped_flag = (flags["original_input_len"] != flags["clipped_input_len"])
|
||||
|
||||
# 5. If input is clipped, add input to vector store before retrieve
|
||||
if input_is_clipped_flag:
|
||||
yield from update_ui_lastest_msg('检测到长输入, 正在向量化 ...', chatbot, history, delay=0) # 刷新界面
|
||||
# Save input to vector store
|
||||
rag_worker.add_text_to_vector_store(txt_origin)
|
||||
yield from update_ui_lastest_msg('向量化完成 ...', chatbot, history, delay=0) # 刷新界面
|
||||
|
||||
if len(txt_origin) > REMEMBER_PREVIEW:
|
||||
HALF = REMEMBER_PREVIEW // 2
|
||||
i_say_to_remember = txt[:HALF] + f" ...\n...(省略{len(txt_origin)-REMEMBER_PREVIEW}字)...\n... " + txt[-HALF:]
|
||||
if (flags["original_input_len"] - flags["clipped_input_len"]) > HALF:
|
||||
txt_clip = txt_clip + f" ...\n...(省略{len(txt_origin)-len(txt_clip)-HALF}字)...\n... " + txt[-HALF:]
|
||||
else:
|
||||
i_say_to_remember = i_say = txt_clip
|
||||
else:
|
||||
i_say_to_remember = i_say = txt_clip
|
||||
|
||||
# 6. Search vector store and build prompts
|
||||
nodes = rag_worker.retrieve_from_store_with_query(i_say)
|
||||
prompt = rag_worker.build_prompt(query=i_say, nodes=nodes)
|
||||
# 7. Query language model
|
||||
if len(chatbot) != 0:
|
||||
chatbot.pop(-1) # Pop temp chat, because we are going to add them again inside `request_gpt_model_in_new_thread_with_ui_alive`
|
||||
|
||||
model_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=prompt,
|
||||
inputs_show_user=i_say,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
history=history,
|
||||
sys_prompt=system_prompt,
|
||||
retry_times_at_unknown_error=0
|
||||
)
|
||||
|
||||
# 8. Remember Q&A
|
||||
yield from update_ui_lastest_msg(
|
||||
model_say + '</br></br>' + f'对话记忆中, 请稍等 ({current_context}) ...',
|
||||
chatbot, history, delay=0.5
|
||||
)
|
||||
rag_worker.remember_qa(i_say_to_remember, model_say)
|
||||
history.extend([i_say, model_say])
|
||||
|
||||
# 9. Final UI Update
|
||||
yield from update_ui_lastest_msg(model_say, chatbot, history, delay=0, msg=tip)
|
||||
@@ -1,167 +0,0 @@
|
||||
import pickle, os, random
|
||||
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_lastest_msg
|
||||
from crazy_functions.crazy_utils import input_clipping
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||
from crazy_functions.json_fns.select_tool import structure_output, select_tool
|
||||
from pydantic import BaseModel, Field
|
||||
from loguru import logger
|
||||
from typing import List
|
||||
|
||||
|
||||
SOCIAL_NETWOK_WORKER_REGISTER = {}
|
||||
|
||||
class SocialNetwork():
|
||||
def __init__(self):
|
||||
self.people = []
|
||||
|
||||
class SaveAndLoad():
|
||||
def __init__(self, user_name, llm_kwargs, auto_load_checkpoint=True, checkpoint_dir=None) -> None:
|
||||
self.user_name = user_name
|
||||
self.checkpoint_dir = checkpoint_dir
|
||||
if auto_load_checkpoint:
|
||||
self.social_network = self.load_from_checkpoint(checkpoint_dir)
|
||||
else:
|
||||
self.social_network = SocialNetwork()
|
||||
|
||||
def does_checkpoint_exist(self, checkpoint_dir=None):
|
||||
import os, glob
|
||||
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
|
||||
if not os.path.exists(checkpoint_dir): return False
|
||||
if len(glob.glob(os.path.join(checkpoint_dir, "social_network.pkl"))) == 0: return False
|
||||
return True
|
||||
|
||||
def save_to_checkpoint(self, checkpoint_dir=None):
|
||||
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
|
||||
with open(os.path.join(checkpoint_dir, 'social_network.pkl'), "wb+") as f:
|
||||
pickle.dump(self.social_network, f)
|
||||
return
|
||||
|
||||
def load_from_checkpoint(self, checkpoint_dir=None):
|
||||
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
|
||||
if self.does_checkpoint_exist(checkpoint_dir=checkpoint_dir):
|
||||
with open(os.path.join(checkpoint_dir, 'social_network.pkl'), "rb") as f:
|
||||
social_network = pickle.load(f)
|
||||
return social_network
|
||||
else:
|
||||
return SocialNetwork()
|
||||
|
||||
|
||||
class Friend(BaseModel):
|
||||
friend_name: str = Field(description="name of a friend")
|
||||
friend_description: str = Field(description="description of a friend (everything about this friend)")
|
||||
friend_relationship: str = Field(description="The relationship with a friend (e.g. friend, family, colleague)")
|
||||
|
||||
class FriendList(BaseModel):
|
||||
friends_list: List[Friend] = Field(description="The list of friends")
|
||||
|
||||
|
||||
class SocialNetworkWorker(SaveAndLoad):
|
||||
def ai_socail_advice(self, prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, run_gpt_fn, intention_type):
|
||||
pass
|
||||
|
||||
def ai_remove_friend(self, prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, run_gpt_fn, intention_type):
|
||||
pass
|
||||
|
||||
def ai_list_friends(self, prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, run_gpt_fn, intention_type):
|
||||
pass
|
||||
|
||||
def ai_add_multi_friends(self, prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, run_gpt_fn, intention_type):
|
||||
friend, err_msg = structure_output(
|
||||
txt=prompt,
|
||||
prompt="根据提示, 解析多个联系人的身份信息\n\n",
|
||||
err_msg=f"不能理解该联系人",
|
||||
run_gpt_fn=run_gpt_fn,
|
||||
pydantic_cls=FriendList
|
||||
)
|
||||
if friend.friends_list:
|
||||
for f in friend.friends_list:
|
||||
self.add_friend(f)
|
||||
msg = f"成功添加{len(friend.friends_list)}个联系人: {str(friend.friends_list)}"
|
||||
yield from update_ui_lastest_msg(lastmsg=msg, chatbot=chatbot, history=history, delay=0)
|
||||
|
||||
|
||||
def run(self, txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
prompt = txt
|
||||
run_gpt_fn = lambda inputs, sys_prompt: predict_no_ui_long_connection(inputs=inputs, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=[])
|
||||
self.tools_to_select = {
|
||||
"SocialAdvice":{
|
||||
"explain_to_llm": "如果用户希望获取社交指导,调用SocialAdvice生成一些社交建议",
|
||||
"callback": self.ai_socail_advice,
|
||||
},
|
||||
"AddFriends":{
|
||||
"explain_to_llm": "如果用户给出了联系人,调用AddMultiFriends把联系人添加到数据库",
|
||||
"callback": self.ai_add_multi_friends,
|
||||
},
|
||||
"RemoveFriend":{
|
||||
"explain_to_llm": "如果用户希望移除某个联系人,调用RemoveFriend",
|
||||
"callback": self.ai_remove_friend,
|
||||
},
|
||||
"ListFriends":{
|
||||
"explain_to_llm": "如果用户列举联系人,调用ListFriends",
|
||||
"callback": self.ai_list_friends,
|
||||
}
|
||||
}
|
||||
|
||||
try:
|
||||
Explaination = '\n'.join([f'{k}: {v["explain_to_llm"]}' for k, v in self.tools_to_select.items()])
|
||||
class UserSociaIntention(BaseModel):
|
||||
intention_type: str = Field(
|
||||
description=
|
||||
f"The type of user intention. You must choose from {self.tools_to_select.keys()}.\n\n"
|
||||
f"Explaination:\n{Explaination}",
|
||||
default="SocialAdvice"
|
||||
)
|
||||
pydantic_cls_instance, err_msg = select_tool(
|
||||
prompt=txt,
|
||||
run_gpt_fn=run_gpt_fn,
|
||||
pydantic_cls=UserSociaIntention
|
||||
)
|
||||
except Exception as e:
|
||||
yield from update_ui_lastest_msg(
|
||||
lastmsg=f"无法理解用户意图 {err_msg}",
|
||||
chatbot=chatbot,
|
||||
history=history,
|
||||
delay=0
|
||||
)
|
||||
return
|
||||
|
||||
intention_type = pydantic_cls_instance.intention_type
|
||||
intention_callback = self.tools_to_select[pydantic_cls_instance.intention_type]['callback']
|
||||
yield from intention_callback(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, run_gpt_fn, intention_type)
|
||||
|
||||
|
||||
def add_friend(self, friend):
|
||||
# check whether the friend is already in the social network
|
||||
for f in self.social_network.people:
|
||||
if f.friend_name == friend.friend_name:
|
||||
f.friend_description = friend.friend_description
|
||||
f.friend_relationship = friend.friend_relationship
|
||||
logger.info(f"Repeated friend, update info: {friend}")
|
||||
return
|
||||
logger.info(f"Add a new friend: {friend}")
|
||||
self.social_network.people.append(friend)
|
||||
return
|
||||
|
||||
|
||||
@CatchException
|
||||
def I人助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
|
||||
# 1. we retrieve worker from global context
|
||||
user_name = chatbot.get_user()
|
||||
checkpoint_dir=get_log_folder(user_name, plugin_name='experimental_rag')
|
||||
if user_name in SOCIAL_NETWOK_WORKER_REGISTER:
|
||||
social_network_worker = SOCIAL_NETWOK_WORKER_REGISTER[user_name]
|
||||
else:
|
||||
social_network_worker = SOCIAL_NETWOK_WORKER_REGISTER[user_name] = SocialNetworkWorker(
|
||||
user_name,
|
||||
llm_kwargs,
|
||||
checkpoint_dir=checkpoint_dir,
|
||||
auto_load_checkpoint=True
|
||||
)
|
||||
|
||||
# 2. save
|
||||
yield from social_network_worker.run(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||
social_network_worker.save_to_checkpoint(checkpoint_dir)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
@@ -1,389 +0,0 @@
|
||||
from toolbox import update_ui, promote_file_to_downloadzone
|
||||
from toolbox import CatchException, report_exception, write_history_to_file
|
||||
from shared_utils.fastapi_server import validate_path_safety
|
||||
from crazy_functions.crazy_utils import input_clipping
|
||||
|
||||
def 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||
import os, copy
|
||||
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
|
||||
summary_batch_isolation = True
|
||||
inputs_array = []
|
||||
inputs_show_user_array = []
|
||||
history_array = []
|
||||
sys_prompt_array = []
|
||||
report_part_1 = []
|
||||
|
||||
assert len(file_manifest) <= 512, "源文件太多(超过512个), 请缩减输入文件的数量。或者,您也可以选择删除此行警告,并修改代码拆分file_manifest列表,从而实现分批次处理。"
|
||||
############################## <第一步,逐个文件分析,多线程> ##################################
|
||||
for index, fp in enumerate(file_manifest):
|
||||
# 读取文件
|
||||
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
|
||||
file_content = f.read()
|
||||
prefix = "接下来请你逐文件分析下面的工程" if index==0 else ""
|
||||
i_say = prefix + f'请对下面的程序文件做一个概述文件名是{os.path.relpath(fp, project_folder)},文件代码是 ```{file_content}```'
|
||||
i_say_show_user = prefix + f'[{index+1}/{len(file_manifest)}] 请对下面的程序文件做一个概述: {fp}'
|
||||
# 装载请求内容
|
||||
inputs_array.append(i_say)
|
||||
inputs_show_user_array.append(i_say_show_user)
|
||||
history_array.append([])
|
||||
sys_prompt_array.append("你是一个程序架构分析师,正在分析一个源代码项目。你的回答必须简单明了。")
|
||||
|
||||
# 文件读取完成,对每一个源代码文件,生成一个请求线程,发送到chatgpt进行分析
|
||||
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
inputs_array = inputs_array,
|
||||
inputs_show_user_array = inputs_show_user_array,
|
||||
history_array = history_array,
|
||||
sys_prompt_array = sys_prompt_array,
|
||||
llm_kwargs = llm_kwargs,
|
||||
chatbot = chatbot,
|
||||
show_user_at_complete = True
|
||||
)
|
||||
|
||||
# 全部文件解析完成,结果写入文件,准备对工程源代码进行汇总分析
|
||||
report_part_1 = copy.deepcopy(gpt_response_collection)
|
||||
history_to_return = report_part_1
|
||||
res = write_history_to_file(report_part_1)
|
||||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
||||
chatbot.append(("完成?", "逐个文件分析已完成。" + res + "\n\n正在开始汇总。"))
|
||||
yield from update_ui(chatbot=chatbot, history=history_to_return) # 刷新界面
|
||||
|
||||
############################## <第二步,综合,单线程,分组+迭代处理> ##################################
|
||||
batchsize = 16 # 10个文件为一组
|
||||
report_part_2 = []
|
||||
previous_iteration_files = []
|
||||
last_iteration_result = ""
|
||||
while True:
|
||||
if len(file_manifest) == 0: break
|
||||
this_iteration_file_manifest = file_manifest[:batchsize]
|
||||
this_iteration_gpt_response_collection = gpt_response_collection[:batchsize*2]
|
||||
file_rel_path = [os.path.relpath(fp, project_folder) for index, fp in enumerate(this_iteration_file_manifest)]
|
||||
# 把“请对下面的程序文件做一个概述” 替换成 精简的 "文件名:{all_file[index]}"
|
||||
for index, content in enumerate(this_iteration_gpt_response_collection):
|
||||
if index%2==0: this_iteration_gpt_response_collection[index] = f"{file_rel_path[index//2]}" # 只保留文件名节省token
|
||||
this_iteration_files = [os.path.relpath(fp, project_folder) for index, fp in enumerate(this_iteration_file_manifest)]
|
||||
previous_iteration_files.extend(this_iteration_files)
|
||||
previous_iteration_files_string = ', '.join(previous_iteration_files)
|
||||
current_iteration_focus = ', '.join(this_iteration_files)
|
||||
if summary_batch_isolation: focus = current_iteration_focus
|
||||
else: focus = previous_iteration_files_string
|
||||
i_say = f'用一张Markdown表格简要描述以下文件的功能:{focus}。根据以上分析,用一句话概括程序的整体功能。'
|
||||
if last_iteration_result != "":
|
||||
sys_prompt_additional = "已知某些代码的局部作用是:" + last_iteration_result + "\n请继续分析其他源代码,从而更全面地理解项目的整体功能。"
|
||||
else:
|
||||
sys_prompt_additional = ""
|
||||
inputs_show_user = f'根据以上分析,对程序的整体功能和构架重新做出概括,由于输入长度限制,可能需要分组处理,本组文件为 {current_iteration_focus} + 已经汇总的文件组。'
|
||||
this_iteration_history = copy.deepcopy(this_iteration_gpt_response_collection)
|
||||
this_iteration_history.append(last_iteration_result)
|
||||
# 裁剪input
|
||||
inputs, this_iteration_history_feed = input_clipping(inputs=i_say, history=this_iteration_history, max_token_limit=2560)
|
||||
result = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=inputs, inputs_show_user=inputs_show_user, llm_kwargs=llm_kwargs, chatbot=chatbot,
|
||||
history=this_iteration_history_feed, # 迭代之前的分析
|
||||
sys_prompt="你是一个程序架构分析师,正在分析一个项目的源代码。" + sys_prompt_additional)
|
||||
|
||||
diagram_code = make_diagram(this_iteration_files, result, this_iteration_history_feed)
|
||||
summary = "请用一句话概括这些文件的整体功能。\n\n" + diagram_code
|
||||
summary_result = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=summary,
|
||||
inputs_show_user=summary,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
history=[i_say, result], # 迭代之前的分析
|
||||
sys_prompt="你是一个程序架构分析师,正在分析一个项目的源代码。" + sys_prompt_additional)
|
||||
|
||||
report_part_2.extend([i_say, result])
|
||||
last_iteration_result = summary_result
|
||||
file_manifest = file_manifest[batchsize:]
|
||||
gpt_response_collection = gpt_response_collection[batchsize*2:]
|
||||
|
||||
############################## <END> ##################################
|
||||
history_to_return.extend(report_part_2)
|
||||
res = write_history_to_file(history_to_return)
|
||||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
||||
chatbot.append(("完成了吗?", res))
|
||||
yield from update_ui(chatbot=chatbot, history=history_to_return) # 刷新界面
|
||||
|
||||
def make_diagram(this_iteration_files, result, this_iteration_history_feed):
|
||||
from crazy_functions.diagram_fns.file_tree import build_file_tree_mermaid_diagram
|
||||
return build_file_tree_mermaid_diagram(this_iteration_history_feed[0::2], this_iteration_history_feed[1::2], "项目示意图")
|
||||
|
||||
@CatchException
|
||||
def 解析项目本身(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob
|
||||
file_manifest = [f for f in glob.glob('./*.py')] + \
|
||||
[f for f in glob.glob('./*/*.py')]
|
||||
project_folder = './'
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何python文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
|
||||
@CatchException
|
||||
def 解析一个Python项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
validate_path_safety(project_folder, chatbot.get_user())
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.py', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何python文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
|
||||
@CatchException
|
||||
def 解析一个Matlab项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
validate_path_safety(project_folder, chatbot.get_user())
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a = f"解析Matlab项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.m', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a = f"解析Matlab项目: {txt}", b = f"找不到任何`.m`源文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
|
||||
@CatchException
|
||||
def 解析一个C项目的头文件(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
validate_path_safety(project_folder, chatbot.get_user())
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.h', recursive=True)] + \
|
||||
[f for f in glob.glob(f'{project_folder}/**/*.hpp', recursive=True)] #+ \
|
||||
# [f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.h头文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
|
||||
@CatchException
|
||||
def 解析一个C项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
validate_path_safety(project_folder, chatbot.get_user())
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.h', recursive=True)] + \
|
||||
[f for f in glob.glob(f'{project_folder}/**/*.cpp', recursive=True)] + \
|
||||
[f for f in glob.glob(f'{project_folder}/**/*.hpp', recursive=True)] + \
|
||||
[f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.h头文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
|
||||
|
||||
@CatchException
|
||||
def 解析一个Java项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
validate_path_safety(project_folder, chatbot.get_user())
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.java', recursive=True)] + \
|
||||
[f for f in glob.glob(f'{project_folder}/**/*.jar', recursive=True)] + \
|
||||
[f for f in glob.glob(f'{project_folder}/**/*.xml', recursive=True)] + \
|
||||
[f for f in glob.glob(f'{project_folder}/**/*.sh', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何java文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
|
||||
|
||||
@CatchException
|
||||
def 解析一个前端项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
validate_path_safety(project_folder, chatbot.get_user())
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.ts', recursive=True)] + \
|
||||
[f for f in glob.glob(f'{project_folder}/**/*.tsx', recursive=True)] + \
|
||||
[f for f in glob.glob(f'{project_folder}/**/*.json', recursive=True)] + \
|
||||
[f for f in glob.glob(f'{project_folder}/**/*.js', recursive=True)] + \
|
||||
[f for f in glob.glob(f'{project_folder}/**/*.vue', recursive=True)] + \
|
||||
[f for f in glob.glob(f'{project_folder}/**/*.less', recursive=True)] + \
|
||||
[f for f in glob.glob(f'{project_folder}/**/*.sass', recursive=True)] + \
|
||||
[f for f in glob.glob(f'{project_folder}/**/*.wxml', recursive=True)] + \
|
||||
[f for f in glob.glob(f'{project_folder}/**/*.wxss', recursive=True)] + \
|
||||
[f for f in glob.glob(f'{project_folder}/**/*.css', recursive=True)] + \
|
||||
[f for f in glob.glob(f'{project_folder}/**/*.jsx', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何前端相关文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
|
||||
|
||||
@CatchException
|
||||
def 解析一个Golang项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
validate_path_safety(project_folder, chatbot.get_user())
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.go', recursive=True)] + \
|
||||
[f for f in glob.glob(f'{project_folder}/**/go.mod', recursive=True)] + \
|
||||
[f for f in glob.glob(f'{project_folder}/**/go.sum', recursive=True)] + \
|
||||
[f for f in glob.glob(f'{project_folder}/**/go.work', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何golang文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
|
||||
@CatchException
|
||||
def 解析一个Rust项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
validate_path_safety(project_folder, chatbot.get_user())
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.rs', recursive=True)] + \
|
||||
[f for f in glob.glob(f'{project_folder}/**/*.toml', recursive=True)] + \
|
||||
[f for f in glob.glob(f'{project_folder}/**/*.lock', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何golang文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
|
||||
@CatchException
|
||||
def 解析一个Lua项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
validate_path_safety(project_folder, chatbot.get_user())
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.lua', recursive=True)] + \
|
||||
[f for f in glob.glob(f'{project_folder}/**/*.xml', recursive=True)] + \
|
||||
[f for f in glob.glob(f'{project_folder}/**/*.json', recursive=True)] + \
|
||||
[f for f in glob.glob(f'{project_folder}/**/*.toml', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何lua文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
|
||||
|
||||
@CatchException
|
||||
def 解析一个CSharp项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
validate_path_safety(project_folder, chatbot.get_user())
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.cs', recursive=True)] + \
|
||||
[f for f in glob.glob(f'{project_folder}/**/*.csproj', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何CSharp文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
|
||||
|
||||
@CatchException
|
||||
def 解析任意code项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
txt_pattern = plugin_kwargs.get("advanced_arg")
|
||||
txt_pattern = txt_pattern.replace(",", ",")
|
||||
# 将要匹配的模式(例如: *.c, *.cpp, *.py, config.toml)
|
||||
pattern_include = [_.lstrip(" ,").rstrip(" ,") for _ in txt_pattern.split(",") if _ != "" and not _.strip().startswith("^")]
|
||||
if not pattern_include: pattern_include = ["*"] # 不输入即全部匹配
|
||||
# 将要忽略匹配的文件后缀(例如: ^*.c, ^*.cpp, ^*.py)
|
||||
pattern_except_suffix = [_.lstrip(" ^*.,").rstrip(" ,") for _ in txt_pattern.split(" ") if _ != "" and _.strip().startswith("^*.")]
|
||||
pattern_except_suffix += ['zip', 'rar', '7z', 'tar', 'gz'] # 避免解析压缩文件
|
||||
# 将要忽略匹配的文件名(例如: ^README.md)
|
||||
pattern_except_name = [_.lstrip(" ^*,").rstrip(" ,").replace(".", r"\.") # 移除左边通配符,移除右侧逗号,转义点号
|
||||
for _ in txt_pattern.split(" ") # 以空格分割
|
||||
if (_ != "" and _.strip().startswith("^") and not _.strip().startswith("^*.")) # ^开始,但不是^*.开始
|
||||
]
|
||||
# 生成正则表达式
|
||||
pattern_except = r'/[^/]+\.(' + "|".join(pattern_except_suffix) + ')$'
|
||||
pattern_except += '|/(' + "|".join(pattern_except_name) + ')$' if pattern_except_name != [] else ''
|
||||
|
||||
history.clear()
|
||||
import glob, os, re
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
validate_path_safety(project_folder, chatbot.get_user())
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
# 若上传压缩文件, 先寻找到解压的文件夹路径, 从而避免解析压缩文件
|
||||
maybe_dir = [f for f in glob.glob(f'{project_folder}/*') if os.path.isdir(f)]
|
||||
if len(maybe_dir)>0 and maybe_dir[0].endswith('.extract'):
|
||||
extract_folder_path = maybe_dir[0]
|
||||
else:
|
||||
extract_folder_path = project_folder
|
||||
# 按输入的匹配模式寻找上传的非压缩文件和已解压的文件
|
||||
file_manifest = [f for pattern in pattern_include for f in glob.glob(f'{extract_folder_path}/**/{pattern}', recursive=True) if "" != extract_folder_path and \
|
||||
os.path.isfile(f) and (not re.search(pattern_except, f) or pattern.endswith('.' + re.search(pattern_except, f).group().split('.')[-1]))]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
@@ -1,162 +0,0 @@
|
||||
import os, copy, time
|
||||
from toolbox import CatchException, report_exception, update_ui, zip_result, promote_file_to_downloadzone, update_ui_lastest_msg, get_conf, generate_file_link
|
||||
from shared_utils.fastapi_server import validate_path_safety
|
||||
from crazy_functions.crazy_utils import input_clipping
|
||||
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from crazy_functions.agent_fns.python_comment_agent import PythonCodeComment
|
||||
from crazy_functions.diagram_fns.file_tree import FileNode
|
||||
from crazy_functions.agent_fns.watchdog import WatchDog
|
||||
from shared_utils.advanced_markdown_format import markdown_convertion_for_file
|
||||
from loguru import logger
|
||||
|
||||
|
||||
def 注释源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||
|
||||
summary_batch_isolation = True
|
||||
inputs_array = []
|
||||
inputs_show_user_array = []
|
||||
history_array = []
|
||||
sys_prompt_array = []
|
||||
|
||||
assert len(file_manifest) <= 512, "源文件太多(超过512个), 请缩减输入文件的数量。或者,您也可以选择删除此行警告,并修改代码拆分file_manifest列表,从而实现分批次处理。"
|
||||
|
||||
# 建立文件树
|
||||
file_tree_struct = FileNode("root", build_manifest=True)
|
||||
for file_path in file_manifest:
|
||||
file_tree_struct.add_file(file_path, file_path)
|
||||
|
||||
# <第一步,逐个文件分析,多线程>
|
||||
lang = "" if not plugin_kwargs["use_chinese"] else " (you must use Chinese)"
|
||||
for index, fp in enumerate(file_manifest):
|
||||
# 读取文件
|
||||
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
|
||||
file_content = f.read()
|
||||
prefix = ""
|
||||
i_say = prefix + f'Please conclude the following source code at {os.path.relpath(fp, project_folder)} with only one sentence{lang}, the code is:\n```{file_content}```'
|
||||
i_say_show_user = prefix + f'[{index+1}/{len(file_manifest)}] 请用一句话对下面的程序文件做一个整体概述: {fp}'
|
||||
# 装载请求内容
|
||||
MAX_TOKEN_SINGLE_FILE = 2560
|
||||
i_say, _ = input_clipping(inputs=i_say, history=[], max_token_limit=MAX_TOKEN_SINGLE_FILE)
|
||||
inputs_array.append(i_say)
|
||||
inputs_show_user_array.append(i_say_show_user)
|
||||
history_array.append([])
|
||||
sys_prompt_array.append(f"You are a software architecture analyst analyzing a source code project. Do not dig into details, tell me what the code is doing in general. Your answer must be short, simple and clear{lang}.")
|
||||
# 文件读取完成,对每一个源代码文件,生成一个请求线程,发送到大模型进行分析
|
||||
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
inputs_array = inputs_array,
|
||||
inputs_show_user_array = inputs_show_user_array,
|
||||
history_array = history_array,
|
||||
sys_prompt_array = sys_prompt_array,
|
||||
llm_kwargs = llm_kwargs,
|
||||
chatbot = chatbot,
|
||||
show_user_at_complete = True
|
||||
)
|
||||
|
||||
# <第二步,逐个文件分析,生成带注释文件>
|
||||
tasks = ["" for _ in range(len(file_manifest))]
|
||||
def bark_fn(tasks):
|
||||
for i in range(len(tasks)): tasks[i] = "watchdog is dead"
|
||||
wd = WatchDog(timeout=10, bark_fn=lambda: bark_fn(tasks), interval=3, msg="ThreadWatcher timeout")
|
||||
wd.begin_watch()
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
executor = ThreadPoolExecutor(max_workers=get_conf('DEFAULT_WORKER_NUM'))
|
||||
def _task_multi_threading(i_say, gpt_say, fp, file_tree_struct, index):
|
||||
language = 'Chinese' if plugin_kwargs["use_chinese"] else 'English'
|
||||
def observe_window_update(x):
|
||||
if tasks[index] == "watchdog is dead":
|
||||
raise TimeoutError("ThreadWatcher: watchdog is dead")
|
||||
tasks[index] = x
|
||||
pcc = PythonCodeComment(llm_kwargs, plugin_kwargs, language=language, observe_window_update=observe_window_update)
|
||||
pcc.read_file(path=fp, brief=gpt_say)
|
||||
revised_path, revised_content = pcc.begin_comment_source_code(None, None)
|
||||
file_tree_struct.manifest[fp].revised_path = revised_path
|
||||
file_tree_struct.manifest[fp].revised_content = revised_content
|
||||
# <将结果写回源文件>
|
||||
with open(fp, 'w', encoding='utf-8') as f:
|
||||
f.write(file_tree_struct.manifest[fp].revised_content)
|
||||
# <生成对比html>
|
||||
with open("crazy_functions/agent_fns/python_comment_compare.html", 'r', encoding='utf-8') as f:
|
||||
html_template = f.read()
|
||||
warp = lambda x: "```python\n\n" + x + "\n\n```"
|
||||
from themes.theme import load_dynamic_theme
|
||||
_, advanced_css, _, _ = load_dynamic_theme("Default")
|
||||
html_template = html_template.replace("ADVANCED_CSS", advanced_css)
|
||||
html_template = html_template.replace("REPLACE_CODE_FILE_LEFT", pcc.get_markdown_block_in_html(markdown_convertion_for_file(warp(pcc.original_content))))
|
||||
html_template = html_template.replace("REPLACE_CODE_FILE_RIGHT", pcc.get_markdown_block_in_html(markdown_convertion_for_file(warp(revised_content))))
|
||||
compare_html_path = fp + '.compare.html'
|
||||
file_tree_struct.manifest[fp].compare_html = compare_html_path
|
||||
with open(compare_html_path, 'w', encoding='utf-8') as f:
|
||||
f.write(html_template)
|
||||
tasks[index] = ""
|
||||
|
||||
chatbot.append([None, f"正在处理:"])
|
||||
futures = []
|
||||
index = 0
|
||||
for i_say, gpt_say, fp in zip(gpt_response_collection[0::2], gpt_response_collection[1::2], file_manifest):
|
||||
future = executor.submit(_task_multi_threading, i_say, gpt_say, fp, file_tree_struct, index)
|
||||
index += 1
|
||||
futures.append(future)
|
||||
|
||||
# <第三步,等待任务完成>
|
||||
cnt = 0
|
||||
while True:
|
||||
cnt += 1
|
||||
wd.feed()
|
||||
time.sleep(3)
|
||||
worker_done = [h.done() for h in futures]
|
||||
remain = len(worker_done) - sum(worker_done)
|
||||
|
||||
# <展示已经完成的部分>
|
||||
preview_html_list = []
|
||||
for done, fp in zip(worker_done, file_manifest):
|
||||
if not done: continue
|
||||
if hasattr(file_tree_struct.manifest[fp], 'compare_html'):
|
||||
preview_html_list.append(file_tree_struct.manifest[fp].compare_html)
|
||||
else:
|
||||
logger.error(f"文件: {fp} 的注释结果未能成功")
|
||||
file_links = generate_file_link(preview_html_list)
|
||||
|
||||
yield from update_ui_lastest_msg(
|
||||
f"当前任务: <br/>{'<br/>'.join(tasks)}.<br/>" +
|
||||
f"剩余源文件数量: {remain}.<br/>" +
|
||||
f"已完成的文件: {sum(worker_done)}.<br/>" +
|
||||
file_links +
|
||||
"<br/>" +
|
||||
''.join(['.']*(cnt % 10 + 1)
|
||||
), chatbot=chatbot, history=history, delay=0)
|
||||
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
|
||||
if all(worker_done):
|
||||
executor.shutdown()
|
||||
break
|
||||
|
||||
# <第四步,压缩结果>
|
||||
zip_res = zip_result(project_folder)
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
|
||||
# <END>
|
||||
chatbot.append((None, "所有源文件均已处理完毕。"))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
|
||||
|
||||
@CatchException
|
||||
def 注释Python项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
plugin_kwargs["use_chinese"] = plugin_kwargs.get("use_chinese", False)
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
validate_path_safety(project_folder, chatbot.get_user())
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.py', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何python文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
yield from 注释源代码(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
@@ -1,36 +0,0 @@
|
||||
|
||||
from toolbox import get_conf, update_ui
|
||||
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
|
||||
from crazy_functions.SourceCode_Comment import 注释Python项目
|
||||
|
||||
class SourceCodeComment_Wrap(GptAcademicPluginTemplate):
|
||||
def __init__(self):
|
||||
"""
|
||||
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
|
||||
"""
|
||||
pass
|
||||
|
||||
def define_arg_selection_menu(self):
|
||||
"""
|
||||
定义插件的二级选项菜单
|
||||
"""
|
||||
gui_definition = {
|
||||
"main_input":
|
||||
ArgProperty(title="路径", description="程序路径(上传文件后自动填写)", default_value="", type="string").model_dump_json(), # 主输入,自动从输入框同步
|
||||
"use_chinese":
|
||||
ArgProperty(title="注释语言", options=["英文", "中文"], default_value="英文", description="无", type="dropdown").model_dump_json(),
|
||||
# "use_emoji":
|
||||
# ArgProperty(title="在注释中使用emoji", options=["禁止", "允许"], default_value="禁止", description="无", type="dropdown").model_dump_json(),
|
||||
}
|
||||
return gui_definition
|
||||
|
||||
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
执行插件
|
||||
"""
|
||||
if plugin_kwargs["use_chinese"] == "中文":
|
||||
plugin_kwargs["use_chinese"] = True
|
||||
else:
|
||||
plugin_kwargs["use_chinese"] = False
|
||||
|
||||
yield from 注释Python项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||
@@ -1,147 +0,0 @@
|
||||
import requests
|
||||
import random
|
||||
import time
|
||||
import re
|
||||
import json
|
||||
from bs4 import BeautifulSoup
|
||||
from functools import lru_cache
|
||||
from itertools import zip_longest
|
||||
from check_proxy import check_proxy
|
||||
from toolbox import CatchException, update_ui, get_conf, promote_file_to_downloadzone, update_ui_lastest_msg, generate_file_link
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
|
||||
from request_llms.bridge_all import model_info
|
||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||
from crazy_functions.prompts.internet import SearchOptimizerPrompt, SearchAcademicOptimizerPrompt
|
||||
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
|
||||
from textwrap import dedent
|
||||
from loguru import logger
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
class Query(BaseModel):
|
||||
search_keyword: str = Field(description="search query for video resource")
|
||||
|
||||
|
||||
class VideoResource(BaseModel):
|
||||
thought: str = Field(description="analysis of the search results based on the user's query")
|
||||
title: str = Field(description="title of the video")
|
||||
author: str = Field(description="author/uploader of the video")
|
||||
bvid: str = Field(description="unique ID of the video")
|
||||
|
||||
|
||||
def get_video_resource(search_keyword):
|
||||
from crazy_functions.media_fns.get_media import search_videos
|
||||
|
||||
# Search for videos and return the first result
|
||||
videos = search_videos(
|
||||
search_keyword
|
||||
)
|
||||
|
||||
# Return the first video if results exist, otherwise return None
|
||||
return videos
|
||||
|
||||
def download_video(bvid, user_name, chatbot, history):
|
||||
# from experimental_mods.get_bilibili_resource import download_bilibili
|
||||
from crazy_functions.media_fns.get_media import download_video
|
||||
# pause a while
|
||||
tic_time = 8
|
||||
for i in range(tic_time):
|
||||
yield from update_ui_lastest_msg(
|
||||
lastmsg=f"即将下载音频。等待{tic_time-i}秒后自动继续, 点击“停止”键取消此操作。",
|
||||
chatbot=chatbot, history=[], delay=1)
|
||||
|
||||
# download audio
|
||||
chatbot.append((None, "下载音频, 请稍等...")); yield from update_ui(chatbot=chatbot, history=history)
|
||||
downloaded_files = yield from download_video(bvid, only_audio=True, user_name=user_name, chatbot=chatbot, history=history)
|
||||
|
||||
# preview
|
||||
preview_list = [promote_file_to_downloadzone(fp) for fp in downloaded_files]
|
||||
file_links = generate_file_link(preview_list)
|
||||
yield from update_ui_lastest_msg(f"已完成的文件: <br/>" + file_links, chatbot=chatbot, history=history, delay=0)
|
||||
chatbot.append((None, f"即将下载视频。"))
|
||||
|
||||
# pause a while
|
||||
tic_time = 16
|
||||
for i in range(tic_time):
|
||||
yield from update_ui_lastest_msg(
|
||||
lastmsg=f"即将下载视频。等待{tic_time-i}秒后自动继续, 点击“停止”键取消此操作。",
|
||||
chatbot=chatbot, history=[], delay=1)
|
||||
|
||||
# download video
|
||||
chatbot.append((None, "下载视频, 请稍等...")); yield from update_ui(chatbot=chatbot, history=history)
|
||||
downloaded_files_part2 = yield from download_video(bvid, only_audio=False, user_name=user_name, chatbot=chatbot, history=history)
|
||||
|
||||
# preview
|
||||
preview_list = [promote_file_to_downloadzone(fp) for fp in downloaded_files_part2]
|
||||
file_links = generate_file_link(preview_list)
|
||||
yield from update_ui_lastest_msg(f"已完成的文件: <br/>" + file_links, chatbot=chatbot, history=history, delay=0)
|
||||
|
||||
# return
|
||||
return downloaded_files + downloaded_files_part2
|
||||
|
||||
@CatchException
|
||||
def 多媒体任务(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
user_wish: str = txt
|
||||
|
||||
# 搜索
|
||||
chatbot.append((txt, "检索中, 请稍等..."))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
# 结构化生成
|
||||
rf_req = dedent(f"""
|
||||
The user wish to get the following resource:
|
||||
{user_wish}
|
||||
Generate reseach keywords (less than 5 keywords) accordingly.
|
||||
""")
|
||||
gpt_json_io = GptJsonIO(Query)
|
||||
inputs = rf_req + gpt_json_io.format_instructions
|
||||
run_gpt_fn = lambda inputs, sys_prompt: predict_no_ui_long_connection(inputs=inputs, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=[])
|
||||
analyze_res = run_gpt_fn(inputs, "")
|
||||
logger.info(analyze_res)
|
||||
query: Query = gpt_json_io.generate_output_auto_repair(analyze_res, run_gpt_fn)
|
||||
# 关键词展示
|
||||
chatbot.append((None, f"检索关键词已确认: {query.search_keyword}。筛选中, 请稍等..."))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 获取候选资源
|
||||
candadate_dictionary: dict = get_video_resource(query.search_keyword)
|
||||
candadate_dictionary_as_str = json.dumps(candadate_dictionary, ensure_ascii=False, indent=4)
|
||||
|
||||
# 展示候选资源
|
||||
candadate_display = "\n".join([f"{i+1}. {it['title']}" for i, it in enumerate(candadate_dictionary)])
|
||||
chatbot.append((None, f"候选:\n\n{candadate_display}"))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 结构化生成
|
||||
rf_req_2 = dedent(f"""
|
||||
The user wish to get the following resource:
|
||||
{user_wish}
|
||||
|
||||
Select the most relevant and suitable video resource from the following search results:
|
||||
{candadate_dictionary_as_str}
|
||||
|
||||
Note:
|
||||
1. The first several search video results are more likely to satisfy the user's wish.
|
||||
2. The time duration of the video should be less than 10 minutes.
|
||||
3. You should analyze the search results first, before giving your answer.
|
||||
4. Use Chinese if possible.
|
||||
""")
|
||||
gpt_json_io = GptJsonIO(VideoResource)
|
||||
inputs = rf_req_2 + gpt_json_io.format_instructions
|
||||
run_gpt_fn = lambda inputs, sys_prompt: predict_no_ui_long_connection(inputs=inputs, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=[])
|
||||
analyze_res = run_gpt_fn(inputs, "")
|
||||
logger.info(analyze_res)
|
||||
video_resource: VideoResource = gpt_json_io.generate_output_auto_repair(analyze_res, run_gpt_fn)
|
||||
|
||||
# Display
|
||||
chatbot.append(
|
||||
(None,
|
||||
f"分析:{video_resource.thought}" "<br/>"
|
||||
f"选择: `{video_resource.title}`。" "<br/>"
|
||||
f"作者:{video_resource.author}"
|
||||
)
|
||||
)
|
||||
chatbot.append((None, f"下载中, 请稍等..."))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
if video_resource and video_resource.bvid:
|
||||
logger.info(video_resource)
|
||||
yield from download_video(video_resource.bvid, chatbot.get_user(), chatbot, history)
|
||||
@@ -92,7 +92,7 @@ class MiniGame_ResumeStory(GptAcademicGameBaseState):
|
||||
|
||||
def generate_story_image(self, story_paragraph):
|
||||
try:
|
||||
from crazy_functions.Image_Generate import gen_image
|
||||
from crazy_functions.AntFin import gen_image
|
||||
prompt_ = predict_no_ui_long_connection(inputs=story_paragraph, llm_kwargs=self.llm_kwargs, history=[], sys_prompt='你需要根据用户给出的小说段落,进行简短的环境描写。要求:80字以内。')
|
||||
image_url, image_path = gen_image(self.llm_kwargs, prompt_, '512x512', model="dall-e-2", quality='standard', style='natural')
|
||||
return f'<br/><div align="center"><img src="file={image_path}"></div>'
|
||||
|
||||
@@ -1,180 +0,0 @@
|
||||
import re, requests, unicodedata, os
|
||||
from toolbox import update_ui, get_log_folder
|
||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||
from toolbox import CatchException, report_exception, get_conf
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from loguru import logger
|
||||
|
||||
def download_arxiv_(url_pdf):
|
||||
if 'arxiv.org' not in url_pdf:
|
||||
if ('.' in url_pdf) and ('/' not in url_pdf):
|
||||
new_url = 'https://arxiv.org/abs/'+url_pdf
|
||||
logger.info('下载编号:', url_pdf, '自动定位:', new_url)
|
||||
# download_arxiv_(new_url)
|
||||
return download_arxiv_(new_url)
|
||||
else:
|
||||
logger.info('不能识别的URL!')
|
||||
return None
|
||||
if 'abs' in url_pdf:
|
||||
url_pdf = url_pdf.replace('abs', 'pdf')
|
||||
url_pdf = url_pdf + '.pdf'
|
||||
|
||||
url_abs = url_pdf.replace('.pdf', '').replace('pdf', 'abs')
|
||||
title, other_info = get_name(_url_=url_abs)
|
||||
|
||||
paper_id = title.split()[0] # '[1712.00559]'
|
||||
if '2' in other_info['year']:
|
||||
title = other_info['year'] + ' ' + title
|
||||
|
||||
known_conf = ['NeurIPS', 'NIPS', 'Nature', 'Science', 'ICLR', 'AAAI']
|
||||
for k in known_conf:
|
||||
if k in other_info['comment']:
|
||||
title = k + ' ' + title
|
||||
|
||||
download_dir = get_log_folder(plugin_name='arxiv')
|
||||
os.makedirs(download_dir, exist_ok=True)
|
||||
|
||||
title_str = title.replace('?', '?')\
|
||||
.replace(':', ':')\
|
||||
.replace('\"', '“')\
|
||||
.replace('\n', '')\
|
||||
.replace(' ', ' ')\
|
||||
.replace(' ', ' ')
|
||||
|
||||
requests_pdf_url = url_pdf
|
||||
file_path = download_dir+title_str
|
||||
|
||||
logger.info('下载中')
|
||||
proxies = get_conf('proxies')
|
||||
r = requests.get(requests_pdf_url, proxies=proxies)
|
||||
with open(file_path, 'wb+') as f:
|
||||
f.write(r.content)
|
||||
logger.info('下载完成')
|
||||
|
||||
x = "%s %s %s.bib" % (paper_id, other_info['year'], other_info['authors'])
|
||||
x = x.replace('?', '?')\
|
||||
.replace(':', ':')\
|
||||
.replace('\"', '“')\
|
||||
.replace('\n', '')\
|
||||
.replace(' ', ' ')\
|
||||
.replace(' ', ' ')
|
||||
return file_path, other_info
|
||||
|
||||
|
||||
def get_name(_url_):
|
||||
from bs4 import BeautifulSoup
|
||||
logger.info('正在获取文献名!')
|
||||
logger.info(_url_)
|
||||
|
||||
proxies = get_conf('proxies')
|
||||
res = requests.get(_url_, proxies=proxies)
|
||||
|
||||
bs = BeautifulSoup(res.text, 'html.parser')
|
||||
other_details = {}
|
||||
|
||||
# get year
|
||||
try:
|
||||
year = bs.find_all(class_='dateline')[0].text
|
||||
year = re.search(r'(\d{4})', year, re.M | re.I).group(1)
|
||||
other_details['year'] = year
|
||||
abstract = bs.find_all(class_='abstract mathjax')[0].text
|
||||
other_details['abstract'] = abstract
|
||||
except:
|
||||
other_details['year'] = ''
|
||||
logger.info('年份获取失败')
|
||||
|
||||
# get author
|
||||
try:
|
||||
authors = bs.find_all(class_='authors')[0].text
|
||||
authors = authors.split('Authors:')[1]
|
||||
other_details['authors'] = authors
|
||||
except:
|
||||
other_details['authors'] = ''
|
||||
logger.info('authors获取失败')
|
||||
|
||||
# get comment
|
||||
try:
|
||||
comment = bs.find_all(class_='metatable')[0].text
|
||||
real_comment = None
|
||||
for item in comment.replace('\n', ' ').split(' '):
|
||||
if 'Comments' in item:
|
||||
real_comment = item
|
||||
if real_comment is not None:
|
||||
other_details['comment'] = real_comment
|
||||
else:
|
||||
other_details['comment'] = ''
|
||||
except:
|
||||
other_details['comment'] = ''
|
||||
logger.info('年份获取失败')
|
||||
|
||||
title_str = BeautifulSoup(
|
||||
res.text, 'html.parser').find('title').contents[0]
|
||||
logger.info('获取成功:', title_str)
|
||||
# arxiv_recall[_url_] = (title_str+'.pdf', other_details)
|
||||
# with open('./arxiv_recall.pkl', 'wb') as f:
|
||||
# pickle.dump(arxiv_recall, f)
|
||||
|
||||
return title_str+'.pdf', other_details
|
||||
|
||||
|
||||
|
||||
@CatchException
|
||||
def 下载arxiv论文并翻译摘要(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
|
||||
CRAZY_FUNCTION_INFO = "下载arxiv论文并翻译摘要,函数插件作者[binary-husky]。正在提取摘要并下载PDF文档……"
|
||||
import glob
|
||||
import os
|
||||
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append(["函数插件功能?", CRAZY_FUNCTION_INFO])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
import bs4
|
||||
except:
|
||||
report_exception(chatbot, history,
|
||||
a = f"解析项目: {txt}",
|
||||
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade beautifulsoup4```。")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# 清空历史,以免输入溢出
|
||||
history = []
|
||||
|
||||
# 提取摘要,下载PDF文档
|
||||
try:
|
||||
pdf_path, info = download_arxiv_(txt)
|
||||
except:
|
||||
report_exception(chatbot, history,
|
||||
a = f"解析项目: {txt}",
|
||||
b = f"下载pdf文件未成功")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# 翻译摘要等
|
||||
i_say = f"请你阅读以下学术论文相关的材料,提取摘要,翻译为中文。材料如下:{str(info)}"
|
||||
i_say_show_user = f'请你阅读以下学术论文相关的材料,提取摘要,翻译为中文。论文:{pdf_path}'
|
||||
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
msg = '正常'
|
||||
# ** gpt request **
|
||||
# 单线,获取文章meta信息
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say,
|
||||
inputs_show_user=i_say_show_user,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot, history=[],
|
||||
sys_prompt="Your job is to collect information from materials and translate to Chinese。",
|
||||
)
|
||||
|
||||
chatbot[-1] = (i_say_show_user, gpt_say)
|
||||
history.append(i_say_show_user); history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
||||
res = write_history_to_file(history)
|
||||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
||||
promote_file_to_downloadzone(pdf_path, chatbot=chatbot)
|
||||
|
||||
chatbot.append(("完成了吗?", res + "\n\nPDF文件也已经下载"))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
||||
|
||||
@@ -1,40 +0,0 @@
|
||||
from toolbox import CatchException, update_ui, update_ui_lastest_msg
|
||||
from crazy_functions.multi_stage.multi_stage_utils import GptAcademicGameBaseState
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||
from crazy_functions.game_fns.game_utils import get_code_block, is_same_thing
|
||||
|
||||
@CatchException
|
||||
def 随机小游戏(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
from crazy_functions.game_fns.game_interactive_story import MiniGame_ResumeStory
|
||||
# 清空历史
|
||||
history = []
|
||||
# 选择游戏
|
||||
cls = MiniGame_ResumeStory
|
||||
# 如果之前已经初始化了游戏实例,则继续该实例;否则重新初始化
|
||||
state = cls.sync_state(chatbot,
|
||||
llm_kwargs,
|
||||
cls,
|
||||
plugin_name='MiniGame_ResumeStory',
|
||||
callback_fn='crazy_functions.互动小游戏->随机小游戏',
|
||||
lock_plugin=True
|
||||
)
|
||||
yield from state.continue_game(prompt, chatbot, history)
|
||||
|
||||
|
||||
@CatchException
|
||||
def 随机小游戏1(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
from crazy_functions.game_fns.game_ascii_art import MiniGame_ASCII_Art
|
||||
# 清空历史
|
||||
history = []
|
||||
# 选择游戏
|
||||
cls = MiniGame_ASCII_Art
|
||||
# 如果之前已经初始化了游戏实例,则继续该实例;否则重新初始化
|
||||
state = cls.sync_state(chatbot,
|
||||
llm_kwargs,
|
||||
cls,
|
||||
plugin_name='MiniGame_ASCII_Art',
|
||||
callback_fn='crazy_functions.互动小游戏->随机小游戏1',
|
||||
lock_plugin=True
|
||||
)
|
||||
yield from state.continue_game(prompt, chatbot, history)
|
||||
@@ -1,62 +0,0 @@
|
||||
from toolbox import CatchException, update_ui
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
|
||||
@CatchException
|
||||
def 交互功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数, 如温度和top_p等, 一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数, 如温度和top_p等, 一般原样传递下去就行
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
chatbot.append(("这是什么功能?", "交互功能函数模板。在执行完成之后, 可以将自身的状态存储到cookie中, 等待用户的再次调用。"))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
state = chatbot._cookies.get('plugin_state_0001', None) # 初始化插件状态
|
||||
|
||||
if state is None:
|
||||
chatbot._cookies['lock_plugin'] = 'crazy_functions.交互功能函数模板->交互功能模板函数' # 赋予插件锁定 锁定插件回调路径,当下一次用户提交时,会直接转到该函数
|
||||
chatbot._cookies['plugin_state_0001'] = 'wait_user_keyword' # 赋予插件状态
|
||||
|
||||
chatbot.append(("第一次调用:", "请输入关键词, 我将为您查找相关壁纸, 建议使用英文单词, 插件锁定中,请直接提交即可。"))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
if state == 'wait_user_keyword':
|
||||
chatbot._cookies['lock_plugin'] = None # 解除插件锁定,避免遗忘导致死锁
|
||||
chatbot._cookies['plugin_state_0001'] = None # 解除插件状态,避免遗忘导致死锁
|
||||
|
||||
# 解除插件锁定
|
||||
chatbot.append((f"获取关键词:{txt}", ""))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
page_return = get_image_page_by_keyword(txt)
|
||||
inputs=inputs_show_user=f"Extract all image urls in this html page, pick the first 5 images and show them with markdown format: \n\n {page_return}"
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=inputs, inputs_show_user=inputs_show_user,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||
sys_prompt="When you want to show an image, use markdown format. e.g. . If there are no image url provided, answer 'no image url provided'"
|
||||
)
|
||||
chatbot[-1] = [chatbot[-1][0], gpt_say]
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
|
||||
|
||||
# ---------------------------------------------------------------------------------
|
||||
|
||||
def get_image_page_by_keyword(keyword):
|
||||
import requests
|
||||
from bs4 import BeautifulSoup
|
||||
response = requests.get(f'https://wallhaven.cc/search?q={keyword}', timeout=2)
|
||||
res = "image urls: \n"
|
||||
for image_element in BeautifulSoup(response.content, 'html.parser').findAll("img"):
|
||||
try:
|
||||
res += image_element["data-src"]
|
||||
res += "\n"
|
||||
except:
|
||||
pass
|
||||
return res
|
||||
@@ -1,252 +0,0 @@
|
||||
# 本源代码中, ⭐ = 关键步骤
|
||||
"""
|
||||
测试:
|
||||
- 裁剪图像,保留下半部分
|
||||
- 交换图像的蓝色通道和红色通道
|
||||
- 将图像转为灰度图像
|
||||
- 将csv文件转excel表格
|
||||
|
||||
Testing:
|
||||
- Crop the image, keeping the bottom half.
|
||||
- Swap the blue channel and red channel of the image.
|
||||
- Convert the image to grayscale.
|
||||
- Convert the CSV file to an Excel spreadsheet.
|
||||
"""
|
||||
|
||||
|
||||
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, is_the_upload_folder
|
||||
from toolbox import promote_file_to_downloadzone, get_log_folder, update_ui_lastest_msg
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_plugin_arg
|
||||
from crazy_functions.crazy_utils import input_clipping, try_install_deps
|
||||
from crazy_functions.gen_fns.gen_fns_shared import is_function_successfully_generated
|
||||
from crazy_functions.gen_fns.gen_fns_shared import get_class_name
|
||||
from crazy_functions.gen_fns.gen_fns_shared import subprocess_worker
|
||||
from crazy_functions.gen_fns.gen_fns_shared import try_make_module
|
||||
import os
|
||||
import time
|
||||
import glob
|
||||
import multiprocessing
|
||||
|
||||
templete = """
|
||||
```python
|
||||
import ... # Put dependencies here, e.g. import numpy as np.
|
||||
|
||||
class TerminalFunction(object): # Do not change the name of the class, The name of the class must be `TerminalFunction`
|
||||
|
||||
def run(self, path): # The name of the function must be `run`, it takes only a positional argument.
|
||||
# rewrite the function you have just written here
|
||||
...
|
||||
return generated_file_path
|
||||
```
|
||||
"""
|
||||
|
||||
def inspect_dependency(chatbot, history):
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return True
|
||||
|
||||
def get_code_block(reply):
|
||||
import re
|
||||
pattern = r"```([\s\S]*?)```" # regex pattern to match code blocks
|
||||
matches = re.findall(pattern, reply) # find all code blocks in text
|
||||
if len(matches) == 1:
|
||||
return matches[0].strip('python') # code block
|
||||
for match in matches:
|
||||
if 'class TerminalFunction' in match:
|
||||
return match.strip('python') # code block
|
||||
raise RuntimeError("GPT is not generating proper code.")
|
||||
|
||||
def gpt_interact_multi_step(txt, file_type, llm_kwargs, chatbot, history):
|
||||
# 输入
|
||||
prompt_compose = [
|
||||
f'Your job:\n'
|
||||
f'1. write a single Python function, which takes a path of a `{file_type}` file as the only argument and returns a `string` containing the result of analysis or the path of generated files. \n',
|
||||
f"2. You should write this function to perform following task: " + txt + "\n",
|
||||
f"3. Wrap the output python function with markdown codeblock."
|
||||
]
|
||||
i_say = "".join(prompt_compose)
|
||||
demo = []
|
||||
|
||||
# 第一步
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say, inputs_show_user=i_say,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=demo,
|
||||
sys_prompt= r"You are a world-class programmer."
|
||||
)
|
||||
history.extend([i_say, gpt_say])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
|
||||
# 第二步
|
||||
prompt_compose = [
|
||||
"If previous stage is successful, rewrite the function you have just written to satisfy following templete: \n",
|
||||
templete
|
||||
]
|
||||
i_say = "".join(prompt_compose); inputs_show_user = "If previous stage is successful, rewrite the function you have just written to satisfy executable templete. "
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say, inputs_show_user=inputs_show_user,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||
sys_prompt= r"You are a programmer. You need to replace `...` with valid packages, do not give `...` in your answer!"
|
||||
)
|
||||
code_to_return = gpt_say
|
||||
history.extend([i_say, gpt_say])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
|
||||
# # 第三步
|
||||
# i_say = "Please list to packages to install to run the code above. Then show me how to use `try_install_deps` function to install them."
|
||||
# i_say += 'For instance. `try_install_deps(["opencv-python", "scipy", "numpy"])`'
|
||||
# installation_advance = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
# inputs=i_say, inputs_show_user=inputs_show_user,
|
||||
# llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||
# sys_prompt= r"You are a programmer."
|
||||
# )
|
||||
|
||||
# # # 第三步
|
||||
# i_say = "Show me how to use `pip` to install packages to run the code above. "
|
||||
# i_say += 'For instance. `pip install -r opencv-python scipy numpy`'
|
||||
# installation_advance = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
# inputs=i_say, inputs_show_user=i_say,
|
||||
# llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||
# sys_prompt= r"You are a programmer."
|
||||
# )
|
||||
installation_advance = ""
|
||||
|
||||
return code_to_return, installation_advance, txt, file_type, llm_kwargs, chatbot, history
|
||||
|
||||
|
||||
|
||||
|
||||
def for_immediate_show_off_when_possible(file_type, fp, chatbot):
|
||||
if file_type in ['png', 'jpg']:
|
||||
image_path = os.path.abspath(fp)
|
||||
chatbot.append(['这是一张图片, 展示如下:',
|
||||
f'本地文件地址: <br/>`{image_path}`<br/>'+
|
||||
f'本地文件预览: <br/><div align="center"><img src="file={image_path}"></div>'
|
||||
])
|
||||
return chatbot
|
||||
|
||||
|
||||
|
||||
def have_any_recent_upload_files(chatbot):
|
||||
_5min = 5 * 60
|
||||
if not chatbot: return False # chatbot is None
|
||||
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
|
||||
if not most_recent_uploaded: return False # most_recent_uploaded is None
|
||||
if time.time() - most_recent_uploaded["time"] < _5min: return True # most_recent_uploaded is new
|
||||
else: return False # most_recent_uploaded is too old
|
||||
|
||||
def get_recent_file_prompt_support(chatbot):
|
||||
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None)
|
||||
path = most_recent_uploaded['path']
|
||||
return path
|
||||
|
||||
@CatchException
|
||||
def 函数动态生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数,暂时没有用武之地
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
|
||||
# 清空历史
|
||||
history = []
|
||||
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append(["正在启动: 插件动态生成插件", "插件动态生成, 执行开始, 作者Binary-Husky."])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# ⭐ 文件上传区是否有东西
|
||||
# 1. 如果有文件: 作为函数参数
|
||||
# 2. 如果没有文件:需要用GPT提取参数 (太懒了,以后再写,虚空终端已经实现了类似的代码)
|
||||
file_list = []
|
||||
if get_plugin_arg(plugin_kwargs, key="file_path_arg", default=False):
|
||||
file_path = get_plugin_arg(plugin_kwargs, key="file_path_arg", default=None)
|
||||
file_list.append(file_path)
|
||||
yield from update_ui_lastest_msg(f"当前文件: {file_path}", chatbot, history, 1)
|
||||
elif have_any_recent_upload_files(chatbot):
|
||||
file_dir = get_recent_file_prompt_support(chatbot)
|
||||
file_list = glob.glob(os.path.join(file_dir, '**/*'), recursive=True)
|
||||
yield from update_ui_lastest_msg(f"当前文件处理列表: {file_list}", chatbot, history, 1)
|
||||
else:
|
||||
chatbot.append(["文件检索", "没有发现任何近期上传的文件。"])
|
||||
yield from update_ui_lastest_msg("没有发现任何近期上传的文件。", chatbot, history, 1)
|
||||
return # 2. 如果没有文件
|
||||
if len(file_list) == 0:
|
||||
chatbot.append(["文件检索", "没有发现任何近期上传的文件。"])
|
||||
yield from update_ui_lastest_msg("没有发现任何近期上传的文件。", chatbot, history, 1)
|
||||
return # 2. 如果没有文件
|
||||
|
||||
# 读取文件
|
||||
file_type = file_list[0].split('.')[-1]
|
||||
|
||||
# 粗心检查
|
||||
if is_the_upload_folder(txt):
|
||||
yield from update_ui_lastest_msg(f"请在输入框内填写需求, 然后再次点击该插件! 至于您的文件,不用担心, 文件路径 {txt} 已经被记忆. ", chatbot, history, 1)
|
||||
return
|
||||
|
||||
# 开始干正事
|
||||
MAX_TRY = 3
|
||||
for j in range(MAX_TRY): # 最多重试5次
|
||||
traceback = ""
|
||||
try:
|
||||
# ⭐ 开始啦 !
|
||||
code, installation_advance, txt, file_type, llm_kwargs, chatbot, history = \
|
||||
yield from gpt_interact_multi_step(txt, file_type, llm_kwargs, chatbot, history)
|
||||
chatbot.append(["代码生成阶段结束", ""])
|
||||
yield from update_ui_lastest_msg(f"正在验证上述代码的有效性 ...", chatbot, history, 1)
|
||||
# ⭐ 分离代码块
|
||||
code = get_code_block(code)
|
||||
# ⭐ 检查模块
|
||||
ok, traceback = try_make_module(code, chatbot)
|
||||
# 搞定代码生成
|
||||
if ok: break
|
||||
except Exception as e:
|
||||
if not traceback: traceback = trimmed_format_exc()
|
||||
# 处理异常
|
||||
if not traceback: traceback = trimmed_format_exc()
|
||||
yield from update_ui_lastest_msg(f"第 {j+1}/{MAX_TRY} 次代码生成尝试, 失败了~ 别担心, 我们5秒后再试一次... \n\n此次我们的错误追踪是\n```\n{traceback}\n```\n", chatbot, history, 5)
|
||||
|
||||
# 代码生成结束, 开始执行
|
||||
TIME_LIMIT = 15
|
||||
yield from update_ui_lastest_msg(f"开始创建新进程并执行代码! 时间限制 {TIME_LIMIT} 秒. 请等待任务完成... ", chatbot, history, 1)
|
||||
manager = multiprocessing.Manager()
|
||||
return_dict = manager.dict()
|
||||
|
||||
# ⭐ 到最后一步了,开始逐个文件进行处理
|
||||
for file_path in file_list:
|
||||
if os.path.exists(file_path):
|
||||
chatbot.append([f"正在处理文件: {file_path}", f"请稍等..."])
|
||||
chatbot = for_immediate_show_off_when_possible(file_type, file_path, chatbot)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
else:
|
||||
continue
|
||||
|
||||
# ⭐⭐⭐ subprocess_worker ⭐⭐⭐
|
||||
p = multiprocessing.Process(target=subprocess_worker, args=(code, file_path, return_dict))
|
||||
# ⭐ 开始执行,时间限制TIME_LIMIT
|
||||
p.start(); p.join(timeout=TIME_LIMIT)
|
||||
if p.is_alive(): p.terminate(); p.join()
|
||||
p.close()
|
||||
res = return_dict['result']
|
||||
success = return_dict['success']
|
||||
traceback = return_dict['traceback']
|
||||
if not success:
|
||||
if not traceback: traceback = trimmed_format_exc()
|
||||
chatbot.append(["执行失败了", f"错误追踪\n```\n{trimmed_format_exc()}\n```\n"])
|
||||
# chatbot.append(["如果是缺乏依赖,请参考以下建议", installation_advance])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# 顺利完成,收尾
|
||||
res = str(res)
|
||||
if os.path.exists(res):
|
||||
chatbot.append(["执行成功了,结果是一个有效文件", "结果:" + res])
|
||||
new_file_path = promote_file_to_downloadzone(res, chatbot=chatbot)
|
||||
chatbot = for_immediate_show_off_when_possible(file_type, new_file_path, chatbot)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
else:
|
||||
chatbot.append(["执行成功了,结果是一个字符串", "结果:" + res])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
|
||||
@@ -1,31 +0,0 @@
|
||||
from toolbox import CatchException, update_ui, gen_time_str
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from crazy_functions.crazy_utils import input_clipping
|
||||
import copy, json
|
||||
|
||||
@CatchException
|
||||
def 命令行助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
txt 输入栏用户输入的文本, 例如需要翻译的一段话, 再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数, 如温度和top_p等, 一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数, 暂时没有用武之地
|
||||
chatbot 聊天显示框的句柄, 用于显示给用户
|
||||
history 聊天历史, 前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
# 清空历史, 以免输入溢出
|
||||
history = []
|
||||
|
||||
# 输入
|
||||
i_say = "请写bash命令实现以下功能:" + txt
|
||||
# 开始
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say, inputs_show_user=txt,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||
sys_prompt="你是一个Linux大师级用户。注意,当我要求你写bash命令时,尽可能地仅用一行命令解决我的要求。"
|
||||
)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
|
||||
|
||||
|
||||
@@ -1,102 +0,0 @@
|
||||
# 本源代码中, ⭐ = 关键步骤
|
||||
"""
|
||||
测试:
|
||||
- show me the solution of $x^2=cos(x)$, solve this problem with figure, and plot and save image to t.jpg
|
||||
|
||||
"""
|
||||
|
||||
|
||||
import time
|
||||
from toolbox import CatchException, update_ui, gen_time_str, trimmed_format_exc, ProxyNetworkActivate
|
||||
from toolbox import get_conf, select_api_key, update_ui_lastest_msg, Singleton
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_plugin_arg
|
||||
from crazy_functions.crazy_utils import input_clipping, try_install_deps
|
||||
from crazy_functions.agent_fns.persistent import GradioMultiuserManagerForPersistentClasses
|
||||
from crazy_functions.agent_fns.auto_agent import AutoGenMath
|
||||
from loguru import logger
|
||||
|
||||
def remove_model_prefix(llm):
|
||||
if llm.startswith('api2d-'): llm = llm.replace('api2d-', '')
|
||||
if llm.startswith('azure-'): llm = llm.replace('azure-', '')
|
||||
return llm
|
||||
|
||||
|
||||
@CatchException
|
||||
def 多智能体终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
# 检查当前的模型是否符合要求
|
||||
supported_llms = [
|
||||
"gpt-3.5-turbo-16k",
|
||||
'gpt-3.5-turbo-1106',
|
||||
"gpt-4",
|
||||
"gpt-4-32k",
|
||||
'gpt-4-1106-preview',
|
||||
"azure-gpt-3.5-turbo-16k",
|
||||
"azure-gpt-3.5-16k",
|
||||
"azure-gpt-4",
|
||||
"azure-gpt-4-32k",
|
||||
]
|
||||
from request_llms.bridge_all import model_info
|
||||
if model_info[llm_kwargs['llm_model']]["max_token"] < 8000: # 至少是8k上下文的模型
|
||||
chatbot.append([f"处理任务: {txt}", f"当前插件只支持{str(supported_llms)}, 当前模型{llm_kwargs['llm_model']}的最大上下文长度太短, 不能支撑AutoGen运行。"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
if model_info[llm_kwargs['llm_model']]["endpoint"] is not None: # 如果不是本地模型,加载API_KEY
|
||||
llm_kwargs['api_key'] = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
import autogen
|
||||
if get_conf("AUTOGEN_USE_DOCKER"):
|
||||
import docker
|
||||
except:
|
||||
chatbot.append([ f"处理任务: {txt}",
|
||||
f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pyautogen docker```。"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
import autogen
|
||||
import glob, os, time, subprocess
|
||||
if get_conf("AUTOGEN_USE_DOCKER"):
|
||||
subprocess.Popen(["docker", "--version"])
|
||||
except:
|
||||
chatbot.append([f"处理任务: {txt}", f"缺少docker运行环境!"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# 解锁插件
|
||||
chatbot.get_cookies()['lock_plugin'] = None
|
||||
persistent_class_multi_user_manager = GradioMultiuserManagerForPersistentClasses()
|
||||
user_uuid = chatbot.get_cookies().get('uuid')
|
||||
persistent_key = f"{user_uuid}->多智能体终端"
|
||||
if persistent_class_multi_user_manager.already_alive(persistent_key):
|
||||
# 当已经存在一个正在运行的多智能体终端时,直接将用户输入传递给它,而不是再次启动一个新的多智能体终端
|
||||
logger.info('[debug] feed new user input')
|
||||
executor = persistent_class_multi_user_manager.get(persistent_key)
|
||||
exit_reason = yield from executor.main_process_ui_control(txt, create_or_resume="resume")
|
||||
else:
|
||||
# 运行多智能体终端 (首次)
|
||||
logger.info('[debug] create new executor instance')
|
||||
history = []
|
||||
chatbot.append(["正在启动: 多智能体终端", "插件动态生成, 执行开始, 作者 Microsoft & Binary-Husky."])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
executor = AutoGenMath(llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||
persistent_class_multi_user_manager.set(persistent_key, executor)
|
||||
exit_reason = yield from executor.main_process_ui_control(txt, create_or_resume="create")
|
||||
|
||||
if exit_reason == "wait_feedback":
|
||||
# 当用户点击了“等待反馈”按钮时,将executor存储到cookie中,等待用户的再次调用
|
||||
executor.chatbot.get_cookies()['lock_plugin'] = 'crazy_functions.多智能体->多智能体终端'
|
||||
else:
|
||||
executor.chatbot.get_cookies()['lock_plugin'] = None
|
||||
yield from update_ui(chatbot=executor.chatbot, history=executor.history) # 更新状态
|
||||
@@ -1,127 +0,0 @@
|
||||
from toolbox import update_ui
|
||||
from toolbox import CatchException, report_exception
|
||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
fast_debug = False
|
||||
|
||||
|
||||
def 解析docx(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||
import time, os
|
||||
# pip install python-docx 用于docx格式,跨平台
|
||||
# pip install pywin32 用于doc格式,仅支持Win平台
|
||||
for index, fp in enumerate(file_manifest):
|
||||
if fp.split(".")[-1] == "docx":
|
||||
from docx import Document
|
||||
doc = Document(fp)
|
||||
file_content = "\n".join([para.text for para in doc.paragraphs])
|
||||
else:
|
||||
try:
|
||||
import win32com.client
|
||||
word = win32com.client.Dispatch("Word.Application")
|
||||
word.visible = False
|
||||
# 打开文件
|
||||
doc = word.Documents.Open(os.getcwd() + '/' + fp)
|
||||
# file_content = doc.Content.Text
|
||||
doc = word.ActiveDocument
|
||||
file_content = doc.Range().Text
|
||||
doc.Close()
|
||||
word.Quit()
|
||||
except:
|
||||
raise RuntimeError('请先将.doc文档转换为.docx文档。')
|
||||
|
||||
# private_upload里面的文件名在解压zip后容易出现乱码(rar和7z格式正常),故可以只分析文章内容,不输入文件名
|
||||
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
||||
from request_llms.bridge_all import model_info
|
||||
max_token = model_info[llm_kwargs['llm_model']]['max_token']
|
||||
TOKEN_LIMIT_PER_FRAGMENT = max_token * 3 // 4
|
||||
paper_fragments = breakdown_text_to_satisfy_token_limit(txt=file_content, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs['llm_model'])
|
||||
this_paper_history = []
|
||||
for i, paper_frag in enumerate(paper_fragments):
|
||||
i_say = f'请对下面的文章片段用中文做概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{paper_frag}```'
|
||||
i_say_show_user = f'请对下面的文章片段做概述: {os.path.abspath(fp)}的第{i+1}/{len(paper_fragments)}个片段。'
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say,
|
||||
inputs_show_user=i_say_show_user,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
history=[],
|
||||
sys_prompt="总结文章。"
|
||||
)
|
||||
|
||||
chatbot[-1] = (i_say_show_user, gpt_say)
|
||||
history.extend([i_say_show_user,gpt_say])
|
||||
this_paper_history.extend([i_say_show_user,gpt_say])
|
||||
|
||||
# 已经对该文章的所有片段总结完毕,如果文章被切分了,
|
||||
if len(paper_fragments) > 1:
|
||||
i_say = f"根据以上的对话,总结文章{os.path.abspath(fp)}的主要内容。"
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say,
|
||||
inputs_show_user=i_say,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
history=this_paper_history,
|
||||
sys_prompt="总结文章。"
|
||||
)
|
||||
|
||||
history.extend([i_say,gpt_say])
|
||||
this_paper_history.extend([i_say,gpt_say])
|
||||
|
||||
res = write_history_to_file(history)
|
||||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
||||
chatbot.append(("完成了吗?", res))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
res = write_history_to_file(history)
|
||||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
||||
chatbot.append(("所有文件都总结完成了吗?", res))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
|
||||
@CatchException
|
||||
def 总结word文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
import glob, os
|
||||
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
"批量总结Word文档。函数插件贡献者: JasonGuo1。注意, 如果是.doc文件, 请先转化为.docx格式。"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
from docx import Document
|
||||
except:
|
||||
report_exception(chatbot, history,
|
||||
a=f"解析项目: {txt}",
|
||||
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade python-docx pywin32```。")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# 清空历史,以免输入溢出
|
||||
history = []
|
||||
|
||||
# 检测输入参数,如没有给定输入参数,直接退出
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# 搜索需要处理的文件清单
|
||||
if txt.endswith('.docx') or txt.endswith('.doc'):
|
||||
file_manifest = [txt]
|
||||
else:
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.docx', recursive=True)] + \
|
||||
[f for f in glob.glob(f'{project_folder}/**/*.doc', recursive=True)]
|
||||
|
||||
# 如果没找到任何文件
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.docx或doc文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# 开始正式执行任务
|
||||
yield from 解析docx(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
@@ -1,186 +0,0 @@
|
||||
from toolbox import CatchException, report_exception, select_api_key, update_ui, get_conf
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from toolbox import write_history_to_file, promote_file_to_downloadzone, get_log_folder
|
||||
|
||||
def split_audio_file(filename, split_duration=1000):
|
||||
"""
|
||||
根据给定的切割时长将音频文件切割成多个片段。
|
||||
|
||||
Args:
|
||||
filename (str): 需要被切割的音频文件名。
|
||||
split_duration (int, optional): 每个切割音频片段的时长(以秒为单位)。默认值为1000。
|
||||
|
||||
Returns:
|
||||
filelist (list): 一个包含所有切割音频片段文件路径的列表。
|
||||
|
||||
"""
|
||||
from moviepy.editor import AudioFileClip
|
||||
import os
|
||||
os.makedirs(f"{get_log_folder(plugin_name='audio')}/mp3/cut/", exist_ok=True) # 创建存储切割音频的文件夹
|
||||
|
||||
# 读取音频文件
|
||||
audio = AudioFileClip(filename)
|
||||
|
||||
# 计算文件总时长和切割点
|
||||
total_duration = audio.duration
|
||||
split_points = list(range(0, int(total_duration), split_duration))
|
||||
split_points.append(int(total_duration))
|
||||
filelist = []
|
||||
|
||||
# 切割音频文件
|
||||
for i in range(len(split_points) - 1):
|
||||
start_time = split_points[i]
|
||||
end_time = split_points[i + 1]
|
||||
split_audio = audio.subclip(start_time, end_time)
|
||||
split_audio.write_audiofile(f"{get_log_folder(plugin_name='audio')}/mp3/cut/{filename[0]}_{i}.mp3")
|
||||
filelist.append(f"{get_log_folder(plugin_name='audio')}/mp3/cut/{filename[0]}_{i}.mp3")
|
||||
|
||||
audio.close()
|
||||
return filelist
|
||||
|
||||
def AnalyAudio(parse_prompt, file_manifest, llm_kwargs, chatbot, history):
|
||||
import os, requests
|
||||
from moviepy.editor import AudioFileClip
|
||||
from request_llms.bridge_all import model_info
|
||||
|
||||
# 设置OpenAI密钥和模型
|
||||
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
|
||||
chat_endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||
|
||||
whisper_endpoint = chat_endpoint.replace('chat/completions', 'audio/transcriptions')
|
||||
url = whisper_endpoint
|
||||
headers = {
|
||||
'Authorization': f"Bearer {api_key}"
|
||||
}
|
||||
|
||||
os.makedirs(f"{get_log_folder(plugin_name='audio')}/mp3/", exist_ok=True)
|
||||
for index, fp in enumerate(file_manifest):
|
||||
audio_history = []
|
||||
# 提取文件扩展名
|
||||
ext = os.path.splitext(fp)[1]
|
||||
# 提取视频中的音频
|
||||
if ext not in [".mp3", ".wav", ".m4a", ".mpga"]:
|
||||
audio_clip = AudioFileClip(fp)
|
||||
audio_clip.write_audiofile(f"{get_log_folder(plugin_name='audio')}/mp3/output{index}.mp3")
|
||||
fp = f"{get_log_folder(plugin_name='audio')}/mp3/output{index}.mp3"
|
||||
# 调用whisper模型音频转文字
|
||||
voice = split_audio_file(fp)
|
||||
for j, i in enumerate(voice):
|
||||
with open(i, 'rb') as f:
|
||||
file_content = f.read() # 读取文件内容到内存
|
||||
files = {
|
||||
'file': (os.path.basename(i), file_content),
|
||||
}
|
||||
data = {
|
||||
"model": "whisper-1",
|
||||
"prompt": parse_prompt,
|
||||
'response_format': "text"
|
||||
}
|
||||
|
||||
chatbot.append([f"将 {i} 发送到openai音频解析终端 (whisper),当前参数:{parse_prompt}", "正在处理 ..."])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
proxies = get_conf('proxies')
|
||||
response = requests.post(url, headers=headers, files=files, data=data, proxies=proxies).text
|
||||
|
||||
chatbot.append(["音频解析结果", response])
|
||||
history.extend(["音频解析结果", response])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
i_say = f'请对下面的音频片段做概述,音频内容是 ```{response}```'
|
||||
i_say_show_user = f'第{index + 1}段音频的第{j + 1} / {len(voice)}片段。'
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say,
|
||||
inputs_show_user=i_say_show_user,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
history=[],
|
||||
sys_prompt=f"总结音频。音频文件名{fp}"
|
||||
)
|
||||
|
||||
chatbot[-1] = (i_say_show_user, gpt_say)
|
||||
history.extend([i_say_show_user, gpt_say])
|
||||
audio_history.extend([i_say_show_user, gpt_say])
|
||||
|
||||
# 已经对该文章的所有片段总结完毕,如果文章被切分了
|
||||
result = "".join(audio_history)
|
||||
if len(audio_history) > 1:
|
||||
i_say = f"根据以上的对话,使用中文总结音频“{result}”的主要内容。"
|
||||
i_say_show_user = f'第{index + 1}段音频的主要内容:'
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say,
|
||||
inputs_show_user=i_say_show_user,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
history=audio_history,
|
||||
sys_prompt="总结文章。"
|
||||
)
|
||||
history.extend([i_say, gpt_say])
|
||||
audio_history.extend([i_say, gpt_say])
|
||||
|
||||
res = write_history_to_file(history)
|
||||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
||||
chatbot.append((f"第{index + 1}段音频完成了吗?", res))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 删除中间文件夹
|
||||
import shutil
|
||||
shutil.rmtree(f"{get_log_folder(plugin_name='audio')}/mp3")
|
||||
res = write_history_to_file(history)
|
||||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
||||
chatbot.append(("所有音频都总结完成了吗?", res))
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
|
||||
@CatchException
|
||||
def 总结音视频(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, WEB_PORT):
|
||||
import glob, os
|
||||
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
"总结音视频内容,函数插件贡献者: dalvqw & BinaryHusky"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
try:
|
||||
from moviepy.editor import AudioFileClip
|
||||
except:
|
||||
report_exception(chatbot, history,
|
||||
a=f"解析项目: {txt}",
|
||||
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade moviepy```。")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# 清空历史,以免输入溢出
|
||||
history = []
|
||||
|
||||
# 检测输入参数,如没有给定输入参数,直接退出
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# 搜索需要处理的文件清单
|
||||
extensions = ['.mp4', '.m4a', '.wav', '.mpga', '.mpeg', '.mp3', '.avi', '.mkv', '.flac', '.aac']
|
||||
|
||||
if txt.endswith(tuple(extensions)):
|
||||
file_manifest = [txt]
|
||||
else:
|
||||
file_manifest = []
|
||||
for extension in extensions:
|
||||
file_manifest.extend(glob.glob(f'{project_folder}/**/*{extension}', recursive=True))
|
||||
|
||||
# 如果没找到任何文件
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何音频或视频文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# 开始正式执行任务
|
||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||
parse_prompt = plugin_kwargs.get("advanced_arg", '将音频解析为简体中文')
|
||||
yield from AnalyAudio(parse_prompt, file_manifest, llm_kwargs, chatbot, history)
|
||||
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
@@ -1,147 +0,0 @@
|
||||
from loguru import logger
|
||||
|
||||
from toolbox import update_ui, promote_file_to_downloadzone, gen_time_str
|
||||
from toolbox import CatchException, report_exception
|
||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from crazy_functions.crazy_utils import read_and_clean_pdf_text
|
||||
from crazy_functions.crazy_utils import input_clipping
|
||||
|
||||
|
||||
|
||||
def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||
file_write_buffer = []
|
||||
for file_name in file_manifest:
|
||||
logger.info('begin analysis on:', file_name)
|
||||
############################## <第 0 步,切割PDF> ##################################
|
||||
# 递归地切割PDF文件,每一块(尽量是完整的一个section,比如introduction,experiment等,必要时再进行切割)
|
||||
# 的长度必须小于 2500 个 Token
|
||||
file_content, page_one = read_and_clean_pdf_text(file_name) # (尝试)按照章节切割PDF
|
||||
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||||
page_one = str(page_one).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||||
|
||||
TOKEN_LIMIT_PER_FRAGMENT = 2500
|
||||
|
||||
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
||||
paper_fragments = breakdown_text_to_satisfy_token_limit(txt=file_content, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs['llm_model'])
|
||||
page_one_fragments = breakdown_text_to_satisfy_token_limit(txt=str(page_one), limit=TOKEN_LIMIT_PER_FRAGMENT//4, llm_model=llm_kwargs['llm_model'])
|
||||
# 为了更好的效果,我们剥离Introduction之后的部分(如果有)
|
||||
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
|
||||
|
||||
############################## <第 1 步,从摘要中提取高价值信息,放到history中> ##################################
|
||||
final_results = []
|
||||
final_results.append(paper_meta)
|
||||
|
||||
############################## <第 2 步,迭代地历遍整个文章,提取精炼信息> ##################################
|
||||
i_say_show_user = f'首先你在中文语境下通读整篇论文。'; gpt_say = "[Local Message] 收到。" # 用户提示
|
||||
chatbot.append([i_say_show_user, gpt_say]); yield from update_ui(chatbot=chatbot, history=[]) # 更新UI
|
||||
|
||||
iteration_results = []
|
||||
last_iteration_result = paper_meta # 初始值是摘要
|
||||
MAX_WORD_TOTAL = 4096 * 0.7
|
||||
n_fragment = len(paper_fragments)
|
||||
if n_fragment >= 20: logger.warning('文章极长,不能达到预期效果')
|
||||
for i in range(n_fragment):
|
||||
NUM_OF_WORD = MAX_WORD_TOTAL // n_fragment
|
||||
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} Chinese characters: {paper_fragments[i]}"
|
||||
i_say_show_user = f"[{i+1}/{n_fragment}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} Chinese characters: {paper_fragments[i][:200]}"
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
|
||||
llm_kwargs, chatbot,
|
||||
history=["The main idea of the previous section is?", last_iteration_result], # 迭代上一次的结果
|
||||
sys_prompt="Extract the main idea of this section with Chinese." # 提示
|
||||
)
|
||||
iteration_results.append(gpt_say)
|
||||
last_iteration_result = gpt_say
|
||||
|
||||
############################## <第 3 步,整理history,提取总结> ##################################
|
||||
final_results.extend(iteration_results)
|
||||
final_results.append(f'Please conclude this paper discussed above。')
|
||||
# This prompt is from https://github.com/kaixindelele/ChatPaper/blob/main/chat_paper.py
|
||||
NUM_OF_WORD = 1000
|
||||
i_say = """
|
||||
1. Mark the title of the paper (with Chinese translation)
|
||||
2. list all the authors' names (use English)
|
||||
3. mark the first author's affiliation (output Chinese translation only)
|
||||
4. mark the keywords of this article (use English)
|
||||
5. link to the paper, Github code link (if available, fill in Github:None if not)
|
||||
6. summarize according to the following four points.Be sure to use Chinese answers (proper nouns need to be marked in English)
|
||||
- (1):What is the research background of this article?
|
||||
- (2):What are the past methods? What are the problems with them? Is the approach well motivated?
|
||||
- (3):What is the research methodology proposed in this paper?
|
||||
- (4):On what task and what performance is achieved by the methods in this paper? Can the performance support their goals?
|
||||
Follow the format of the output that follows:
|
||||
1. Title: xxx\n\n
|
||||
2. Authors: xxx\n\n
|
||||
3. Affiliation: xxx\n\n
|
||||
4. Keywords: xxx\n\n
|
||||
5. Urls: xxx or xxx , xxx \n\n
|
||||
6. Summary: \n\n
|
||||
- (1):xxx;\n
|
||||
- (2):xxx;\n
|
||||
- (3):xxx;\n
|
||||
- (4):xxx.\n\n
|
||||
Be sure to use Chinese answers (proper nouns need to be marked in English), statements as concise and academic as possible,
|
||||
do not have too much repetitive information, numerical values using the original numbers.
|
||||
"""
|
||||
# This prompt is from https://github.com/kaixindelele/ChatPaper/blob/main/chat_paper.py
|
||||
file_write_buffer.extend(final_results)
|
||||
i_say, final_results = input_clipping(i_say, final_results, max_token_limit=2000)
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say, inputs_show_user='开始最终总结',
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=final_results,
|
||||
sys_prompt= f"Extract the main idea of this paper with less than {NUM_OF_WORD} Chinese characters"
|
||||
)
|
||||
final_results.append(gpt_say)
|
||||
file_write_buffer.extend([i_say, gpt_say])
|
||||
############################## <第 4 步,设置一个token上限> ##################################
|
||||
_, final_results = input_clipping("", final_results, max_token_limit=3200)
|
||||
yield from update_ui(chatbot=chatbot, history=final_results) # 注意这里的历史记录被替代了
|
||||
|
||||
res = write_history_to_file(file_write_buffer)
|
||||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
||||
yield from update_ui(chatbot=chatbot, history=final_results) # 刷新界面
|
||||
|
||||
|
||||
@CatchException
|
||||
def 批量总结PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
import glob, os
|
||||
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
"批量总结PDF文档。函数插件贡献者: ValeriaWong,Eralien"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
import fitz
|
||||
except:
|
||||
report_exception(chatbot, history,
|
||||
a = f"解析项目: {txt}",
|
||||
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# 清空历史,以免输入溢出
|
||||
history = []
|
||||
|
||||
# 检测输入参数,如没有给定输入参数,直接退出
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# 搜索需要处理的文件清单
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.pdf', recursive=True)]
|
||||
|
||||
# 如果没找到任何文件
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex或.pdf文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# 开始正式执行任务
|
||||
yield from 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
@@ -1,162 +0,0 @@
|
||||
from loguru import logger
|
||||
from toolbox import update_ui
|
||||
from toolbox import CatchException, report_exception
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||
|
||||
fast_debug = False
|
||||
|
||||
def readPdf(pdfPath):
|
||||
"""
|
||||
读取pdf文件,返回文本内容
|
||||
"""
|
||||
import pdfminer
|
||||
from pdfminer.pdfparser import PDFParser
|
||||
from pdfminer.pdfdocument import PDFDocument
|
||||
from pdfminer.pdfpage import PDFPage, PDFTextExtractionNotAllowed
|
||||
from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter
|
||||
from pdfminer.pdfdevice import PDFDevice
|
||||
from pdfminer.layout import LAParams
|
||||
from pdfminer.converter import PDFPageAggregator
|
||||
|
||||
fp = open(pdfPath, 'rb')
|
||||
|
||||
# Create a PDF parser object associated with the file object
|
||||
parser = PDFParser(fp)
|
||||
|
||||
# Create a PDF document object that stores the document structure.
|
||||
# Password for initialization as 2nd parameter
|
||||
document = PDFDocument(parser)
|
||||
# Check if the document allows text extraction. If not, abort.
|
||||
if not document.is_extractable:
|
||||
raise PDFTextExtractionNotAllowed
|
||||
|
||||
# Create a PDF resource manager object that stores shared resources.
|
||||
rsrcmgr = PDFResourceManager()
|
||||
|
||||
# Create a PDF device object.
|
||||
# device = PDFDevice(rsrcmgr)
|
||||
|
||||
# BEGIN LAYOUT ANALYSIS.
|
||||
# Set parameters for analysis.
|
||||
laparams = LAParams(
|
||||
char_margin=10.0,
|
||||
line_margin=0.2,
|
||||
boxes_flow=0.2,
|
||||
all_texts=False,
|
||||
)
|
||||
# Create a PDF page aggregator object.
|
||||
device = PDFPageAggregator(rsrcmgr, laparams=laparams)
|
||||
# Create a PDF interpreter object.
|
||||
interpreter = PDFPageInterpreter(rsrcmgr, device)
|
||||
|
||||
# loop over all pages in the document
|
||||
outTextList = []
|
||||
for page in PDFPage.create_pages(document):
|
||||
# read the page into a layout object
|
||||
interpreter.process_page(page)
|
||||
layout = device.get_result()
|
||||
for obj in layout._objs:
|
||||
if isinstance(obj, pdfminer.layout.LTTextBoxHorizontal):
|
||||
outTextList.append(obj.get_text())
|
||||
|
||||
return outTextList
|
||||
|
||||
|
||||
def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||
import time, glob, os
|
||||
from bs4 import BeautifulSoup
|
||||
logger.info('begin analysis on:', file_manifest)
|
||||
for index, fp in enumerate(file_manifest):
|
||||
if ".tex" in fp:
|
||||
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
|
||||
file_content = f.read()
|
||||
if ".pdf" in fp.lower():
|
||||
file_content = readPdf(fp)
|
||||
file_content = BeautifulSoup(''.join(file_content), features="lxml").body.text.encode('gbk', 'ignore').decode('gbk')
|
||||
|
||||
prefix = "接下来请你逐文件分析下面的论文文件,概括其内容" if index==0 else ""
|
||||
i_say = prefix + f'请对下面的文章片段用中文做一个概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{file_content}```'
|
||||
i_say_show_user = prefix + f'[{index+1}/{len(file_manifest)}] 请对下面的文章片段做一个概述: {os.path.abspath(fp)}'
|
||||
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
if not fast_debug:
|
||||
msg = '正常'
|
||||
# ** gpt request **
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say,
|
||||
inputs_show_user=i_say_show_user,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
history=[],
|
||||
sys_prompt="总结文章。"
|
||||
) # 带超时倒计时
|
||||
chatbot[-1] = (i_say_show_user, gpt_say)
|
||||
history.append(i_say_show_user); history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
||||
if not fast_debug: time.sleep(2)
|
||||
|
||||
all_file = ', '.join([os.path.relpath(fp, project_folder) for index, fp in enumerate(file_manifest)])
|
||||
i_say = f'根据以上你自己的分析,对全文进行概括,用学术性语言写一段中文摘要,然后再写一段英文摘要(包括{all_file})。'
|
||||
chatbot.append((i_say, "[Local Message] waiting gpt response."))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
if not fast_debug:
|
||||
msg = '正常'
|
||||
# ** gpt request **
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say,
|
||||
inputs_show_user=i_say,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
history=history,
|
||||
sys_prompt="总结文章。"
|
||||
) # 带超时倒计时
|
||||
chatbot[-1] = (i_say, gpt_say)
|
||||
history.append(i_say); history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
||||
res = write_history_to_file(history)
|
||||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
||||
chatbot.append(("完成了吗?", res))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
||||
|
||||
|
||||
|
||||
@CatchException
|
||||
def 批量总结PDF文档pdfminer(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob, os
|
||||
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
"批量总结PDF文档,此版本使用pdfminer插件,带token约简功能。函数插件贡献者: Euclid-Jie。"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
import pdfminer, bs4
|
||||
except:
|
||||
report_exception(chatbot, history,
|
||||
a = f"解析项目: {txt}",
|
||||
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pdfminer beautifulsoup4```。")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)] + \
|
||||
[f for f in glob.glob(f'{project_folder}/**/*.pdf', recursive=True)] # + \
|
||||
# [f for f in glob.glob(f'{project_folder}/**/*.cpp', recursive=True)] + \
|
||||
# [f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex或pdf文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
yield from 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
|
||||
@@ -1,125 +0,0 @@
|
||||
from toolbox import CatchException, report_exception, get_log_folder, gen_time_str
|
||||
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
|
||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||
from crazy_functions.crazy_utils import read_and_clean_pdf_text
|
||||
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url, translate_pdf
|
||||
from shared_utils.colorful import *
|
||||
import copy
|
||||
import os
|
||||
import math
|
||||
import logging
|
||||
|
||||
def markdown_to_dict(article_content):
|
||||
import markdown
|
||||
from bs4 import BeautifulSoup
|
||||
cur_t = ""
|
||||
cur_c = ""
|
||||
results = {}
|
||||
for line in article_content:
|
||||
if line.startswith('#'):
|
||||
if cur_t!="":
|
||||
if cur_t not in results:
|
||||
results.update({cur_t:cur_c.lstrip('\n')})
|
||||
else:
|
||||
# 处理重名的章节
|
||||
results.update({cur_t + " " + gen_time_str():cur_c.lstrip('\n')})
|
||||
cur_t = line.rstrip('\n')
|
||||
cur_c = ""
|
||||
else:
|
||||
cur_c += line
|
||||
results_final = {}
|
||||
for k in list(results.keys()):
|
||||
if k.startswith('# '):
|
||||
results_final['title'] = k.split('# ')[-1]
|
||||
results_final['authors'] = results.pop(k).lstrip('\n')
|
||||
if k.startswith('###### Abstract'):
|
||||
results_final['abstract'] = results.pop(k).lstrip('\n')
|
||||
|
||||
results_final_sections = []
|
||||
for k,v in results.items():
|
||||
results_final_sections.append({
|
||||
'heading':k.lstrip("# "),
|
||||
'text':v if len(v) > 0 else f"The beginning of {k.lstrip('# ')} section."
|
||||
})
|
||||
results_final['sections'] = results_final_sections
|
||||
return results_final
|
||||
|
||||
|
||||
@CatchException
|
||||
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
|
||||
disable_auto_promotion(chatbot)
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
"批量翻译PDF文档。函数插件贡献者: Binary-Husky"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 清空历史,以免输入溢出
|
||||
history = []
|
||||
|
||||
from crazy_functions.crazy_utils import get_files_from_everything
|
||||
success, file_manifest, project_folder = get_files_from_everything(txt, type='.pdf')
|
||||
if len(file_manifest) > 0:
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
import nougat
|
||||
import tiktoken
|
||||
except:
|
||||
report_exception(chatbot, history,
|
||||
a=f"解析项目: {txt}",
|
||||
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade nougat-ocr tiktoken```。")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
success_mmd, file_manifest_mmd, _ = get_files_from_everything(txt, type='.mmd')
|
||||
success = success or success_mmd
|
||||
file_manifest += file_manifest_mmd
|
||||
chatbot.append(["文件列表:", ", ".join([e.split('/')[-1] for e in file_manifest])]);
|
||||
yield from update_ui( chatbot=chatbot, history=history)
|
||||
# 检测输入参数,如没有给定输入参数,直接退出
|
||||
if not success:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
|
||||
# 如果没找到任何文件
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history,
|
||||
a=f"解析项目: {txt}", b=f"找不到任何.pdf拓展名的文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# 开始正式执行任务
|
||||
yield from 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
|
||||
|
||||
|
||||
|
||||
def 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||
import copy
|
||||
import tiktoken
|
||||
TOKEN_LIMIT_PER_FRAGMENT = 1024
|
||||
generated_conclusion_files = []
|
||||
generated_html_files = []
|
||||
DST_LANG = "中文"
|
||||
from crazy_functions.crazy_utils import nougat_interface
|
||||
from crazy_functions.pdf_fns.report_gen_html import construct_html
|
||||
nougat_handle = nougat_interface()
|
||||
for index, fp in enumerate(file_manifest):
|
||||
if fp.endswith('pdf'):
|
||||
chatbot.append(["当前进度:", f"正在解析论文,请稍候。(第一次运行时,需要花费较长时间下载NOUGAT参数)"]); yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
fpp = yield from nougat_handle.NOUGAT_parse_pdf(fp, chatbot, history)
|
||||
promote_file_to_downloadzone(fpp, rename_file=os.path.basename(fpp)+'.nougat.mmd', chatbot=chatbot)
|
||||
else:
|
||||
chatbot.append(["当前论文无需解析:", fp]); yield from update_ui( chatbot=chatbot, history=history)
|
||||
fpp = fp
|
||||
with open(fpp, 'r', encoding='utf8') as f:
|
||||
article_content = f.readlines()
|
||||
article_dict = markdown_to_dict(article_content)
|
||||
logging.info(article_dict)
|
||||
yield from translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG)
|
||||
|
||||
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
|
||||
@@ -1,192 +0,0 @@
|
||||
import os
|
||||
from loguru import logger
|
||||
from toolbox import CatchException, update_ui, gen_time_str, promote_file_to_downloadzone
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from crazy_functions.crazy_utils import input_clipping
|
||||
|
||||
def inspect_dependency(chatbot, history):
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
import manim
|
||||
return True
|
||||
except:
|
||||
chatbot.append(["导入依赖失败", "使用该模块需要额外依赖,安装方法:```pip install manim manimgl```"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return False
|
||||
|
||||
def eval_manim(code):
|
||||
import subprocess, sys, os, shutil
|
||||
|
||||
with open('gpt_log/MyAnimation.py', 'w', encoding='utf8') as f:
|
||||
f.write(code)
|
||||
|
||||
def get_class_name(class_string):
|
||||
import re
|
||||
# Use regex to extract the class name
|
||||
class_name = re.search(r'class (\w+)\(', class_string).group(1)
|
||||
return class_name
|
||||
|
||||
class_name = get_class_name(code)
|
||||
|
||||
try:
|
||||
time_str = gen_time_str()
|
||||
subprocess.check_output([sys.executable, '-c', f"from gpt_log.MyAnimation import {class_name}; {class_name}().render()"])
|
||||
shutil.move(f'media/videos/1080p60/{class_name}.mp4', f'gpt_log/{class_name}-{time_str}.mp4')
|
||||
return f'gpt_log/{time_str}.mp4'
|
||||
except subprocess.CalledProcessError as e:
|
||||
output = e.output.decode()
|
||||
logger.error(f"Command returned non-zero exit status {e.returncode}: {output}.")
|
||||
return f"Evaluating python script failed: {e.output}."
|
||||
except:
|
||||
logger.error('generating mp4 failed')
|
||||
return "Generating mp4 failed."
|
||||
|
||||
|
||||
def get_code_block(reply):
|
||||
import re
|
||||
pattern = r"```([\s\S]*?)```" # regex pattern to match code blocks
|
||||
matches = re.findall(pattern, reply) # find all code blocks in text
|
||||
if len(matches) != 1:
|
||||
raise RuntimeError("GPT is not generating proper code.")
|
||||
return matches[0].strip('python') # code block
|
||||
|
||||
@CatchException
|
||||
def 动画生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数,暂时没有用武之地
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
# 清空历史,以免输入溢出
|
||||
history = []
|
||||
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
"生成数学动画, 此插件处于开发阶段, 建议暂时不要使用, 作者: binary-husky, 插件初始化中 ..."
|
||||
])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 尝试导入依赖, 如果缺少依赖, 则给出安装建议
|
||||
dep_ok = yield from inspect_dependency(chatbot=chatbot, history=history) # 刷新界面
|
||||
if not dep_ok: return
|
||||
|
||||
# 输入
|
||||
i_say = f'Generate a animation to show: ' + txt
|
||||
demo = ["Here is some examples of manim", examples_of_manim()]
|
||||
_, demo = input_clipping(inputs="", history=demo, max_token_limit=2560)
|
||||
# 开始
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say, inputs_show_user=i_say,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=demo,
|
||||
sys_prompt=
|
||||
r"Write a animation script with 3blue1brown's manim. "+
|
||||
r"Please begin with `from manim import *`. " +
|
||||
r"Answer me with a code block wrapped by ```."
|
||||
)
|
||||
chatbot.append(["开始生成动画", "..."])
|
||||
history.extend([i_say, gpt_say])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
|
||||
# 将代码转为动画
|
||||
code = get_code_block(gpt_say)
|
||||
res = eval_manim(code)
|
||||
|
||||
chatbot.append(("生成的视频文件路径", res))
|
||||
if os.path.exists(res):
|
||||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
|
||||
# 在这里放一些网上搜集的demo,辅助gpt生成代码
|
||||
def examples_of_manim():
|
||||
return r"""
|
||||
|
||||
|
||||
```
|
||||
|
||||
class MovingGroupToDestination(Scene):
|
||||
def construct(self):
|
||||
group = VGroup(Dot(LEFT), Dot(ORIGIN), Dot(RIGHT, color=RED), Dot(2 * RIGHT)).scale(1.4)
|
||||
dest = Dot([4, 3, 0], color=YELLOW)
|
||||
self.add(group, dest)
|
||||
self.play(group.animate.shift(dest.get_center() - group[2].get_center()))
|
||||
self.wait(0.5)
|
||||
|
||||
```
|
||||
|
||||
|
||||
```
|
||||
|
||||
class LatexWithMovingFramebox(Scene):
|
||||
def construct(self):
|
||||
text=MathTex(
|
||||
"\\frac{d}{dx}f(x)g(x)=","f(x)\\frac{d}{dx}g(x)","+",
|
||||
"g(x)\\frac{d}{dx}f(x)"
|
||||
)
|
||||
self.play(Write(text))
|
||||
framebox1 = SurroundingRectangle(text[1], buff = .1)
|
||||
framebox2 = SurroundingRectangle(text[3], buff = .1)
|
||||
self.play(
|
||||
Create(framebox1),
|
||||
)
|
||||
self.wait()
|
||||
self.play(
|
||||
ReplacementTransform(framebox1,framebox2),
|
||||
)
|
||||
self.wait()
|
||||
|
||||
```
|
||||
|
||||
|
||||
|
||||
```
|
||||
|
||||
class PointWithTrace(Scene):
|
||||
def construct(self):
|
||||
path = VMobject()
|
||||
dot = Dot()
|
||||
path.set_points_as_corners([dot.get_center(), dot.get_center()])
|
||||
def update_path(path):
|
||||
previous_path = path.copy()
|
||||
previous_path.add_points_as_corners([dot.get_center()])
|
||||
path.become(previous_path)
|
||||
path.add_updater(update_path)
|
||||
self.add(path, dot)
|
||||
self.play(Rotating(dot, radians=PI, about_point=RIGHT, run_time=2))
|
||||
self.wait()
|
||||
self.play(dot.animate.shift(UP))
|
||||
self.play(dot.animate.shift(LEFT))
|
||||
self.wait()
|
||||
|
||||
```
|
||||
|
||||
```
|
||||
|
||||
# do not use get_graph, this funciton is deprecated
|
||||
|
||||
class ExampleFunctionGraph(Scene):
|
||||
def construct(self):
|
||||
cos_func = FunctionGraph(
|
||||
lambda t: np.cos(t) + 0.5 * np.cos(7 * t) + (1 / 7) * np.cos(14 * t),
|
||||
color=RED,
|
||||
)
|
||||
|
||||
sin_func_1 = FunctionGraph(
|
||||
lambda t: np.sin(t) + 0.5 * np.sin(7 * t) + (1 / 7) * np.sin(14 * t),
|
||||
color=BLUE,
|
||||
)
|
||||
|
||||
sin_func_2 = FunctionGraph(
|
||||
lambda t: np.sin(t) + 0.5 * np.sin(7 * t) + (1 / 7) * np.sin(14 * t),
|
||||
x_range=[-4, 4],
|
||||
color=GREEN,
|
||||
).move_to([0, 1, 0])
|
||||
|
||||
self.add(cos_func, sin_func_1, sin_func_2)
|
||||
|
||||
```
|
||||
"""
|
||||
@@ -1,108 +0,0 @@
|
||||
from loguru import logger
|
||||
from toolbox import update_ui
|
||||
from toolbox import CatchException, report_exception
|
||||
from crazy_functions.crazy_utils import read_and_clean_pdf_text
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
|
||||
|
||||
def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||
logger.info('begin analysis on:', file_name)
|
||||
|
||||
############################## <第 0 步,切割PDF> ##################################
|
||||
# 递归地切割PDF文件,每一块(尽量是完整的一个section,比如introduction,experiment等,必要时再进行切割)
|
||||
# 的长度必须小于 2500 个 Token
|
||||
file_content, page_one = read_and_clean_pdf_text(file_name) # (尝试)按照章节切割PDF
|
||||
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||||
page_one = str(page_one).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||||
|
||||
TOKEN_LIMIT_PER_FRAGMENT = 2500
|
||||
|
||||
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
||||
paper_fragments = breakdown_text_to_satisfy_token_limit(txt=file_content, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs['llm_model'])
|
||||
page_one_fragments = breakdown_text_to_satisfy_token_limit(txt=str(page_one), limit=TOKEN_LIMIT_PER_FRAGMENT//4, llm_model=llm_kwargs['llm_model'])
|
||||
# 为了更好的效果,我们剥离Introduction之后的部分(如果有)
|
||||
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
|
||||
|
||||
############################## <第 1 步,从摘要中提取高价值信息,放到history中> ##################################
|
||||
final_results = []
|
||||
final_results.append(paper_meta)
|
||||
|
||||
############################## <第 2 步,迭代地历遍整个文章,提取精炼信息> ##################################
|
||||
i_say_show_user = f'首先你在英文语境下通读整篇论文。'; gpt_say = "[Local Message] 收到。" # 用户提示
|
||||
chatbot.append([i_say_show_user, gpt_say]); yield from update_ui(chatbot=chatbot, history=[]) # 更新UI
|
||||
|
||||
iteration_results = []
|
||||
last_iteration_result = paper_meta # 初始值是摘要
|
||||
MAX_WORD_TOTAL = 4096
|
||||
n_fragment = len(paper_fragments)
|
||||
if n_fragment >= 20: logger.warning('文章极长,不能达到预期效果')
|
||||
for i in range(n_fragment):
|
||||
NUM_OF_WORD = MAX_WORD_TOTAL // n_fragment
|
||||
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i]}"
|
||||
i_say_show_user = f"[{i+1}/{n_fragment}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i][:200]} ...."
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
|
||||
llm_kwargs, chatbot,
|
||||
history=["The main idea of the previous section is?", last_iteration_result], # 迭代上一次的结果
|
||||
sys_prompt="Extract the main idea of this section, answer me with Chinese." # 提示
|
||||
)
|
||||
iteration_results.append(gpt_say)
|
||||
last_iteration_result = gpt_say
|
||||
|
||||
############################## <第 3 步,整理history> ##################################
|
||||
final_results.extend(iteration_results)
|
||||
final_results.append(f'接下来,你是一名专业的学术教授,利用以上信息,使用中文回答我的问题。')
|
||||
# 接下来两句话只显示在界面上,不起实际作用
|
||||
i_say_show_user = f'接下来,你是一名专业的学术教授,利用以上信息,使用中文回答我的问题。'; gpt_say = "[Local Message] 收到。"
|
||||
chatbot.append([i_say_show_user, gpt_say])
|
||||
|
||||
############################## <第 4 步,设置一个token上限,防止回答时Token溢出> ##################################
|
||||
from crazy_functions.crazy_utils import input_clipping
|
||||
_, final_results = input_clipping("", final_results, max_token_limit=3200)
|
||||
yield from update_ui(chatbot=chatbot, history=final_results) # 注意这里的历史记录被替代了
|
||||
|
||||
|
||||
@CatchException
|
||||
def 理解PDF文档内容标准文件输入(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
import glob, os
|
||||
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
"理解PDF论文内容,并且将结合上下文内容,进行学术解答。函数插件贡献者: Hanzoe, binary-husky"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
import fitz
|
||||
except:
|
||||
report_exception(chatbot, history,
|
||||
a = f"解析项目: {txt}",
|
||||
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# 清空历史,以免输入溢出
|
||||
history = []
|
||||
|
||||
# 检测输入参数,如没有给定输入参数,直接退出
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
else:
|
||||
if txt == "":
|
||||
txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history,
|
||||
a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# 搜索需要处理的文件清单
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.pdf', recursive=True)]
|
||||
# 如果没找到任何文件
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history,
|
||||
a=f"解析项目: {txt}", b=f"找不到任何.tex或.pdf文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
txt = file_manifest[0]
|
||||
# 开始正式执行任务
|
||||
yield from 解析PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
@@ -1,54 +0,0 @@
|
||||
from loguru import logger
|
||||
from toolbox import update_ui
|
||||
from toolbox import CatchException, report_exception
|
||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
|
||||
def 生成函数注释(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||
import time, os
|
||||
logger.info('begin analysis on:', file_manifest)
|
||||
for index, fp in enumerate(file_manifest):
|
||||
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
|
||||
file_content = f.read()
|
||||
|
||||
i_say = f'请对下面的程序文件做一个概述,并对文件中的所有函数生成注释,使用markdown表格输出结果,文件名是{os.path.relpath(fp, project_folder)},文件内容是 ```{file_content}```'
|
||||
i_say_show_user = f'[{index+1}/{len(file_manifest)}] 请对下面的程序文件做一个概述,并对文件中的所有函数生成注释: {os.path.abspath(fp)}'
|
||||
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
msg = '正常'
|
||||
# ** gpt request **
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
i_say, i_say_show_user, llm_kwargs, chatbot, history=[], sys_prompt=system_prompt) # 带超时倒计时
|
||||
|
||||
chatbot[-1] = (i_say_show_user, gpt_say)
|
||||
history.append(i_say_show_user); history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
||||
time.sleep(2)
|
||||
|
||||
res = write_history_to_file(history)
|
||||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
||||
chatbot.append(("完成了吗?", res))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
||||
|
||||
|
||||
|
||||
@CatchException
|
||||
def 批量生成函数注释(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.py', recursive=True)] + \
|
||||
[f for f in glob.glob(f'{project_folder}/**/*.cpp', recursive=True)]
|
||||
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
yield from 生成函数注释(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
@@ -1,437 +0,0 @@
|
||||
from toolbox import CatchException, update_ui, report_exception
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from crazy_functions.plugin_template.plugin_class_template import (
|
||||
GptAcademicPluginTemplate,
|
||||
)
|
||||
from crazy_functions.plugin_template.plugin_class_template import ArgProperty
|
||||
|
||||
# 以下是每类图表的PROMPT
|
||||
SELECT_PROMPT = """
|
||||
“{subject}”
|
||||
=============
|
||||
以上是从文章中提取的摘要,将会使用这些摘要绘制图表。请你选择一个合适的图表类型:
|
||||
1 流程图
|
||||
2 序列图
|
||||
3 类图
|
||||
4 饼图
|
||||
5 甘特图
|
||||
6 状态图
|
||||
7 实体关系图
|
||||
8 象限提示图
|
||||
不需要解释原因,仅需要输出单个不带任何标点符号的数字。
|
||||
"""
|
||||
# 没有思维导图!!!测试发现模型始终会优先选择思维导图
|
||||
# 流程图
|
||||
PROMPT_1 = """
|
||||
请你给出围绕“{subject}”的逻辑关系图,使用mermaid语法,注意需要使用双引号将内容括起来。
|
||||
mermaid语法举例:
|
||||
```mermaid
|
||||
graph TD
|
||||
P("编程") --> L1("Python")
|
||||
P("编程") --> L2("C")
|
||||
P("编程") --> L3("C++")
|
||||
P("编程") --> L4("Javascipt")
|
||||
P("编程") --> L5("PHP")
|
||||
```
|
||||
"""
|
||||
# 序列图
|
||||
PROMPT_2 = """
|
||||
请你给出围绕“{subject}”的序列图,使用mermaid语法。
|
||||
mermaid语法举例:
|
||||
```mermaid
|
||||
sequenceDiagram
|
||||
participant A as 用户
|
||||
participant B as 系统
|
||||
A->>B: 登录请求
|
||||
B->>A: 登录成功
|
||||
A->>B: 获取数据
|
||||
B->>A: 返回数据
|
||||
```
|
||||
"""
|
||||
# 类图
|
||||
PROMPT_3 = """
|
||||
请你给出围绕“{subject}”的类图,使用mermaid语法。
|
||||
mermaid语法举例:
|
||||
```mermaid
|
||||
classDiagram
|
||||
Class01 <|-- AveryLongClass : Cool
|
||||
Class03 *-- Class04
|
||||
Class05 o-- Class06
|
||||
Class07 .. Class08
|
||||
Class09 --> C2 : Where am i?
|
||||
Class09 --* C3
|
||||
Class09 --|> Class07
|
||||
Class07 : equals()
|
||||
Class07 : Object[] elementData
|
||||
Class01 : size()
|
||||
Class01 : int chimp
|
||||
Class01 : int gorilla
|
||||
Class08 <--> C2: Cool label
|
||||
```
|
||||
"""
|
||||
# 饼图
|
||||
PROMPT_4 = """
|
||||
请你给出围绕“{subject}”的饼图,使用mermaid语法,注意需要使用双引号将内容括起来。
|
||||
mermaid语法举例:
|
||||
```mermaid
|
||||
pie title Pets adopted by volunteers
|
||||
"狗" : 386
|
||||
"猫" : 85
|
||||
"兔子" : 15
|
||||
```
|
||||
"""
|
||||
# 甘特图
|
||||
PROMPT_5 = """
|
||||
请你给出围绕“{subject}”的甘特图,使用mermaid语法,注意需要使用双引号将内容括起来。
|
||||
mermaid语法举例:
|
||||
```mermaid
|
||||
gantt
|
||||
title "项目开发流程"
|
||||
dateFormat YYYY-MM-DD
|
||||
section "设计"
|
||||
"需求分析" :done, des1, 2024-01-06,2024-01-08
|
||||
"原型设计" :active, des2, 2024-01-09, 3d
|
||||
"UI设计" : des3, after des2, 5d
|
||||
section "开发"
|
||||
"前端开发" :2024-01-20, 10d
|
||||
"后端开发" :2024-01-20, 10d
|
||||
```
|
||||
"""
|
||||
# 状态图
|
||||
PROMPT_6 = """
|
||||
请你给出围绕“{subject}”的状态图,使用mermaid语法,注意需要使用双引号将内容括起来。
|
||||
mermaid语法举例:
|
||||
```mermaid
|
||||
stateDiagram-v2
|
||||
[*] --> "Still"
|
||||
"Still" --> [*]
|
||||
"Still" --> "Moving"
|
||||
"Moving" --> "Still"
|
||||
"Moving" --> "Crash"
|
||||
"Crash" --> [*]
|
||||
```
|
||||
"""
|
||||
# 实体关系图
|
||||
PROMPT_7 = """
|
||||
请你给出围绕“{subject}”的实体关系图,使用mermaid语法。
|
||||
mermaid语法举例:
|
||||
```mermaid
|
||||
erDiagram
|
||||
CUSTOMER ||--o{ ORDER : places
|
||||
ORDER ||--|{ LINE-ITEM : contains
|
||||
CUSTOMER {
|
||||
string name
|
||||
string id
|
||||
}
|
||||
ORDER {
|
||||
string orderNumber
|
||||
date orderDate
|
||||
string customerID
|
||||
}
|
||||
LINE-ITEM {
|
||||
number quantity
|
||||
string productID
|
||||
}
|
||||
```
|
||||
"""
|
||||
# 象限提示图
|
||||
PROMPT_8 = """
|
||||
请你给出围绕“{subject}”的象限图,使用mermaid语法,注意需要使用双引号将内容括起来。
|
||||
mermaid语法举例:
|
||||
```mermaid
|
||||
graph LR
|
||||
A["Hard skill"] --> B("Programming")
|
||||
A["Hard skill"] --> C("Design")
|
||||
D["Soft skill"] --> E("Coordination")
|
||||
D["Soft skill"] --> F("Communication")
|
||||
```
|
||||
"""
|
||||
# 思维导图
|
||||
PROMPT_9 = """
|
||||
{subject}
|
||||
==========
|
||||
请给出上方内容的思维导图,充分考虑其之间的逻辑,使用mermaid语法,注意需要使用双引号将内容括起来。
|
||||
mermaid语法举例:
|
||||
```mermaid
|
||||
mindmap
|
||||
root((mindmap))
|
||||
("Origins")
|
||||
("Long history")
|
||||
::icon(fa fa-book)
|
||||
("Popularisation")
|
||||
("British popular psychology author Tony Buzan")
|
||||
::icon(fa fa-user)
|
||||
("Research")
|
||||
("On effectiveness<br/>and features")
|
||||
::icon(fa fa-search)
|
||||
("On Automatic creation")
|
||||
::icon(fa fa-robot)
|
||||
("Uses")
|
||||
("Creative techniques")
|
||||
::icon(fa fa-lightbulb-o)
|
||||
("Strategic planning")
|
||||
::icon(fa fa-flag)
|
||||
("Argument mapping")
|
||||
::icon(fa fa-comments)
|
||||
("Tools")
|
||||
("Pen and paper")
|
||||
::icon(fa fa-pencil)
|
||||
("Mermaid")
|
||||
::icon(fa fa-code)
|
||||
```
|
||||
"""
|
||||
|
||||
|
||||
def 解析历史输入(history, llm_kwargs, file_manifest, chatbot, plugin_kwargs):
|
||||
############################## <第 0 步,切割输入> ##################################
|
||||
# 借用PDF切割中的函数对文本进行切割
|
||||
TOKEN_LIMIT_PER_FRAGMENT = 2500
|
||||
txt = (
|
||||
str(history).encode("utf-8", "ignore").decode()
|
||||
) # avoid reading non-utf8 chars
|
||||
from crazy_functions.pdf_fns.breakdown_txt import (
|
||||
breakdown_text_to_satisfy_token_limit,
|
||||
)
|
||||
|
||||
txt = breakdown_text_to_satisfy_token_limit(
|
||||
txt=txt, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs["llm_model"]
|
||||
)
|
||||
############################## <第 1 步,迭代地历遍整个文章,提取精炼信息> ##################################
|
||||
results = []
|
||||
MAX_WORD_TOTAL = 4096
|
||||
n_txt = len(txt)
|
||||
last_iteration_result = "从以下文本中提取摘要。"
|
||||
|
||||
for i in range(n_txt):
|
||||
NUM_OF_WORD = MAX_WORD_TOTAL // n_txt
|
||||
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words in Chinese: {txt[i]}"
|
||||
i_say_show_user = f"[{i+1}/{n_txt}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {txt[i][:200]} ...."
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
i_say,
|
||||
i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
|
||||
llm_kwargs,
|
||||
chatbot,
|
||||
history=[
|
||||
"The main content of the previous section is?",
|
||||
last_iteration_result,
|
||||
], # 迭代上一次的结果
|
||||
sys_prompt="Extracts the main content from the text section where it is located for graphing purposes, answer me with Chinese.", # 提示
|
||||
)
|
||||
results.append(gpt_say)
|
||||
last_iteration_result = gpt_say
|
||||
############################## <第 2 步,根据整理的摘要选择图表类型> ##################################
|
||||
gpt_say = str(plugin_kwargs) # 将图表类型参数赋值为插件参数
|
||||
results_txt = "\n".join(results) # 合并摘要
|
||||
if gpt_say not in [
|
||||
"1",
|
||||
"2",
|
||||
"3",
|
||||
"4",
|
||||
"5",
|
||||
"6",
|
||||
"7",
|
||||
"8",
|
||||
"9",
|
||||
]: # 如插件参数不正确则使用对话模型判断
|
||||
i_say_show_user = (
|
||||
f"接下来将判断适合的图表类型,如连续3次判断失败将会使用流程图进行绘制"
|
||||
)
|
||||
gpt_say = "[Local Message] 收到。" # 用户提示
|
||||
chatbot.append([i_say_show_user, gpt_say])
|
||||
yield from update_ui(chatbot=chatbot, history=[]) # 更新UI
|
||||
i_say = SELECT_PROMPT.format(subject=results_txt)
|
||||
i_say_show_user = f'请判断适合使用的流程图类型,其中数字对应关系为:1-流程图,2-序列图,3-类图,4-饼图,5-甘特图,6-状态图,7-实体关系图,8-象限提示图。由于不管提供文本是什么,模型大概率认为"思维导图"最合适,因此思维导图仅能通过参数调用。'
|
||||
for i in range(3):
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say,
|
||||
inputs_show_user=i_say_show_user,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
history=[],
|
||||
sys_prompt="",
|
||||
)
|
||||
if gpt_say in [
|
||||
"1",
|
||||
"2",
|
||||
"3",
|
||||
"4",
|
||||
"5",
|
||||
"6",
|
||||
"7",
|
||||
"8",
|
||||
"9",
|
||||
]: # 判断返回是否正确
|
||||
break
|
||||
if gpt_say not in ["1", "2", "3", "4", "5", "6", "7", "8", "9"]:
|
||||
gpt_say = "1"
|
||||
############################## <第 3 步,根据选择的图表类型绘制图表> ##################################
|
||||
if gpt_say == "1":
|
||||
i_say = PROMPT_1.format(subject=results_txt)
|
||||
elif gpt_say == "2":
|
||||
i_say = PROMPT_2.format(subject=results_txt)
|
||||
elif gpt_say == "3":
|
||||
i_say = PROMPT_3.format(subject=results_txt)
|
||||
elif gpt_say == "4":
|
||||
i_say = PROMPT_4.format(subject=results_txt)
|
||||
elif gpt_say == "5":
|
||||
i_say = PROMPT_5.format(subject=results_txt)
|
||||
elif gpt_say == "6":
|
||||
i_say = PROMPT_6.format(subject=results_txt)
|
||||
elif gpt_say == "7":
|
||||
i_say = PROMPT_7.replace("{subject}", results_txt) # 由于实体关系图用到了{}符号
|
||||
elif gpt_say == "8":
|
||||
i_say = PROMPT_8.format(subject=results_txt)
|
||||
elif gpt_say == "9":
|
||||
i_say = PROMPT_9.format(subject=results_txt)
|
||||
i_say_show_user = f"请根据判断结果绘制相应的图表。如需绘制思维导图请使用参数调用,同时过大的图表可能需要复制到在线编辑器中进行渲染。"
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say,
|
||||
inputs_show_user=i_say_show_user,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
history=[],
|
||||
sys_prompt="",
|
||||
)
|
||||
history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
|
||||
|
||||
@CatchException
|
||||
def 生成多种Mermaid图表(
|
||||
txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port
|
||||
):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数,用于灵活调整复杂功能的各种参数
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
web_port 当前软件运行的端口号
|
||||
"""
|
||||
import os
|
||||
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append(
|
||||
[
|
||||
"函数插件功能?",
|
||||
"根据当前聊天历史或指定的路径文件(文件内容优先)绘制多种mermaid图表,将会由对话模型首先判断适合的图表类型,随后绘制图表。\
|
||||
\n您也可以使用插件参数指定绘制的图表类型,函数插件贡献者: Menghuan1918",
|
||||
]
|
||||
)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
if os.path.exists(txt): # 如输入区无内容则直接解析历史记录
|
||||
from crazy_functions.pdf_fns.parse_word import extract_text_from_files
|
||||
|
||||
file_exist, final_result, page_one, file_manifest, excption = (
|
||||
extract_text_from_files(txt, chatbot, history)
|
||||
)
|
||||
else:
|
||||
file_exist = False
|
||||
excption = ""
|
||||
file_manifest = []
|
||||
|
||||
if excption != "":
|
||||
if excption == "word":
|
||||
report_exception(
|
||||
chatbot,
|
||||
history,
|
||||
a=f"解析项目: {txt}",
|
||||
b=f"找到了.doc文件,但是该文件格式不被支持,请先转化为.docx格式。",
|
||||
)
|
||||
|
||||
elif excption == "pdf":
|
||||
report_exception(
|
||||
chatbot,
|
||||
history,
|
||||
a=f"解析项目: {txt}",
|
||||
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。",
|
||||
)
|
||||
|
||||
elif excption == "word_pip":
|
||||
report_exception(
|
||||
chatbot,
|
||||
history,
|
||||
a=f"解析项目: {txt}",
|
||||
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade python-docx pywin32```。",
|
||||
)
|
||||
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
else:
|
||||
if not file_exist:
|
||||
history.append(txt) # 如输入区不是文件则将输入区内容加入历史记录
|
||||
i_say_show_user = f"首先你从历史记录中提取摘要。"
|
||||
gpt_say = "[Local Message] 收到。" # 用户提示
|
||||
chatbot.append([i_say_show_user, gpt_say])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 更新UI
|
||||
yield from 解析历史输入(
|
||||
history, llm_kwargs, file_manifest, chatbot, plugin_kwargs
|
||||
)
|
||||
else:
|
||||
file_num = len(file_manifest)
|
||||
for i in range(file_num): # 依次处理文件
|
||||
i_say_show_user = f"[{i+1}/{file_num}]处理文件{file_manifest[i]}"
|
||||
gpt_say = "[Local Message] 收到。" # 用户提示
|
||||
chatbot.append([i_say_show_user, gpt_say])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 更新UI
|
||||
history = [] # 如输入区内容为文件则清空历史记录
|
||||
history.append(final_result[i])
|
||||
yield from 解析历史输入(
|
||||
history, llm_kwargs, file_manifest, chatbot, plugin_kwargs
|
||||
)
|
||||
|
||||
|
||||
class Mermaid_Gen(GptAcademicPluginTemplate):
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def define_arg_selection_menu(self):
|
||||
gui_definition = {
|
||||
"Type_of_Mermaid": ArgProperty(
|
||||
title="绘制的Mermaid图表类型",
|
||||
options=[
|
||||
"由LLM决定",
|
||||
"流程图",
|
||||
"序列图",
|
||||
"类图",
|
||||
"饼图",
|
||||
"甘特图",
|
||||
"状态图",
|
||||
"实体关系图",
|
||||
"象限提示图",
|
||||
"思维导图",
|
||||
],
|
||||
default_value="由LLM决定",
|
||||
description="选择'由LLM决定'时将由对话模型判断适合的图表类型(不包括思维导图),选择其他类型时将直接绘制指定的图表类型。",
|
||||
type="dropdown",
|
||||
).model_dump_json(),
|
||||
}
|
||||
return gui_definition
|
||||
|
||||
def execute(
|
||||
txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request
|
||||
):
|
||||
options = [
|
||||
"由LLM决定",
|
||||
"流程图",
|
||||
"序列图",
|
||||
"类图",
|
||||
"饼图",
|
||||
"甘特图",
|
||||
"状态图",
|
||||
"实体关系图",
|
||||
"象限提示图",
|
||||
"思维导图",
|
||||
]
|
||||
plugin_kwargs = options.index(plugin_kwargs['Type_of_Mermaid'])
|
||||
yield from 生成多种Mermaid图表(
|
||||
txt,
|
||||
llm_kwargs,
|
||||
plugin_kwargs,
|
||||
chatbot,
|
||||
history,
|
||||
system_prompt,
|
||||
user_request,
|
||||
)
|
||||
@@ -1,117 +0,0 @@
|
||||
from toolbox import CatchException, update_ui, ProxyNetworkActivate, update_ui_lastest_msg, get_log_folder, get_user
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, get_files_from_everything
|
||||
from loguru import logger
|
||||
install_msg ="""
|
||||
|
||||
1. python -m pip install torch --index-url https://download.pytorch.org/whl/cpu
|
||||
|
||||
2. python -m pip install transformers protobuf langchain sentence-transformers faiss-cpu nltk beautifulsoup4 bitsandbytes tabulate icetk --upgrade
|
||||
|
||||
3. python -m pip install unstructured[all-docs] --upgrade
|
||||
|
||||
4. python -c 'import nltk; nltk.download("punkt")'
|
||||
"""
|
||||
|
||||
@CatchException
|
||||
def 知识库文件注入(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数, 如温度和top_p等, 一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数,暂时没有用武之地
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
|
||||
# < --------------------读取参数--------------- >
|
||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||
kai_id = plugin_kwargs.get("advanced_arg", 'default')
|
||||
|
||||
chatbot.append((f"向`{kai_id}`知识库中添加文件。", "[Local Message] 从一批文件(txt, md, tex)中读取数据构建知识库, 然后进行问答。"))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# resolve deps
|
||||
try:
|
||||
# from zh_langchain import construct_vector_store
|
||||
# from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
||||
from crazy_functions.vector_fns.vector_database import knowledge_archive_interface
|
||||
except Exception as e:
|
||||
chatbot.append(["依赖不足", f"{str(e)}\n\n导入依赖失败。请用以下命令安装" + install_msg])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
# from crazy_functions.crazy_utils import try_install_deps
|
||||
# try_install_deps(['zh_langchain==0.2.1', 'pypinyin'], reload_m=['pypinyin', 'zh_langchain'])
|
||||
# yield from update_ui_lastest_msg("安装完成,您可以再次重试。", chatbot, history)
|
||||
return
|
||||
|
||||
# < --------------------读取文件--------------- >
|
||||
file_manifest = []
|
||||
spl = ["txt", "doc", "docx", "email", "epub", "html", "json", "md", "msg", "pdf", "ppt", "pptx", "rtf"]
|
||||
for sp in spl:
|
||||
_, file_manifest_tmp, _ = get_files_from_everything(txt, type=f'.{sp}')
|
||||
file_manifest += file_manifest_tmp
|
||||
|
||||
if len(file_manifest) == 0:
|
||||
chatbot.append(["没有找到任何可读取文件", "当前支持的格式包括: txt, md, docx, pptx, pdf, json等"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# < -------------------预热文本向量化模组--------------- >
|
||||
chatbot.append(['<br/>'.join(file_manifest), "正在预热文本向量化模组, 如果是第一次运行, 将消耗较长时间下载中文向量化模型..."])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
logger.info('Checking Text2vec ...')
|
||||
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
||||
with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络
|
||||
HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese")
|
||||
|
||||
# < -------------------构建知识库--------------- >
|
||||
chatbot.append(['<br/>'.join(file_manifest), "正在构建知识库..."])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
logger.info('Establishing knowledge archive ...')
|
||||
with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络
|
||||
kai = knowledge_archive_interface()
|
||||
vs_path = get_log_folder(user=get_user(chatbot), plugin_name='vec_store')
|
||||
kai.feed_archive(file_manifest=file_manifest, vs_path=vs_path, id=kai_id)
|
||||
kai_files = kai.get_loaded_file(vs_path=vs_path)
|
||||
kai_files = '<br/>'.join(kai_files)
|
||||
# chatbot.append(['知识库构建成功', "正在将知识库存储至cookie中"])
|
||||
# yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
# chatbot._cookies['langchain_plugin_embedding'] = kai.get_current_archive_id()
|
||||
# chatbot._cookies['lock_plugin'] = 'crazy_functions.知识库文件注入->读取知识库作答'
|
||||
# chatbot.append(['完成', "“根据知识库作答”函数插件已经接管问答系统, 提问吧! 但注意, 您接下来不能再使用其他插件了,刷新页面即可以退出知识库问答模式。"])
|
||||
chatbot.append(['构建完成', f"当前知识库内的有效文件:\n\n---\n\n{kai_files}\n\n---\n\n请切换至“知识库问答”插件进行知识库访问, 或者使用此插件继续上传更多文件。"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||
|
||||
@CatchException
|
||||
def 读取知识库作答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request=-1):
|
||||
# resolve deps
|
||||
try:
|
||||
# from zh_langchain import construct_vector_store
|
||||
# from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
||||
from crazy_functions.vector_fns.vector_database import knowledge_archive_interface
|
||||
except Exception as e:
|
||||
chatbot.append(["依赖不足", f"{str(e)}\n\n导入依赖失败。请用以下命令安装" + install_msg])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
# from crazy_functions.crazy_utils import try_install_deps
|
||||
# try_install_deps(['zh_langchain==0.2.1', 'pypinyin'], reload_m=['pypinyin', 'zh_langchain'])
|
||||
# yield from update_ui_lastest_msg("安装完成,您可以再次重试。", chatbot, history)
|
||||
return
|
||||
|
||||
# < ------------------- --------------- >
|
||||
kai = knowledge_archive_interface()
|
||||
|
||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||
kai_id = plugin_kwargs.get("advanced_arg", 'default')
|
||||
vs_path = get_log_folder(user=get_user(chatbot), plugin_name='vec_store')
|
||||
resp, prompt = kai.answer_with_archive_by_id(txt, kai_id, vs_path)
|
||||
|
||||
chatbot.append((txt, f'[知识库 {kai_id}] ' + prompt))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=prompt, inputs_show_user=txt,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||
sys_prompt=system_prompt
|
||||
)
|
||||
history.extend((prompt, gpt_say))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||
@@ -1,106 +0,0 @@
|
||||
from toolbox import CatchException, update_ui
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
|
||||
import requests
|
||||
from bs4 import BeautifulSoup
|
||||
from request_llms.bridge_all import model_info
|
||||
|
||||
def google(query, proxies):
|
||||
query = query # 在此处替换您要搜索的关键词
|
||||
url = f"https://www.google.com/search?q={query}"
|
||||
headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36'}
|
||||
response = requests.get(url, headers=headers, proxies=proxies)
|
||||
soup = BeautifulSoup(response.content, 'html.parser')
|
||||
results = []
|
||||
for g in soup.find_all('div', class_='g'):
|
||||
anchors = g.find_all('a')
|
||||
if anchors:
|
||||
link = anchors[0]['href']
|
||||
if link.startswith('/url?q='):
|
||||
link = link[7:]
|
||||
if not link.startswith('http'):
|
||||
continue
|
||||
title = g.find('h3').text
|
||||
item = {'title': title, 'link': link}
|
||||
results.append(item)
|
||||
|
||||
# for r in results:
|
||||
# print(r['link'])
|
||||
return results
|
||||
|
||||
def scrape_text(url, proxies) -> str:
|
||||
"""Scrape text from a webpage
|
||||
|
||||
Args:
|
||||
url (str): The URL to scrape text from
|
||||
|
||||
Returns:
|
||||
str: The scraped text
|
||||
"""
|
||||
headers = {
|
||||
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36',
|
||||
'Content-Type': 'text/plain',
|
||||
}
|
||||
try:
|
||||
response = requests.get(url, headers=headers, proxies=proxies, timeout=8)
|
||||
if response.encoding == "ISO-8859-1": response.encoding = response.apparent_encoding
|
||||
except:
|
||||
return "无法连接到该网页"
|
||||
soup = BeautifulSoup(response.text, "html.parser")
|
||||
for script in soup(["script", "style"]):
|
||||
script.extract()
|
||||
text = soup.get_text()
|
||||
lines = (line.strip() for line in text.splitlines())
|
||||
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
|
||||
text = "\n".join(chunk for chunk in chunks if chunk)
|
||||
return text
|
||||
|
||||
@CatchException
|
||||
def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数,暂时没有用武之地
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
chatbot.append((f"请结合互联网信息回答以下问题:{txt}",
|
||||
"[Local Message] 请注意,您正在调用一个[函数插件]的模板,该模板可以实现ChatGPT联网信息综合。该函数面向希望实现更多有趣功能的开发者,它可以作为创建新功能函数的模板。您若希望分享新的功能模组,请不吝PR!"))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||
|
||||
# ------------- < 第1步:爬取搜索引擎的结果 > -------------
|
||||
from toolbox import get_conf
|
||||
proxies = get_conf('proxies')
|
||||
urls = google(txt, proxies)
|
||||
history = []
|
||||
if len(urls) == 0:
|
||||
chatbot.append((f"结论:{txt}",
|
||||
"[Local Message] 受到google限制,无法从google获取信息!"))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||
return
|
||||
# ------------- < 第2步:依次访问网页 > -------------
|
||||
max_search_result = 5 # 最多收纳多少个网页的结果
|
||||
for index, url in enumerate(urls[:max_search_result]):
|
||||
res = scrape_text(url['link'], proxies)
|
||||
history.extend([f"第{index}份搜索结果:", res])
|
||||
chatbot.append([f"第{index}份搜索结果:", res[:500]+"......"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||
|
||||
# ------------- < 第3步:ChatGPT综合 > -------------
|
||||
i_say = f"从以上搜索结果中抽取信息,然后回答问题:{txt}"
|
||||
i_say, history = input_clipping( # 裁剪输入,从最长的条目开始裁剪,防止爆token
|
||||
inputs=i_say,
|
||||
history=history,
|
||||
max_token_limit=model_info[llm_kwargs['llm_model']]['max_token']*3//4
|
||||
)
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say, inputs_show_user=i_say,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||
sys_prompt="请从给定的若干条搜索结果中抽取信息,对最相关的两个搜索结果进行总结,然后回答问题。"
|
||||
)
|
||||
chatbot[-1] = (i_say, gpt_say)
|
||||
history.append(i_say);history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
|
||||
@@ -1,106 +0,0 @@
|
||||
from toolbox import CatchException, update_ui
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
|
||||
import requests
|
||||
from bs4 import BeautifulSoup
|
||||
from request_llms.bridge_all import model_info
|
||||
|
||||
|
||||
def bing_search(query, proxies=None):
|
||||
query = query
|
||||
url = f"https://cn.bing.com/search?q={query}"
|
||||
headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36'}
|
||||
response = requests.get(url, headers=headers, proxies=proxies)
|
||||
soup = BeautifulSoup(response.content, 'html.parser')
|
||||
results = []
|
||||
for g in soup.find_all('li', class_='b_algo'):
|
||||
anchors = g.find_all('a')
|
||||
if anchors:
|
||||
link = anchors[0]['href']
|
||||
if not link.startswith('http'):
|
||||
continue
|
||||
title = g.find('h2').text
|
||||
item = {'title': title, 'link': link}
|
||||
results.append(item)
|
||||
|
||||
# for r in results:
|
||||
# print(r['link'])
|
||||
return results
|
||||
|
||||
|
||||
def scrape_text(url, proxies) -> str:
|
||||
"""Scrape text from a webpage
|
||||
|
||||
Args:
|
||||
url (str): The URL to scrape text from
|
||||
|
||||
Returns:
|
||||
str: The scraped text
|
||||
"""
|
||||
headers = {
|
||||
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36',
|
||||
'Content-Type': 'text/plain',
|
||||
}
|
||||
try:
|
||||
response = requests.get(url, headers=headers, proxies=proxies, timeout=8)
|
||||
if response.encoding == "ISO-8859-1": response.encoding = response.apparent_encoding
|
||||
except:
|
||||
return "无法连接到该网页"
|
||||
soup = BeautifulSoup(response.text, "html.parser")
|
||||
for script in soup(["script", "style"]):
|
||||
script.extract()
|
||||
text = soup.get_text()
|
||||
lines = (line.strip() for line in text.splitlines())
|
||||
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
|
||||
text = "\n".join(chunk for chunk in chunks if chunk)
|
||||
return text
|
||||
|
||||
@CatchException
|
||||
def 连接bing搜索回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数,暂时没有用武之地
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
chatbot.append((f"请结合互联网信息回答以下问题:{txt}",
|
||||
"[Local Message] 请注意,您正在调用一个[函数插件]的模板,该模板可以实现ChatGPT联网信息综合。该函数面向希望实现更多有趣功能的开发者,它可以作为创建新功能函数的模板。您若希望分享新的功能模组,请不吝PR!"))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||
|
||||
# ------------- < 第1步:爬取搜索引擎的结果 > -------------
|
||||
from toolbox import get_conf
|
||||
proxies = get_conf('proxies')
|
||||
urls = bing_search(txt, proxies)
|
||||
history = []
|
||||
if len(urls) == 0:
|
||||
chatbot.append((f"结论:{txt}",
|
||||
"[Local Message] 受到bing限制,无法从bing获取信息!"))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||
return
|
||||
# ------------- < 第2步:依次访问网页 > -------------
|
||||
max_search_result = 8 # 最多收纳多少个网页的结果
|
||||
for index, url in enumerate(urls[:max_search_result]):
|
||||
res = scrape_text(url['link'], proxies)
|
||||
history.extend([f"第{index}份搜索结果:", res])
|
||||
chatbot.append([f"第{index}份搜索结果:", res[:500]+"......"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||
|
||||
# ------------- < 第3步:ChatGPT综合 > -------------
|
||||
i_say = f"从以上搜索结果中抽取信息,然后回答问题:{txt}"
|
||||
i_say, history = input_clipping( # 裁剪输入,从最长的条目开始裁剪,防止爆token
|
||||
inputs=i_say,
|
||||
history=history,
|
||||
max_token_limit=model_info[llm_kwargs['llm_model']]['max_token']*3//4
|
||||
)
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say, inputs_show_user=i_say,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||
sys_prompt="请从给定的若干条搜索结果中抽取信息,对最相关的两个搜索结果进行总结,然后回答问题。"
|
||||
)
|
||||
chatbot[-1] = (i_say, gpt_say)
|
||||
history.append(i_say);history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
|
||||
@@ -1,180 +0,0 @@
|
||||
"""
|
||||
Explanation of the Void Terminal Plugin:
|
||||
|
||||
Please describe in natural language what you want to do.
|
||||
|
||||
1. You can open the plugin's dropdown menu to explore various capabilities of this project, and then describe your needs in natural language, for example:
|
||||
- "Please call the plugin to translate a PDF paper for me. I just uploaded the paper to the upload area."
|
||||
- "Please use the plugin to translate a PDF paper, with the address being https://www.nature.com/articles/s41586-019-1724-z.pdf."
|
||||
- "Generate an image with blooming flowers and lush green grass using the plugin."
|
||||
- "Translate the README using the plugin. The GitHub URL is https://github.com/facebookresearch/co-tracker."
|
||||
- "Translate an Arxiv paper for me. The Arxiv ID is 1812.10695. Remember to use the plugin and don't do it manually!"
|
||||
- "I don't like the current interface color. Modify the configuration and change the theme to THEME="High-Contrast"."
|
||||
- "Could you please explain the structure of the Transformer network?"
|
||||
|
||||
2. If you use keywords like "call the plugin xxx", "modify the configuration xxx", "please", etc., your intention can be recognized more accurately.
|
||||
|
||||
3. Your intention can be recognized more accurately when using powerful models like GPT4. This plugin is relatively new, so please feel free to provide feedback on GitHub.
|
||||
|
||||
4. Now, if you need to process a file, please upload the file (drag the file to the file upload area) or describe the path to the file.
|
||||
|
||||
5. If you don't need to upload a file, you can simply repeat your command again.
|
||||
"""
|
||||
explain_msg = """
|
||||
## 虚空终端插件说明:
|
||||
|
||||
1. 请用**自然语言**描述您需要做什么。例如:
|
||||
- 「请调用插件,为我翻译PDF论文,论文我刚刚放到上传区了」
|
||||
- 「请调用插件翻译PDF论文,地址为https://openreview.net/pdf?id=rJl0r3R9KX」
|
||||
- 「把Arxiv论文翻译成中文PDF,arxiv论文的ID是1812.10695,记得用插件!」
|
||||
- 「生成一张图片,图中鲜花怒放,绿草如茵,用插件实现」
|
||||
- 「用插件翻译README,Github网址是https://github.com/facebookresearch/co-tracker」
|
||||
- 「我不喜欢当前的界面颜色,修改配置,把主题THEME更换为THEME="High-Contrast"」
|
||||
- 「请调用插件,解析python源代码项目,代码我刚刚打包拖到上传区了」
|
||||
- 「请问Transformer网络的结构是怎样的?」
|
||||
|
||||
2. 您可以打开插件下拉菜单以了解本项目的各种能力。
|
||||
|
||||
3. 如果您使用「调用插件xxx」、「修改配置xxx」、「请问」等关键词,您的意图可以被识别的更准确。
|
||||
|
||||
4. 建议使用 GPT3.5 或更强的模型,弱模型可能无法理解您的想法。该插件诞生时间不长,欢迎您前往Github反馈问题。
|
||||
|
||||
5. 现在,如果需要处理文件,请您上传文件(将文件拖动到文件上传区),或者描述文件所在的路径。
|
||||
|
||||
6. 如果不需要上传文件,现在您只需要再次重复一次您的指令即可。
|
||||
"""
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import List
|
||||
from toolbox import CatchException, update_ui, is_the_upload_folder
|
||||
from toolbox import update_ui_lastest_msg, disable_auto_promotion
|
||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from crazy_functions.crazy_utils import input_clipping
|
||||
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
|
||||
from crazy_functions.vt_fns.vt_state import VoidTerminalState
|
||||
from crazy_functions.vt_fns.vt_modify_config import modify_configuration_hot
|
||||
from crazy_functions.vt_fns.vt_modify_config import modify_configuration_reboot
|
||||
from crazy_functions.vt_fns.vt_call_plugin import execute_plugin
|
||||
|
||||
class UserIntention(BaseModel):
|
||||
user_prompt: str = Field(description="the content of user input", default="")
|
||||
intention_type: str = Field(description="the type of user intention, choose from ['ModifyConfiguration', 'ExecutePlugin', 'Chat']", default="ExecutePlugin")
|
||||
user_provide_file: bool = Field(description="whether the user provides a path to a file", default=False)
|
||||
user_provide_url: bool = Field(description="whether the user provides a url", default=False)
|
||||
|
||||
|
||||
def chat(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_intention):
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=txt, inputs_show_user=txt,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||
sys_prompt=system_prompt
|
||||
)
|
||||
chatbot[-1] = [txt, gpt_say]
|
||||
history.extend([txt, gpt_say])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
pass
|
||||
|
||||
|
||||
explain_intention_to_user = {
|
||||
'Chat': "聊天对话",
|
||||
'ExecutePlugin': "调用插件",
|
||||
'ModifyConfiguration': "修改配置",
|
||||
}
|
||||
|
||||
|
||||
def analyze_intention_with_simple_rules(txt):
|
||||
user_intention = UserIntention()
|
||||
user_intention.user_prompt = txt
|
||||
is_certain = False
|
||||
|
||||
if '请问' in txt:
|
||||
is_certain = True
|
||||
user_intention.intention_type = 'Chat'
|
||||
|
||||
if '用插件' in txt:
|
||||
is_certain = True
|
||||
user_intention.intention_type = 'ExecutePlugin'
|
||||
|
||||
if '修改配置' in txt:
|
||||
is_certain = True
|
||||
user_intention.intention_type = 'ModifyConfiguration'
|
||||
|
||||
return is_certain, user_intention
|
||||
|
||||
|
||||
@CatchException
|
||||
def 虚空终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
disable_auto_promotion(chatbot=chatbot)
|
||||
# 获取当前虚空终端状态
|
||||
state = VoidTerminalState.get_state(chatbot)
|
||||
appendix_msg = ""
|
||||
|
||||
# 用简单的关键词检测用户意图
|
||||
is_certain, _ = analyze_intention_with_simple_rules(txt)
|
||||
if is_the_upload_folder(txt):
|
||||
state.set_state(chatbot=chatbot, key='has_provided_explaination', value=False)
|
||||
appendix_msg = "\n\n**很好,您已经上传了文件**,现在请您描述您的需求。"
|
||||
|
||||
if is_certain or (state.has_provided_explaination):
|
||||
# 如果意图明确,跳过提示环节
|
||||
state.set_state(chatbot=chatbot, key='has_provided_explaination', value=True)
|
||||
state.unlock_plugin(chatbot=chatbot)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
yield from 虚空终端主路由(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
||||
return
|
||||
else:
|
||||
# 如果意图模糊,提示
|
||||
state.set_state(chatbot=chatbot, key='has_provided_explaination', value=True)
|
||||
state.lock_plugin(chatbot=chatbot)
|
||||
chatbot.append(("虚空终端状态:", explain_msg+appendix_msg))
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
return
|
||||
|
||||
|
||||
|
||||
def 虚空终端主路由(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
history = []
|
||||
chatbot.append(("虚空终端状态: ", f"正在执行任务: {txt}"))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# ⭐ ⭐ ⭐ 分析用户意图
|
||||
is_certain, user_intention = analyze_intention_with_simple_rules(txt)
|
||||
if not is_certain:
|
||||
yield from update_ui_lastest_msg(
|
||||
lastmsg=f"正在执行任务: {txt}\n\n分析用户意图中", chatbot=chatbot, history=history, delay=0)
|
||||
gpt_json_io = GptJsonIO(UserIntention)
|
||||
rf_req = "\nchoose from ['ModifyConfiguration', 'ExecutePlugin', 'Chat']"
|
||||
inputs = "Analyze the intention of the user according to following user input: \n\n" + \
|
||||
">> " + (txt+rf_req).rstrip('\n').replace('\n','\n>> ') + '\n\n' + gpt_json_io.format_instructions
|
||||
run_gpt_fn = lambda inputs, sys_prompt: predict_no_ui_long_connection(
|
||||
inputs=inputs, llm_kwargs=llm_kwargs, history=[], sys_prompt=sys_prompt, observe_window=[])
|
||||
analyze_res = run_gpt_fn(inputs, "")
|
||||
try:
|
||||
user_intention = gpt_json_io.generate_output_auto_repair(analyze_res, run_gpt_fn)
|
||||
lastmsg=f"正在执行任务: {txt}\n\n用户意图理解: 意图={explain_intention_to_user[user_intention.intention_type]}",
|
||||
except JsonStringError as e:
|
||||
yield from update_ui_lastest_msg(
|
||||
lastmsg=f"正在执行任务: {txt}\n\n用户意图理解: 失败 当前语言模型({llm_kwargs['llm_model']})不能理解您的意图", chatbot=chatbot, history=history, delay=0)
|
||||
return
|
||||
else:
|
||||
pass
|
||||
|
||||
yield from update_ui_lastest_msg(
|
||||
lastmsg=f"正在执行任务: {txt}\n\n用户意图理解: 意图={explain_intention_to_user[user_intention.intention_type]}",
|
||||
chatbot=chatbot, history=history, delay=0)
|
||||
|
||||
# 用户意图: 修改本项目的配置
|
||||
if user_intention.intention_type == 'ModifyConfiguration':
|
||||
yield from modify_configuration_reboot(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_intention)
|
||||
|
||||
# 用户意图: 调度插件
|
||||
if user_intention.intention_type == 'ExecutePlugin':
|
||||
yield from execute_plugin(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_intention)
|
||||
|
||||
# 用户意图: 聊天
|
||||
if user_intention.intention_type == 'Chat':
|
||||
yield from chat(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_intention)
|
||||
|
||||
return
|
||||
|
||||
@@ -1,146 +0,0 @@
|
||||
from toolbox import update_ui
|
||||
from toolbox import CatchException, report_exception
|
||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||
fast_debug = True
|
||||
|
||||
|
||||
class PaperFileGroup():
|
||||
def __init__(self):
|
||||
self.file_paths = []
|
||||
self.file_contents = []
|
||||
self.sp_file_contents = []
|
||||
self.sp_file_index = []
|
||||
self.sp_file_tag = []
|
||||
|
||||
# count_token
|
||||
from request_llms.bridge_all import model_info
|
||||
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
||||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||||
self.get_token_num = get_token_num
|
||||
|
||||
def run_file_split(self, max_token_limit=1900):
|
||||
"""
|
||||
将长文本分离开来
|
||||
"""
|
||||
for index, file_content in enumerate(self.file_contents):
|
||||
if self.get_token_num(file_content) < max_token_limit:
|
||||
self.sp_file_contents.append(file_content)
|
||||
self.sp_file_index.append(index)
|
||||
self.sp_file_tag.append(self.file_paths[index])
|
||||
else:
|
||||
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
|
||||
segments = breakdown_text_to_satisfy_token_limit(file_content, max_token_limit)
|
||||
for j, segment in enumerate(segments):
|
||||
self.sp_file_contents.append(segment)
|
||||
self.sp_file_index.append(index)
|
||||
self.sp_file_tag.append(
|
||||
self.file_paths[index] + f".part-{j}.txt")
|
||||
|
||||
|
||||
|
||||
def parseNotebook(filename, enable_markdown=1):
|
||||
import json
|
||||
|
||||
CodeBlocks = []
|
||||
with open(filename, 'r', encoding='utf-8', errors='replace') as f:
|
||||
notebook = json.load(f)
|
||||
for cell in notebook['cells']:
|
||||
if cell['cell_type'] == 'code' and cell['source']:
|
||||
# remove blank lines
|
||||
cell['source'] = [line for line in cell['source'] if line.strip()
|
||||
!= '']
|
||||
CodeBlocks.append("".join(cell['source']))
|
||||
elif enable_markdown and cell['cell_type'] == 'markdown' and cell['source']:
|
||||
cell['source'] = [line for line in cell['source'] if line.strip()
|
||||
!= '']
|
||||
CodeBlocks.append("Markdown:"+"".join(cell['source']))
|
||||
|
||||
Code = ""
|
||||
for idx, code in enumerate(CodeBlocks):
|
||||
Code += f"This is {idx+1}th code block: \n"
|
||||
Code += code+"\n"
|
||||
|
||||
return Code
|
||||
|
||||
|
||||
def ipynb解释(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||
|
||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||
enable_markdown = plugin_kwargs.get("advanced_arg", "1")
|
||||
try:
|
||||
enable_markdown = int(enable_markdown)
|
||||
except ValueError:
|
||||
enable_markdown = 1
|
||||
|
||||
pfg = PaperFileGroup()
|
||||
|
||||
for fp in file_manifest:
|
||||
file_content = parseNotebook(fp, enable_markdown=enable_markdown)
|
||||
pfg.file_paths.append(fp)
|
||||
pfg.file_contents.append(file_content)
|
||||
|
||||
# <-------- 拆分过长的IPynb文件 ---------->
|
||||
pfg.run_file_split(max_token_limit=1024)
|
||||
n_split = len(pfg.sp_file_contents)
|
||||
|
||||
inputs_array = [r"This is a Jupyter Notebook file, tell me about Each Block in Chinese. Focus Just On Code." +
|
||||
r"If a block starts with `Markdown` which means it's a markdown block in ipynbipynb. " +
|
||||
r"Start a new line for a block and block num use Chinese." +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
inputs_show_user_array = [f"{f}的分析如下" for f in pfg.sp_file_tag]
|
||||
sys_prompt_array = ["You are a professional programmer."] * n_split
|
||||
|
||||
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
inputs_array=inputs_array,
|
||||
inputs_show_user_array=inputs_show_user_array,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
history_array=[[""] for _ in range(n_split)],
|
||||
sys_prompt_array=sys_prompt_array,
|
||||
# max_workers=5, # OpenAI所允许的最大并行过载
|
||||
scroller_max_len=80
|
||||
)
|
||||
|
||||
# <-------- 整理结果,退出 ---------->
|
||||
block_result = " \n".join(gpt_response_collection)
|
||||
chatbot.append(("解析的结果如下", block_result))
|
||||
history.extend(["解析的结果如下", block_result])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# <-------- 写入文件,退出 ---------->
|
||||
res = write_history_to_file(history)
|
||||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
||||
chatbot.append(("完成了吗?", res))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
@CatchException
|
||||
def 解析ipynb文件(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
"对IPynb文件进行解析。Contributor: codycjy."])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
history = [] # 清空历史
|
||||
import glob
|
||||
import os
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
else:
|
||||
if txt == "":
|
||||
txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history,
|
||||
a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
if txt.endswith('.ipynb'):
|
||||
file_manifest = [txt]
|
||||
else:
|
||||
file_manifest = [f for f in glob.glob(
|
||||
f'{project_folder}/**/*.ipynb', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history,
|
||||
a=f"解析项目: {txt}", b=f"找不到任何.ipynb文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
yield from ipynb解释(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, )
|
||||
@@ -1,63 +0,0 @@
|
||||
from toolbox import CatchException, update_ui, get_conf
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
import datetime
|
||||
@CatchException
|
||||
def 同时问询(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数,用于灵活调整复杂功能的各种参数
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
MULTI_QUERY_LLM_MODELS = get_conf('MULTI_QUERY_LLM_MODELS')
|
||||
chatbot.append((txt, "正在同时咨询" + MULTI_QUERY_LLM_MODELS))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||
|
||||
# llm_kwargs['llm_model'] = 'chatglm&gpt-3.5-turbo&api2d-gpt-3.5-turbo' # 支持任意数量的llm接口,用&符号分隔
|
||||
llm_kwargs['llm_model'] = MULTI_QUERY_LLM_MODELS # 支持任意数量的llm接口,用&符号分隔
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=txt, inputs_show_user=txt,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||
sys_prompt=system_prompt,
|
||||
retry_times_at_unknown_error=0
|
||||
)
|
||||
|
||||
history.append(txt)
|
||||
history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
|
||||
|
||||
@CatchException
|
||||
def 同时问询_指定模型(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数,用于灵活调整复杂功能的各种参数
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
|
||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||
# llm_kwargs['llm_model'] = 'chatglm&gpt-3.5-turbo&api2d-gpt-3.5-turbo' # 支持任意数量的llm接口,用&符号分隔
|
||||
llm_kwargs['llm_model'] = plugin_kwargs.get("advanced_arg", 'chatglm&gpt-3.5-turbo') # 'chatglm&gpt-3.5-turbo' # 支持任意数量的llm接口,用&符号分隔
|
||||
|
||||
chatbot.append((txt, f"正在同时咨询{llm_kwargs['llm_model']}"))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=txt, inputs_show_user=txt,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||
sys_prompt=system_prompt,
|
||||
retry_times_at_unknown_error=0
|
||||
)
|
||||
|
||||
history.append(txt)
|
||||
history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
@@ -1,194 +0,0 @@
|
||||
from toolbox import update_ui
|
||||
from toolbox import CatchException, get_conf, markdown_convertion
|
||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||
from crazy_functions.crazy_utils import input_clipping
|
||||
from crazy_functions.agent_fns.watchdog import WatchDog
|
||||
from crazy_functions.live_audio.aliyunASR import AliyunASR
|
||||
from loguru import logger
|
||||
|
||||
import threading, time
|
||||
import numpy as np
|
||||
import json
|
||||
import re
|
||||
|
||||
|
||||
def chatbot2history(chatbot):
|
||||
history = []
|
||||
for c in chatbot:
|
||||
for q in c:
|
||||
if q in ["[ 请讲话 ]", "[ 等待GPT响应 ]", "[ 正在等您说完问题 ]"]:
|
||||
continue
|
||||
elif q.startswith("[ 正在等您说完问题 ]"):
|
||||
continue
|
||||
else:
|
||||
history.append(q.strip('<div class="markdown-body">').strip('</div>').strip('<p>').strip('</p>'))
|
||||
return history
|
||||
|
||||
def visualize_audio(chatbot, audio_shape):
|
||||
if len(chatbot) == 0: chatbot.append(["[ 请讲话 ]", "[ 正在等您说完问题 ]"])
|
||||
chatbot[-1] = list(chatbot[-1])
|
||||
p1 = '「'
|
||||
p2 = '」'
|
||||
chatbot[-1][-1] = re.sub(p1+r'(.*)'+p2, '', chatbot[-1][-1])
|
||||
chatbot[-1][-1] += (p1+f"`{audio_shape}`"+p2)
|
||||
|
||||
class AsyncGptTask():
|
||||
def __init__(self) -> None:
|
||||
self.observe_future = []
|
||||
self.observe_future_chatbot_index = []
|
||||
|
||||
def gpt_thread_worker(self, i_say, llm_kwargs, history, sys_prompt, observe_window, index):
|
||||
try:
|
||||
MAX_TOKEN_ALLO = 2560
|
||||
i_say, history = input_clipping(i_say, history, max_token_limit=MAX_TOKEN_ALLO)
|
||||
gpt_say_partial = predict_no_ui_long_connection(inputs=i_say, llm_kwargs=llm_kwargs, history=history, sys_prompt=sys_prompt,
|
||||
observe_window=observe_window[index], console_slience=True)
|
||||
except ConnectionAbortedError as token_exceed_err:
|
||||
logger.error('至少一个线程任务Token溢出而失败', e)
|
||||
except Exception as e:
|
||||
logger.error('至少一个线程任务意外失败', e)
|
||||
|
||||
def add_async_gpt_task(self, i_say, chatbot_index, llm_kwargs, history, system_prompt):
|
||||
self.observe_future.append([""])
|
||||
self.observe_future_chatbot_index.append(chatbot_index)
|
||||
cur_index = len(self.observe_future)-1
|
||||
th_new = threading.Thread(target=self.gpt_thread_worker, args=(i_say, llm_kwargs, history, system_prompt, self.observe_future, cur_index))
|
||||
th_new.daemon = True
|
||||
th_new.start()
|
||||
|
||||
def update_chatbot(self, chatbot):
|
||||
for of, ofci in zip(self.observe_future, self.observe_future_chatbot_index):
|
||||
try:
|
||||
chatbot[ofci] = list(chatbot[ofci])
|
||||
chatbot[ofci][1] = markdown_convertion(of[0])
|
||||
except:
|
||||
self.observe_future = []
|
||||
self.observe_future_chatbot_index = []
|
||||
return chatbot
|
||||
|
||||
class InterviewAssistant(AliyunASR):
|
||||
def __init__(self):
|
||||
self.capture_interval = 0.5 # second
|
||||
self.stop = False
|
||||
self.parsed_text = "" # 下个句子中已经说完的部分, 由 test_on_result_chg() 写入
|
||||
self.parsed_sentence = "" # 某段话的整个句子, 由 test_on_sentence_end() 写入
|
||||
self.buffered_sentence = "" #
|
||||
self.audio_shape = "" # 音频的可视化表现, 由 audio_convertion_thread() 写入
|
||||
self.event_on_result_chg = threading.Event()
|
||||
self.event_on_entence_end = threading.Event()
|
||||
self.event_on_commit_question = threading.Event()
|
||||
|
||||
def __del__(self):
|
||||
self.stop = True
|
||||
self.stop_msg = ""
|
||||
self.commit_wd.kill_dog = True
|
||||
self.plugin_wd.kill_dog = True
|
||||
|
||||
def init(self, chatbot):
|
||||
# 初始化音频采集线程
|
||||
self.captured_audio = np.array([])
|
||||
self.keep_latest_n_second = 10
|
||||
self.commit_after_pause_n_second = 2.0
|
||||
self.ready_audio_flagment = None
|
||||
self.stop = False
|
||||
self.plugin_wd = WatchDog(timeout=5, bark_fn=self.__del__, msg="程序终止")
|
||||
self.aut = threading.Thread(target=self.audio_convertion_thread, args=(chatbot._cookies['uuid'],))
|
||||
self.aut.daemon = True
|
||||
self.aut.start()
|
||||
# th2 = threading.Thread(target=self.audio2txt_thread, args=(chatbot._cookies['uuid'],))
|
||||
# th2.daemon = True
|
||||
# th2.start()
|
||||
|
||||
def no_audio_for_a_while(self):
|
||||
if len(self.buffered_sentence) < 7: # 如果一句话小于7个字,暂不提交
|
||||
self.commit_wd.begin_watch()
|
||||
else:
|
||||
self.event_on_commit_question.set()
|
||||
|
||||
def begin(self, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||
# main plugin function
|
||||
self.init(chatbot)
|
||||
chatbot.append(["[ 请讲话 ]", "[ 正在等您说完问题 ]"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
self.plugin_wd.begin_watch()
|
||||
self.agt = AsyncGptTask()
|
||||
self.commit_wd = WatchDog(timeout=self.commit_after_pause_n_second, bark_fn=self.no_audio_for_a_while, interval=0.2)
|
||||
self.commit_wd.begin_watch()
|
||||
|
||||
while not self.stop:
|
||||
self.event_on_result_chg.wait(timeout=0.25) # run once every 0.25 second
|
||||
chatbot = self.agt.update_chatbot(chatbot) # 将子线程的gpt结果写入chatbot
|
||||
history = chatbot2history(chatbot)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
self.plugin_wd.feed()
|
||||
|
||||
if self.event_on_result_chg.is_set():
|
||||
# called when some words have finished
|
||||
self.event_on_result_chg.clear()
|
||||
chatbot[-1] = list(chatbot[-1])
|
||||
chatbot[-1][0] = self.buffered_sentence + self.parsed_text
|
||||
history = chatbot2history(chatbot)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
self.commit_wd.feed()
|
||||
|
||||
if self.event_on_entence_end.is_set():
|
||||
# called when a sentence has ended
|
||||
self.event_on_entence_end.clear()
|
||||
self.parsed_text = self.parsed_sentence
|
||||
self.buffered_sentence += self.parsed_text
|
||||
chatbot[-1] = list(chatbot[-1])
|
||||
chatbot[-1][0] = self.buffered_sentence
|
||||
history = chatbot2history(chatbot)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
if self.event_on_commit_question.is_set():
|
||||
# called when a question should be commited
|
||||
self.event_on_commit_question.clear()
|
||||
if len(self.buffered_sentence) == 0: raise RuntimeError
|
||||
|
||||
self.commit_wd.begin_watch()
|
||||
chatbot[-1] = list(chatbot[-1])
|
||||
chatbot[-1] = [self.buffered_sentence, "[ 等待GPT响应 ]"]
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
# add gpt task 创建子线程请求gpt,避免线程阻塞
|
||||
history = chatbot2history(chatbot)
|
||||
self.agt.add_async_gpt_task(self.buffered_sentence, len(chatbot)-1, llm_kwargs, history, system_prompt)
|
||||
|
||||
self.buffered_sentence = ""
|
||||
chatbot.append(["[ 请讲话 ]", "[ 正在等您说完问题 ]"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
if not self.event_on_result_chg.is_set() and not self.event_on_entence_end.is_set() and not self.event_on_commit_question.is_set():
|
||||
visualize_audio(chatbot, self.audio_shape)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
if len(self.stop_msg) != 0:
|
||||
raise RuntimeError(self.stop_msg)
|
||||
|
||||
|
||||
|
||||
@CatchException
|
||||
def 语音助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
# pip install -U openai-whisper
|
||||
chatbot.append(["对话助手函数插件:使用时,双手离开鼠标键盘吧", "音频助手, 正在听您讲话(点击“停止”键可终止程序)..."])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
import nls
|
||||
from scipy import io
|
||||
except:
|
||||
chatbot.append(["导入依赖失败", "使用该模块需要额外依赖, 安装方法:```pip install --upgrade aliyun-python-sdk-core==2.13.3 pyOpenSSL webrtcvad scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git```"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
APPKEY = get_conf('ALIYUN_APPKEY')
|
||||
if APPKEY == "":
|
||||
chatbot.append(["导入依赖失败", "没有阿里云语音识别APPKEY和TOKEN, 详情见https://help.aliyun.com/document_detail/450255.html"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
ia = InterviewAssistant()
|
||||
yield from ia.begin(llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
|
||||
@@ -1,63 +0,0 @@
|
||||
from toolbox import update_ui
|
||||
from toolbox import CatchException, report_exception
|
||||
from toolbox import write_history_to_file, promote_file_to_downloadzone
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
|
||||
|
||||
def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||
import time, glob, os
|
||||
for index, fp in enumerate(file_manifest):
|
||||
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
|
||||
file_content = f.read()
|
||||
|
||||
prefix = "接下来请你逐文件分析下面的论文文件,概括其内容" if index==0 else ""
|
||||
i_say = prefix + f'请对下面的文章片段用中文做一个概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{file_content}```'
|
||||
i_say_show_user = prefix + f'[{index+1}/{len(file_manifest)}] 请对下面的文章片段做一个概述: {os.path.abspath(fp)}'
|
||||
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
msg = '正常'
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, llm_kwargs, chatbot, history=[], sys_prompt=system_prompt) # 带超时倒计时
|
||||
chatbot[-1] = (i_say_show_user, gpt_say)
|
||||
history.append(i_say_show_user); history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
||||
time.sleep(2)
|
||||
|
||||
all_file = ', '.join([os.path.relpath(fp, project_folder) for index, fp in enumerate(file_manifest)])
|
||||
i_say = f'根据以上你自己的分析,对全文进行概括,用学术性语言写一段中文摘要,然后再写一段英文摘要(包括{all_file})。'
|
||||
chatbot.append((i_say, "[Local Message] waiting gpt response."))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
msg = '正常'
|
||||
# ** gpt request **
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say, llm_kwargs, chatbot, history=history, sys_prompt=system_prompt) # 带超时倒计时
|
||||
|
||||
chatbot[-1] = (i_say, gpt_say)
|
||||
history.append(i_say); history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
||||
res = write_history_to_file(history)
|
||||
promote_file_to_downloadzone(res, chatbot=chatbot)
|
||||
chatbot.append(("完成了吗?", res))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
||||
|
||||
|
||||
|
||||
@CatchException
|
||||
def 读文章写摘要(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob, os
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)] # + \
|
||||
# [f for f in glob.glob(f'{project_folder}/**/*.cpp', recursive=True)] + \
|
||||
# [f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
yield from 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
@@ -1,185 +0,0 @@
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from toolbox import CatchException, report_exception, promote_file_to_downloadzone
|
||||
from toolbox import update_ui, update_ui_lastest_msg, disable_auto_promotion, write_history_to_file
|
||||
import logging
|
||||
import requests
|
||||
import time
|
||||
import random
|
||||
|
||||
ENABLE_ALL_VERSION_SEARCH = True
|
||||
|
||||
def get_meta_information(url, chatbot, history):
|
||||
import arxiv
|
||||
import difflib
|
||||
import re
|
||||
from bs4 import BeautifulSoup
|
||||
from toolbox import get_conf
|
||||
from urllib.parse import urlparse
|
||||
session = requests.session()
|
||||
|
||||
proxies = get_conf('proxies')
|
||||
headers = {
|
||||
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36',
|
||||
'Accept-Encoding': 'gzip, deflate, br',
|
||||
'Accept-Language': 'en-US,en;q=0.9,zh-CN;q=0.8,zh;q=0.7',
|
||||
'Cache-Control':'max-age=0',
|
||||
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
|
||||
'Connection': 'keep-alive'
|
||||
}
|
||||
try:
|
||||
session.proxies.update(proxies)
|
||||
except:
|
||||
report_exception(chatbot, history,
|
||||
a=f"获取代理失败 无代理状态下很可能无法访问OpenAI家族的模型及谷歌学术 建议:检查USE_PROXY选项是否修改。",
|
||||
b=f"尝试直接连接")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
session.headers.update(headers)
|
||||
|
||||
response = session.get(url)
|
||||
# 解析网页内容
|
||||
soup = BeautifulSoup(response.text, "html.parser")
|
||||
|
||||
def string_similar(s1, s2):
|
||||
return difflib.SequenceMatcher(None, s1, s2).quick_ratio()
|
||||
|
||||
if ENABLE_ALL_VERSION_SEARCH:
|
||||
def search_all_version(url):
|
||||
time.sleep(random.randint(1,5)) # 睡一会防止触发google反爬虫
|
||||
response = session.get(url)
|
||||
soup = BeautifulSoup(response.text, "html.parser")
|
||||
|
||||
for result in soup.select(".gs_ri"):
|
||||
try:
|
||||
url = result.select_one(".gs_rt").a['href']
|
||||
except:
|
||||
continue
|
||||
arxiv_id = extract_arxiv_id(url)
|
||||
if not arxiv_id:
|
||||
continue
|
||||
search = arxiv.Search(
|
||||
id_list=[arxiv_id],
|
||||
max_results=1,
|
||||
sort_by=arxiv.SortCriterion.Relevance,
|
||||
)
|
||||
try: paper = next(search.results())
|
||||
except: paper = None
|
||||
return paper
|
||||
|
||||
return None
|
||||
|
||||
def extract_arxiv_id(url):
|
||||
# 返回给定的url解析出的arxiv_id,如url未成功匹配返回None
|
||||
pattern = r'arxiv.org/abs/([^/]+)'
|
||||
match = re.search(pattern, url)
|
||||
if match:
|
||||
return match.group(1)
|
||||
else:
|
||||
return None
|
||||
|
||||
profile = []
|
||||
# 获取所有文章的标题和作者
|
||||
for result in soup.select(".gs_ri"):
|
||||
title = result.a.text.replace('\n', ' ').replace(' ', ' ')
|
||||
author = result.select_one(".gs_a").text
|
||||
try:
|
||||
citation = result.select_one(".gs_fl > a[href*='cites']").text # 引用次数是链接中的文本,直接取出来
|
||||
except:
|
||||
citation = 'cited by 0'
|
||||
abstract = result.select_one(".gs_rs").text.strip() # 摘要在 .gs_rs 中的文本,需要清除首尾空格
|
||||
|
||||
# 首先在arxiv上搜索,获取文章摘要
|
||||
search = arxiv.Search(
|
||||
query = title,
|
||||
max_results = 1,
|
||||
sort_by = arxiv.SortCriterion.Relevance,
|
||||
)
|
||||
try: paper = next(search.results())
|
||||
except: paper = None
|
||||
|
||||
is_match = paper is not None and string_similar(title, paper.title) > 0.90
|
||||
|
||||
# 如果在Arxiv上匹配失败,检索文章的历史版本的题目
|
||||
if not is_match and ENABLE_ALL_VERSION_SEARCH:
|
||||
other_versions_page_url = [tag['href'] for tag in result.select_one('.gs_flb').select('.gs_nph') if 'cluster' in tag['href']]
|
||||
if len(other_versions_page_url) > 0:
|
||||
other_versions_page_url = other_versions_page_url[0]
|
||||
paper = search_all_version('http://' + urlparse(url).netloc + other_versions_page_url)
|
||||
is_match = paper is not None and string_similar(title, paper.title) > 0.90
|
||||
|
||||
if is_match:
|
||||
# same paper
|
||||
abstract = paper.summary.replace('\n', ' ')
|
||||
is_paper_in_arxiv = True
|
||||
else:
|
||||
# different paper
|
||||
abstract = abstract
|
||||
is_paper_in_arxiv = False
|
||||
|
||||
logging.info('[title]:' + title)
|
||||
logging.info('[author]:' + author)
|
||||
logging.info('[citation]:' + citation)
|
||||
|
||||
profile.append({
|
||||
'title': title,
|
||||
'author': author,
|
||||
'citation': citation,
|
||||
'abstract': abstract,
|
||||
'is_paper_in_arxiv': is_paper_in_arxiv,
|
||||
})
|
||||
|
||||
chatbot[-1] = [chatbot[-1][0], title + f'\n\n是否在arxiv中(不在arxiv中无法获取完整摘要):{is_paper_in_arxiv}\n\n' + abstract]
|
||||
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
|
||||
return profile
|
||||
|
||||
@CatchException
|
||||
def 谷歌检索小助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
disable_auto_promotion(chatbot=chatbot)
|
||||
# 基本信息:功能、贡献者
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
"分析用户提供的谷歌学术(google scholar)搜索页面中,出现的所有文章: binary-husky,插件初始化中..."])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
import arxiv
|
||||
import math
|
||||
from bs4 import BeautifulSoup
|
||||
except:
|
||||
report_exception(chatbot, history,
|
||||
a = f"解析项目: {txt}",
|
||||
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade beautifulsoup4 arxiv```。")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
# 清空历史,以免输入溢出
|
||||
history = []
|
||||
meta_paper_info_list = yield from get_meta_information(txt, chatbot, history)
|
||||
if len(meta_paper_info_list) == 0:
|
||||
yield from update_ui_lastest_msg(lastmsg='获取文献失败,可能触发了google反爬虫机制。',chatbot=chatbot, history=history, delay=0)
|
||||
return
|
||||
batchsize = 5
|
||||
for batch in range(math.ceil(len(meta_paper_info_list)/batchsize)):
|
||||
if len(meta_paper_info_list[:batchsize]) > 0:
|
||||
i_say = "下面是一些学术文献的数据,提取出以下内容:" + \
|
||||
"1、英文题目;2、中文题目翻译;3、作者;4、arxiv公开(is_paper_in_arxiv);4、引用数量(cite);5、中文摘要翻译。" + \
|
||||
f"以下是信息源:{str(meta_paper_info_list[:batchsize])}"
|
||||
|
||||
inputs_show_user = f"请分析此页面中出现的所有文章:{txt},这是第{batch+1}批"
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say, inputs_show_user=inputs_show_user,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||
sys_prompt="你是一个学术翻译,请从数据中提取信息。你必须使用Markdown表格。你必须逐个文献进行处理。"
|
||||
)
|
||||
|
||||
history.extend([ f"第{batch+1}批", gpt_say ])
|
||||
meta_paper_info_list = meta_paper_info_list[batchsize:]
|
||||
|
||||
chatbot.append(["状态?",
|
||||
"已经全部完成,您可以试试让AI写一个Related Works,例如您可以继续输入Write a \"Related Works\" section about \"你搜索的研究领域\" for me."])
|
||||
msg = '正常'
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
||||
path = write_history_to_file(history)
|
||||
promote_file_to_downloadzone(path, chatbot=chatbot)
|
||||
chatbot.append(("完成了吗?", path));
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
||||
@@ -1,54 +0,0 @@
|
||||
# encoding: utf-8
|
||||
# @Time : 2023/4/19
|
||||
# @Author : Spike
|
||||
# @Descr :
|
||||
from toolbox import update_ui, get_conf, get_user
|
||||
from toolbox import CatchException
|
||||
from toolbox import default_user_name
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
import shutil
|
||||
import os
|
||||
|
||||
|
||||
@CatchException
|
||||
def 猜你想问(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
if txt:
|
||||
show_say = txt
|
||||
prompt = txt+'\n回答完问题后,再列出用户可能提出的三个问题。'
|
||||
else:
|
||||
prompt = history[-1]+"\n分析上述回答,再列出用户可能提出的三个问题。"
|
||||
show_say = '分析上述回答,再列出用户可能提出的三个问题。'
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=prompt,
|
||||
inputs_show_user=show_say,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
history=history,
|
||||
sys_prompt=system_prompt
|
||||
)
|
||||
chatbot[-1] = (show_say, gpt_say)
|
||||
history.extend([show_say, gpt_say])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
|
||||
@CatchException
|
||||
def 清除缓存(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
chatbot.append(['清除本地缓存数据', '执行中. 删除数据'])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
def _get_log_folder(user=default_user_name):
|
||||
PATH_LOGGING = get_conf('PATH_LOGGING')
|
||||
_dir = os.path.join(PATH_LOGGING, user)
|
||||
if not os.path.exists(_dir): os.makedirs(_dir)
|
||||
return _dir
|
||||
|
||||
def _get_upload_folder(user=default_user_name):
|
||||
PATH_PRIVATE_UPLOAD = get_conf('PATH_PRIVATE_UPLOAD')
|
||||
_dir = os.path.join(PATH_PRIVATE_UPLOAD, user)
|
||||
return _dir
|
||||
|
||||
shutil.rmtree(_get_log_folder(get_user(chatbot)), ignore_errors=True)
|
||||
shutil.rmtree(_get_upload_folder(get_user(chatbot)), ignore_errors=True)
|
||||
|
||||
chatbot.append(['清除本地缓存数据', '执行完成'])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
@@ -1,153 +0,0 @@
|
||||
from toolbox import CatchException, update_ui
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
import datetime
|
||||
|
||||
####################################################################################################################
|
||||
# Demo 1: 一个非常简单的插件 #########################################################################################
|
||||
####################################################################################################################
|
||||
|
||||
高阶功能模板函数示意图 = f"""
|
||||
```mermaid
|
||||
flowchart TD
|
||||
%% <gpt_academic_hide_mermaid_code> 一个特殊标记,用于在生成mermaid图表时隐藏代码块
|
||||
subgraph 函数调用["函数调用过程"]
|
||||
AA["输入栏用户输入的文本(txt)"] --> BB["gpt模型参数(llm_kwargs)"]
|
||||
BB --> CC["插件模型参数(plugin_kwargs)"]
|
||||
CC --> DD["对话显示框的句柄(chatbot)"]
|
||||
DD --> EE["对话历史(history)"]
|
||||
EE --> FF["系统提示词(system_prompt)"]
|
||||
FF --> GG["当前用户信息(web_port)"]
|
||||
|
||||
A["开始(查询5天历史事件)"]
|
||||
A --> B["获取当前月份和日期"]
|
||||
B --> C["生成历史事件查询提示词"]
|
||||
C --> D["调用大模型"]
|
||||
D --> E["更新界面"]
|
||||
E --> F["记录历史"]
|
||||
F --> |"下一天"| B
|
||||
end
|
||||
```
|
||||
"""
|
||||
|
||||
@CatchException
|
||||
def 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request, num_day=5):
|
||||
"""
|
||||
# 高阶功能模板函数示意图:https://mermaid.live/edit#pako:eNptk1tvEkEYhv8KmattQpvlvOyFCcdeeaVXuoYssBwie8gyhCIlqVoLhrbbtAWNUpEGUkyMEDW2Fmn_DDOL_8LZHdOwxrnamX3f7_3mmZk6yKhZCfAgV1KrmYKoQ9fDuKC4yChX0nld1Aou1JzjznQ5fWmejh8LYHW6vG2a47YAnlCLNSIRolnenKBXI_zRIBrcuqRT890u7jZx7zMDt-AaMbnW1--5olGiz2sQjwfoQxsZL0hxplSSU0-rop4vrzmKR6O2JxYjHmwcL2Y_HDatVMkXlf86YzHbGY9bO5j8XE7O8Nsbc3iNB3ukL2SMcH-XIQBgWoVOZzxuOxOJOyc63EPGV6ZQLENVrznViYStTiaJ2vw2M2d9bByRnOXkgCnXylCSU5quyto_IcmkbdvctELmJ-j1ASW3uB3g5xOmKqVTmqr_Na3AtuS_dtBFm8H90XJyHkDDT7S9xXWb4HGmRChx64AOL5HRpUm411rM5uh4H78Z4V7fCZzytjZz2seto9XaNPFue07clLaVZF8UNLygJ-VES8lah_n-O-5Ozc7-77NzJ0-K0yr0ZYrmHdqAk50t2RbA4qq9uNohBASw7YpSgaRkLWCCAtxAlnRZLGbJba9bPwUAC5IsCYAnn1kpJ1ZKUACC0iBSsQLVBzUlA3ioVyQ3qGhZEUrxokiehAz4nFgqk1VNVABfB1uAD_g2_AGPl-W8nMcbCvsDblADfNCz4feyobDPy3rYEMtxwYYbPFNVUoHdCPmDHBv2cP4AMfrCbiBli-Q-3afv0X6WdsIjW2-10fgDy1SAig
|
||||
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数,用于灵活调整复杂功能的各种参数
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
chatbot.append((
|
||||
"您正在调用插件:历史上的今天",
|
||||
"[Local Message] 请注意,您正在调用一个[函数插件]的模板,该函数面向希望实现更多有趣功能的开发者,它可以作为创建新功能函数的模板(该函数只有20多行代码)。此外我们也提供可同步处理大量文件的多线程Demo供您参考。您若希望分享新的功能模组,请不吝PR!" + 高阶功能模板函数示意图))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||
for i in range(int(num_day)):
|
||||
currentMonth = (datetime.date.today() + datetime.timedelta(days=i)).month
|
||||
currentDay = (datetime.date.today() + datetime.timedelta(days=i)).day
|
||||
i_say = f'历史中哪些事件发生在{currentMonth}月{currentDay}日?列举两条并发送相关图片。发送图片时,请使用Markdown,将Unsplash API中的PUT_YOUR_QUERY_HERE替换成描述该事件的一个最重要的单词。'
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say, inputs_show_user=i_say,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||
sys_prompt="当你想发送一张照片时,请使用Markdown, 并且不要有反斜线, 不要用代码块。使用 Unsplash API (https://source.unsplash.com/1280x720/? < PUT_YOUR_QUERY_HERE >)。"
|
||||
)
|
||||
chatbot[-1] = (i_say, gpt_say)
|
||||
history.append(i_say);history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
####################################################################################################################
|
||||
# Demo 2: 一个带二级菜单的插件 #######################################################################################
|
||||
####################################################################################################################
|
||||
|
||||
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate, ArgProperty
|
||||
class Demo_Wrap(GptAcademicPluginTemplate):
|
||||
def __init__(self):
|
||||
"""
|
||||
请注意`execute`会执行在不同的线程中,因此您在定义和使用类变量时,应当慎之又慎!
|
||||
"""
|
||||
pass
|
||||
|
||||
def define_arg_selection_menu(self):
|
||||
"""
|
||||
定义插件的二级选项菜单
|
||||
"""
|
||||
gui_definition = {
|
||||
"num_day":
|
||||
ArgProperty(title="日期选择", options=["仅今天", "未来3天", "未来5天"], default_value="未来3天", description="无", type="dropdown").model_dump_json(),
|
||||
}
|
||||
return gui_definition
|
||||
|
||||
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
执行插件
|
||||
"""
|
||||
num_day = plugin_kwargs["num_day"]
|
||||
if num_day == "仅今天": num_day = 1
|
||||
if num_day == "未来3天": num_day = 3
|
||||
if num_day == "未来5天": num_day = 5
|
||||
yield from 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request, num_day=num_day)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
####################################################################################################################
|
||||
# Demo 3: 绘制脑图的Demo ############################################################################################
|
||||
####################################################################################################################
|
||||
|
||||
PROMPT = """
|
||||
请你给出围绕“{subject}”的逻辑关系图,使用mermaid语法,mermaid语法举例:
|
||||
```mermaid
|
||||
graph TD
|
||||
P(编程) --> L1(Python)
|
||||
P(编程) --> L2(C)
|
||||
P(编程) --> L3(C++)
|
||||
P(编程) --> L4(Javascipt)
|
||||
P(编程) --> L5(PHP)
|
||||
```
|
||||
"""
|
||||
@CatchException
|
||||
def 测试图表渲染(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数,用于灵活调整复杂功能的各种参数
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
user_request 当前用户的请求信息(IP地址等)
|
||||
"""
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
chatbot.append(("这是什么功能?", "一个测试mermaid绘制图表的功能,您可以在输入框中输入一些关键词,然后使用mermaid+llm绘制图表。"))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||
|
||||
if txt == "": txt = "空白的输入栏" # 调皮一下
|
||||
|
||||
i_say_show_user = f'请绘制有关“{txt}”的逻辑关系图。'
|
||||
i_say = PROMPT.format(subject=txt)
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say,
|
||||
inputs_show_user=i_say_show_user,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||
sys_prompt=""
|
||||
)
|
||||
history.append(i_say); history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
Reference in New Issue
Block a user