format file

This commit is contained in:
qingxu fu
2023-04-06 18:15:11 +08:00
parent e8cf757dc0
commit 0b3f7b8821
2 changed files with 86 additions and 60 deletions

View File

@@ -2,6 +2,7 @@ from toolbox import CatchException, report_execption, write_results_to_file
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
def read_and_clean_pdf_text(fp):
"""
**输入参数说明**
@@ -20,7 +21,8 @@ def read_and_clean_pdf_text(fp):
- 清除重复的换行
- 将每个换行符替换为两个换行符,使每个段落之间有两个换行符分隔
"""
import fitz, re
import fitz
import re
import numpy as np
# file_content = ""
with fitz.open(fp) as doc:
@@ -31,10 +33,13 @@ def read_and_clean_pdf_text(fp):
text_areas = page.get_text("dict") # 获取页面上的文本信息
# 块元提取 for each word segment with in line for each line cross-line words for each block
meta_txt.extend( [ " ".join(["".join( [wtf['text'] for wtf in l['spans'] ]) for l in t['lines'] ]).replace('- ','') for t in text_areas['blocks'] if 'lines' in t])
meta_font.extend([ np.mean( [ np.mean([wtf['size'] for wtf in l['spans'] ]) for l in t['lines'] ]) for t in text_areas['blocks'] if 'lines' in t])
if index==0:
page_one_meta = [" ".join(["".join( [wtf['text'] for wtf in l['spans'] ]) for l in t['lines'] ]).replace('- ','') for t in text_areas['blocks'] if 'lines' in t]
meta_txt.extend([" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
'- ', '') for t in text_areas['blocks'] if 'lines' in t])
meta_font.extend([np.mean([np.mean([wtf['size'] for wtf in l['spans']])
for l in t['lines']]) for t in text_areas['blocks'] if 'lines' in t])
if index == 0:
page_one_meta = [" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
'- ', '') for t in text_areas['blocks'] if 'lines' in t]
def 把字符太少的块清除为回车(meta_txt):
for index, block_txt in enumerate(meta_txt):
@@ -61,8 +66,10 @@ def read_and_clean_pdf_text(fp):
for _ in range(100):
for index, block_txt in enumerate(meta_txt):
if starts_with_lowercase_word(block_txt):
if meta_txt[index-1]!='\n': meta_txt[index-1] += ' '
else: meta_txt[index-1] = ''
if meta_txt[index-1] != '\n':
meta_txt[index-1] += ' '
else:
meta_txt[index-1] = ''
meta_txt[index-1] += meta_txt[index]
meta_txt[index] = '\n'
return meta_txt
@@ -72,13 +79,14 @@ def read_and_clean_pdf_text(fp):
meta_txt = '\n'.join(meta_txt)
# 清除重复的换行
for _ in range(5):
meta_txt = meta_txt.replace('\n\n','\n')
meta_txt = meta_txt.replace('\n\n', '\n')
# 换行 -> 双换行
meta_txt = meta_txt.replace('\n', '\n\n')
return meta_txt, page_one_meta
@CatchException
def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt, WEB_PORT):
import glob
@@ -92,7 +100,8 @@ def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt,
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import fitz, tiktoken
import fitz
import tiktoken
except:
report_execption(chatbot, history,
a=f"解析项目: {txt}",
@@ -129,13 +138,8 @@ def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt,
yield from 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt)
def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt):
import time
import glob
import os
import fitz
import tiktoken
TOKEN_LIMIT_PER_FRAGMENT = 1600
generated_conclusion_files = []
@@ -145,39 +149,44 @@ def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, histor
# 递归地切割PDF文件
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
enc = tiktoken.get_encoding("gpt2")
get_token_num = lambda txt: len(enc.encode(txt))
def get_token_num(txt): return len(enc.encode(txt))
# 分解文本
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
# 为了更好的效果我们剥离Introduction之后的部分
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
paper_meta = page_one_fragments[0].split('introduction')[0].split(
'Introduction')[0].split('INTRODUCTION')[0]
# 单线获取文章meta信息
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=f"以下是一篇学术论文的基础信息请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出最后用中文翻译摘要部分。请提取{paper_meta}",
inputs_show_user=f"请从{fp}中提取出“标题”、“收录会议或期刊”等基本信息。",
inputs=f"以下是一篇学术论文的基础信息请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出最后用中文翻译摘要部分。请提取{paper_meta}",
inputs_show_user=f"请从{fp}中提取出“标题”、“收录会议或期刊”等基本信息。",
top_p=top_p, temperature=temperature,
chatbot=chatbot, history=[],
sys_prompt="Your job is to collect information from materials。",
)
# 多线,翻译
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array = [f"以下是你需要翻译的文章段落:\n{frag}" for frag in paper_fragments],
inputs_show_user_array = [f"" for _ in paper_fragments],
inputs_array=[
f"以下是你需要翻译的文章段落:\n{frag}" for frag in paper_fragments],
inputs_show_user_array=[f"" for _ in paper_fragments],
top_p=top_p, temperature=temperature,
chatbot=chatbot,
history_array=[[paper_meta] for _ in paper_fragments],
sys_prompt_array=["请你作为一个学术翻译,把整个段落翻译成中文,要求语言简洁,禁止重复输出原文。" for _ in paper_fragments],
max_workers=16 # OpenAI所允许的最大并行过载
sys_prompt_array=[
"请你作为一个学术翻译,把整个段落翻译成中文,要求语言简洁,禁止重复输出原文。" for _ in paper_fragments],
max_workers=16 # OpenAI所允许的最大并行过载
)
final = ["", paper_meta_info + '\n\n---\n\n---\n\n---\n\n']
final.extend(gpt_response_collection)
create_report_file_name = f"{os.path.basename(fp)}.trans.md"
res = write_results_to_file(final, file_name=create_report_file_name)
generated_conclusion_files.append(f'./gpt_log/{create_report_file_name}')
chatbot.append((f"{fp}完成了吗?", res)); msg = "完成"
generated_conclusion_files.append(
f'./gpt_log/{create_report_file_name}')
chatbot.append((f"{fp}完成了吗?", res))
msg = "完成"
yield chatbot, history, msg
# 准备文件的下载
@@ -185,8 +194,10 @@ def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, histor
for pdf_path in generated_conclusion_files:
# 重命名文件
rename_file = f'./gpt_log/总结论文-{os.path.basename(pdf_path)}'
if os.path.exists(rename_file): os.remove(rename_file)
shutil.copyfile(pdf_path, rename_file);
if os.path.exists(pdf_path): os.remove(pdf_path)
if os.path.exists(rename_file):
os.remove(rename_file)
shutil.copyfile(pdf_path, rename_file)
if os.path.exists(pdf_path):
os.remove(pdf_path)
chatbot.append(("给出输出文件清单", str(generated_conclusion_files)))
yield chatbot, history, msg
yield chatbot, history, msg